
improve Productivity by integrating Automation and
Defect Prevention into your software Development Process

D o r o t a H u i z i n g a ▪ A d a m K o l a w a

This book presents an approach to software management based on a new methodology
called Automated Defect Prevention (ADP). The authors describe how to establish an
infrastructure that functions as a software “production line” that automates repetitive
tasks, organizes project activities, tracks project status, seamlessly collects project
data, and sustains and facilitates the improvement of human-defined processes.
Well-grounded in software engineering research and in industry best practices, this
book helps organizations gain dramatic improvement in both product quality and
operational effectiveness.

Ideal for industry professionals and project managers, as well as upper-level
undergraduates and graduate-level students in software engineering, Automated
Defect Prevention is complete with figures that illustrate how to structure projects
and contains real-world examples, developers’ testimonies, and tips on how to
implement defect prevention strategies across a project group.

DOrOtA HUiZinGA, PHD, is the Associate Dean for the College of Engineering
and Computer Science and Professor of Computer Science at California State University,
Fullerton. Her publication record spans a wide range of computer science disciplines and
her research was sponsored by the National Science Foundation, California
State University System, and private industry.

ADAM KOlAWA, PHD, is the co-founder and CEO of Parasoft, a leading provider
of Automated Error Prevention software solutions. Dr. Kolawa, a co-author of
Bulletproofing Web Applications, has contributed to or written more than
100 commentary pieces and technical papers, and has authored numerous
scientific papers.

To learn more about the ADP book or read a sample chapter, visit
http://www.parasoft.com/adp_book.

Automated
Defect Prevention
BEST PRACTICES IN SOFTWARE MANAGEMENT

eXcerPts froM

Copyright © 2007 by John Wiley & Sons, Inc. All rights reserved.
Executive summary by permission of publisher.

Wiley-interscience
A John Wiley & Sons, Inc., Publication

Automated
Defect Prevention
Best Practices in Software Management

D o r o t a H u i z i n g a | A d a m K o l a w a

Excerpts from

Executive Summary by permission of publisher

What is this booklet?

This booklet introduces the key concepts featured in the book Automated
Defect Prevention: Best Practices in Software Development, which
was co-authored by Parasoft CEO and co-founder Adam Kolawa
along with Dorota Huizinga, Associate Dean and Professor at CSUF.
It is designed to provide you an overview of what Automated Defect
Prevention involves and how it can benefit your development team.

Comments about Automated Defect Prevention

The best software bug is the bug that never, ever gets into the code. While we
can all try to design zero-defect applications, the reality is that whenever there
are programmers involved, you’re going to have bugs. No set of best practices can
prevent coders from making mistakes, just like no spell check can prevent me from
typing “mistake” incorrectly. The real trick, therefore, is to catch defects as soon as
they’re made – quickly, painlessly, automatically.

In their authoritative new book, Dorota Huizinga and Adam Kolawa have done
an admirable job defining a realistic methodology for implementing infrastructure
for automatically preventing defects from getting into software. Is it simple?
No, of course not. There’s no silver bullet. But when the software industry is ready
to journey toward zero-defect applications, the road will look like Huizinga and
Kolawa’s “Automated Defect Prevention.”

 			 – Alan Zeichick
 				 Editorial Director, BZ Media’s SD Times

Adam Kolawa is a seasoned practitioner of Quality Function Deployment (QFD) –
he makes countless trips to every Parasoft client’s site, and takes away the essential
customer needs which get implemented at an astonishing rate into Parasoft’s solutions.

The same level of scrutiny has been applied to “Automated Defect Prevention.”
This is a practical guide with realistic, useful and immediately applicable techniques
that save money while improving developer skills. It’s a must read
for anyone serious about significant software quality improvement.

 			 – Nigel DeFreitas
 				 Application Architect, Insurance Services Office

Wiley-interscience
A John Wiley & Sons, Inc., Publication

Copyright © 2007 by John Wiley & Sons, Inc. All rights reserved.
Executive summary by permission of publisher

ISBN: 978-0470-04212-0

List price $95.50

Ordering information:
To order online, go to http://www.wiley.com/go/adp.
For a 20% discount, use the promotion code TSADP.

To learn more about the ADP book or read a sample chapter,
visit http://www.parasoft.com/adp_book.

Best Practices in Software Management �

Why this book is important

Many software development managers and team leads want to make the
software development process more productive and improve the quality of
the software being delivered. Yet, they worry that such efforts will frustrate
developers and impact the creativity that is vital for successful software
projects. Fortunately, efficiency, quality. and creativity can peacefully
coexist within the software development process. When the more mundane
aspects of development are automated, developers can focus on the creative
tasks they enjoy most…and still deliver better software in less time.

The Automated Defect Prevention (ADP) methodology described in the book
reduces waste and inefficiency in the software development process, enabling
developers to satisfy business goals without compromising their craft. The
book explains how ADP can be applied to establish a continuous process that
ensures quality tasks are not only deployed across every stage of the SDLC,
but also ingrained into the team’s workflow. Additionally, it covers how to
leverage an automated infrastructure that drives this process to ensure that it
remains on track and does not disrupt the team’s workflow. Readers will learn
how evolve their own development process into a continuous quality process
that delivers greater productivity and significantly fewer software defects.

How this book can help you

This book introduces ADP: a practical approach to software management through
process improvement. This strategy is enabled by an infrastructure that automates
repetitive tasks, tracks project status, and provides instant access to the information
needed for informed decision making and process improvement. Applying ADP,
you can evolve a sustainable quality process that delivers predictable outcomes.

ADP stands out from the current software landscape as a result of
two unique features:

	 Its approach to quality as a continuous process.

	 Its far-reaching emphasis on automation.

It can be applied to any team, regardless of its structure, projects,
or development method.

The overall goal of this book is to provide practical advice on how to
implement ADP in a modern software development process. This is not a
theoretical book on how to build software under ideal circumstances. Rather,
it is a hands-on guide to solving real-world software project problems.

We recognize that most readers will not have the luxury of starting a new
software process from scratch, so throughout the book, we pay special
attention to phasing in ADP to existing projects and processes, and applying
it to large complex code bases without overwhelming the team.

The focus throughout is on evolution, not revolution. We do not expect the
readers to abandon current processes and workflows in search of a silver bullet
solution that will solve all current problems. There is no such perfect development
environment or development process that will be a panacea for all software
development groups and projects. Consequently, rather than offer step-by-
step implementation details for a one-size-fits-all solution, we describe the key
practices that have helped many different teams improve their processes.

Reading this book, you will learn how to:

	 Control and improve your existing development process.

	 Increase agility while facing complexity and change.

	 Ensure quality throughout the SDLC – from requirements definition,
to design, to construction, to integration, to deployment.

	 Collect objective data about the application and the processes used
to build it, then leverage it for quality and process improvement.

	 Instantly assess project quality and readiness.

	 Determine if a release is on target, and how to get it back on track.

	 Automate routine and repetitive tasks so the team can
focus on more critical and challenging ones.

� Automated Defect Prevention Best Practices in Software Management �

What’s in the book

In Chapter 1, the book begins by describing ADP and its goals as a response to the
complexities of modern software development. First, it categorizes the goals into
those affecting people, product, organization, process, and project (PPOPP). Next,
it provides an overview of ADP’s principles, practices and policies with a special
focus on the role of defect prevention and automation. The last section briefly
describes the evolution of software development process models from waterfall
to iterative and agile. The objective is not to convince the readers to adopt a new
development process, but rather to propose ideas for making existing processes
more effective.

In Chapter 2 introduces the ADP principles: establishment of the
infrastructure, application of general best practices, customization of
best practices, measurement and tracking of project status, automation,
and incremental implementation of ADP’s practices. These principles are
explained and validated with research studies and realistic examples.

In Chapters 3 and 5 discuss initial and extended planning together with
the minimum and expanded infrastructure required for ADP. Supporting
infrastructure is essential for ensuring that ADP practices can be properly
measured, tracked, and automated, and thus can be implemented and sustained.
Four core infrastructure elements are widely recognized as being critical to making
software work: source control system, automated build system, problem tracking
system, and automated reporting system. These four integrated elements form
the backbone that allows the teams to maintain and improve their software
development process. In addition to covering this technology infrastructure,
these chapters also define the roles of people, describe basic and extended
plan, and elaborate on parametric cost and schedule estimation models.

Chapter 4 addresses the requirements phase. Software defects that originate
in the requirements phase and propagate further into the process are often
the most costly to remove. Even issues that do not seem to be related to
requirements can often be traced back to this phase of the software lifecycle — be
it a poorly conceived requirement, an incorrectly implemented requirement,
or a missing/incomplete requirement. A key point stressed in this chapter
is the importance of determining which requirements will be most difficult
to implement, prioritizing them, and building a prototype architecture.

In Chapter 6 addresses architecture and design. The final product of
this phase is a blueprint for implementing requirements with the focus
on the most critical features. The chapter then discusses design policies,

patterns, and architectures, which are different ways of achieving these
goals. Tips on how design mistakes can be prevented and how they
relate to requirements are provided throughout the chapter.

Chapter 7 covers construction, with a focus on the many practices that can
prevent defects during this extremely error-prone phase. It describes best practices
starting from coding standards, through test-driven development for modules
and algorithmically complex units, to conducting unit tests before adding the
code to the source control system. In addition, basic policies for use of the
source control system and automated build system are outlined in this chapter.

Chapter 8 discusses how testing should be used to verify application quality at the
various stages of its construction. It describes the recommended practices for testing
together with the test progression criteria that help determine when development
and testing should progress from level to level: from unit, through integration,
system, and acceptance testing. Next, the chapter depicts a defect life cycle in the
context of root cause analysis and prevention, and then describes basic policies
for use of the problem tracking system and automatic regression testing system.

The first part of Chapter 9 explains how measures introduced throughout the book
can be used to identify emerging problems in the software product and/or process,
and how these measurements should be used to help identify the root cause of the
problem in question. The second part of this chapter discusses deployment to the
staging system and then to the production system. Deployment of today’s complex
applications is an inherently difficult process.

After discussing preventive strategies for making the deployment
process less error-prone, the chapter offers guidance on automating
it for different types of projects and environments.

Chapter 10 discusses how ADP supports industry initiatives that modern
development teams commonly face. It describes the infrastructure
and practices put in place for ADP that can be leveraged to support
outsourcing initiatives and to address regulatory compliance requirements
such as Sarbanes Oxley (SOX). It also shows how the ADP practices,
paired with its automation and supporting infrastructure, makes quality
improvement initiatives such as SEI – CMMI® practical and sustainable.

Finally, in Chapter 11, the book concludes with a case study that
shows how industry leaders were able to apply some of the ADP
concepts to improve their software development processes.

� Automated Defect Prevention Best Practices in Software Management �

Policies Practices

Principles

 How ADP is Implemented

ADP is implemented by following a set of principles, practices, and
policies. The principles are high-level laws that form the basis of ADP
methodology, while the policies and practices comprise low-level development
and management rules and procedures at varying granularity.

Principles, Policies, and Practices

Principles
Principles are the foundation of the ADP methodology. They are the
basic laws that govern structuring and managing software projects
through defect prevention. They correspond to ADP’s goals at the
highest level and they form the basis for the definition of practices
and policies, which are directly applicable to software projects.

There are six ADP principles:

1.	Establishment of Infrastructure – “Build a strong foundation
through integration of people and technology”

2.	Application of General Best Practices – “Learn from the mistakes of others”

3.	Customization of Best Practices – “Learn from your own mistakes”

4.	Measurement and Tracking of Project Status – “Understand
the past and present to make decisions about the future”

5.	Automation – “Let the computer do it”

6.	Incremental Implementation of ADP’s Practices and Policies – “Move
carefully to minimize resistance and increase the chance of success”

Practices
Practices are functional embodiments of the principles. Depending on
their level of granularity, best practices can pertain to entire projects,
processes, or even individual tasks and people’s daily activities. There are
two types of best practices: general, which are based on issues common
to all development projects, and customized, which are adopted by the
organization to meet the needs of its unique projects. While the body of
general best practices is already defined and well accepted by the industry,
the body of customized best practices is created by the organization.

Policies
Policies are managerial embodiments of the principles. They mostly pertain to
teamwork and define how the team should interact with technology. They are
also used to assure that product and process related decisions are consistently
applied through the entire team, and usually take the form of written
documents. An example is a policy for use of a requirements management
system, which should define how individuals and teams should use this system
in order to most effectively organize and track product requirements.

Shortcut Guide to ADP Principles

Principle 1: Establishment of Infrastructure

This principle states that people’s roles in a software team need to be
defined to include active participation in and control of defect prevention
in a project. It also stresses the necessity for technology used to both
automate best practices, and to track and measure project status data.

A robust development infrastructure includes the following components:

	 Source control system: Having a source code repository is a
prerequisite for nightly builds. All of the files needed for the
build should be in the source control system, including build
files, scripts, etc.—not just the source that is being built.

	 Nightly build system: This system builds an application on a regular
basis by automatically executing the required build steps at the scheduled
time without any human intervention. This way, any problems
are detected the next day (as opposed to a week or more later).

� Automated Defect Prevention Best Practices in Software Management �

Product Manager Architect

Reports

Reporting System

Developers QA

Requirements Management System

Regression Testing System

Other Tools

Source Control System

Nightly Build System

	 Requirements management system (and/or bug tracking system): This is a
repository for storing and tracking defects and issues, as well as the developers’
ideas for improving the application. Defects are stored so they can be tracked,
analyzed, and ultimately prevented from recurring. The system can also be
used for storing feature requests and tracking feature and requirement changes.
The end result is a central repository of information related to your software.

	 Regression testing system: A regression system is any tool or combination
of tools that can automatically run the core of the existing tests on the
entire code base on a regular basis. Its purpose is to identify when code
modifications cause unexpected faults, especially those faults that occur
because a developer did not fully understand the internal code dependencies
when modifying or extending code that previously functioned correctly.
For example, it can be established by running automated testing tools from
the command line using scripts or Ant with CruiseControl or Maven.

	 Additional test and analysis tools: This can include tools for static
analysis, code review automation, performance profilers, memory
analyzers, coverage analyzers, etc. For example, this could include open
source tools such as PMD, JUnit, CppUnit, NUnit, or automated tools
such as Parasoft Jtest (for Java), C++test and Insure++ (for C/C++),
.TEST (for .NET languages), and SOAtest (for SOA and Web).

	 Reporting system: This system should be able to gather data
from all these components (source control, nightly build, tests,
etc) and present them in a visual way to enable analysis of status
and trends. Parasoft GRS is an example of such a system.

Principle 2: Application of General Best Practices

Most software development projects share many of the same characteristics
and pitfalls, even though each project and organization also encounters its
own unique challenges. Consequently, ADP defines general best practices to
prevent the software defects and human errors common to most development
projects. The basic premise of this principle is to integrate industry well-accepted
best practices (such as those identified for requirements change management,
configuration management, or coding standards) into the lifecycle.

The set of general best practices is the product of software industry experts
examining the most common errors and then developing rules designed to prevent
these common errors. They represent a wealth of knowledge that was created
through years of experience of many organizations. By adopting and, where
possible, automating these „out-of-the-box” general practices, an organization can
instantly progress from following the few best practices that it introduced over the
years to a comprehensive set of standards that have been developed, tested, and
perfected by industry experts. When teams are working on any type of project,
it is always prudent to follow the practices and standards that industry experts
have designed for the relevant application, language, platform, and technologies.

Best practices discussed in this book include:

	 Requirements definition and management best practices

	 Design best practices

	 Static analysis (coding standards, data flow, metrics, etc.)

	 Peer code review

	 Unit testing

	 Regression testing

	 Security testing

	 Message/protocol testing (SOA, Web, RIA, etc.)

	 Load testing

	 Deployment best practices

10 Automated Defect Prevention Best Practices in Software Management 11

Defect Prevention in Life Cycle Phase

Identify Defect

Find Root Cause
of Defect

Locate Part of Process
That Allowed Defect

Modify Process to Prevent
Defect Recurrence

Monitor Process

Principle 3: Customization of Best Practices

The customized best practices address the project- or organization-specific
problems. Some practices are very valuable in one type of development context,
but not applicable to others. Customized practices are necessary because
many modern development projects have vastly different needs, depending
on the nuances of the product. For example, the team working on embedded
C software for a pacemaker, the team working on an e-commerce Web
application, and the team developing a fast-action software game, will all have
very different concerns. Thus, even though the same core general practices apply
in most cases, for thorough defect prevention, these core practices should be
supplemented with the appropriate set of specific practices to create a mix of
general and customized practices best suited for the project’s unique needs.

Thus, there is a need for a mechanism that provides for customization of the
best practices in order to prevent project- or organization- specific problems.
This mechanism is described by the third principle, which is based on the
error prevention concept shown below. Each time a severe defect is discovered,
a new customized practice should be defined. Once the new customized
practice is defined, it has to become an integral part of the methodology
and its application should be, if possible, both automated and seamless. The
adherence to the customized practices should be monitored, so consequently,
the development methodology would become increasingly defect-resistant.

Defect prevention applied to a phase in the software development process.

Principle 4: Measurement and Tracking of Project Status

To make informed decisions, management must be able to analyze measures reflecting
project status information. These measures are quantitative representations of product
or process attributes. They could be assigned specific, absolute values, such as the
number of defects uncovered, or they could characterize the degree to which a system,
or its component, possesses a given attribute. In the latter case, they are referred to as
metrics. An example of a metric is a percentage of failed tests. These measures could
also denote more general statistical indicators, such as confidence factors, derived
from many basic measures. Indicators, for example, could provide information such
as whether the project progresses according to its schedule and whether the costs are
within the planned budget. At a more detailed level, many other project-essential
statistics should be available; for example, the number of implemented requirements
features, the number of failed tests, coverage of tests, or the number of defects and their
severity, etc. Project indicators help in prompt identification of problems, so they can
be remedied in a timely manner. Additionally, when observed over an extended period,
those indicators can be used to assess product quality and its deployment readiness.

Consequently, continuous data gathering is critical in our methodology and
it is achieved by having a seamless, automated reporting system capable of
collecting and storing project data in a repository. Based on the data in this
repository project status measures and metrics can be calculated, tracked,
and plotted for management decisions. Thus, in our methodology, software
processes are treated as statistical processes. It is important that each group
review the values of these predefined measures, and then use statistical
control limits and target average values to assess the status of the project.

Principle 5: Automation

Today’s software systems are large, very complex, and typically consist
of many sub-systems running on heterogeneous platforms. The trend is
for software to continue to become more complex, notwithstanding the
advances in modern Integrated Development Environments with automatic
code generators, and widespread use of off the shelf components.

With such complex systems and many different cost-driven constraints,
automation becomes a necessity for the delivery of quality software systems. Thus,
Walker Royce in his top 10 principles of modern software management lists
automation as a critical feature that facilitates or even encourages perpetual change
in iterative processes. Although many managers hesitate to invest in auxiliary
technology due to the high cost of licenses and training, the long-term benefits of
automation largely outweigh these drawbacks.

12 Automated Defect Prevention Best Practices in Software Management 13

These benefits include:

	 Improved job satisfaction and productivity

	 Improved product quality

	 Facilitating human communication

	 Helping to implement and verify best practices and organizational standards

	 Facilitating control of the software processes by collecting measurement data

Principle 6: Incremental Implementation of ADP’s Practices and Policies

While the ability to embrace change is important to the success of any
business, it is a necessary survival skill in the software industry. This is
because no other business relies on continuous change through learning,
adaptation, and innovation like the software business does.

However, change is unsettling and it can be overwhelming to both the
organization and the individuals. Change usually encounters resistance, since
people tend to gravitate towards their low energy state called the “comfort
zone”. In addition, while working in the comfort zone people do not experience
a great sense of accomplishment, but instead feel settled and secure.

Thus, to minimize the difficulties induced by yet another change and
consequently encounter a resistance, ADP has to be introduced gradually
to an organization: group-by-group and practice-by-practice.

Parasoft—Your Partner in Implementing ADP
Delivering quality as a continuous process

For 20 years, Parasoft—led by ADP co-author Adam Kolawa—has been
empowering organizations to deliver better business applications faster. We
achieve this by leveraging ADP to deliver quality as a continuous process
throughout the SDLC—not just QA. The result is a sustainable process that
delivers greater productivity and significantly fewer software defects.

Parasoft Quality Solutions

Parasoft Quality Solutions are adopted by top companies because they deliver
an end-to-end quality process that begins with a requirement and ends with
the audit of a business process. By automating quality tasks at all layers of the
application stack, the solutions significantly reduce the risks associated with
developing new or changing applications. These solutions address multiple
layers of the application and address application quality concerns such as:

	 Security

	 Reliability

	 Performance

	 Maintainability

	 Process visibility and control

Parasoft solutions help development teams prevent errors and continuously
test logical units of the application. They also help QA testers or business
analysts focus on validating end-to-end business scenarios as an iterative
process—not a quality task at the end of a development cycle. The entire
quality process is supported by an infrastructure that automates key
tasks, tracks project status, and provides instant access to the information
needed for smart decision making and process improvement.

14 Automated Defect Prevention Best Practices in Software Management 15

Quality Solutions for

	 SOA
	 Java
	 Web 2.0 and RIA
	 .NET
	 C and C++
	 Embedded systems
	 Agile, XP, TDD methodologies
	 Enterprise integration
	 Security
	 Outsourcing engagements
	 Distributed development
	 ALM
	 Quality initiatives – CMM-I, Six Sigma, ISO 9001

Compatible Software and Platforms

	 Eclipse
	 Rational Application Developer
	 Microsoft Visual Studio
	 Wind River
	 ARM
	 Borland
	 IntelliJ
	 Oracle
	 BEA
	 Software AG/webMethods
	 IBM MQ-Series
	 TIBCO
	 Sonic
	 IONA
	 HP
	 Other leading platforms

Parasoft solutions support the following components:

Error Prevention
Parasoft delivers an automated framework to ensure all software
development activities meet uniform expectations around security,
reliability, performance, and maintainability. We provide a foundation
for producing solid code by exposing structural errors and preventing
entire classes of errors. This initiates the continuous quality process,
delivering greater productivity and significantly fewer software defects.

Continuous Regression Testing
Parasoft’s continuous regression testing immediately alerts you when
modifications impact application behavior. By providing a safety net that
alerts the team when modifications impact application behavior, it enables
rapid and agile responses to business demands, reducing the risk of change.

Functional Audit
Parasoft’s continuous quality practices promote the reuse of test assets as building
blocks to streamline the validation of changing business requirements. This enables
your team to execute a more complete audit of your business application. The
result is a reduced risk of business downtime, ensuring business continuity.

Process Visibility and Control
SDLC quality metrics are fragmented across key systems such as
requirements, build, and source control management. Parasoft aggregates
and correlates this system data, delivering a comprehensive view of your
development processes. This process visibility facilitates continuous
process improvement, increasing productivity and reducing cost.

Parasoft Automated Infrastructure Services

Parasoft services integrate and automate your SDLC to ensure that
quality software can be produced consistently and efficiently. The
resulting automated infrastructure improves development productivity
and forms the foundation for a sustainable quality process.

16 Automated Defect Prevention Best Practices in Software Management 17

About the Authors

Dorota Huizinga, PhD, is the Associate Dean for the College of Engineering
and Computer Science and Professor of Computer Science at California State
University, Fullerton. Her publication record spans a wide range of computer
science disciplines and her research was sponsored by the National Science
Foundation, California State University System, and private industry.

Adam Kolawa is the co-founder and CEO of Parasoft, leading provider of
solutions and services that deliver quality as a continuous process throughout the
SDLC. He is considered an authority on the topic of software development and
the leading innovator in promoting proven methods for enabling a continuous
process for software quality. Kolawa has co-authored two books: Automated
Defect Prevention: Best Practices in Software Management (Wiley, 2007)
and Bulletproofing Web Applications (Wiley, 2001). He has also written or
contributed to hundreds of commentary pieces and technical articles. In 2007,
eWeek recognized him as one of the 100 Most Influential People in IT. Kolawa
holds a Ph.D. in theoretical physics from the California Institute of Technology.

Learning More

To learn more about the ADP book or read a sample chapter,
visit http://www.parasoft.com/adp_book.

To learn how Parasoft can help you apply ADP as part of a comprehensive quality
and process improvement strategy, visit http://www.parasoft.com/adpsolutions.

For 20 years, Parasoft has investigated how and why software errors are introduced
into applications. Our solutions leverage this research to deliver quality as a
continuous process throughout the SDLC. This promotes strong code foundations,
solid functional components, and robust business processes. Whether you are
delivering Service-Oriented Architectures (SOA), evolving legacy systems, or
improving quality processes—draw on our expertise and award-winning products
to increase productivity and the quality of your business applications.

18 Automated Defect Prevention

