

End to End Process Testing & Validation:
A real-world example for managing the quality of

integrated business systems

1

Testing and validating today's heterogeneous and distributed systems is challenging. Such
systems are complex, pinpointing the cause of their errors is difficult, and creating a test
environment that enables end-to-end system testing can be tedious and costly.

This paper discusses various test and validation techniques that can be used to identify and
diagnose problems in a sample business system that comprises multiple components. The
sample system architecture and test requirement are based on those that Parasoft has
encountered while working with a broad customer base across various industries.

To show how easily the recommended techniques can be automated, we demonstrate how to
apply them with Parasoft products. Specifically, we show how to configure repeatable tests that
can execute and validate the system at different points of a transaction, as well as how to
emulate (or “virtualize”) unavailable/inaccessible system components to enable validation of the
pieces that we are interested in. The introduced practices can significantly expedite error
diagnosis as well as reduce the time and resources required to create reusable and repeatable
regression tests.

Introducing the Scenario
Assume that our organization is responsible for the
“Parabank” online banking system, which allows
customers to open new accounts and transfer money
between accounts. The system can be accessed from
the web using a browser, as well as from other systems
that connect to ATM terminals, mobile applications, or
other sources.

We’ll refer to this system as OBA (for Online Banking
Application).

System Architecture

OBA is hosted on a JBoss application server and communicates with an accounts system over
TIBCO EMS. The TIBCO bus brokers customer transactions between the online banking
application and a mainframe backend where account data is managed. Transactions include
transfer requests, deposits, withdrawals, etc. The broker middleware provides performance and
reliability between the two tiers; it also facilitates ESB transactions.

Although this example uses TIBCO, the same concepts and solutions we explore in this paper
apply to WebSphere, Sonic, WebMethods or any other Message-Oriented Middleware or ESB
platform.

The mainframe backend connects with an Oracle database that maintains customer account
data. OBA also includes a web services SOAP interface for consumption by other applications
that are external to this system (for example, the bank’s ATM network, an iPhone app, branch
terminals, and so on). Although such a web service interface may not be incorporated into the
same OBA application in most real banks, we will make this assumption here in order to keep our
example at a reasonable level of complexity.

2

Such multi-tier integrated systems are very common in enterprises today, and are typically far
more complex than this example. Nevertheless, this example should help illustrate the challenges
of creating a test environment that enables the various components to be tested and validated in
the context of realistic use case scenarios.

Use Case Scenario

Now, let’s explore a sample use case scenario for OBA. Assume that we have the following use
case:

 Deposit $500 over the OBA web services SOAP interface (assuming this was initiated by
an ATM or some other remote application).

 Log in from the web browser and verify that the web page shows the updated balance.

 Log out.

From a testing perspective, such a simple use case scenario often translates to more elaborate
test requirements with many steps; for example:

 Run a reset script to set the database to the initial state.

 Verify account content using a database console tool.

 Use a browser HTTP POST tool to:

o Paste the transfer SOAP XML template.

o Edit it to reflect the desired amount ($500 dollars).

o Transmit it.

3

 Log in from the web browser and verify the new account balance.

 Log out.

 (If the scenario failed) Verify the application server log file as follows:

o Open an FTP window to the OBA server.

o Fetch the activity log file.

o Verify the new transaction entry.

 (If the scenario failed) Verify the deposit message on the bus as follows:

o Log in to the ESB server.

o Find the message in the message browser.

Challenges

Such steps can place a significant burden on QA engineers because:

 A diverse set of tools and methods would be required to validate system functionality at
the various points.

 It is quite time-consuming to do it all repeatedly, so a compromise would need to be
reached between the frequency of performing such regression tests and the time and
resources required to execute them.

 It is difficult to scale: only a few such scenarios can be tested in that fashion. This can
pose a quality risk with consequences on security, reliability, and compliance.

Orchestrating Test and Validation
One way to orchestrate these various test and validation activities over multiple interfaces and
protocols is to leverage Parasoft SOAtest, a full-lifecycle quality platform for ensuring secure,
reliable, and compliant business processes. This paper will use Parasoft SOAtest to demonstrate
how to automate key strategies. For a more general discussion of SOAtest, see
http://www.parasoft.com/soatest.

Database Initialization

Using SOAtest’s DB tool, we define a set-up test that will automatically execute a series of
queries and put the database into a state that is suitable for starting the transaction. This includes
restoring the account balance to a certain value.

http://www.parasoft.com/soatest

4

Deposit Transaction

Next, we use the SOAP Client tool to deposit $500. Parasoft SOAtest creates tests automatically
from a WSDL, traffic logs, SOA registries, or other sources. It then visualizes the request
parameters in an XML tree that allows for visual configuration.

To configure this deposit, we just need to specify the appropriate account number and dollar
amount as shown below:

5

Account Balance Verification

Next, we want to verify that the deposit was posted to the account properly. We could use a web
browser to manually log in and check on the balance. However, we want to make this a
repeatable, automated step. Thus, we decide to have SOAtest record the browser actions, then
replay them as needed during the end-to-end deposit test suite scenario. Once the recording is
completed, we copy the log in scenario to the test suite scenario so it can be incorporated into
the full transaction.

Diagnosing the Problem
Assume that the account balance did not get updated as expected and it did not reflect the new
balance after the deposit. How can we determine what caused this problem?

Application Log Validation

We know that when OBA processes a deposit request, it logs a “Message sent” entry to indicate
that a JMS message was produced by OBA and sent to the accounts backend. We could log in to
the server machine and check the log. However, we prefer to have a process that we can easily
repeat in the future (as with the account balance verification discussed previously). As a result,
we decide to automate it.

We automate this process using Parasoft SOAtest’s FTP tool, which can be used to fetch files or
execute commands over SFTP/FTP. Alternatively, we could use SOAtest’s Extension tool with
customized code to bring the log file contents from the server machine or other sources. After the
FTP tool is added, we attach a Search tool to its output and configure it to search the log contents
for the “Message sent” string. The presence of this string indicates that the application has
posted a deposit message to the backend over JMS.

6

After we rerun the scenario, we notice that the “Message sent” entry is logged as expected—
even though no account balance update is visible in the OBA web UI. In this case, our next
logical step is to verify whether OBA really posted a JMS message on the TIBCO bus for
consumption by the accounts mainframe backend.

Monitoring Transaction Messages on the Bus

One way to verify if OBA is properly posting a deposit transaction on the bus is to use SOAtest’s
Event Monitor to trace the messages that pass through TIBCO EMS. To do this, we add an Event
Monitor tool to the test suite, select the TIBCO option, and add the needed messaging provider
jars to the SOAtest system properties classpath.

When we run the scenario with the Event Monitor monitoring the TIBCO queue, we notice that no
JMS message is being posted on the queue. The SOAtest Event Monitor clearly shows the
deposit test executing and completing execution, but no JMS message event occurred.

7

Monitoring the Application at the Code Level

Now that we know no deposit message occurred, what do we do next?

There is obviously a problem in the application: it is not posting the messages, and the logs are
not indicating any problems. To gain more visibility into the problem, we can monitor the
application at the code level and check if the code for sending the JMS messages is being
invoked properly at runtime.

The first step in configuring such monitoring is to modify the application’s startup script to include
the Parasoft Java monitoring jars. There is no need to change code or rebuild, but an extra
command line argument needs to be provided. The Parasoft Java runtime monitoring system
then connects with the JVM instrumentation API to trace various code execution events and
return them from the server to the SOAtest instance running on the tester’s desktop. Essentially,
the goal is that whenever the test scenario executes, we will also be able to see what application
methods are being invoked—both remotely and directly from within SOAtest.

This runtime event monitoring with Java execution traces can serve as a valuable tool for
identifying problems and their causes. Although developers can sometimes debug applications
from their desktops (where code sources are available using an IDE such as Eclipse), this is
often difficult when applications are deployed in a different environment and running under a
configuration that is different from the development environment. Moreover, QA engineers
commonly lack such access altogether.

8

To configure OBA for this monitoring, we add the following lines to our server startup script:

set MONITOR= [Parasoft Java monitoring jar location]

set PARASOFT_AGENT_OPTS=-

javaagent:"%MONITOR%\MONITOR.jar=soatest,port=5091",instrument=com.parabank.transaction:co

m.parabank.customer,trace=com.parabank.transaction.TransactionBean:com.parabank.transactio

n.AccountMessageQueue:com.parabank.customer

set PARASOFT_BOOTCLASSPATH_OPTS=-Xbootclasspath/a:"%MONITOR%\MONITOR.jar"

REM and then the Java startup command to use these variables:

"%JAVA%" %PARASOFT_AGENT_OPTS% %PARASOFT_BOOTCLASSPATH_OPTS% %JAVA_OPTS% "-

Djava.endorsed.dirs=%JBOSS_ENDORSED_DIRS%" -classpath "%JBOSS_CLASSPATH%" org.jboss.Main

%*

Note that although this example uses a JBoss server, the same general configuration strategy
applies to WebLogic, WebSphere, and other popular application servers.

The server is then started as usual, but it is ready to be monitored during the scenario execution.
To configure monitoring for the scenario, we add another Event Monitor tool to the test suite; this
time, we select the “Instrumented Java Application” option (rather than the TIBCO option that we
used for the previous Event Monitor tool).

We run the scenario and notice the various Java method invocation events that occur within the
designated classes/packages during scenario execution.

9

These execution trace details include the parameter values that are passed to the various
methods as well as the return values. Such details are helpful for identifying the cause (or at least
the location) of the problem in the code. This way, even if a QA engineer does not have direct
knowledge about the code and how it is designed, the relevant classes and method calls can still
be identified. These classes can then be traced with Parasoft Jtest Tracer to produce JUnit tests
that help the development team rapidly reproduce the problem within the development
environment.

Generating Tests that Help Development Reproduce the Issue

The first step in using Jtest Tracer’s JUnit test generation technology is to configure the server to
run with the Tracer library. Again, there is no need to change code or rebuild, but additional
arguments need to be added to the server JVM startup. Here, we use the following:

-agentlib:pmt=monitor=transaction.*,nostart,port=1234

10

What the QA Engineer Does

Next, the QA Engineer adds the “Jtest Tracer Client” to the SOAtest Parabank scenario as
follows:

Then, the scenario is run as usual. This will produce a “trace.out” file at the specified location.
This file is then given to developers.

What the Developer Does

The developer can then take that trace.out file and use it to generate JUnit tests within the IDE.
This will produce one or more JUnit tests that can replay the events at the Java code level—with
external code dependencies (such as JDBC calls, JMS connection calls, and so on) stubbed out.
This enables the developer to automatically emulate the behavior of the real assets within the QA
environment where the problem is occurring.

11

Notice how the testDeposit1() method was automatically generated to invoke the method with the
same values that were traced during execution within the QA environment. Also note that the
environment context around the class is emulated and stubbed out during the JUnit test
execution; this allows the developers to reproduce and analyze the problem without worrying
about the database, TIBCO bus, or other dependencies—dependencies that would make the
diagnosis and resolution much more complicated.

Re-executing the Scenario after Development Resolves the Problem

Once the problem has been identified and fixed at the code level, we enable the TIBCO bus
Event Monitor again and run the scenario to verify that a JMS message is posted by OBA. The
following screenshot shows that SOAtest now detects the JMS message on the TIBCO bus:

12

When we double-click the message in the event viewer, it displays event details—including the
message contents.

Creating a Regression Test
A key element in any testing strategy is the ability to capture system behavior in a series of
repeatable tests that can be executed on a regular basis in order to ensure that the desired
behavior does not regress (change) from the pre-established specifications. Now that we have a
working end-to-end scenario for a deposit use case—including validation at the web interface
level, server logs, code execution, and JMS messaging layer—various success assertions can be
defined at each of these layers. Such assertions ensure that whenever this test is executed in the
future, it will validate all these points in the system and alert us to regressions from the desired
behavior.

13

Configuring Validations

Building upon our working scenario, we can configure success criteria on the various scenario
steps so the verification is automated. For example, an assertion can be defined on the deposit
SOAP response message to validate that the value begins with the “Successfully deposited”
string.

Another validation point can be added to the output of the Event Monitor; this way, the test will fail
if no message is detected on the TIBCO bus during the scenario execution.

Backend System Availability During Testing

For our sample scenario, we assumed that the backend accounts system would be available for
testing. However, it is common that dependent systems are not accessible or available during
development and testing—especially when they are managed by other teams, deployed at
different geographical locations, or built on a legacy mainframe platform. To address this
problem, we can configure a "virtual asset" that will act like the backend system and consume the
messages that are produced by OBA.

14

Virtualizing Application Behavior
In order to make our regression scenario runnable in a test environment that does not include the
backend mainframe system, messages posted by the OBA need to be captured and verified as if
the original system was actually available. In other words, we need to emulate or virtualize the
interaction with the backend mainframe system to remove this dependency.

There are a few different ways that we can configure such emulation. One approach is to add a
new test suite scenario step that would consume the JMS message and take it off of the TIBCO
queue, just like the actual backend would.

A more flexible and sophisticated emulation could be achieved with service virtualization, which is
available with Parasoft Virtualize. Service virtualization provides QA and development teams
access to dependent system components that are needed to exercise an application under test
(AUT), but are unavailable or difficult-to-access for development and testing purposes. With the
behavior of the dependent components "virtualized," testing and development can proceed
without accessing the actual live components.

Using service virtualization, you emulate the interactions between the application under test and
the dependent applications (here, the backend mainframe system). This behavior is captured as
flexible "virtual assets," which can then be customized to suit any specialized testing needs (in

15

terms of data sources, performance profiles, responses, etc.) and provisioned for ubiquitous
access.

At this point, you can sever the ties with the actual dependent applications and test freely against
the virtual assets, which you can configure and access however and whenever you want.

How is service virtualization different than stubbing? Virtual assets are simple to create,
represent a broad range of realistic behavior, and are easy to update as the components evolve.
While stubs are created from the perspective of the test suite in order to "skip" unavailable
system components, virtual assets are constructed to make the behavior of constrained
components available to the entire team.

To learn more about service virtualization and Parasoft Virtualize, visit
http://www.parasoft.com/virtualize.

Conclusion
This paper demonstrated how you can apply multiple test and validation techniques to automate
end-to-end test and validation for a sample use case. We covered how:

 Automated validations at multiple levels—here, at the web interface, server log, code
execution, and JMS messaging layer—can be used in concert to expose and explore
functional defects.

 Event monitoring can be used to visualize and trace the intra-process events triggered by
tests, facilitating rapid diagnosis of problems directly from the test environment.

 Test case “tracing” from a running application allows you to quickly and easily create test
cases that will help development reproduce and resolve the defects that you discover.

 Extending the functional test suite with strategic assertions establishes a regression test
suite that, when run regularly, will immediately alert you if system modifications impact
the validated functionality.

 Applying service virtualization bridges gaps in the test environment.

These techniques can all be applied through Parasoft SOAtest and Parasoft Virtualize to enable
fully-automated continuous validation from a single solution, directly from the test environment—
even if parts of the system are incomplete, evolving, unstable, inaccessible, or otherwise
unavailable for testing. This allows you to perform more comprehensive testing with your existing
resources—ultimately, helping your team to deliver and evolve more secure, reliable, and
compliant applications on time and on budget.

About SOAtest
Parasoft SOAtest helps QA teams ensure secure, reliable, compliant business applications with
an intuitive interface to create, maintain and execute end-to-end testing scenarios. It was built
from the ground up to reduce the complexities inherent in complex, distributed applications.

http://www.parasoft.com/virtualize

16

Since 2002, Parasoft customers such as HP, IBM, Fidelity, Lockheed Martin, and the IRS have
relied on SOAtest for:

 Ensuring the reliability, security, and compliance of API and composite applications

 Reducing the time and effort required to construct and maintain automated tests

 Automatically and continuously validating complex business scenarios

 Facilitating testing in incomplete and/or evolving environments

 Validating performance and functionality expectations under load

 Rapidly diagnosing problems directly from the test environment

About Virtualize
Parasoft Virtualize helps development and QA teams create and access any environment
needed to develop or test an application. It complements traditional hardware/server virtualization
& dramatically reduces the costs associated with configuring & managing test environments.
Since it's not feasible to leverage hardware virtualization for every dependent application (e.g.,
databases, mainframes, 3rd-party systems), service virtualization fills the gap by providing
access to their behavior.

Parasoft Virtualize helps development and QA teams:

 Streamline test environment provisioning time and costs beyond traditional virtualization

 Test against constrained dependent resources without scheduling hassles

 Test early and extensively—without access and transaction fees

 Test vs. a broad array of functional & performance conditions—with minimal setup

 Get the exact test environment they need, on demand

About Parasoft
Parasoft researches and develops software solutions that help organizations deliver defect-free
software efficiently. By integrating Service Virtualization, Development Testing, and API testing,
we reduce the time, effort, and cost of delivering secure, reliable, and compliant software.
Parasoft's enterprise and embedded development solutions are the industry's most
comprehensive—including static analysis, unit testing, requirements traceability, coverage
analysis, functional & load testing, dev/test environment management, and more. The majority of
Fortune 500 companies rely on Parasoft in order to produce top-quality software consistently and
efficiently as they pursue agile, lean, DevOps, compliance, and safety-critical development
initiatives.

17

Contacting Parasoft

USA Phone: (888) 305-0041 Email: info@parasoft.com

NORDICS Phone: +31-70-3922000 Email: info@parasoft.nl

GERMANY Phone: +49 731 880309-0 Email: info-de@parasoft.com

POLAND Phone: +48 12 290 91 01 Email: info-pl@parasoft.com

UK Phone: +44 (0)208 263 6005 Email: sales@parasoft-uk.com

FRANCE Phone: (33 1) 64 89 26 00 Email: sales@parasoft-fr.com

ITALY Phone: (+39) 06 96 03 86 74 Email: c.soulat@parasoft-fr.com

OTHER See http://www.parasoft.com/contacts

© 2014 Parasoft Corporation
All rights reserved. Parasoft and all Parasoft products and services listed within are trademarks or registered trademarks of Parasoft Corporation. All other
products, services, and companies are trademarks, registered trademarks, or servicemarks of their respective holders in the US and/or other countries.

http://www.parasoft.com/contacts

	Introducing the Scenario
	System Architecture
	Use Case Scenario
	Challenges

	Orchestrating Test and Validation
	Database Initialization
	Deposit Transaction
	Account Balance Verification

	Diagnosing the Problem
	Application Log Validation
	Monitoring Transaction Messages on the Bus
	Monitoring the Application at the Code Level
	Generating Tests that Help Development Reproduce the Issue
	What the QA Engineer Does
	What the Developer Does

	Re-executing the Scenario after Development Resolves the Problem

	Creating a Regression Test
	Configuring Validations
	Backend System Availability During Testing

	Virtualizing Application Behavior
	Conclusion
	About SOAtest
	About Virtualize
	About Parasoft
	Contacting Parasoft

