
	

Developing DO-‐178B/C Compliant
Software for Airborne Systems

	

The investment required to produce software for airborne systems warrants scrupulous
adherence to industry standards, such as DO-178B/C. The FAA uses DO-178B, formally
titled Software Considerations in Airborne Systems and Equipment Certification, as a
guide for determining software safety. That is, if the software has been developed
according to DO-178B or DO-178C (the latest version of the standard), then the FAA will
deem the software component airworthy. In this paper, we'll discuss the following topics:

• Background about DO-178B/C

• Key differences between the versions

• Why policy-driven development is central to DO-178B/C compliance

• How Parasoft Development Testing Platform for C and C++ software helps
organizations achieve DO-178B/C compliance

Background on DO-178B/C
The purpose of DO-178B/C is to provide guidance for software engineers so that they
can ensure the airworthiness of the systems they develop. The FAA's airworthiness
requirements determine whether of not the agency will issue their approval document
called a TSO, or technical standard order. The standard is not explicitly mandated, but it
is a critical component of the TSO process, thus a requirement for gaining FAA approval.

In the early days of aviation, safety considerations were overshadowed by the sheer
achievement of human progress the new technology represented. But as the need for
faster travel over greater distances with larger cargo loads emerged, so did the need for
safety regulations. In a relatively short period of time, electronic interfaces replaced
mechanical controls, elevating the need for industry-wide guidance for ensuring the
safety of these systems. The standard was produced in response to a need for some
sort of guide that vendors could use to gain FAA approval.

Those with experience developing embedded software systems that complies with
industry standards will no doubt recognize and appreciate the qualifying language used
in DO-178B/C. RTCA, the not-for-profit consortium that wrote the standard, specifically
states that the organization's recommendations "may not be regarded as statements of
official government policy" nor are they mandated by law. Instead, DO-178B/C
"represents a consensus of the aviation community" in regard to software development.

That is, DO-178B/C is descriptive, rather than prescriptive. The standard describes the
goals of the processes, rather than prescribes the methods by which they are achieved.
Consider 6.3.6 of DO-178B for example:

Reviews and Analysis of the Test Cases, Procedures and Results

	

The objective of these reviews and analyses is to ensure that the testing of the
code was developed and performed accurately and completely. The topics
should include:

a. Test cases: The verification of test cases is presented in paragraph
6.4.4*.

b. Test procedures: The objective is to verify that the test cases were
accurately developed into test procedures and expected results.

c. Test results: The objective is to ensure that the test results are correct
and that discrepancies between actual and expected results are
explained.

*	 6.4.4	 states:	 Test coverage analysis is a two-step process, involving requirements-based
coverage analysis and structural coverage analysis. The first step analyzes the test
cases in relation to the software requirements to confirm that the selected test cases
satisfy the specified criteria. The second step confirms that the requirements-based test
procedures exercised the code structure. Structural coverage analysis may not satisfy
the specified criteria. Additional guidelines are provided for resolution of such situations
as dead code (subparagraph 6.4.4.3).

The standard clearly describes the necessary verification activities and goals, but it does
not prescribe methods for achieving those goals.

Differences Between DO-‐178B and DO-‐178C
In most respects, DO-178B and DO-178C are identical. Much of the language has been
carried over; some of the broader goals, process and definitions have been explained in
greater detail in DO-178C. For example, in chapter 6.1, which defines the purpose for
the software verification process, DO-178C adds the following purpose with regard to the
Executable Object Code:

• The Executable Object Code is robust with respect to the software requirements
such that it can respond correctly to abnormal inputs and conditions.

This is in addition to the statement regarding the verification of the Executable Object
Code defined in DO-178B:

• The Executable Object Code satisfies the software requirements (that is,
intended function), and provides confidence in the absence of unintended
functionality.

The additional requirement further defines the role of the Executable Object Code to
ensure the safe functionality of the system, whereas the previous minimum scope of the
verification process may lead to system failure. There are many instances where the
language in DO-178C seeks to define concepts, functions, and process in more detail,
but an exhaustive list of such updates are outside the scope of this paper. One

	

significant update, however, also merits discussion. Both versions address software
development process traceability, but DO-178C adds bidirectional traceability:

From DO-178B/C Chapter 5.5

DO-178B DO-178C

Traceability

Traceability guidance includes:

a. Traceability between system
requirements and software
requirements should be provided to
enable verification of the complete
implementation of the system
requirements and give visibility to the
derived requirements.

b. Traceability between the low-level
requirements and high-level
requirements should be provided to
give visibility to the derived
requirements and the architectural
design decisions made during the
software design process, and allow
verification of the complete
implementation of the high-level
requirements.

c. Traceability between Source Code and
low-level requirements should be
provided to enable verification of the
absence of undocumented Source
Code and verification of the complete
implementation of the low-level
requirements.

Software Development Process Traceability

Software development traceability activities
include:

a. Trace Data, showing the bi-directional
association between system
requirements allocated to software and
high-level requirements is developed.
The purpose of this Trace Data is to:

a. Enable verification of the
complete implementation of
the system requirements
allocated to software.

b. Give visibility to those derived
high-level requirements that
are not directly traceable to
system requirements

b. Trace Data, showing the bi-directional
association between the high-level
requirements and low-level
requirements is developed. The
purpose of this Trace Data is to:

a. Enable verification of the
complete implementation of
the high-level requirements
allocated to software.

b. Give visibility to those derived
low-level requirements that
are not directly traceable to
high-level requirements

c. Trace Data, showing the bi-directional
association between the low-level
requirements and the source code is
developed. The purpose of this Trace

	

Data is to:

a. Enable verification that no
Source Code implements an
undocumented function.

b. Enable verification of the
complete implementation of
the low-level requirements.

For organizations that must be in compliance with DO-178C, the new requirement
means that they will need a system that enforces policies and is flexible enough to
provide bi-directional traceability. As of the writing of this paper, the TSOs required for
FAA approval reference DO-178B, so vendors may not yet need to follow DO-178C. For
more information about FAA approval, regulations, and standards, contact the FAA.

Ensuring Non-‐functional Requirements with Policy Driven
Development
In many manufacturing processes, there are known methods for ensuring that the end
product not only functions as expected, but also exhibits strong quality characteristics.
For example, a bicycle must not only have pedaling and braking functionality (functional
requirements), but should also be able to withstand your body weight or meet standards
for bicycle safety (non-functional requirements).

Bicycle manufacturers may automate the application of those practices in their factories,
as well as automatically measure the efficacy of their production methods. Taken
together, this would be an example of policy-driven manufacturing—the quality goals are
clearly stated, tools and training are available to ensure that the goals can be met, and
compliance with the goals is automatically enforced. The same principles should be
applied to how software is engineered.

Developing embedded software, though, is arguably more complex than manufacturing
a bicycle. This is because clearly policies are either lacking in many organizations or
they don’t have a way to monitor and enforce compliance with those policies. As a result,
engineers are forced to make business-critical decisions every day. As software
continues to play a greater role in systems responsible for functional safety, engineering
decisions can lead to significant business risks.

DO-178B/C provides a detailed framework that can be used as a foundation for
integrating a policy-driven software development strategy. Moreover, specifying the
tasks that need to be accomplished in order to reduce risks forms the crux of the
standard. The key to reining in these risks is to align software development activities with
your organization's business goals. This can be achieved through "policy-driven

	

development," which ensures that engineers deliver software according to your
expectations.

Policy-driven development involves 1) clearly defining expectations and documenting
them in understandable polices, 2) training the engineers on the business objectives
driving those policies, and 3) enforcing the policies in an automated, unobtrusive way.
By adopting a policy-driven strategy, businesses are able to accurate and objectively
measure productivity and application quality, which lowers development costs and
reduces risk.

With public safety, potential litigation, market position and other consequences on the
line, it behooves software development teams and people in the traditional business
management positions to come together on policy and implement the strategy into their
software development lifecycle.

Development Testing for DO-‐178B/C
Manually driving policy throughout the development process isn’t feasible in most
organizations. Open source ALM tools are often coupled with code analysis tools and
testing frameworks to create an ad-hoc development testing solution that delivers some
insight into software engineering activities. But in a highly competitive market, being first
to market with high-quality software engenders a significant advantage. Data from ad-
hoc development testing infrastructures can deliver a significant volume of data, but
rarely actionable analytics necessary to help development teams understand where to
allocate resources to meet their goals efficiently.

Parasoft Development Testing Platform (DTP) for C and C++ applications is an
integrated solution for automating software verification and validation processes and
software quality tasks specified in DO-178B/C, including static analysis, data flow static
analysis, metrics analysis, peer code review, unit testing and runtime error detection.
This provides teams a practical way to prevent, expose, and correct errors in functional
safety systems.

Parasoft prioritizes potential defects based on configurable severity assignments and
automatically assigns them to the engineer responsible for the code. Direct links to the
problematic code and a description of how to fix it is distributed to his or her IDE. For
embedded and cross-platform development, DTP for C and C++ can be used in both
host-based and target-based code analysis and test flows.

• Automated code analysis: The policy-based static code analysis ensures that
industry coding standards and development policies are being followed. Users
can define custom rule sets or use the built-in rules to identify potential coding
errors and policy violations.

• Flow analysis: Flow Analysis simulates possible execution paths and
determines whether these paths could trigger specific categories of runtime

	

errors. This is especially useful for systems in which detailed runtime analysis is
ineffective or impossible, such as embedded systems.

• Code Review: The Code Review module automates the preparation, notification,
and tracking of peer code reviews. When combined with static analysis, code
review virtually eliminates the need for line-by-line inspections.

• Runtime Error Detection: The application under test is continuously monitored
for problems such as memory leaks, null pointers, uninitialized memory, and
buffer overflows.

• Unit and integration testing with coverage analysis: Automatically run unit
tests generated by open frameworks and report results, including coverage data.
You can also generate complete unit tests, including test drivers and test cases
for individual functions, to validate functional behavior. Automatically generated
test cases also check function responses to unexpected inputs. For a deeper
discussion about execution environments, including simulated targets, read the
following papers:

o Techniques for Unit Testing Embedded Systems Software

o Integrated Error-Detection Techniques: Find More Bugs in Embedded C
Software

• Configurable reports: Generate HTML, PDF, and custom format reports that
cover which files were tested and analyzed in addition to providing test results
and code coverage. Automatically email reports using role-based filters,
distribute data directly to developers responsible for the code, as well as send
summary reports to managers and team leads.

• Integration with Parasoft Development Testing Solution: Parasoft DTP
provides traceability of all project artifacts, requirements, defects/enhancements,
and tasks so you can enforce policies related to compliance and process
standardization. It identifies inefficiencies by tracking and analyzing software
development metrics and progress, so development teams can build on the
increased productivity.

DO-‐178B/C Compliance with Parasoft
The following tables matches key principles from DO-178B/C with Parasoft DTP for
C/C++. The table is intended to provide a sample of Parasoft functionality and is by no
means complete. Visit our Software Development Standards and Compliance page for
additional information on how Parasoft can help you achieve compliance with other
industry standards.

	

5.3.2: Software Coding Process Activities

Method Parasoft approach

The Source Code should implement the
low- level requirements and conform to the
software architecture.

The Source Code should conform to the
Software Code Standards.

The Source Code should be traceable to
the Design Description.

Inadequate or incorrect inputs detected
during the software coding process should
be provided to the software requirements
process, software design

Rules that enforce industry best practices
are built in. Users can select entire
libraries based on industry standards,
individual rules, or create custom rules
based on the organization's policies.

6.3.3: Reviews and Analyses of the Software Architecture

Method Parasoft approach

The objective of these reviews and
analyses is to detect and report errors that
may have been introduced during the
development of the software architecture.
These reviews and analyses confirm that
the software architecture satisfies these
objectives:

• Compatibility with the high-level
requirements: The objective is to
ensure that the software
architecture does not conflict with
the high-level requirements,
especially functions that ensure
system integrity, for example,
partitioning schemes.

• Consistency: The objective is to
ensure that a correct relationship
exists between the components of

Configure Parasoft rules to enforce any
kind of policy, including a policy that
specifies software architecture and a policy
based on target computer specifications.

Parasoft includes software development
testing tools, such as static analysis, unit
testing, code coverage analysis, peer
review analysis, and runtime error
detection to verify that the code performs
as expected.

Rules that enforce industry best practices
are built in. Users can select entire
libraries based on industry standards,
individual rules, or create custom rules
based on the organization's policies.

	

the software architecture. This
relationship exists via data flow and
control flow.

• Compatibility with the target
computer: The objective is to
ensure that no conflicts exist,
especially initialization,
asynchronous operation,
synchronization and interrupts,
between the software architecture
and the hardware/software features
of the target computer.

• Verifiability: The objective is to
ensure that the software
architecture can be verified, for
example, there are no unbounded
recursive algorithms.

• Conformance to standards: The
objective is to ensure that the
Software Design Standards were
followed during the software design
process and that deviations to the
standards are justified, especially
complexity restrictions and design
constructs that would not comply
with the system safety objectives.

• Partitioning integrity: The objective
is to ensure that partitioning
breaches are prevented or isolated.

6.3.4: Reviews and Analyses of the Source Code

Method Parasoft approach

Source Code complies with low-level
requirements

Source Code complies with software
architecture

Parasoft can automatically generate test
cases based on user definitions to ensure
that code complies with stated low-level
requirements.

	

Source Code is verifiable Source Code
conforms to standards

Source Code traceable to low-level
requirements.

Source code is accurate and consistent.

Configure rules to enforce any kind of
policy, including a policy based on
software architecture. Parasoft includes
software development testing tools, such
as static analysis, unit testing, code
coverage analysis, peer review analysis,
and runtime error detection to verify that
the code performs as expected.

Rules that enforce industry best practices
are built into Parasoft Test. Users can
select entire libraries based on industry
standards, individual rules, or create
custom rules based on the organization's
policies.

Pattern-based data flow analysis checks
all possible paths simulates test case
execution and detects errors across
multiple units, components, and files to
ensure that the code is accurate and
consistent

Correlate requirements to tasks to code
and other requirements o achieve full
traceability.

6.4.1: Test Environment

Method Parasoft approach

More than one test environment may be
needed to satisfy the objectives for
software testing.

An excellent test environment includes the
software loaded into the target computer
and tested in a high fidelity simulation of
the target computer environment.

Note: In many cases, the requirements-
based coverage and structural coverage
necessary can be achieved only with more

Parasoft has a number of test environment
capabilities:

• It can be used with a wide variety
of embedded OS and architectures
by cross-compiling the provided
runtime library for a desired target
runtime environment.

• Full customization of the test
execution sequence is also
supported. In addition to using the

	

precise control and monitoring of the test
inputs and code execution than generally
possible in a fully integrated environment.
Such testing may need to be performed on
a small software component that is
functionally isolated from other software
components.

Certification credit may be given for testing
done using a target computer emulator or
a host computer simulator. Guidance for
the test environment includes:

• Selected tests should be performed
in the integrated target computer
environment, since some errors are
only detected in this environment.

built-in test automation, users can
incorporate custom test scripts and
shell commands to fit the tool into
their specific build and test
environment.

6.4.3: Requirements-‐based Testing Methods

Method Parasoft approach

Requirements-Based Hardware/Software
Integration Testing: Typical errors revealed
by this testing method include:

• Incorrect interrupt handling.

• Failure to satisfy execution time
 requirements.

• Incorrect software response to
 hardware transients or hardware
failures, for example, start-up
sequencing, transient input loads
and input power transients.

• Data bus and other resource
contention problems, for example,
memory mapping.

• Inability of built-in test to detect
failures.

• Errors in hardware/software

Parasoft’s data source GUI helps you
parameterize test cases and stubs—
enabling increased test scope and
coverage with minimal effort. Stub analysis
and generation is facilitated by the Stub
View, which presents all functions used in
the code and allows users to create stubs
for any functions not available in the test
scope—or to alter existing functions for
specific test purposes.

The advanced interprocedural static
analysis module simulates feasible
application execution paths and
determines whether these paths could
trigger specific categories of runtime bugs.
Defects detected include:

• Using uninitialized or invalid
memory

	

interfaces.

• Incorrect behavior of feedback
loops.

• Incorrect control of memory
 management hardware or other
hardware devices under software
control.

• Stack overflow.

• Incorrect operation of
mechanism(s) used to confirm the
correctness and compatibility of
field-loadable software.

• Violations of software partitioning.

Requirements-Based Software Integration
Testing: Typical errors revealed by this
testing method include:

• Incorrect initialization of variables
and constants.

• Parameter passing errors.

• Data corruption, especially global
 data.

• Inadequate end-to-end numerical
 resolution.

• Incorrect sequencing of events and
 operations.

Requirements-Based Low-Level Testing:
Typical errors revealed by this testing
method include:

• Failure of an algorithm to satisfy a
software requirement.

• Incorrect loop operations.

• Incorrect logic decisions.

• Failure to process correctly
legitimate combinations of input
conditions.

• Null pointer dereferencing

• Array and buffer overflows

• Division by zero

• Memory and resource leaks

• Dead code

Insure++, Parasoft's runtime analysis and
memory error detection add-on module,
checks all types of memory references,
including those to static (global), stack,
and shared memory. Source
instrumentation detects provides complete
information indicating the root causes of
the errors found. Errors detected include:

• Corrupted heap and stack memory

• Use of uninitialized variables and
 objects

• Array and string bounds errors on
 heap and stack

• Use of dangling, NULL, and
uninitialized pointers

• All types of memory allocation and
 free errors or mismatches

• All types of memory leaks

• Type mismatches in global
 declarations, pointers, and function
 calls

• Some varieties of dead code
 (compile-time)

	

• Incorrect responses to missing or
 corrupted input data.

• Incorrect handling of exceptions,
 such as arithmetic faults or
violations of array limits.

• Incorrect computation sequence.

• Inadequate algorithm precision,
 accuracy or performance.

6.4.4.2: Structural Coverage Analysis

Method Parasoft approach

Structural Coverage Analysis:

The objective of this analysis is to
determine which code structure was not
exercised by the requirements-based test
procedures. The requirements-based test
cases may not have completely exercised
the code structure, so structural coverage
analysis is performed and additional
verification produced to provide structural
coverage. Guidance includes:

• The analysis should confirm the
degree of structural coverage
appropriate to the software level.

• The structural coverage analysis
may be performed on the Source
Code unless the software level is A
and the compiler generates object
code that is not directly traceable to
Source Code statements. Then,
additional verification should be
performed on the object code to
establish the correctness of such
generated code sequences. A
compiler generated array-bound
check in the object code is an

A multi-metric test coverage analyzer,
including statement, branch, path, and
MC/DC coverage, helps users gauge the
efficacy and completeness of the tests, as
well as demonstrate compliance with test
and validation requirements.

Back tracing from coverage elements to
the corresponding test cases enables
users to analyze test results and extend
the test cases for better coverage, with
higher efficiency.

All test results can be exported for
compliance purposes.

	

example of object code that is not
directly traceable to the Source
Code.

• The analysis should confirm the
data coupling and control coupling
between the code components.

6.4.4.3: Structural Coverage Analysis Resolution

Method Parasoft approach

Structural Coverage Analysis Resolution:

Structural coverage analysis may reveal
code structure that was not exercised
during testing. Resolution would require
additional software verification process
activity. This unexecuted code structure
may be the result of:

• Shortcomings in requirements-
based test cases or procedures:
The test cases should be
supplemented or test procedures
changed to provide the missing
coverage. The method(s) used to
perform the requirements- based
coverage analysis may need to be
reviewed.

• Inadequacies in software
requirements: The software
requirements should be modified
and additional test cases
developed and test procedures
executed.

• Dead code: The code should be
removed and an analysis
performed to assess the effect and
the need for re-verification.

• Deactivated code: For deactivated

Parasoft can automatically analyze code
and generate a unit-level test suite that
achieves high coverage. Parasoft Test
also provides technologies to help you
increase the test coverage:

• Simple test case extensions.

• Flexible stubs framework makes
 tests more realistic.

• Data-driven testing with different
 sets of data (automatically-
generated or from a data source).

A Data Source Wizard helps parameterize
test cases and stubs—enabling increased
test scope and coverage with minimal
effort. Stub analysis and generation is
facilitated by the Stub View, which
presents all functions used in the code and
allows users to create stubs for any
functions not available in the test scope—
or to alter existing functions for specific
test purposes.

The advanced interprocedural static
analysis module simulates feasible
application execution paths and
determines whether these paths could
trigger specific categories of runtime bugs.

	

code, which is not intended to be
executed in any configuration used
within an aircraft or engine, a
combination of analysis and testing
should show that the means by
which such code could be
inadvertently executed are
prevented, isolated, or eliminated.
For deactivated code, which is only
executed in certain configurations
of the target computer
environment, the operational
configuration needed for normal
execution of this code should be
established and additional test
cases and test procedures
developed to satisfy the required
coverage objectives.

Defects detected include:

• Using uninitialized or invalid
memory

• Null pointer dereferencing

• Array and buffer overflows

• Division by zero

• Memory and resource leaks

• Dead code

12.2: Tool Qualification

Method Parasoft approach

Qualification of a tool is needed when
processes of this document are eliminated,
reduced or automated by the use of a
software tool without its output being
verified as specified in section 6. The use
of software tools to automate activities of
the software life cycle processes can help
satisfy system safety objectives insofar as
they can enforce conformance with
software development standards and use
automatic checks.

Only deterministic tools may be qualified,
that is, tools which produce the same
output for the same input data when
operating in the same environment. The
tool qualification process may be applied
either to a single tool or to a collection of

Qualifying Parasoft Development Testing
Platform quality tools involves running
static analysis, flow analysis, unit tests,
and any other testing activity used in your
development process on "dummy" code.
Parasoft will consistently, accurately and
objectively report errors, which ensures
that the tool functions properly.

	

tools.

The software verification process
objectives for software development tools
are described in paragraph 12.2.1, item
d. A tool may be qualified only for use on a
specific system where the intention to use
the tool is stated in the Plan for Software
Aspects of Certification. Use of the tool for
other systems may need further
qualification.

Summary
Developing DO-178B/C-compliant software for airborne systems is no easy feat. But
Parasoft helps ease the burden by offering a broad range of development testing and
verification tools, including coding standards compliance analysis, data and control flow
analysis, unit testing, application monitoring, workflow components, and automated peer
code review. When paired with a policy-driven development approach that bridges that
gap between development activities and business processes, Parasoft DTP becomes a
powerful tool for enforcing compliance with DO-178B/C and other standards.

Development teams can also generate configurable test reports that contain a high level
of detail, which helps facilitate the traceability requirements for the software verification
process. The testing functions, configurable contexts and reporting mechanisms in
Parasoft DTP arm software development teams with proven tools that help them achieve
DO-178B/C compliance.

About Parasoft
Parasoft researches and develops software solutions that help organizations deliver
defect-free software efficiently. By integrating development testing, API testing, and
service virtualization, we reduce the time, effort, and cost of delivering secure, reliable,
and compliant software. Parasoft's enterprise and embedded development solutions are
the industry's most comprehensive—including static analysis, unit testing, requirements
traceability, coverage analysis, functional and load testing, dev/test environment
management, and more. The majority of Fortune 500 companies rely on Parasoft in
order to produce top-quality software consistently and efficiently as they pursue agile,
lean, DevOps, compliance, and safety-critical development initiatives.

Contacting Parasoft

	

USA
101 E. Huntington Drive, 2nd Floor Monrovia, CA 91016 Toll Free: (888) 305-0041 Tel:
(626) 305-0041
Fax: (626) 305-3036 Email: info@parasoft.com URL: www.parasoft.com

Europe
France: Tel: +33 (1) 64 89 26 00 UK: Tel: + 44 (0)208 263 6005 Germany: Tel: +49 731
880309-0 Email: info-europe@parasoft.com

Other Locations
See http://www.parasoft.com/contacts

About the Authors
Adam Trujillo, Technical Writer, Parasoft
Cynthia Dunlop, Leach Technical Writer,
 	

