

Parasoft Automotive Compliance eKit:
ISO 26262 Software Compliance with Parasoft

Parasoft C/C++test Data Sheet

ISO 26262 Software Compliance with Parasoft:
 Achieving Functional Safety in the Automotive Industry

Some modern automobiles have more lines of code than a jet fighter. Even moderately sophisticated cars
ship with larger and more complex codebases than the same line from just a few years ago. The inclusion
of multi-featured infotainment systems, driver-assist technologies, and electronically controlled safety
features as standard components—even in economy models—have fueled the growth of software in the
automotive industry. Additionally, the emergence of driverless technology and “connected” cars that
function as IoT systems on wheels will mean even larger and more complex codebases.

All of the innovation taking place in the automotive industry, though, raises concerns over the safety,
security, and reliability of automotive electronic systems. The concerns are appropriate given that the
automotive software supply chain is a long convoluted system of third-party providers spanning several
tiers. Consider, for example, that software developed for a specific microcontroller unit (MCU) may be
integrated by a third-tier provider into a component they’re shipping to a second-tier provider and so
on—until a composite component is delivered for final integration by the automaker.

While not all automotive software is critical to the safe operation of the vehicle, code that carries out
functional safety operations must be safe, secure, and reliable. Organizations must implement strong
software quality process controls around the development of safety-critical software in accordance with
ISO 26262, which is a functional safety standard for automotive software. ISO 26262 provides guidance on
processes associated with software development for electrical and/or electronic (E/E) systems in
automobiles. The standard is aimed at reducing risks associated with software for safety functions to a
tolerable level by providing feasible requirements and processes.

In this paper, we provide background information on ISO 26262 and its goals. We also discuss some of the
policy-related issues associated with developing embedded software that complies with ISO 26262.
Finally, we describe how Parasoft can help automotive software development organizations achieve
compliance with ISO 26262.

What ISO 26262 Covers
ISO 26262 is a functional safety standard that covers the entire automotive product development process
(including such activities as requirements specification, design, implementation, integration, verification,
validation, and configuration). The standard provides guidance on automotive safety lifecycle activities by
specifying the following requirements:

• Functional safety management for automotive applications

• The concept phase for automotive applications

• Product development at the system level for automotive applications Software architectural
design

• Product development at the hardware level for automotive applications Software unit testing

• Product development at the software level for automotive applications

• Production, operation, service and decommissioning

• Supporting processes: interfaces within distributed developments, safety management
requirements, change and configuration management, verification, documentation, use of
software tools, qualification of software components, qualification of hardware components, and
proven-in-use argument.

• Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses

What ISO 26262 Does Not Cover
• Unique E/E systems in special purpose vehicles such as vehicles designed for drivers with

disabilities

• Safety standards for large vehicles, such as those over 3500KB (7700 pounds) gross weight

• Hazards related to electric shock, fire, smoke, heat, radiation, toxicity, flammability, reactivity,
corrosion, release of energy and similar hazards, unless directly caused by malfunctioning
behavior of E/E safety-related systems

• Nominal performance of E/E systems

Software-specific Sections of ISO 26262
Part 6 of the standard specifically addresses product development at the software level. Requirements for
the following development activities are specified:

• Initialization of product development

• Specification of software safety requirements

• Software architectural design

• Unit design and implementation

• Unit testing

• Software integration and testing

• Verification of software safety requirements.

Methods defined by the ISO 26262 standard should be selected depending on the ASIL (automotive safety
integrity level). The higher the ASIL, the more rigorous the methods.

Part 8, section 11, describes the software tool qualification process. Tools that automate software
development activities and tasks can significantly help organizations meet ISO 26262 requirements.
Software tool qualification is intended to provide evidence that the tool(s) is suitable for developing a
safety-related item or element. In the simplest practice, tool qualification means running the
development tool on a control codebase and making sure that the product is consistent and accurate.

Qualifying Parasoft defect prevention tools and technologies involves running static analysis, flow
analysis, unit tests, and any other testing practice used in your development process on a set of control
code. Parasoft will consistently, accurately and objectively report errors, which ensures that the tool
functions properly.

ISO 26262 Compliance and Policy-Driven Development
A particular feature that makes developing compliant embedded software so challenging is the gap
between software development and business expectations. Software engineers make business-critical
decisions every day in the form of their coding practices, quality activities, and engineering processes. As
software permeates critical functions associated with functional safety, these engineering decisions can
lead to significant business risks. E/E systems in automobiles that must conform to ISO 26262 are
particularly vulnerable to risks because the standard specifies very detailed lifecycle processes throughout
the approximately 400 pages intended to answer a simple, yet ambiguous, question: Is this safe?

Figure 1: Software development lifecycle defined by ISO 26262

The purpose of ISO 26262 is to outline the policy surrounding the processes in Figure 1, but policies
specific to the organization can be integrated at any step.

The key to reining in these risks is to align software development activities with your organization's
business goals. This can be achieved through policy-driven development, which ensures that engineers
deliver software according to your expectations. Policy-driven development involves:

• Clearly defining expectations and documenting them in understandable polices

• Training the engineers on the business objectives driving those policies

• Enforcing the policies in an automated, unobtrusive way

By adopting a policy-driven strategy, businesses are able to accurate and objectively measure productivity
and application quality, which lowers development costs and reduces risk.

With public safety, potential litigation, market position and other consequences on the line, it behooves
software development teams and people in the traditional business management positions to come
together on policy and implement the strategy into their software development lifecycle. Visit
www.parasoft.com for more information about policy-driven development.

Parasoft Support for ISO 26262
Parasoft Development Testing Platform (DTP) facilitates the software quality tasks specified in ISO 26262,
including static analysis, data flow static analysis, metrics analysis, peer code review, unit testing and
runtime error detection. This provides teams a practical way to prevent, expose, and correct errors in
automotive functional safety systems. DTP collects data generated by software engineering processes,
such as static code analysis violations, test results, code metrics, coverage analysis, source control check-
ins, defect tracking systems, etc., and generates meaningful views of the correlated and prioritized data.

The real power of DTP is the Parasoft Process Intelligence Engine (PIE), which performs an additional post
analysis on the development artifacts collected in order to pinpoint risk in the code while highlighting
opportunities for improving the your development processes. DTP reports the problematic code and a
description of how to fix it to the engineer’s IDE based on the organization’s programming policy.

The specific sections of the ISO 26262, part 6: Product development: software level that can be addressed
or partially addressed with Parasoft are described below. The information presented here is intended to
serve as an introduction to ISO 26262 software verification and validation processes with Parasoft. Please
refer to the standard and consult functional safety experts for clarification of any requirements defined by
the ISO 26262 standard.

Initialization of Product Development at the Software Level
This section of the ISO 26262 – part 6 standard defines general information about the process of software
development and validation.

5.4.6 Requirements for achieving correctness of software design and implementation. Methods described
here apply to both modeling and programming languages.

Requirement Parasoft capability

Enforcement of low complexity Reports cyclomatic complexity, essential
complexity, Halsted complexity, and other code
metrics

Use of language subsets

Coding standards enforcement, e.g., detection of
unsafe language constructions

Enforcement of strong typing Implicit conversions detection

Use of defensive implementation techniques Enforces defensive programming against
appropriate coding standards rules, e.g., checking
the return value of malloc, checking the error code
value returned by called functions, etc.

Use of established design principles Enforcement of industry coding standards rule sets,
e.g. MISRA C/C++, JSF, HIS source code metrics, etc.

Use of unambiguous graphical representation Enforcement of specific formatting conventions

Use of style guides Enforcement of specific coding conventions

Use of naming conventions Enforcement of specific naming conventions

Software Unit Design and Implementation
This section defines the process of specifying and implementing software units, as well as the verification
of the design and implementation.

8.4.4 Specifies the design principles for software unit design and implementation.

Requirement Parasoft capability

Design principles for software unit implementation,
e.g. Initialization of variables, No implicit type
conversions, etc.

Static analysis:

• MISRA C rules

• MISRA C++ rules

• MISRA C 2012

• MISRA 2004

• Additional standards

Please refer to the Satisfying ASIL Requirements with Parasoft C/C++test paper for additional
information about C/C++test support for specific software unit implementation design principles.

https://www.parasoft.com/wp-content/uploads/pdf/asil_automotive.pdf

8.4.5 Specifies the verification methods for checking software unit design and implementation.

Requirement Parasoft capability

Control flow analysis Control Flow Analysis

Data flow analysis Data Flow Analysis

Static code analysis Coding standards enforcement

Inspection of the source code Automated peer code review module

Walkthrough of the source code Automated peer code review module

Software Unit Testing
This section defines the process of planning, defining, and executing software unit testing.

9.4.1 Describes general information about unit test execution.

Requirement Parasoft capability

Unit test execution • Unit test execution module

• Reports module for presenting results

Unit test specification • Configurable unit test generation module
creates tests according to the defined
specification

• Test Case Explorer module presents a list
of all defined test cases with pass/fail
status

9.4.2 Describes methods used to specify and execute unit tests.

Requirement Parasoft capability

Requirement-based tests • Automated static analysis and unit testing
based on MISRA and other standards

• Create custom rules based on your
requirements

Unit test specification • Maps test cases with requirements and/or
defects in conjunction with the Concerto

• Supports user-defined test cases created
manually and tests created with the Test
Case Wizard

Interface tests Uses function stubs and data sources to emulate
behavior of external components for automatic
unit test execution

Fault injection tests • Enforcing fault conditions using function
stubs

• Automatic unit test generation using
different set of preconditions (e.g., min,
max, heuristic values)

Please note that Parasoft allows for packaging test cases into groups to allow easier management of the
tests (e.g., execution of the tests from a single group only).

9.4.3 Defines methods that should be used to create test cases.

Requirement Parasoft capability

Analysis of requirements Parasoft Concerto module reports on requirement
status, activity, and other parameters

Generation and analysis of equivalence classes

• Uses factory functions to prepare sets of
input parameter values for automated
unit test generation

• Uses data sources to efficiently use a wide
range of input values in tests

Analysis of boundary values • Automatically-generated test cases (e.g.

 heuristic values, boundary values)

• Employs data sources to use a wide range
of input values in tests

Error guessing • Uses the function stubs mechanism to
inject fault conditions into tested code

• Flow Analysis results can be used to write
additional tests

9.4.4 Defines the methods for demonstrating the completeness of the test cases.

Requirement Parasoft capability

Statement coverage Code Coverage module

Branch coverage

Code Coverage module

MC/DC (modified condition/decision coverage) Code Coverage module

Note that ISO 26262 Part 6, Point 9.4.4 states that if instrumented code is used to determine the degree
of coverage, it may be necessary to show that the instrumentation has no effect on the test results. This is
achieved by running the tests on non-instrumented code.

9.4.5 Defines the requirements for the test environment.

Requirement Parasoft capability

Test environment for unit testing shall correspond
as far as possible to the target environment

Unit test execution on both target device and
simulator to perform tests in different
environments (e.g. software-in-the-loop,
processor-in-the-loop, hardware-in-the-loop

Software Integration and Testing

10.4.2 Describes general information about executing software integration tests.

Requirement Parasoft capability

Integration tests • Automated test driver and test case
generation

• Multi-metric test coverage analysis

10.4.5 Defines methods for demonstrating completeness of integration testing.

Requirement Parasoft capability

Function Coverage Code Coverage module

10.4.7 Defines requirements for the integration test environment.

Requirement Parasoft capability

Test environment for software integration testing
shall correspond as far as possible to the target
environment

• Flexible stub framework

• Service virtualization module is available
to thoroughly mimic complete system

Summary
Developing ISO 26262-compliant software for E/E systems in automobiles is no easy feat. But Parasoft
eases the burden by offering a broad range of analysis tools and, more importantly, enabling you to
automatically monitor compliance with your development policy—bridging the gap between
development activities and business processes. Development teams can also generate configurable test
reports that contain a high level of detail, which helps facilitate the work required for the software
verification process.

About Parasoft
Parasoft researches and develops software solutions that help organizations deliver defect-free software
efficiently. By integrating development testing, API testing, and service virtualization, we reduce the time,
effort, and cost of delivering secure, reliable, and compliant software. Parasoft's enterprise and
embedded development solutions are the industry's most comprehensive—including static analysis, unit
testing, requirements traceability, coverage analysis, functional and load testing, dev/test environment
management, and more. The majority of Fortune 500 companies rely on Parasoft in order to produce top-
quality software consistently and efficiently as they pursue agile, lean, DevOps, compliance, and safety-
critical development initiatives.

Contacting Parasoft

Headquarters
101 E. Huntington Drive, 2nd Floor
Monrovia, CA 91016
Toll Free: (888) 305-0041
Tel: (626) 305-0041
Email: info@parasoft.com

Global Offices
Visit www.parasoft.com/contact for contacting Parasoft in EMEAI, APAC, and LATAM.

About the Authors
Adam Trujillo, Technical Writer, Parasoft
Cynthia Dunlop, Lead Technical Writer, Parasoft

© 2016 Parasoft Corporation
All rights reserved. Parasoft and all Parasoft products and services listed within are trademarks or registered trademarks of Parasoft
Corporation. All other products, services, and companies are trademarks, registered trademarks, or servicemarks of their respective
holders in the US and/or other countries.

mailto:info@parasoft.com
https://www.parasoft.com/contact/

Parasoft C/C++test / Data Sheet1

Parasoft C/C++test is an integrated development testing solution for C and C++. It automates a broad range of
software quality practices—including static code analysis, unit testing, code review, coverage analysis, runtime
error detection and more. C/C++test enables organizations to reduce risks, cut costs, increase productivity, and
achieve compliance with industry guidelines and standards. It can be used in both host-based and target-based
code analysis and test flows, which is critical for embedded and cross-platform development.

Automate Code Analysis for Monitoring Compliance
A properly implemented policy-driven development strategy can eliminate entire classes of programming errors by
preventing defects from entering the code. C/C++test enforces your policy by analyzing code and reporting errors
directly in the developer’s IDE when code deviates from the standards prescribed in your programming policy.

Hundreds of built-in rules—including implementations of MISRA, MISRA C++, FDA, Scott Meyers’ Effective C++,
Effective STL, and other established sources—help identify bugs, highlight undefined or unspecified C/C++ language
usage, enforce best practices, and improve code maintainability and reusability. Development managers can use
the built-in rules and configurations or create highly specialized rules and configurations specific to their group
or organization. Custom rules can enforce standard API usage and prevent the recurrence of application-specific
defects after a single instance has been found.

For highly quality-sensitive industries, such as avionics, medical, automobile, transportation, and industrial automation,
C/C++test enables efficient and auditable quality processes with complete visibility into compliance efforts.

Identify Runtime Errors without Executing Software
C/C++test’s integration-time static analysis module
simulates feasible application execution paths—which
may cross multiple functions and files—and determines
whether these paths could trigger specific categories of
runtime errors. The defects C/C++test detects include:

 Using uninitialized or invalid memory
 Null pointer dereferencing
 Array and buffer overflows
 Division by zero
 Memory and resource leaks
 Various flavors of dead code

C/C++test’s customizable workflow allow users to test code
as it’s developed, then use the same tests to validate
functionality/reliability in target environments.

The ability to expose defects without executing code is
especially valuable for embedded applications, where
detailed runtime analysis for such errors is often
ineffective or impossible.

C/C++test greatly simplifies defect analysis by providing
a complete highlighted path for each potential defect
in the developer’s IDE. Automatic cross-links to code
help users quickly jump to any point in the highlighted
analysis path.

Parasoft C/C++test / Data Sheet2

Streamline Code Review
C/C++test automates preparation, notification, and tracking of peer code reviews, which enables an efficient team-
oriented process. Status of all code reviews, including all comments by reviewers, is maintained and automatically
distributed. C/C++test sup-ports two typical code review flows:

 Post-commit code review—Automatic identification of code changes in a source repository via custom
source control interfaces; creates code review tasks based on pre-set mapping of changed code to reviewers.

 Pre-commit code review—Users can initiate a code review from the desktop by se-lecting a set of files to
distribute or automatically identify all locally changed source code.

Additionally, the need for line-by-line inspections is virtually eliminated because the team’s coding policy is monitored
automatically with C/C++test’s static analysis capability. By the time code is submitted for review, violations have
already been identified and cleaned. Reviews can then focus on examining algorithms, reviewing design, and
searching for subtle errors that automatic tools cannot detect.

Unit and Integration Test with Coverage Analysis
C/C++test automatically generates complete tests, including test drivers and test cases for individual functions,
purely in C or C++ code in a format similar to CppUnit. Auto-generated tests, with or without modifications, are
used for initial validation of the func-tional behavior of the code. By using corner case conditions, the test cases also
check function responses to unexpected inputs, exposing potential reliability problems.

Specific GUI widgets simplify test creation and management and a graphical Test Case Wizard enables developers to
rapidly create black-box functional tests for selected functions without having to worry about their inner workings or
embedded data dependencies. A Data Source Wizard helps parameterize test cases and stubs—enabling increased
test scope and coverage with minimal effort. Stub analysis and generation is facilitated by the Stub View, which
presents all functions used in the code and allows users to create stubs for any functions not available in the
test scope—or to alter existing functions for specific test purposes. Test execution and analysis are centralized
in the Test Case Explorer, which consolidates all existing project tests and provides a clear pass/fail status. These
capabilities are especially helpful for supporting automated continuous integration and testing as well as “test as
you go” development.

A multi-metric test coverage analyzer, including statement, branch, path, and MC/DC coverage, helps users gauge
the efficacy and completeness of the tests, as well as demonstrate compliance with test and validation requirements,
such as DO-178B/C. Test coverage is presented via code highlighting for all supported coverage metrics—in the
GUI or color-coded code listing reports. Summary coverage reports including file, class, and function data can be
produced in a variety of formats.

Automated Regression Testing
C/C++test facilitates the development of robust regression test suites that detect if incremental code changes
break existing functionality. Whether teams have a large legacy code base, a small piece of just-completed code, or
something in between, C/C++test can generate tests that capture the existing software behavior via test assertions
produced by automatically recording the runtime test results.

As the code base evolves, C/C++test reruns these tests and compares the current results with those from the
originally captured “golden set.” It can easily be configured to use different execution settings, test cases, and stubs
to support testing in different contexts (e.g., different continuous integration phases, testing incomplete systems, or
testing specific parts of complete systems). This type of regression testing is especially critical for supporting agile
development and short release cycles, and ensures the continued functionality of constantly evolving and difficult-
to-test applications.

Parasoft C/C++test / Data Sheet3

Monitor and Eliminate Runtime
Memory Errors
Runtime error detection constantly monitors for
certain classes of problems—such as memory
leaks, null pointers, uninitialized memory, and
buffer overflows—and makes results available
immediately after the test session is finished. The
reported problems are presented in the developer’s
IDE along with details about how to fix the errors
(including memory block size, array index, allocation/
deallocation stack trace etc.). This not only improves
the quality of the application—it also increases the
skill level of your development staff.

Coverage metrics are collected during application
execution. These can be used to see what part of
the application was tested and to fine tune the set of
regression unit tests (complementary to functional
testing).

Test on the Host, Simulator,
and Target
C/C++test automates the complete test execution
flow, including test case generation, cross-
compilation, deployment, execution, and loading
results (including coverage metrics) back into the
GUI. Testing can be driven interactively from the
GUI or from the command line for automated test
execution, as well as batch regression testing. In the
interactive mode, users can run tests individually or
in selected groups for easy debugging or validation.
For batch execution, tests can be grouped based
either on the user code they are liked with, or their
name or location on disk.

C/C++test allows full customization of its test
execution sequence. In addition to using the built-
in test automation, users can incorporate custom
test scripts and shell commands to fit the tool into
their specific build and test environment. C++test’s
customizable workflow allows users to test code as
it’s developed, then use the same tests to validate
functionality/reliability in target environments preset
tool options.

C/C++test can be used with a wide variety of
embedded OS and architectures, by cross-compiling
the provided runtime library for a desired target
runtime environment. All test artifacts of C/C++test
are source code, and therefore completely portable.

 Increase productivity—Apply a comprehensive set of
best practices that reduce testing time, testing effort, and
the number of defects that reach QA.

 Achieve more with existing development resources—
Automatically vet known coding issues so more time can
be dedicated to tasks that require human intelligence.

 Increase code quality—Efficiently construct, continuously
execute, and maintain a comprehensive regression test suite
that detects whether updates break existing functionality.

 Gain unprecedented visibility into the development
process—Access on-demand objective code assessments
and track progress towards quality and sched-ule targets.

 Reduce support costs—Automate negative testing on a
broad range of potential user paths to uncover problems
that might otherwise surface only in “real-world” usage.

 Static code analysis to reduce risks at each stage of
development:

 Integration-time analysis
 Continuous integration-time analysis
 Edit-time static analysis
 Runtime static analysis

 Graphical rule editor for creating custom coding rules
 Automated generation and execution of unit and
component-level tests

 Flexible stub framework
 Full support for regression testing
 Code coverage analysis with code highlighting
 Runtime memory error detection during unit test
execution and application-level test-ing exposes hard-to-
find errors, such as:

 memory leaks
 null pointers
 uninitialized memory
 buffer overflows

 Increase test result accuracy through execution of the
monitored application in a real target environment

 HTML, PDF, and custom format reports:
 Pass/fail summary of code analysis and test results
 List of analyzed files
 Code coverage summary
 Reports can be automatically sent via email, based on a variety

of role-based fil-ters

 Full team deployment infrastructure for desktop and
command line usage

Benefits

Key Features

© Parasoft Corporation All rights reserved. Parasoft and all Parasoft products and services listed within are trademarks or registered trademarks of Parasoft Corporation.
All other products, services, and companies are trademarks, registered trademarks, or servicemarks of their respective holders in the US and/or other countries.

USA PARASOFT HEADQUARTERS / 101 E. Huntington Drive, Monrovia, CA 91016
Phone: (888) 305-0041 / Email: info@parasoft.com

Supported Host Environments

Host Platforms
Windows / Linux / Solaris UltraSPARC

IDEs
 ARM Workbench / ARM Development Studio /

ARM ADS
 Eclipse IDE for C/C++ Developers
 Green Hills MULTI
 IAR Embedded Workbench
 Keil µVision
 Microsoft eMbedded Visual C++ /

Microsoft Visual Studio
 QNX Momentics IDE (QNX Software

Development Platform)
 Texas Instruments Code Composer
 Wind River Tornado / Wind River Workbench

Host Compilers
Windows: Microsoft Visual Studio / GNU gcc/g++ / Green Hills MULTI
Linux 32 and 64 bit processor: GNU gcc/g++ / Green Hills MULTI
Solaris: Sun ONE Studio / GNU gcc/g++ / Green Hills MULTI

Target/Cross Compilers
Altera NIOS GCC / ADS (ARM Development Suite) / ARM for Keil uVision / ARM RVCT / ARM DS-5 GNU Compilation Tools /
Cosmic Software 68HC08 / eCosCentric GCC / Freescale CodeWarrior C/C++ for HC12 / Fujitsu FR Family SOFTUNE /
GCC (GNU Compiler Collection) / Green Hills MULTI / IAR C/C++ for ARM / IAR C/C++ for MSP430 / Keil C51 /
Microsoft Visual C++ for Windows Mobile / Microsoft Embedded Visual C++ / QCC (QNX GCC) / Renesas SH SERIES C/C++ /
STMicroelectronics ST20 / STMicroelectronics ST40 / TASKING 80C196 C / TASKING TriCore VX-toolset C/C++ / TI TMS320C2000 C/C++ /
TI TMS320C54x C/C++ / TI TMS320C55x C/C++ / TI TMS320C6x C/C++ / TI TMS470 / TI MSP430 C/C++ / Wind River GCC /
Wind River DIAB

Build Management
GNU make / Sun make / Microsoft nmake / ElectricAccelerator

Continuous Integration
Hudson / Jenkins / ElectricAccelerator

Source Control
AccuRev SCM / Borland StarTeam / CVS / Git / IBM Rational ClearCase / IBM Rational Synergy /
Microsoft Team Foundation Server / Microsoft Visual SourceSafe / Perforce SCM / Serena Dimensions / Subversion (SVN)

	ekit-coverpage-template
	iso_26262_software_compliance
	ISO 26262 Software Compliance with Parasoft: Achieving Functional Safety in the Automotive Industry
	What ISO 26262 Covers
	What ISO 26262 Does Not Cover
	Software-specific Sections of ISO 26262
	ISO 26262 Compliance and Policy-Driven Development
	Parasoft Support for ISO 26262
	Initialization of Product Development at the Software Level
	Software Unit Design and Implementation
	Software Unit Testing
	Software Integration and Testing

	Summary
	About Parasoft
	Contacting Parasoft
	Headquarters
	Global Offices

	About the Authors

	C++TestDataSheet

