Fraunhofer Center for Sustainable Energy Systems

Non-Intrusive Appliance Load Monitoring (NIALM): Review and Outlook*

Michael Zeifmanı Ph.D. Kurt Rothı Ph.D.

International Conference on Consumer Electronics Las Vegas 10 January 2011 *Supported in part by US DOE through a

subcontract with Lawrence Berkley National Laboratory (LBNL). We are grateful to Rich Brown of LBNL for helpful discussions.

Fraunhofer: A Leading Force in Applied R&D

- Fraunhofer Gesellschaft: Europe's largest contract research organization – 17,000 employees
- Annual research budget: US\$2.2B
- 59 institutes provide contract R&D and certification services for clients
- Research Themes: health, security, communication, mobility, energy, environment
- Fraunhofer USA: 7 Centers, >200 employees, Annual research budget >\$50M
- Fraunhofer CSE is located in Cambridge, MA
- Three focus areas:
 - Building Energy Efficiency
 - PV Modules
 - Smart Grid

What Is NIALM?

- Non-Intrusive Appliance Load Monitoring
 - A.k.a. Non-Intrusive Load Monitoring

- Main breaker/circuit level
- Data acquisition (hardware) and disaggregation algorithms (software)

NIALM: Interest

Number of US granted patents – exponential growth

NIALM: Motivation

- Energy saving potential
 - Residential buildings consume ~ 20% of primary energy in USA
 - Electricity constitutes ~ 70% of residential energy consumption
 - Feedback on energy usage can result in 5-15% saving
- Smart Grid unique business opportunity
 - ~ 80 M smart meters in USA are projected by 2013
 - Hardware can be used by NIALM
 - Non-intrusive "manual" alternative to home automation
- Time-of-use electricity pricing
 - Transition from fixed to time-dependent pricing in Europe and North America
 - More people are concerned with energy monitoring and management

How Does NIALM Work?

Data for NIALM: Sampling Rate

Typical daily number of switching events in a household: up to ~ 10³-10⁴ [Baranski, 2004]

NIALM: Types of Appliances

Permanent

On/off

Multi State

Variable

I. Low Sampling Rate, Features: Power Change

I. Power Change: Basic Method

I. Change of Real Power Only

I. Change of Power + Additional Features

II. High Sampling Rate, Harmonics as Features

II. Features: Harmonics for Transients (1/2)

- 1) Detect transients
- 2) Subtract pre-transient from posttransient
- 3) Take Fourier transform and compare with template
- 4) Set of harmonics = "power envelope"

Accuracy: ~N/A

II. Features: Harmonics for Transients (2/2)

II. Features: Fourier Transform of Noise (1/2)

Patel et al., 2007 (Ga. Tech.)

Basic idea: appliance connected to a socket induces noise (electromagnetic interference) in another socket

- 1) Measure signal at high rate (500 kHz)
- 2) Calculate Fourier transform continuously
- 3) Compare with templates

Accuracy: 85-90%

II. Features: Fourier Transform of Noise (2/2)

NIALM Algorithms (1/3)

Single-matching (pattern recognition) On/off appliances **Example: Waveform** Before After 0.4 0.2 Multi State 0.1 0.2 Current, a.u. Current, a.u. 0 0 -0.1 -0.2 Variable -0.2 -0.3L -0.4 Load 5 15 20 5 10 15 20 10 Time, ms Time, ms Permanent 0.2 Pattern recognition Load 0. Current, a.u. methods used: 0 N-nearest neighbor -0.1

-0.2

5

10

Time, ms

15

20

© Fraunhofer USA 2011

Bayes classifier

Neural networks

Same-Load

Appliances

NIALM Algorithms (2/3)

NIALM Algorithms (3/3)

Promising Directions

Combination of various "orthogonal" features

- Combination of "orthogonal" algorithms
 Only one publication so far (Liang *et al.*, 2010)
- The curse of false positives
- Use of techniques known elsewhere
 Information Fusion Dempster-Shafer
 Evidence Theory

NIALM Accuracy Metrics

Only one paper discusses: Liang *et al.*, 2010
 Can be appliance-related or overall

Example:

•Devices were turned on 80 times over monitoring period.

 70 out of 80 – detected as "events" (no classification yet) AND also 15 false positive detections.

• Out of 70, 50 were correctly classified.

- What is the accuracy???
 - Detection accuracy: 50/(70+15) = 58.8%
 - Classification accuracy: 50/70 = 71.4%
 - Overall accuracy: 50/80 = 62.5%

NIALM Accuracy Metrics – ROC

We suggest: Receiver operating characteristic (ROC)

Conclusions and Future Trends

□ No complete NIALM solution is available

No complete set of robust, widely accepted appliance features is available

□Using more "orthogonal" features improves accuracy, albeit with higher false positive rates

□ Using several "orthogonal" disaggregation algorithms may improve accuracy, but optimal fusion needs to be implemented

ROC curves could be used for algorithm benchmarking rather than the ambiguous "accuracy"

Our (Fraunhofer CSE) Research Directions

Exploration of device "signatures" to identify new orthogonal features

Development of identification/tracking algorithms suitable for the new features

Optimal fusion of new algorithm(s) with the algorithms available for traditional features

Testing and benchmarking – device, whole home & branch circuit levels

Exploration of transient event detection techniques

Exploration of signal processing techniques for reconstruction of sources

Results to be presented at:

• "Viterbi Algorithm with Sparse Transitions (VAST) for Nonintrusive Load Monitoring," IEEE Symposium Series on Computational Intelligence, Paris, 2011

• "Nonintrusive appliance load monitoring (NIALM) for energy control in residential buildings," Energy Efficiency in Domestic Appliances and Lighting Conference, Copenhagen, 2011

