Exiend Beyond | |

hat’s the first thing that comes to mind when you think about unit
testing? If you’re a _Java developer, it’s probably JUnit, since the

tool is generally recognized as the de
facto standard for Java unit testing.

However, JUnit doesn’t necessarily
define the testing methodology for
which it may be leveraged. The tool
can be used to associate a one-to-one
mapping between every test class and
tested class in a code base, or it may be
used to manage a set of end-to-end
tests for an entire Java EE application.
But if a development group is asked,
“How is this software tested?” and they
respond simply that it’s unit-tested or
tested with JUnit, have they really
answered the question?

The emergence of Java EE frame-
works for everything from serverside
business logic to data persistence
forces the requirement for specialized
tests that fit an application’s frame-
works. JUnit is becoming a commonal-
ity between specialized testing frame-
works for the ever-expanding domain
of Java EE applications.

Many of these frameworks can be

Matt Love is a software development manager
with Parasoft. He has been involved in the
development of Jtest since 2001.

well tested using proper setup and
deployment of JUnit tests that have
been supplemented with a framework-
specific test harness. However, when
additional test harnesses are involved,
JUnit is no longer sufficient to identify
the means and breadth of testing.

This article will teach you several
unit-testing techniques that go beyond
JUnit as they apply to Java EE applica-
tions.

1. Identify the Goals
The first step to implementing a test-
ing solution is to clearly define the goal
and scope of each test. After these have
been established, the next step is to
investigate which implementations of
testing for Java Enterprise frameworks
are best suited to achieve that goal.
Regression testing. The adage “If it was-
n’t tested, it probably doesn’t work” is
true for any software development proj-
ect. The most important question that
needs to be answered by software testing
is “Does this application work?”
Any type of
test can verify
if software is

functioning correctly according to the
specification.

Typically, when new functionality is
added, a manual test is written to
ensure that the new code has the
desired effect. That manual test will
answer the immediate question about
behavioral correctness, but the appli-
cation may not work the next day, after
the code base has changed.

Automated tests provide confidence
that existing specifications are still satis-
fied as the code base evolves. Beneficial
code optimization, reorganization or
new features are often postponed or
rejected because of low confidence in
the software’s functional correctness.
Such changes are commonly resisted
when sufficient tests aren’t available to
verify that the changes didn’t break pre-
viously working functionality.

A good regression suite will not
only catch new errors introduced into
previously correct functionality, but
will provide the confidence needed to
make significant modifications faster.
Automatic tests are no replacement
for manual QA, but they do
provide added confidence

that certain features are
known to be well tested.
This allows QA to focus on

ivlc Color Palette

Four Steps

For Taking

Unit Testing
To the Next
Level For

Java EE

testing the higher-risk features.
Unexpected
Sometimes testing is

behavior.

performed to
vet unexpect-
ed behavior
so that bugs
can be iden-

tified and
fixed before
they reach

the end users. This is

a smart goal because leaving
such problems for the end user to dis-
cover is typically much more expen-
sive—both in terms of the impact on
the organization’s image and the
resources required for a patch release.

The best results in testing for unex-
pected behavior are achieved by a tester
other than the person who wrote the
code, since such a tester is more likely
to think “outside the box” of the origi-
nal specification. An automated test-
generation tool that has no knowledge
of the specification is a prime candidate
for performing this type of testing.
These tools can help you test for unex-
pected behavior by designing and exe-
cuting tests that check how the program
handles unexpected and
boundary conditions.

Tests with unexpected inputs or out-
comes can be used as regression tests
once they’'ve been reviewed and incor-
porated into the specification. The end
result is a large suite of regres-
sion tests that are used to identi-

stimulus

fy when a unit’s functional
behavior changes or to verify
that all units are functioning
properly.

Test-driven development. Test-
driven development (TDD) is
another popular term that
comes up when discussing unit
testing. When taken to the
extreme, TDD means writing
tests before writing code. This
is difficult to do when the tests
need to make programmatic
calls to tested code that hasn’t
yet been written.

Granted, this meets the TDD goal of

tests that initially fail (because compila-
tion errors are considered failures).
However, compilation errors in tests
tend to interfere with the rest of the test
suite. This is especially true in Java EE
systems, where the test suite is compiled
to aJAR, EAR or WAR file and deployed
in a container. None of the tests can be

28 e Software Test & Performance

deployed if there are any compilation
errors. This forces test code and tested
code to be written at the same time, and
thus fails to comply with pure theoreti-
cal TDD, which mandates that tests be
written before the code.

A more practical approach is to
apply TDD to functional tests for prob-
lems found in an application’s current
functionality. TDD procedures fit into
the QA cycle very nicely:

® Manually reproduce a problem

report

® Reduce the problem to identify

the problematic unit(s)

® Write tests to automatically repro-

duce the problem in the problem-
atic unit(s)

¢ Verify that the tests fail as a result

of the problem

® Write the necessary code to fix

the problem

¢ Verify that the same tests pass as a

result of the fix

To truly adhere to TDD, these steps
need to be followed for every problem
report. The same methodology can be
applied to new features in a practical
manner, as long as there’s a means for
the tests to compile and run. If it’s not
practical to create tests before creating a
new feature, the tests should be put in
place immediately after the feature is
created to serve as regression tests and
verify the specification.

The second step attempts to define

The best results are achieved

by a tester other than the person

who wrote the code.

the term wunit testing as the smallest
unit that exhibits some func-
tional problem. More com-
prehensive tests might be
appealing because they
can test all components

at once. However, tests
must isolate the target
problem and have few

other points of failure. Otherwise,
maintenance for full end-to-end system
tests will be overwhelming.

Imagine tests that compare a pro-
gram screenshot to a saved control.
Even the smallest change in presenta-
tion will require that all tests be
reviewed and updated. Building a suite
of tests that operate on the smallest
functional units provides the best
return for the lowest maintenance over-
head. However, these functional units
and the associated tests can become
very large in Java EE applications when
a problem exists in the integration
between several components.

2. Define the Scope

Borrowing an analogy from the ani-
mated feature film Shrek, it’s safe to say
that unit tests are like onions and
ogres: They all have layers. Unit tests
may be performed at the method,
class, component or integration level.
Even some complete end-to-end sys-
tem tests can be organized using JUnit
in such a way that the unit tested is
related to a unit of specification that
exercises the whole system.

The majority of tests should be for as
small a unit as possible to meet the asso-
ciated goal. Testing small units often
exposes problems that aren’t obvious
when testing larger components or sys-
tems. However, an application is likely
to fail when there are no tests for the
layers where the units of code
interact. Integration testing will
verify that each unit is not only
functioning correctly on its
own, but also that the units are
connected correctly in the
application.

Integration testing for Java
EE applications involves testing
interactions with third-party sys-
tems that are assumed to be cor-
rect. Third-party systems may
not be easily changeable, so
components under develop-
ment must detect and work
around any third-party flaws. A
Java EE testing strategy isn’t

complete until it includes

tests at every layer of

the system.
Code-level.
Testing at the
class or
method
level can be

-

done in most

cynthia
Rectangle

Java EE applications by using mock
objects and stubs. Mock objects use
special implementations of popular
interfaces for testing purposes. These
mock objects can be custom classes
written for specific tests, or they may
be provided by a testing framework.
Object-oriented programming allows
for the code under test to execute on
mock objects as it does on the live
objects that are seen in production.

Stubs allow specific method calls to
be replaced, usually by prepending
alternate implementations of classes
to the Java class path. With this
approach, the tested code can be exe-
cuted against different dependencies
without needing to be recompiled.
Code-level testing is easily automated,
especially when testing with unexpect-
ed inputs. It provides great regression
value by identifying specific pieces of
code that change functionally.
However, when the scenario spans sev-
eral pieces of code, it’s difficult to rep-
resent a use case or problem report in
a code-level test.

Component-level. Tests for a compo-
nent can usually be associated with
part of the specification. A component
is a functional unit of related classes.
In Java EE applications, each compo-
nent may integrate with one or more
enterprise frameworks. A specialized
framework for testing is needed to
effectively test that a component inte-
grates correctly with other enterprise
frameworks—without having to set up
the entire enterprise system. These
testing frameworks usually process
application configuration files and
provide helpful functions to facilitate
testing. The best approach to compo-
nent-level tests depends on which
enterprise frameworks are involved.

System-level. An enterprise testing
strategy is not complete unless the
entire system is started, initialized and
tested. This is typically the role of
manual QA testing, but many system-
level tests can be automated. System-
level tests exercise the application at
the same access points that end users
would, and verify the same results that
end users would obtain.

System tests may also verify internal
data at several steps through the
process to expedite detection of prob-
lems. System testing is often slow, diffi-
cult to set up and prone to frequent
test failure. Most tests should target
more specific components or units of

code instead of the whole system. The
system
addressed, although only a small por-

level still needs to be
tion of an enterprise application test
suite should be implemented as system
tests.

3. Select a Framework
Java EE systems employ many frame-
works to speed integration with Web

In Java EE

applications,

each component
may integrate
with one or more

enterprise

frameworks.

page, Web service and database tech-
nologies. Enterprise frameworks are
used to simplify the raw interfaces pro-
vided by Sun’s Java EE development kit.

A common enterprise solution is to
move configuration information from
Java API to XML files. Although XML
configuration files simplify develop-
ment, they complicate testing because
traditional JUnit works only with Java
classes. Most enterprise frameworks
provide test utilities to be used in con-
junction with JUnit so that the devel-

opment efforts outside individual Java
classes can still be tested.

Struts. Apache Struts is an open
source framework for building servlet-
and JSP-based Web applications. Struts
works well with conventional applica-
tions as well as with SOAP and AJAX.
Apache provides testing frameworks
for Struts that mock the Web applica-
tion server and integrate with the serv-
er for testing.

The Struts framework simplifies
online forms and actions by using sim-
ple APIs with an XML configuration
file. Web page actions and form data
are directed to the appropriate Java
code based on data in the Struts con-
figuration file.

The mock Struts test framework
also uses the same configuration file to
emulate the Web application server in
an ordinary Java Virtual Machine. As a
result, testing Struts applications
becomes as easy as specifying the con-
figuration file and context directory
once for all tests in the setUp()
method. Running mock Struts tests is
equally easy. Since the frameworks
extend JUnit, tests can be run by any
JUnit test runner. The framework sup-
plements JUnit with utility methods to
programmatically exercise Struts Web
pages and assert results.

The same utility methods from the
mock framework are available in
Apache Cactus Struts Test framework.
The difference is that Cactus will
deploy tests and run them in a Web
application container instead of mock-
ing the container. Tests written using
the mock framework can easily be
extended to run in the container to
test for integration issues.

Spring. The Spring framework also
incorporates XML configuration files
to facilitate an abstraction layer
between plain old Java object (POJO)
logic and the Web application con-
tainer. This allows for many scenarios
to be tested with traditional JUnit and
mock data access objects (DAO) for
the service layer. However, some func-
tionality requires integration testing
that JUnit cannot handle on its own.

A Spring test framework provides a
way to test the Java code with respect
to the configuration files—without
requiring deployment in a container.
This is achieved using the spring-
mock jar file that ships with Spring.
You can also run unit tests for Spring
applications in a container using

www.stpmag.com ¢ 29

cynthia
Rectangle

il

Cactus. Thus, unit testing is feasible
for Spring code at the class level, the
mock-container level and in a running
application server container. This is
ideal when creating regression tests
for functionality or applying TDD to
problem reports. Test cases for Spring
can involve as much or as little of the
application and surrounding system as
needed.

Data access objects with Hibernate.
Hibernate is object relational mapping
(ORM) for persisting data access
objects (DAO) in databases. It’s used
by the Spring framework and can man-
age database transactions and
provide an abstraction layer for
any SQL or JDBC code.
Hibernate uses XML mapping
files to relate database ele-
ments to Java DAO. Spring
framework code that uses the
DAO can be tested easily by
providing mock objects that
implement the DAO interface
or override calls that would go
to the database.

You can also test that the
mapping files and database
transactions are working proper-
ly, similar to how the Spring
test framework verifies Spring
configuration files. The org
.springframework.orm.hibernate3 pack-
age in spring.jar provides classes for

the Hibernate configura-
tion, session and
template proper-
ties to be config-
ured for testing.

This is ade-

quate to detect
errors in the
mapping XML
files, but special
care must be
taken for the
database. Test
results may not
be repeatable or
deterministic
when the tests
change persisted
data in a data-
b a s e
Fortunately, the
test harness can
be configured to
volatile
database in
memory that
won’t be persist-

use a

ed between runs.

Hypersonic HSQLDB is a good
example of an in-memory database.
The database can be initialized with a
snapshot of data and later examined
to verify if the tests manipulated the
data correctly. The database in memo-
ry provides the benefits of testing that
the data written to it through the
Hibernate framework can be retrieved
using the same framework—without
the consequences of permanently
altered data or the risks of deleting
important data.

System-level testing against the pro-

Use system-level tests sparingly, but
a few are essential for ensuring that

all the components fit together.

duction database that is persisted in
the file system is also possible, but it’s
usually difficult to set up such a data-
base from a snapshot for every test.
The risk that another client may access
the data simultaneously during testing
adds to the difficulties of testing with
file system-persisted databases. Any
system-level testing should use a dedi-
cated test database that won’t interfere
with valuable live data.

Eclipse plug-in development. Even
though Eclipse plug-ins aren’t consid-
ered to be Java Enterprise applica-
tions, Eclipse IDE plug-in develop-
ment is a good example of using a test-
ing framework that runs units inside a
larger application container. Eclipse
provides a framework to run JUnit
tests as additional plug-ins when
launching a graphical workspace.

The plug-in tests can programmati-
cally control the Eclipse IDE in a way
that visually displays actions as they
happen during testing. For example, a
plug-in test can use the Eclipse API to
import a new project, refactor source
check for compilation
errors. This is yet another example of
a framework that extends JUnit to

code and

check that
the code
under
develop-
ment is
grating
with the system in which

inte-
correctly

it’s contained.

4. Cover the Entire Spectrum
Techniques for unit testing can be
applied to any level of an application.
Unit-testing strategies for Java EE
applications aren’t complete unless
every layer is addressed by the tests.
Tests for the top layer exercise
smaller units at lower levels,
but such tests are highly sensi-
tive to changes and fail easily.
These system-level tests should
be used sparingly, but a few
are essential for ensuring that
all components fit together.

Component-level tests are
often able to tell a story or test
a scenario without depending
on the entire system. This
makes them the best regres-
sion tests for verifying code
that corrects problem reports
or implements feature specifi-
cation. Code-level tests that
focus on one class or method at a time
are excellent for pinpointing regres-
sion changes, but they’re usually diffi-
cult to understand because they lack
the context that component-level tests
provide.

Automated test-generation tools
are best suited for creating a code-
level test for every class or method
because that amount of test creation is
tedious when done manually. JUnit
itself is not sufficient to test every layer
of a Java EE application. Specialized
testing frameworks must be used and
matched to the Java EE frameworks
used to build the application. Mock
objects, configuration processors, syn-
thetic databases and live containers all
play a part in a complete Java EE test-
ing solution. Having a test suite that
covers the entire spectrum allows
application development to proceed
with confidence and reliability.

REFERENCES

* www.junit.org

« struts.apache.org

* www.springframework.org
* jakarta.apache.org/cactus
* www.hibernate.org

* hsqldb.sourceforge.net

* www.eclipse.org

http://struts.apache.org
http://jakarta.apache.org/cactus
hsqldb.sourceforge.net
cynthia
Rectangle

ELPARASOFT.

DATA SHEET

Parasoft® Jtest® is an integrated solution for automating a broad range of practices proven to improve development team
productivity and software quality. It focuses on practices for validating Java code and applications, and it seamlessly integrates with
Parasoft SOAtest to enable end-to-end functional and load testing of today's complex, distributed applications and transactions.
Parasoft's customers, including the majority of the Fortune 500, rely on Jtest for:
m Preventing defects that impact application security, reliability, and performance
m Complying with internal or regulatory quality initiatives
m Ensuring consistency across large and distributed teams
m Increasing productivity by automating tedious yet critical defect-prevention practices
m Successfully implementing popular development methods like TDD, Agile, and XP
Capabilities
Static code analysis Facilitates regulatory compliance (FDA, PCl, etc.). Ensures that the code meets uniform expectations
around security, reliability, performance, and maintainability. Eliminates entire classes of programming
errors by establishing preventive coding conventions.
Data flow static Detects complex runtime errors related to resource leaks, exceptions, SQL injections, and other security
analysis vulnerabilities without requiring test cases or application execution.
Metrics analysis Identifies complex code, which is histarically more error-prone and difficult to maintain.
Peer code review Automates and manages the peer code review workflow- including preparation, notification, and
process automation tracking- and reduces overhead by enabling remote code review on the desktop.
Unit test generation Enables the team to start verifying reliability and functionality before the complete system is ready,
and execution reducing the length and cost of downstream processes such as debugging.
Runtime error Automatically exposes defects that occur as the application is exercised-including race conditions,
detection exceptions, resource & memory leaks, and security attack vulnerabilities.
Test case "tracing"” Generates unit test cases that capture actual code behavior as an application is exercised providing a
fast and easy way to create the realistic test cases required for functional/regression testing.
Automated regression Generates and executes regression test cases to detect if incremental code changes break existing
testing functionality or impact application behavior.
Coverage analysis Assesses test suite efficacy and completeness using a multi-metric test coverage analyzer. This helps
demonstrate compliance with test and validation requirements such as FDA.
Team deployment and Establishes a sustainable process that ensures software verification tasks are ingrained into the team's
workflow existing workflow and automated so team members can focus on tasks that truly require human intelligence.
These core capabilities are also available for C, C++, .NET languages.

Error assignment and Facilitates error review and correction. Each issue detected is prioritized, assigned to the developer who
distribution wrote the related code, and distributed to his or her IDE with direct links to the problematic code.
Centralized reporting Ensures real-time visibility into quality status and processes. This helps managers assess and document

trends, as well as determine if additional actions are needed for regulatory compliance.

Continuous "0On-the- Automatically run static analysis in the background as developers review, add, and modify code. This
fly" static analysis helps the team identify and fix problems as soon as they are introduced.

Key Features

m Built-in support for Google Android, Spring, Hibernate, Eclipse plug-ins, TDD, JSF, Struts, JDBC, EJBs, JSPs, servlets, and more (mobile, embedded, Java EE...)
m Integrates with Parasoft SOAtest for end-to-end functional and load testing for web, SOA, and cloud development.

m Exposes runtime defects that occur as the application is exercised by unit, manual, or scripted tests-including race conditions, exceptions, resource leaks, and
security attack vulnerabilities

m Without requiring execution, identifies execution paths that can trigger runtime defects

m Checks compliance to configurable sets of over 1000 built-in static analysis rules for Java

m Provides templates for OWASP Top 10, CWE-SANS Top 25, PCI DSS, and other security static standards

m Automatically corrects violations of 350+ rules with QuickFix

m Allows easy GUI-based customization of built-in rules

m |dentifies and prevents concurrency defects such as deadlocks, race conditions, missed notification, infinite loops, data corruption other threading problems
m Automatically creates robust low-noise regression test suites-even for large code bases

m (enerates functional JUnit test cases that capture actual code behavior as a deployed application is exercised

m Generates extendable JUnit and Cactus (in-container) tests that expose reliability problems and achieve high coverage using branch coverage analysis
m Integrates and extends manually-written unit test cases

m Continuously executes the test suite to identify regressions and unexpected side effects

m Performs runtime error detection as tests execute

m Parameterizes test cases for use with varied, controlled test input values (runtime-generated, user-defined, or from data sources)
m Monitors test coverage with multiple metrics

m Tracks code coverage from manual tests and test scripts

m Steps through tests with the debugger

m Tests individual methods, classes, or large, complex applications

m (alculates metrics such as Inheritance Depth, Lack Of Cohesion, Cyclomatic Complexity, Nested Blocks Depth, Number Of Children
m |dentifies and refactors duplicate and unused code

m Automates the peer code review process (including preparations, notifications, and routing)

m Shares test settings and files team-wide or organization-wide

m Generates HTML, PDF, XML, and custom reports

m Tracks how test results and code quality change over time

m Provides GUI (interactive) and command-line (batch) mode

Infrastructure Support

m Fullintegration with Eclipse 3.2-3.7, IBM Rational Application Developer 7.0-8.0

m Integration with Ant, Maven, CruiseControl, Hudson, and other build & release tools

m Integration with most popular source control systems

m Open Source Control API, which allows teams to integrate any other source control system

System Requirements

Operating System

m Windows: 7, Vista, 2000, XP, or 2003 (x86 or x86_64)

m Linux: Red Hat E.L. 3, 4, 5 or equivalent (x86 or x86_64)
m Solaris: Solaris 10 (SPARC)

m Mac: 05X 10.5 or higher

Hardware

m Intel® Pentium® I11 1.0 GHZ or higher recommended
m 512 MB RAM minimum; 2 GB RAM recommended

m JRE 1.3 or higher

www.parasoft.com

Contact info:
Parasoft Corporation, 101 E. Huntington Dr., 2nd Flr., Monrovia, CA 91016
Ph: (888)305.0041, Fax: (626)256.6884, Email: info@parasoft.com

Copyright©2012 Parasoft Corporation. All rights reserved. All Parasoft product names are or regi of Parasoft C ion in the United States and other countries. All other marks are the property of their respective owners.

DATASHEET [

	jtest_9_ds.pdf
	Page 1
	Page 2

