
USENIX Association 26th Large Installation System Administration Conference (LISA ’12) 215

Building a protocol validator for Business to Business Communications [PER for LISA12] 1

Building a protocol validator for Business to
Business Communications

Rudi van Drunen, Competa IT B.V. (r.van.drunen@competa.com)

Rix Groenboom, Parasoft Netherlands (rix.groenboom@parasoft.nl)

Abstract

In this paper we describe the design and implementation of a system
essential to enable the deregulation of the energy market in the Netherlands.
The system is used to test and validate secure communications using XML
messages through the AS2 standard between the business partners in the
market. The tool is comprised of an Enterprise Service Bus component, a
service virtualization component, a database with business logic and an user
interface added. The version 1.0 of the system was built in less than one
month.

1. Introduction

The energy market in the Netherlands has been deregulated. To facilitate this
a communications structure is designed in which the different energy
suppliers are able to communicate to each other. This communications
structure and protocol is critical in the supply of energy (electricity, gas) from
supplier to consumer. To validate these protocols a simulation and validation
environment is required, and used for certification of the different market
parties. This experience report discussed the implementation of such an
certification environment for the gas transportation; more of these tools will be
required for other market processes and will be constructed in a similar
fashion.

The exchange of messages in the protocol is built up in different layers. The
transport medium is the Internet, and every supplier has connected their
production systems to the Internet, to reach all others. In the next layer the
transport protocol is http, secured by ssl, so we're using standard https here.
Then the data protocol is AS2, which provides a way to send (XML) data in an
encrypted manner using S/Mime to an authenticated receiver. The actual
payload is an XML message that should adhere to the Dutch energy
interconnection standard.

The goal is to provide a test environment (in the project called Testtool) that
can be used to certify over 100 market parties to see whether they adhere to
a new XML definition that is being rollout during a migration process taking
about one year. There are over fifty application and protocol level test-
scenarios that need to be checked for each party before they are certified and
can participate in the new communications infrastructure.

216 26th Large Installation System Administration Conference (LISA ’12) USENIX Association

Building a protocol validator for Business to Business Communications [PER for LISA12] 2

2. Architecture

To validate the complete communication stack the engine should be able to
validate and test the communication on every level. Building this engine from
scratch is a major undertaking, and will not be flexible. Therefore we choose a
number of building blocks to technically implement the validation engine.

The https and AS2 communications are being handled by an Open Source
Enterprise Service Bus (ESB) solution (UltraESB1), which then hands the
XML payload to a product called Virtualize2. Virtualize is used as a service
virtualization engine which tests the validity of the XML message, handles
responses and stores the data in a database. The actual validation (as part of
the certification process) is done using the data in the database and checking
on the right contents and sequence of the XML payloads. The database is a
MySQL database that stores all messages and metadata of the messages
and the sender / receiver. All of this is driven by a number of Java classes that
can be controlled by a Web GUI.

Figure 1 shows the global architecture of the Testtool. The different
messages (notification (NOT) and Message Delivery Notice (MDN) as
Acknowledge) are asynchronously for external communications and
synchronously for internal communications. The external party is simulated in
the test environment as depicted using the Meldelson3 tooling.

Figure 1: Overview of the Testtool

USENIX Association 26th Large Installation System Administration Conference (LISA ’12) 217
Building a protocol validator for Business to Business Communications [PER for LISA12] 3

2.1 AS2

The protocol on AS2 level allows for multi level encryption of the data on the
wire, as well as validation of the communication partners using certificates.
Next to that communications can take place in a synchronous and
asynchronous manner.

The AS2 message enters the system through a https connection. A standard
server certificate, issued by a trusted certificate authority is used to validate
the sender and decrypt the ssl transmission. The setup corresponds with the
way an ssl-enabled webserver is set up. Important is that the Testtool, as well
as the partner, can work both with one and two-way SSL.

As the ESB solution incorporates the webserver, the server certificate, as well
as the (path to the) root CA needs to be present in the Java keystore it uses
(a so-called identity.jks). This setup is shown in Figure 2.

Figure 2: ssl setup for AS2 messages

The OpenSource ESB we employ in this project is UltraESB. This engine has
the ability to handle the (AS2) communication with the partner in a
synchronous and asynchronous manner, while it communicates in a
synchronous fashion to the backend (in this case the Virtualize engine).
Configuration and adding functionality to UltraESB turned out to be simple by
changing the configuration files that are a mix of Java and XML.

As the protocol supports bi-directional communication we need to not only
accept messages but also be able to send them. We needed to add extra
functionality to the ESB to facilitate sending messages to partners, when the
test environment is initiating the communication. We did this by adding
functionality to select the correct certificate that belongs to the business
partner with whom we need to set-up the AS2 communication. A custom http-
header field: dest-endpoint is used to communicate this information from
Virtualize to UltraESB.

Second, when we are receiving the, in this case asynchronous,
acknowledgement message we should end the handshake directly and not
send a formal reply from the backend to the business partner again. In that

218 26th Large Installation System Administration Conference (LISA ’12) USENIX Association

Building a protocol validator for Business to Business Communications [PER for LISA12] 4

situation, the ESB would not forward the ‘response’ message, but direct it to
"ground". We used this approach to have a clear separation of concern: the
ESB deals only with the communication, only the Virtualize components are
‘aware’ of the type of message. If it is an incoming notification message that
needs acknowledgement, Virtualize responds. If the incoming message is an
acknowledgement we do not have to respond Virtualize adds the “ground”
designator to the response message.

As there were no throughput requirements, as the system was to handle one
communication at a time, with a payload maximum of about 1 Mbyte. We did
not expect issues with buffering, and relied on internal buffers of the ESB. In
practice this has proven to be sufficient.
The ESB allowed us to set the maximum payload size, which will be set to 10
Mbytes in the production version. Together with the appropriate settings of the
java VM (max heap size) we were able to handle this maximum payload size
without problems.

2.2 PKI

To authenticate and encrypt / decrypt the XML messages on AS2 level a
Public Key Infrastructure is being used as shown in Figure 3. Every partner in
the energy market in the Netherlands has a certificate that is signed by a root
that is public for the Dutch energy market, and is maintained by the
government. This PKI is used in the ESB software to maintain authentic and
safe communications. The path to and the root CA, as it is not a standard
trusted CA as well as the certificates of every business partner must be
known to the ESB application. The local certificate must be made known to
every partner as well. The ESB certificates are maintained in a different Java
keystores and controlled by a GUI.

Figure 3: Message level encryption using PKI

If an AS2 message enters the ESB, it will be authenticated by checking the
certificate against the CA, and then decrypted with the local (private key)
certificate. If the ESB needs to send a message, it encrypts it with the public

USENIX Association 26th Large Installation System Administration Conference (LISA ’12) 219

Building a protocol validator for Business to Business Communications [PER for LISA12] 5

key of the partner and sends it on the wire. The Virtualize component used 3
http-headers to tell the ESB which certificates and endpoint to use.

For testing this process, we have used a separate AS2 client (Mendelson)
that we can load with the certificates of the business partner so we can
simulate and test the AS2 communication before bringing the application ‘live’.
This helps in the troubleshooting of the correct loading of the certificates.

2.3 Virtualize

The simulation of the service that handles the communication between the
partners is implemented using Parasoft Virtualize. The Virtualize toolkit was
readily available and had all the functionality we needed for the backend. Next
to that the customer had ample experience with other Parasoft tooling. In this
setup Virtualize accepts XML messages on a Tomcat queue, checks the
messages against the XML schema definitions and validates them. Based on
the message content, Virtualize generates the response messages for a
specific partner and sends it on to the ESB as http message. To let the ESB
know which partners information to use in forwarding the message, Virtualize
adds three custom http-headers:

dest-endpoint AS2 endpoint where the ESB should deliver the

message
cert-alias The alias of the certificate in the keystore in the ESB that

should be used for the encryption of the MIME payload
as2-id The AS2 identifier of the business partner

Virtualize supplies the parameters to these headers based on the business
partner identifier and the information stored in the backend database.

To be able to mimic asynchronous behavior, we need to be able to have a
message that is generated in Virtualize not to be forwarded to the partner as
described before we add the “ground” designator as value to dest-
endpoint.

Using the scripting facilities of Virtualize we created python methods that are
fired off when specific messages arrive. These scripts log the (validated)
message and metadata in a database to be inspected on the contents, and
respond though the ESB in a correct AS2 message to the client.

2.4 Database

In order to check the contents of the XML and its validity, the message is
logged in a database. Next to the message itself, meta information on the
business partner and timestamps are stored. This information than can be
used to actually check the sequence and detailed contents of the XML
message and report to the partner.

220 26th Large Installation System Administration Conference (LISA ’12) USENIX Association

Building a protocol validator for Business to Business Communications [PER for LISA12] 6

Besides storage of the incoming messages, the database also contains the
different messages the tool should be able to send for certain test-scenario.
This requires a trade-off between storing complete messages or only the
relevant payload information and let Virtualize compose the correct XML
message with right information. The database offers enough flexibility to
support both approaches.

2.5 Database application

The application to validate the message transfer is a Java application that
supports the process of validation of a partner, in which a number of test
cases need to be performed. Each test case is a scenario in which a number
(>= 1) of messages containing specific information need to be sent to or
received from the test tool. The application can evaluate the database
contents and report on the correct sequence and contents of the messages,
and then flag a test (case) as succeeded or not.

Next to this functionality the database application implements a portal for
maintaining clients, and querying the database for certain test scenarios
executed by partners, or provide a partner with the ability to have the test
system initiate a test in the direction of the business partner.

3. Experiences / Usage

The described project has a high business value, as partners are obliged to
certify themselves before being allowed to do business on the Dutch energy
market. Certification ensures the peer-to-peer communication, and thus the
national protocol will work. As market introduction depends on certification of
the partners the deadlines are pretty tight. The development team managed to
build a version 1.0 of the system within a month. This can be regarded as a
good accomplishment, also given the fact that the messaging specification on
a functional (which test-scenario’s to support) and technical level (final
versions of the XML schema definitions) was still evolving during the
development.

Problems encountered on the way were partly due to the different ways the
business partners have set up their production systems and the PKI. During
the process of testing we encountered problems in validation of the
certificates as different partners had certificates signed by an older version of
the root certificate, and thus were not able to be authenticated. The error
messages from UltraESB did not point us in the right direction right away. This
problem was solved in the checklist and standard operating procedure.

Other issues that we have seen were due to the fact that the system was
required to run on a Windows platform that was present as a VPS in the
cloud. The acceptance system and the development systems were set up for
a single developer use so making parallel development more complicated.

USENIX Association 26th Large Installation System Administration Conference (LISA ’12) 221

Building a protocol validator for Business to Business Communications [PER for LISA12] 7

Technical issues were seen in the management of the Windows firewall
through the Java application, as we wanted to close the system off for all
other IP numbers than those of the partners that registered for the validation.
Managing the Windows firewall rules was difficult, so we implemented access
lists on the Apache webserver as part of the ESB. Other difficulties were
encountered in the file format of certificates and the multiple different
keystores. Also the inner workings of some of the products used were not as
expected, and needed adaption in the user code.

The next (2.0) phase of the project, currently on its way features the building
of several web interfaces to facilitate the management of partners and the
certification / validation process, in such a way that partners can start up their
own validation process and see the progress of their certification.

4. Lessons Learned

A number of lessons can be learned from this project.

First of all, separation of the three main functionalities of Testtool, has been
key to the success of this development. Using an of-the-shelf ESB to handle
the (AS2) communication, the Virtualize engine to handle the XML payloads
including technical validation of the message and the database application to
support the actual validation process. This clear separation in architecture has
proven to be important throughout the development process, although fine-
tuning the interface between these three components required frequent detail
adjustments.

Second, the modular design of Testtool, turned out to be very helpful to
handle the changed specifications. Virtualize was programmed using a draft
set of XSDs that in a later stage where replaced by the final versions. The
core functionality depended only key (stabled) elements in the header of the
XML message. Similarly, incomplete sets of the certificates influenced only
the testing of the AS2 connectively not the overall development of the
Testtool.

Another important issue in this project is that a solid PKI should be one of the
requisites for starting. Designing a PKI and setting it up during a project that
technically uses the PKI components yields to issues in communication.

An observation during the project resulted in the best practice of having
infrastructure development to be ahead of software development. This will
result in having a solid base to plan tests. In this project the infrastructure was
designed and built alongside of the software environment, which resulted in
some planning issues, especially with the tight deadlines we were facing.

Finally, the complete application could have been built from scratch, but as
this was not an option within the project, readily available and re-usable “off-
the-shelf” components were found in UltaESB and Virtualize. Even the custom
build Java GUI will be re-usable for other certification environments that are

222 26th Large Installation System Administration Conference (LISA ’12) USENIX Association

Building a protocol validator for Business to Business Communications [PER for LISA12] 8

required in the future. The combination gives a flexible setup to handle
changes in transport protocol, message formats and test-scenario’s.
The use of the UltraESB and Virtualize combination turned out to be the right
choice for building this tool.

5. Conclusion

Without a validation system and the system driving it, it is not possible to have
a large number of partners using a complex protocol securely and reliably
amongst each other, a requirement in the Dutch deregulation of the energy
market. The validation service has moved to full production successfully.
Whenever a new partner wants to join the energy market the validation and
certification of their backend communication systems has become a simple
job. This system, quickly built out of a number of off the shelf components,
provides a quick way to validate communications, and can be reused for other
protocols in the near future.

6. Acknowledgements

The authors want to thank all people involved in the project. Next to the
customer and their very helpful staff, Richard Jaspers of Competa IT and
Georg Tornqvist of OELAN are thanked for their work in implementing the
software needed. Thanks go to Dirk Giesen of Parasoft Netherlands for his
guidance and expert advice.

1 Ultra ESB: http://www.adroitlogic.org/
2 Virtualize: http://www.parasoft.com/
3 Mendelsson: http://as2.mendelson-e-c.com/

Parasoft Service Virtualization Kit
voke Market Analysis
Parasoft White Paper

Service Virtualization Maturity Model

®
Moving markets beyond the status quo!

voke Research��

Solution SnapShottM RepoRt:

Parasoft Virtualize
By theresa lanowitz | November 1, 2011

© 2011 voke media, llc. All rights reserved. voke and vokeStream are trademarks of voke
media, llc. and are registered in the U.S. All other trademarks are the property of their respective
companies. Reproduction or distribution of this document except as expressly provided in writing
by voke is strictly prohibited. Opinions reflect judgment at the time and are subject to change
without notice. voke disclaims all warranties as to the accuracy, completeness or adequacy of
information and shall have no liability for errors, omissions or inadequacies in the information
contained or for interpretations thereof. Contact www.vokeinc.com for additional information.

voke Research��

SuMMaRY ~
Adopting a lifecycle virtualization
strategy benefits organizations
by rapidly lowering capital and
operational expenditures. Lifecycle
virtualization enables development,
QA, and operations teams to be
more efficient and strategic by
providing access to the correct
environments, components, and
services when and where needed.

The Parasoft Virtualize solution
brings virtualization to the core
of the lifecycle and delivers much
needed accessibility and speed to
developers, testers, and partners.
Parasoft Virtualize delivers
accessibility by removing constraints
associated with limited access to
systems, capacity, and unavailable
or incomplete
systems and
components.

taBle of ContentS ~
executive overview 2

Market Context 2

Lifecycle Complexity • 3

Modern Solutions • 5

about parasoft Virtualize 5

Platform Support • 6

Solution Overview • 6

Solution analysis 8

Solution highlights 9

Ease of Use 1 • 0

Integration 1 • 0

Defect Virtualization 1 • 1

Test Data Management 1 • 1

Performance Testing 1 • 1

Solution Summary 1 • 2

Benefits 1 • 2

assess Your organization 13

Justify the purchase 13

net/net 14

Solution SnapShot™ RepoRt:

Parasoft Virtualize
By theresa lanowitz | November 1, 2011

Solution Snapshot™ Report: Parasoft Virtualize

November 1, 2011

© 2011 voke media, llc. All rights reserved. Reproduction prohibited.

2

ExEcutivE OvErviEw
Virtualization technology caused a revolution in the data center and was the technology
of choice for every member of the C-suite as a result of its amazing effect of lowering
capital expenditures (CAPEX). The value proposition in the data center was very clear to
understand, and results were rapid.

Virtualization technology now stands to change other parts of the IT organization,
specifically the development, quality assurance (QA), and operations teams. Lifecycle
virtualization1 is delivering value by removing constraints in the lifecycle and between
teams, speeding time-to-market, lowering costs, and freeing teams from tactical activities.

By adopting a lifecycle virtualization strategy, organizations can rapidly lower CAPEX and
operational expenditures (OPEX). Lifecycle virtualization enables development, QA, and
operations teams to be more efficient and strategic by providing access to the correct
environments, components, and services when and where needed. Lifecycle virtualization
solutions reduce the costly wait time frequently associated with testing. With a more
efficient and strategic approach, the lifecycle becomes more nimble, and teams can focus
on delivering a faster time-to-market, with greater quality, while keeping costs under
control.

This report features analysis of and commentary about Parasoft Virtualize. For more detail
and analysis of the lifecycle virtualization market, see voke Category Snapshot™ Report:
Lifecycle Virtualization – November 7, 2011.

MarkEt cOntExt
The lifecycle lends itself extremely well to the benefits of virtualization. Those benefits
have expanded significantly from the first generation of lifecycle virtualization solutions that
focused on virtual lab management (VLM) only, to the second generation and expansion to
the cloud, to today: the third generation of lifecycle virtualization.

The third and current generation of lifecycle virtualization includes solutions for:

VLM — virtualizing and delivering an environment as close to production as possible �

Virtualized cloud platforms — a logical extension of VLM, enabling organizations to �
rapidly and inexpensively create production-like cloud environments. As the move to
public, private, and hybrid clouds becomes more pervasive, development and testing
teams need on-demand access to cloud platforms prior to moving applications or
services to production.

1 Lifecycle virtualization is defined as the use of technologies such as virtual lab management,
service virtualization, defect virtualization, device virtualization, virtualized cloud platforms, et cetera,
to enhance the application or product lifecycle through the reduction of defects, lowering costs,
speeding time-to-market, and increasing customer satisfaction.

Solution Snapshot™ Report: Parasoft Virtualize 3

November 1, 2011

© 2011 voke media, llc. All rights reserved. Reproduction prohibited.

Service virtualization — giving development and testing teams access to either �
unavailable or limited services in a virtualized environment. Virtualized services may be
a database, mainframe, architecture, et cetera. Service virtualization also leads the way
for virtualized or shared infrastructure.

Defect virtualization — using virtualization technology to record an application as �
it executes and then replay it to identify the point of failure, empowering teams to
eradicate even the most elusive defects.

Device virtualization — using virtualization and simulation to allow physical devices to �
be virtually deployed for testing

While lifecycle virtualization has not penetrated the market as extensively as a disruptive
technology should, the demands placed on all aspects of the business are requiring more
efficiency at every phase, including the lifecycle.

voke is predicting the following for lifecycle virtualization:

Lifecycle virtualization will be the hub of the modern lifecycle. As the hub, lifecycle �
virtualization will shatter silos across development, QA, and operations.

Lifecycle virtualization will be a major disruptor in breaking bottlenecks in the lifecycle. �

Widespread adoption of lifecycle virtualization will occur across all industry sectors. �

Compliance issues will bring to the forefront the challenge of licensing in virtual �
environments. This will force software vendors to rethink licensing models to
accommodate the exploding use and benefits of virtualized environments.

Lifecycle virtualization is an important and emerging category that will enable organizations
of all types and sizes to reduce manual activities that are expensive and error-prone.
Initial adoption of lifecycle virtualization will appeal to the logical need to lower CAPEX.
However, as lifecycle virtualization becomes part of the lifecycle, organizations will
experience tremendous strategic value through adoption and ongoing consistent use of the
technology.

lifeCYCle CoMplexitY ~
Software and applications continue to grow in complexity. And while complexity increases
at a rapid rate, development and QA teams do not grow in proportion.

Development and testing environments are frequently constrained due to budgets,
scheduling, or lack of availability. Development and QA teams are too often delayed
in completing critical activities because what the teams need is not available due to
incompleteness or scheduling conflicts.

Solution Snapshot™ Report: Parasoft Virtualize

November 1, 2011

© 2011 voke media, llc. All rights reserved. Reproduction prohibited.

4

Because of delays associated with access to critical environments, services, systems, or
other key assets, testing is frequently limited. This limited testing means environments and
configurations are often incompletely tested or untested. Test coverage is impacted by
these delays.

Service and System availability

Testing of and access to environments such as mainframes, large ERP systems, and third-
party systems is typically limited. Access is limited because of the unavailability of systems
or components due to incompleteness or scheduling conflicts. Limited access results
in testing delays or incomplete testing that add to schedule and cost. This is prevalent
when business transactions involve third parties or partners operating mainframes or
ERP systems. This usually creates scheduling conflicts in granting testers access to the
required systems—as well as excessive access fees.

performance

Performance testing is often incomplete, inadequate, or ignored due to the excessive cost
of creating a production-equivalent environment. Limited capacity in development and
testing environments hampers realistic performance testing. The effect on performance
testing is further exacerbated by inaccessible or incomplete dependent systems.

test Data

Proper testing requires production-equivalent test data. However, privacy concerns and
compliance restrict the use of live data in test environments. Proper testing of data means
QA teams need access to production-scale data and a production-equivalent environment
for testing. Delivering the proper data structure and environment is a significant cost
burden without the use of automated test tools and solutions.

Development and test labs

The need to build out costly test environments prohibits organizations of all sizes from
delivering the best and most thoroughly tested software possible.

Development and QA teams both wait for the configuration and provisioning of
environments from operations groups. Proper environments go well beyond just hardware
and include operating systems as well as supporting software applications and databases.

Defect Reproduction

Developers and testers are frequently locked in conflict over the inability to reproduce a
defect identified in testing or verify a fix in the proper environment. In many cases, defects
are left unresolved and released to production or the field. Errors found in production or the
field are far more costly. This inability to resolve a defect adds to cost and quality issues.

Solution Snapshot™ Report: Parasoft Virtualize 5

November 1, 2011

© 2011 voke media, llc. All rights reserved. Reproduction prohibited.

Unresolved defects remain in source code indefinitely and cause problems in subsequent
releases of the software or application.

All of these complexity challenges are compounded when dealing with third parties such
as systems integrators, professional service providers, or partners. In global and multi-
dimensional organizations, development and QA teams need to be as productive as
possible and meet schedule, cost, and quality goals.

MoDeRn SolutionS ~
Lifecycle virtualization solutions such as Parasoft Virtualize are emerging in the market to
solve classic problems associated with application/software development, testing, and
delivery.

Access to appropriate environments, components, and systems is a classic development
and test problem in need of a modern solution. Access constraints are removed through
the use of lifecycle virtualization solutions, specifically solutions with service virtualization
capability. Providing development and QA organizations access to what is needed at the
required time and location keeps the teams productive and active.

Lifecycle virtualization is the hub of the modern lifecycle. Lifecycle virtualization will enable
more fluid collaboration and communication between development and QA teams as they
work to manage and tame increasingly complex software and applications. Removing
unnecessary constraints and delays through lifecycle virtualization will facilitate a faster
time-to-market, on budget, and with a high degree of quality.

Adopting a solution such as Parasoft Virtualize will help lifecycle stakeholders remove
unnecessary constraints, improve access, and reduce the overhead and cost of managing
and maintaining development and testing environments.

abOut ParasOft virtualizE
Parasoft, founded in 1987, is an independent software vendor specializing in software
development lifecycle automation. The company offers solutions in the categories
of software development management, software quality lifecycle management, and
development/test environment management.

Parasoft Virtualize, the company’s lifecycle virtualization product, provides access to
development and test environments by eliminating constraints inherent in complex,
heterogeneous, and component-based applications.

Solution Snapshot™ Report: Parasoft Virtualize

November 1, 2011

© 2011 voke media, llc. All rights reserved. Reproduction prohibited.

6

Parasoft Virtualize is one of nine products offered by the company. Parasoft Virtualize
is sold separately and integrates with popular industry testing and application lifecycle
management (ALM) solutions including Parasoft Concerto and Parasoft Test.

platfoRM SuppoRt ~
Parasoft Virtualize runs locally on the Windows and Linux platforms and supports the
following technologies and protocols:

HTTP/HTTPS �

ISO 8583 �

JDBC �

JMS (WebShpere, webMethods, Sonic, TIBCO and others) �

JSON �

MQ �

MTOM (XOP)/MIME/DIME attachments �

.NET �

PoX �

REST �

SAML �

SOAP �

WSDL �

WS-* �

WS-Security �

XML �

XML Schema �

Fixed-length messages �

Custom �

Solution oVeRView ~
Parasoft Virtualize is a lifecycle virtualization solution that allows easy and fast access
to any environment needed to develop, test, or validate software or an application—on-
demand—at any point in the lifecycle.

Solution Snapshot™ Report: Parasoft Virtualize 7

November 1, 2011

© 2011 voke media, llc. All rights reserved. Reproduction prohibited.

Parasoft Virtualize’s flexible architecture enables five core operations for lifecycle
virtualization:

Define 1.

Capture/model 2.

Instruct 3.

Provision4.

Utilize/consume5.

Developers or testers using Parasoft Virtualize define the components of the system under
test that need to be virtualized for the purpose of development or testing.

When the developer or tester has access to a live instance of the component, the real
behavior of the virtualized asset is captured by Parasoft Virtualize. If the system is
unavailable or incomplete, the behavior of the intended virtualized asset is modeled. At this
point in the process, a Parasoft Virtualized Asset (PVA) is created.

The PVA’s behavior can be fine-tuned. For example, it is possible to adjust performance,
data source usage, and conditional response criteria.

The PVA can then be provisioned or deployed within the desired infrastructure for testing
purposes. The infrastructure may be a server, public cloud, private cloud, or hybrid cloud
for simplified uniform access.

Once the PVA is provisioned or deployed to the desired infrastructure, developers,
testers, or partners may consume and utilize the PVA to conduct testing on an as-needed
basis. The PVA may be used in conjunction with all popular commercially available testing
solutions. Constraints of system access are removed.

At the conclusion of the test cycle with PVAs, the environment may be provisioned with
real assets so teams or partners may conduct a complete end-to-end test for final testing.

There are a variety of different use case scenarios for how Parasoft Virtualize may be used
within the lifecycle. Regardless of use case, the flow of using Parasoft Virtualize remains
the same. Developers, testers, or partners get access to the required environment for
testing on-demand.

Common lifecycle use cases for Parasoft Virtualize include:

Accessibility — providing testers with access to the services, environments, or �
systems needed to deliver thorough and complete testing

Parallel development enablement — eliminating system dependencies and providing �
access to incomplete, unfinished, or evolving components for testing

Solution Snapshot™ Report: Parasoft Virtualize

November 1, 2011

© 2011 voke media, llc. All rights reserved. Reproduction prohibited.

8

Test data management — simplifying the test data management process to simulate �
realistic production scenarios in testing

Realistic performance tests — removing capacity constraints from testing �
environments to prevent corruption in testing

Training — assisting training labs to provide clean data limits CAPEX, and reduces the �
risk of data corruption

sOlutiOn analysis
Parasoft Virtualize represents a new breed of lifecycle virtualization solution that uses
service virtualization to reduce the time required to configure applications for test, lower
costs associated with hardware or system access, increase quality, and increase team
productivity. Service virtualization used by Parasoft Virtualize removes constraints and
allows developers and testers access to environments, components, or systems when and
where needed.

The Parasoft Virtualize solution brings virtualization to the core of the lifecycle and delivers
much needed accessibility and speed to developers, testers, and partners. Parasoft
Virtualize delivers accessibility by removing constraints associated with limited access to
systems, capacity, and unavailable or incomplete systems and components. Developers,
testers, and partners work without delays and are able to meet time-to-market pressures.

Parasoft Virtualize uses the same mechanics in creating a PVA, regardless of the specific
use case scenario that is exercised. This common workflow helps organizations with
varying degrees of technical skills. Delivering a consistent workflow with an easy-to-use
user interface removes some of the hesitation associated with the adoption of a new tool
or solution.

Parasoft Virtualize integrates with popular testing solutions such as HP Quality Center, IBM
Rational Quality Manager, Oracle ATS, and Parasoft Test. Integration with popular testing
solutions allows testers to use the solution that is most familiar while conducting efficient
and timely end-to-end functional and performance tests.

Parasoft is a vendor forging the adoption of lifecycle virtualization solutions. The market
is in the emerging state and early phases of adoption. Parasoft must continue to deliver
new and differentiated value in Parasoft Virtualize to remain competitive in what will most
certainly become a very innovative and disruptive market.

Potential customers should be aware of the key strengths and weaknesses of Parasoft
Virtualize during the evaluation phase.

Solution Snapshot™ Report: Parasoft Virtualize 9

November 1, 2011

© 2011 voke media, llc. All rights reserved. Reproduction prohibited.

Strengths:

Ease of use �

Consistent workflow �

Integration with existing testing solutions �

Test data management component �

Performance testing in virtual environments �

Flexible and open architecture �

High customer satisfaction �

Price �

weaknesses:

Lack of broad industry partnerships �

Third-party tools leveraged for highly complex test data scenarios �

Because the lifecycle virtualization market is in the early stages, expect a variety of start-
up vendors to emerge as the demand for lifecycle virtualization expands. Innovation in
this market will accelerate as early adopters identify benefits associated with lifecycle
virtualization solutions. Because of its ease of use and consistent workflow, we expect
Parasoft Virtualize to be a strong contender in the lifecycle virtualization market.

sOlutiOn HigHligHts
Parasoft Virtualize benefits developers and QA teams by enabling them to easily create
an environment that realistically represents the constrained components that they need to
access to complete their development or testing tasks. In addition to creating virtualized
assets that emulate specific constrained components, it enables developers or QA
teams to create an “instance” that represents a specific permutation or combination of
real and virtualized assets. The notion of an “instance” and the management of complex
transactions through both real and virtualized assets is critical for iterative testing.

Historically, development and QA teams are under pressure to rapidly complete their
assigned tasks despite delayed or limited access to dependent components. Parasoft
Virtualize enables teams to advance their development and testing efforts without having
to wait for access to the dependent components. The reduction in wait time enables faster
software delivery as well as more complete and thorough testing.

Parasoft Virtualize assists development teams that are trying to evolve interconnected
components in parallel. By virtualizing the dependent components’ expected behavior, each
team can move forward without having to wait for the others to complete their work.

Solution Snapshot™ Report: Parasoft Virtualize

November 1, 2011

© 2011 voke media, llc. All rights reserved. Reproduction prohibited.

10

The solution aids QA teams in their quest to thoroughly test the designated application
even when dependent system components are not yet ready or available for testing.
Furthermore, test organizations spend excessive time waiting for test-ready code from
development. Parasoft Virtualize reduces the wait time and risk associated with incomplete
applications by allowing QA teams to model expected behavior. The reduction in wait time
enables more complete and thorough testing of code and environments. QA teams are
able to complete end-to-end testing without compromising schedule or costs.

As the adoption of Parasoft Virtualize grows, organizations with dedicated automation or
performance centers of excellence (CoE) will find the addition of lifecycle virtualization
essential. Adding lifecycle virtualization subject matter experts to an established CoE will
help institutionalize the skill set across the organization.

eaSe of uSe ~
Many organizations are using internally developed tools in an attempt to deliver lifecycle
virtualization functionality. Internally developed tools are typically not scalable, lack in
support, and become too expensive and difficult to maintain. Eventually, these teams will
reach a point where an internal solution is no longer a viable or cost-effective solution.

Ease of use of a commercially available solution is often a requirement. Because
development and QA teams frequently conduct evaluations of new technology on top of
having to complete their regular work, evaluation teams are eager to try a solution with an
easy-to-use user interface and a consistent workflow. This criterion is especially important
for solutions that promise a quick ROI.

Parasoft Virtualize is differentiated in the market because of its ease of use and
attractiveness to teams with varying degrees of technical prowess.

integRation ~
Parasoft Virtualize allows users to work without time, location, or infrastructure constraints.
Part of the removal of constraints means flexibility and integration with other lifecycle
virtualization solutions, cloud provisioning tools, and traditional application lifecycle
management (ALM) solutions.

Virtualized assets created in Parasoft Virtualize may be called for in unit, functional, and
performance tests and leveraged by popular test environments such as HP Quality Center,
IBM Rational Quality Manager, Oracle ATS, and Parasoft Test.

Through this integration with existing testing solutions, Parasoft Virtualize enables an
organization to preserve existing investments in both tooling and skills while delivering
more value by speeding up the testing process and removing constraints. Parasoft
Virtualize adds value to any development and test organization by complementing and

Solution Snapshot™ Report: Parasoft Virtualize 11

November 1, 2011

© 2011 voke media, llc. All rights reserved. Reproduction prohibited.

integrating with existing automated or manual solutions, or working as a stand-alone
solution to facilitate more complete and thorough testing.

DefeCt ViRtualization ~
Defect reproduction is an often elusive issue that developers, QA teams, and ultimately
end-users must deal with. When test teams identify an issue, historically, reproduction by
development has not always been guaranteed. Additionally, if reproduction is achieved
by development, there is no guarantee that the defect remediation has not caused a
cascading effect and produced another defect elsewhere in the source code.

Parasoft Virtualize creates a test environment as an “instance”. The “instance” is attached
to the defect. Everything travels and moves with the “instance” to ensure that the
developer has everything associated with the defect. This complete environment means
that when a defect is fixed, it is really fixed and does not inadvertently create another
defect that might potentially go undetected. This also enables QA teams to verify the fix in
the actual environment where the defect was found.

teSt Data ManageMent ~
One of the most frequently overlooked aspects of testing is test data management. Test
data management is pivotal in reducing the time spent on test data preparation as well as
reducing the risk of a compliance or security breach through inappropriate use of test or
production data. Best practices in test data management call for test data to retain the
proper data structure for testing while scrambling, encrypting, or masking the data for
security purposes.

Parasoft Virtualize enables test teams to automate test data preparation and masking. Test
teams have the ability to independently generate, scramble, mask, and refresh test data.
This is a compelling and attractive feature of the product and the strategic value should not
be overlooked.

peRfoRManCe teSting ~
Performance testing is one of the most critical components in the lifecycle. Yet, obtaining
accurate results is complicated by a number of obstacles. Performance testing is
traditionally performed within the organization’s own boundaries, making end-to-end
performance testing involving third-party calls extremely challenging. When these third-
party components can be accessed, such access typically incurs not only scheduling
restrictions and access fees, but also bandwidth charges which can escalate rapidly for
large-scale, high-throughput load or stress tests. Moreover, if the test environment does
not match the production environment (e.g., in one case, the database is running on

Solution Snapshot™ Report: Parasoft Virtualize

November 1, 2011

© 2011 voke media, llc. All rights reserved. Reproduction prohibited.

12

a virtual machine; in another, it is on a dedicated server), performance test results will
inevitably be inaccurate.

Parasoft Virtualize enables performance testing through the use of service virtualization.
Dependent application components can be virtualized and exercised in place of the actual
components during performance testing. Deployed in this manner, the virtual assets can be
accessed without scheduling issues and without incurring any fees.

The team can then analyze the virtualized assets’ impact on the performance and behavior
of the application under test. For example, if a business application relies on a database
backend as a dependency, Parasoft Virtualize can emulate the database connection
and the query execution times to assess their impact on the user experience at the
application interface level. Performance is initially set to mimic the components’ historical
performance, and can be adjusted using graphical user interface (GUI) controls to simulate
various “what if” scenarios.

Due to the rapid ascendance of the cloud, performance along with security are rapidly
becoming the two most important pillars of testing. Parasoft Virtualize is innovating in
lifecycle virtualization and performance testing.

Solution SuMMaRY ~
Parasoft Virtualize has the potential to play a significant role in the lifecycle virtualization
market. With its ease of use, testing solution integration, defect virtualization with
environment replication, test data management ability, and ability to remove performance
testing roadblocks, Parasoft Virtualize is a solution that can be used by organizations of all
types and sizes.

BenefitS ~
Parasoft Virtualize helps organizations achieve the ultimate goal of staying on schedule and
budget while producing a high degree of quality. Parasoft Virtualize is a solution created to
benefit development and QA organizations.

Parasoft Virtualize:

Accelerates time-to-market by reducing testing time. �

Reduces access fees to third-party environments or systems. �

Eliminates lab configuration time. �

Eliminates cascading defects as a result of incomplete environments for defect �
replication and remediation.

Reduces delays experienced by testing teams working in parallel development �
environments.

Solution Snapshot™ Report: Parasoft Virtualize 13

November 1, 2011

© 2011 voke media, llc. All rights reserved. Reproduction prohibited.

Removes constraints to environments, components, and services. �

Removes bottlenecks associated with environment set-up, maintenance, and �
management.

Delivers predictability and consistency. �

Enables more thorough and complete testing. �

Enables faster time-to-market. �

Developers and testers alike will benefit from a consistent and easy-to-use workflow to
speed access to constrained systems, components, and services.

assEss yOur OrganizatiOn
Ultimately, every organization will reach the conclusion that lifecycle virtualization is a
technology that must be used to complement existing lifecycle solutions to help manage
growing complexity, meet time-to-market pressures, and deliver a greater level of quality.
Parasoft Virtualize is a solution that offers lifecycle virtualization benefits today.

Assess the readiness of your organization today to adopt a lifecycle virtualization solution.

Does your organization struggle with the time and cost involved in setting up �
development or test environments?

Does your organization experience delays because of unavailable or incomplete �
services, systems, or components during testing?

Does your organization struggle with access to realistic performance testing �
environments?

Does your organization need to reduce the access fees and third-party charges �
involved in functional and performance testing?

Does your organization struggle with building and testing applications that interact with �
frequently changing components?

Does your organization need to simplify its test data management strategy? �

If you answered “yes” to any of these questions, your organization is ready at some
level to embrace lifecycle virtualization. Once lifecycle virtualization is brought in to an
organization, benefits will quickly be demonstrated and the desire to adopt it will spread
rapidly.

Justify tHE PurcHasE
Individual organizations may calculate projected ROI from a lifecycle virtualization solution
such as Parasoft Virtualize by tracking any of the following suggested measurements.

Solution Snapshot™ Report: Parasoft Virtualize

November 1, 2011

© 2011 voke media, llc. All rights reserved. Reproduction prohibited.

14

hardware Savings

Number of physical servers replaced �

Number of physical machines replaced �

Storage and memory cost reduction �

Heating and cooling cost reduction �

lab and environment efficiency

Time/headcount required to provision and deploy environments �

Time/headcount required to establish development and test labs �

productivity

Time to deliver applications/software to production �

Number of platforms/environments tested �

Number of defects found/remediated prior to production �

Time associated with delays of system, component, service availability �

Parallel development time savings �

Improved productivity enabled by more strategic activities for developers and testers �

access fee Savings

Reduced time spent on shared infrastructure environments such as mainframes �

Reduced time for testing �

Customer Satisfaction

Fewer service calls associated with new releases �

Improved customer reaction to applications/products �

Assess your organization’s need for overall quality improvement by both development and
QA and make a case for the adoption of lifecycle virtualization solutions to complement
existing application lifecycle activities.

nEt/nEt
Parasoft Virtualize should be considered as either a complement to existing lifecycle
solutions from a variety of vendors or as a stand-alone solution to act as the hub of all
lifecycle activity.

Conduct a proof of concept or pilot with Parasoft Virtualize to determine how the
solution fits within your organization. Once a part of lifecycle activities, Parasoft Virtualize
may become part of an established center of excellence for either test automation or
performance.

Contact Information

®
Moving markets beyond the status quo!

Corporate headquarters
voke, inc.
2248 Meridian Boulevard
Suite H
Minden, NV 89423
USA

Phone: +1-866-895-9045
Web: www.vokeinc.com
Blog: www.voke.blogspot.com

aBout Voke ~
voke, founded in 2006, is a modern independent technology analyst firm
focused on the edge of innovation. voke’s primary coverage area is the
application lifecycle and its global transformation, including virtualization, cloud
computing, embedded systems, mobile and device software.

voke provides data and analysis for the economy of innovation. Companies
of all sizes, financial firms, and venture capital organizations turn to voke to
harness strategic advice, independent and impartial market observations and
analysis to move markets beyond the status quo. Please visit www.vokeinc.com
to subscribe to voke research.

Service Virtualization:
The Next Generation of Test Environment Management

1

Today's complex, interdependent systems wreak havoc on parallel development and
functional/performance testing efforts—significantly impacting productivity, quality, and project
timelines. As systems become more complex and interdependent, development and quality
efforts are further complicated by constraints that limit developer and tester access to realistic test
environments. These constraints often include:

 Missing/unstable components

 Evolving development environments

 Inaccessible 3rd party/partner systems and services

 Systems that are too complex for test labs (mainframes or large ERPs)

 Internal and external resources with multiple "owners"

Although hardware and OS virtualization technology has provided some relief in terms of reduced
infrastructure costs and increased access, significant gaps still exist for software development
and testing. It is not feasible to leverage hardware or OS virtualization for many large systems
such as mainframes and ERPs. And more pointedly, configuring and maintaining the
environment and data needed to support development and test efforts still requires considerable
time and resources. As a result, keeping complex staged environment in synch with today's
constantly-evolving Agile projects is a time-consuming, never-ending task.

This paper introduces Service Virtualization: a new way to provide developers and testers the
freedom to exercise their applications in incomplete, constantly evolving, and/or difficult-to-access
environments. Rather than virtualizing entire applications and/or databases, Service Virtualization
(also known as "Application-Behavior Virtualization") focuses on virtualizing only the specific
behavior that is exercised as developers and testers execute their core use cases. Although the
term "Service Virtualization" was originally coined to reflect the initial focus on emulating web
services, it currently extends across all aspects of composite applications—services, mainframes,
web and mobile device UIs, ERPs, ESB/JMS, legacy systems, and more.

This new breed of virtualization—which is entirely complementary to traditional virtualization—
radically reduces the configuration time, hardware overhead, and data management efforts
involved in standing up and managing a realistic and sustainable dev/test environment.

The Complexity of Quality

In today's development environments, the scope of what needs to be tested is increasing
exponentially. With multiple new interfaces and ways for people to access core technology,
systems and architectures have grown broader, larger, and more distributed—with multiple
endpoints and access points. For example, you might have a thick client, a web browser, a
device, and a mobile application all accessing the same critical component. Not surprisingly,
testing in this environment has become very difficult and time consuming.

Furthermore, the number and range of people involved with software quality is rising.
Advancements in development methodologies such as Agile are drawing more and more people
into quality matters throughout the SDLC. For instance, Business Analysts are increasingly
involved with user acceptance testing, QA has become responsible for a broader and more
iterative quality cycle, and the development team is playing a more prominent role in the process
of software quality and validation. Moreover, today's large distributed teams also exhibit a similar
increase in team members involved with quality.

2

Also increasing are the permutations of moving parts—not only hardware and operating systems,
but also client server system upgrades, patches, and dependent third-party application. As the
service-oriented world broke apart many monolithic applications, service orientation also
increased and distributed the number of connections and integration points involved in executing
a business process.

Hardware and OS Virtualization Lowers Cost & Increases Access—
Yet Significant Gaps Remain

In an attempt to provide all of the necessary team members ubiquitous access to realistic dev/test
environments in light of these complexities, many organizations have turned to hardware and OS
virtualization. Virtualizing the core test foundations—specific operating systems, configurations,
platforms, etc.— has been a tremendous step forward for dev/test environment management.
This virtualization provides considerable freedom from the live system, simultaneously reducing
infrastructure costs and increasing access to certain types of systems. Moreover, leveraging the
cloud in concert with virtualization provides a nearly unlimited bandwidth for scaling dependent
systems.

Nevertheless, in terms of development or test environments, some significant gaps remain. First
of all, some assets cannot be easily virtualized. For example, it is often unfeasible to leverage
hardware or OS virtualization technology for large mainframe applications, third-party applications,
or large ERPs.

Moreover, even when virtualization can be
completed, you still need to configure and
manage each one of those applications on top
of the virtualized stack. Managing and
maintaining the appropriate configuration and
data integrity for all the dependent systems
remains an ominous and time-consuming task.
It is also a task that you will need some
outside help with—you will inevitably be relying
on other groups, such as operations or
DevOps, to assist with at least certain aspects
of the environment configuration and
management.

Service Virtualization reduces this
configuration and data management overhead
by enabling the developer or tester to rapidly
isolate and virtualize just the behavior of the
specific dependent components that they need
to exercise in order to complete their end-to-
end transactions. Rather than virtualizing
entire systems, you virtualize only specific
slices of dependent behavior critical to the
execution of development and testing tasks.

It is completely feasible to use the cloud for
scalability with Service Virtualization. Nevertheless, since you're virtualizing only the specific
behavior involved in dev/test transactions (not entire systems), the scope of what's being
virtualized is diminished… and so is the need for significant incremental scalability.

3

What is Service Virtualization?

Service Virtualization is a more focused and efficient strategy for eliminating the system and
environment constraints that impede the team's ability to test their heterogeneous component-
based applications. Instead of trying to virtualize the complete dependent component—the entire
database, the entire third-party application, and so forth—you virtualize only the specific behavior
that developers and testers actually need to exercise as they work on their particular applications,
components, or scenarios.

For instance, instead of virtualizing an entire database (and performing all associated test data
management as well as setting up the database for each test session), you monitor how the
application interacts with the database, then you virtualize the related database behavior (the SQL
queries that are passed to the database, the corresponding result sets that are returned, and so
forth). This can then be accessed and adjusted as needed for different development and test
scenarios.

To start, you designate which components you want to virtualize, then—as the application is
exercised—the behavior of the associated transactions, messages, services, etc. is captured in
what we call a "virtual asset." You can then configure this virtual asset by parameterizing its
conditional behavior, performance criteria, and test data. This virtual asset can then emulate the
actual behavior of the dependent system from that point forward—even if the live system is no
longer accessible for development and testing.

4

Test data can be associated with these virtual assets, reducing the need for a dependent
database and the need to configure and manage the dependent database that, if shared, usually
gets corrupted.

By applying Service Virtualization in this manner, you can remove the dependency on the actual
live system/architecture while maintaining access to the dependent behavior. This ultra-focused
approach significantly reduces the time and cost involved in managing multiple environments—as
well as complex test data management.

What Does Service Virtualization Involve?

Service Virtualization is achieved via the following phases:

 Capture or model the real behavior of dependent systems

 Configure the virtualized asset to meet demands of the test scenarios

 Provision the virtualized asset for the appropriate team members or partners to access
and test on their schedule

Phase 1: Capture

Real system behavior is captured—using monitors to record live transaction details on the system
under test; by analyzing transaction logs; or by modeling behavior from a simple interface.

The intent here is to capture the behavior and performance of the dependent application for the
system under test and leverage that behavior for development and testing efforts. This capturing
can be done in three ways:

 If you have access to the live system, you can capture behavior by monitoring live system
traffic. With a proxy monitoring traffic on the dependent system, the related messages are
monitored, then the observed behavior is represented in a virtualized asset. This capturing
can cover simple or composite behavior (e.g., a call to transfer funds in one endpoint can
trigger an account balance update on another).

 If you want to emulate the behavior represented in transaction logs, virtual assets can be
created by analyzing those logs. This is a more passive (and less politically volatile)
approach to capturing the system behavior.

 If you're working in an environment that is evolving to include new functionality, you might
want to model the behavior of the "not yet implemented" functionality within the Service
Virtualization interface. Leveraging the broad scope of protocol support available to
facilitate modeling, you can rapidly build a virtual asset that emulates practically any
anticipated behavior. For instance, you can visually model various message formats such
as XML, JSON, and various legacy, financial, healthcare, and other domain-specific
formats.

Phase 2: Configure

The virtualized asset's behavior can be fine-tuned, including performance, data source usage, and
conditional response criteria.

5

After you use any of the three above methods to create a virtual asset, you can then instruct that
asset to fine-tune or extend the behavior that it emulates. For instance, you can apply Quality of
Service metrics so you can alter how you would like the asset to behave from the performance
(timing, latency, and delay) perspective. You can also apply and modify test data for each
particular asset to reproduce specific conditions critical for completing dev/test tasks. For
example, you can configure various error and failure conditions that are difficult to reproduce or
replicate with real systems. By adding data sources and providing conditional response criteria,
you can tune the virtualized asset to perform as expected—or as unexpected (for negative
testing).

Phase 3: Provision and Test

The environment is then provisioned for secure access across teams & business partners. The
virtualized asset can then be leveraged for testing.

Once a virtualized asset is created, it can be provisioned for simplified uniform access across
teams & business partners—either locally or globally (on a globally-accessible server, or in the
cloud). They can then be used in unit, functional, and performance tests. Since virtual assets
leverage a wide array of native protocols, they can be accessed for manual testing or automated
testing by any test suite or any test framework, including Parasoft Test, HP Quality Center suite,
IBM Rational Quality Management suite, Oracle ATS, and more. It is also easy to scale virtualized
assets to support large-scale, high-throughput load and performance tests.

Even after the initial provisioning, these virtual assets are still easily modifiable and reusable to
assist you in various dev/test scenarios. For instance, one of your test scenarios might access a
particular virtual asset that applies a certain set of conditional responses. You can instantly
construct an additional virtual asset that inherits those original conditions, then you can adjust
them as needed to meet the needs of a similar test scenario.

How Service Virtualization Speeds Testing & Cuts Costs:
3 Common Use Cases

To conclude, let's look at how organizations have successfully applied Service Virtualization to
address dev/test environment management challenges in three common contexts:

 Performance/capacity-constrained environment

 Complex, difficult-to-access systems (mainframes, large ERPs, 3rd party systems)

 Parallel development (Agile or other iterative processes)

Performance/Capacity-Constrained Environments

Staged environments frequently lack the infrastructure bandwidth required to deliver realistic
performance. Placing multiple virtualized applications on a single piece of hardware can increase
access to a constrained resource, but the cost of this increased access is often degraded
performance. Although the increased access could technically enable the execution of

6

performance and load tests, the results typically would not reflect real-world behavior, significantly
undermining the value of such testing efforts.

Service Virtualization allows you to replicate realistic performance data independent of the live
system. Once you create a virtual asset that captures the current performance, you can adjust the
parameters to simulate more realistic performance. Performance tests can then run against the
virtual asset (with realistic performance per the Quality of Service agreement) rather then the
staged asset (with degraded performance).

Controlling the virtual asset's performance criteria is simply a matter of adjusting controls for
timing, latency, and delay. In addition to simulating realistic behavior, this can also be used to
instantly reproduce performance conditions that would otherwise be difficult to setup and control.
For instance, you can simulate various levels of slow performance in a dependent component,
then zero in on how your application component responds to such bottlenecks.

Even when it is possible to test against systems that are performing realistically, it is often not
feasible to hit various components with the volume typical of effective load/stress tests. For
example, you might need to validate how your application responds to extreme traffic volumes
simulating peak conditions—but how do you proceed if your end-to-end transactions pass through
a third-party service that charges per-transaction access fees?

If your performance tests pass through a component that you cannot (or do not want to) access
under extreme load testing conditions, Service Virtualization enables you to capture its behavior
under a low-volume test (e.g., a single user transaction), adjust the captured performance criteria
as desired, then perform all subsequent load testing against that virtualized component instead of
the actual asset. In the event that the constrained component is not available for capture, you can
create a virtual asset from scratch—using Service Virtualization visual modeling interfaces to
define its expected behavior and performance.

Complex, Difficult-to-Access Systems (Mainframes, Large ERPs, 3rd Party Systems)

With large complex systems (mainframes, large ERPs, third party systems), multiple development
and test teams are commonly vying for limited system access for testing. Most of these systems
are too complex for a test lab or a staged environment. To exercise end-to-end transactions
involving these components, teams usually need to schedule (and pay for) access to a shared
resource. This approach commonly causes test efforts to be delayed and/or prevents the team
from performing the level and breadth of testing that they would like. For iterative development
processes (e.g., Agile), the demand for frequent and immediate testing increases the severity of
these delays and fees exponentially.

Even if organizations manage to use virtualization for these complex systems, proper
configuration for the team's distinct testing needs would require a tremendous amount of work.
And once that obstacle is overcome, another is right on its heels: developing and managing the
necessary set of test data can also be overwhelming.

When teams use Service Virtualization in such contexts, they only need to access the dependent
resources long enough to capture the specific functionality related to the components and
transactions they are working on. With this behavior captured in virtual assets, developers and
testers can then access it continuously, allowing them to exercise end-to-end transactions at
whatever time they want (without scheduling) and as frequently as they want (without incurring
exorbitant transaction/access fees).

7

Parallel Development (Agile or other Iterative Processes)

Even for simple applications, providing continued access to a realistic test environment can be
challenging for teams engaged in parallel development (Agile or other iterative processes). A wide
range of team members—including developers, testers, sometimes business analysts—all need
easy access to a dev/test environment that is evolving in synch with their application. If the team
decided to take the traditional virtualization route here, they would not only face all the initial setup
overhead, but also be mired in constant work to ensure that the virtualized systems remain in step
with the changes introduced in the latest iteration. When the team ends up waiting for access to
dependent functionality, agility is stifled

Service Virtualization reduces these constraints and associated delays by giving developers and
testers the ability to rapidly emulate the needed behavior rather than having to wait for others to
upgrade, configure, and manage the dependent systems. Even if anticipated functionality or
components are not yet implemented, their behavior can be modeled rapidly then deployed so
team members can execute the necessary end-to-end transactions without delay, And if the
dependent functionality recently changed, previously-captured behavior can be easily modified—
either by re-capturing key transactions or by adjusting behavior settings in a graphical interface
(without scripting or coding).

For example, many organizations are developing mobile applications, and this development is
typically performed by a separate mobile development team. Since mobile applications commonly
depend on core application components developed and maintained by other teams, the mobile
team is often delayed as they wait for the other teams to complete work on the core components
that their own mobile apps need to interact with. Service Virtualization can eliminate these delays
by allowing the mobile development team to emulate the behavior of the dependent
components—even if the actual components are incomplete, evolving, or otherwise difficult-to-
access during the parallel development process.

Key Takeaways

Leveraging Service Virtualization, teams reduce the complexity and the costs of managing
multiple environments while providing ubiquitous access for development and test. Service
Virtualization helps you:

 Reduce infrastructure costs

 Improve provisioning/maintenance of test environments

 Increase test coverage

 Reduce defects

 Improve predictability/control of software cycle times

 Increase development productivity

 Reduce 3rd party access fees

To learn more about how Parasoft implements Service Virtualization in Parasoft Virtualize, visit
the Parasoft Virtualize center.

8

About Parasoft
For 25 years, Parasoft has researched and developed software solutions that help organizations
deliver defect-free software efficiently. By integrating end-to-end testing, dev/test environment
management, and software development management, we reduce the time, effort, and cost of
delivering secure, reliable, and compliant software. Parasoft's enterprise and embedded
development solutions are the industry's most comprehensive—including static analysis,
functional testing with requirements traceability, service virtualization, and more. The majority of
the Fortune 500 companies rely on Parasoft in order to produce top-quality software consistently
and efficiently. For more information, visit the Parasoft web site and ALM Best Practices blog.

Author Information
This paper was written by:

• Wayne Ariola (wayne.ariola@parasoft.com), VP of Strategy at Parasoft

• Cynthia Dunlop (cynthia.dunlop@parasoft.com), Lead Technical Writer at Parasoft

Contacting Parasoft
USA
101 E. Huntington Drive, 2nd Floor
Monrovia, CA 91016
Toll Free: (888) 305-0041
Tel: (626) 305-0041
Fax: (626) 305-3036
Email: info@parasoft.com
URL: www.parasoft.com

Europe
France: Tel: +33 (1) 64 89 26 00
UK: Tel: + 44 (0)208 263 6005
Germany: Tel: +49 731 880309-0
Email: info-europe@parasoft.com

Asia
Tel: +886 2 6636-8090
Email: info-psa@parasoft.com

Other Locations
See http://www.parasoft.com/contacts

© 2012 Parasoft Corporation
All rights reserved. Parasoft and all Parasoft products and services listed within are trademarks or registered trademarks of Parasoft Corporation. All other
products, services, and companies are trademarks, registered trademarks, or servicemarks of their respective holders in the US and/or other countries.

Focus Individual: One-off attempts
to bridge gaps obstructing an
individual’s ability to complete
a specific development or test
task.

Project: Service Virtualization
(SV) emulates dependent
system components and allows
the project’s development or
testing tasks to ”shift left.”

Environment: SV provides
consistent access to dev/test
environments that involve
difficult-to-access, inconsistent,
or unreliable system
dependencies.

Scenario: Environments
are coordinated to rapidly
exercise different scenarios
(performance, security, error
conditions, etc.) in order
to achieve better testing
outcomes.

Enterprise: Provides optimized
and secured environment
access across and beyond the
enterprise—including portals
for business partners.

Characteristics Dev/test scenarios
need to execute across
complex, dependency-rich
environments, but access to
a staged test environment is
constrained.

Developers react by creating
stubs to pry the test or
scenario out of the constrained
environment. This is an ‚inside-
out’ approach.

QA/performance test engineers
react by waiting for access
to a complex staged test
environment (if available) or
using stubs to bypass critical
dependent systems.

A single group/project drives
the creation and management
of virtual assets that mimic
behavior of incomplete
or unavailable dependent
components.

Virtual assets are created for
specific use cases and are
augmented when needed for
alternative cases.

The extension of data sets or
performance profiles is reactive
based on specific testing needs.

A more holistic approach;
accommodates a broader
enterprise audience.

SV is leveraged to provide
continuous access to realistic
dev/test environments (rather
than simply alleviate project-
specific access pains).

Virtual assets are created,
accessed, and managed in the
context of environments.
Policies, procedures, and
standards exist around the
application of SV.

Consistent, continuous
environment access enables
more extensive and accurate
testing to occur with or
without access to a staged test
environment.

Environments are governed
by business rules that not only
dictate what components are
available, but also specify what
permutations are valid under
various contexts.

Since business rules automate
environment access and
control, users can rapidly ”self-
provision” test environments.
Configurations are accessed as
‘disposable software’ with zero
risk.

Lays the foundation for
goal-oriented business-driven
scenarios.

Provides the appropriate level
of environment access to each
constituency.

A Center of Excellence is
established to optimize and
manage policies, procedures,
and standards.

Optimized environment for
goal-oriented, business-driven
scenarios significantly reduces
application risk.

Parasoft Service Virtualization Maturity Model | 1

Process Fit Any pockets of maturity are
based on the experience and
initiative of individuals.

No centralization of assets;
every man for himself.

Enables earlier, easier testing,
but does not necessarily
diminish the need for staged
test environments.

A net new test environment is
available by the use of SV; this
is an initial step for facilitating
Agile/parallel development.

Creates more sophisticated and
flexible dev/test environments.

Promotes a level of
interconnectedness between
SV and virtual test lab
management systems.

Facilitates more mature
coordination between SV and
virtual test lab management
systems.

Seamless integration and
orchestration of SV with virtual
test lab management systems.

The unified solution establishes
a single entity that allows
for regression test suites to
automatically call complex
environments.

Environment
Management

Assets are typically created as
one-off solutions and stored on
a local machine, inaccessible to
anyone but the creator.

The ‘stub’ is created without
consideration of the
environment and serves only
the individual test.

Virtual assets might be
evolved if needed to bridge
project-specific gaps, but
no overarching change
management policies or
processes exist.

Change is managed from the
environment perspective.

Users are notified of new
virtual asset versions upon
accessing the environment;
change-impacts are
highlighted, and users have
the option of accessing the
required version.

Robust change management
and scenarios.

Automated business rules drive
the evolution of changing
environment components.

The SV environment is
governed by differentiated
states associated with how
various entities are accessing
SV assets and environments.

Maturity
Drivers

The application is not
adequately tested or integrated
due to limited access to
environment conditions.

The time and complexity of
managing stubs outweighs the
value they provide.

Constrained access to staged
test environments results in
unacceptable test coverage or
time-to-market delays.

Additional groups request
access to the virtual assets with
varied configuration options.

Increasingly comprehensive
scenarios vs. multiple
dependent systems need to be
tested.

Project experience exposes the
need for common, proactive
processes for reuse and
management.

Increased need to access
multiple on-demand,
”disposable” test environment
configurations tailored for
specific application or project
demands.

Controlled access to
sophisticated test
environments is needed
internally across the enterprise
and externally with strategic
business partners.

Parasoft Service Virtualization Maturity Model | 2

