

 Medical Device Software Development Management:
Following FDA Guidelines for Software Validation

1

On June 7, 1997, the FDA issued the General Principles of Software Validation, which outlines validation
principles that the FDA considers applicable to the validation of medical device software or the validation
of software used to design, develop, or manufacture medical devices. Devices categorized as class II and
III, as well as some class I devices are subject to design controls; of these class the following types of
software must be validated for FDA approval:

 Software used as a component, part, or accessory of a medical device;

 Software that is itself a medical device (e.g., blood establishment software);

 Software used in the production of a device (e.g., programmable logic controllers in
manufacturing equipment); and

 Software used in implementation of the device manufacturer's quality system (e.g., software that
records and maintains the device history record).

As an effective means to gain approval, the FDA recommends that medical device software development
teams take a software development lifecycle (SDLC) approach that integrates risk management
strategies with principles for software validation. An integrated SDLC merges validation and verification
activities, including defect prevention practices such as unit testing, peer code reviews, static analysis,
manual testing, and regression testing, throughout the SDLC. The result of such an approach is an
emphasis on planning, verification, testing, traceability, and configuration management.

Developing software for medical devices that complies with the FDA's Quality System regulation is a
challenging endeavor that's as much a business issue as it is an engineering feat. In this paper, we
identify software development challenges that medical device makers face when attempting to integrate
the principles outlined by the FDA. Furthermore, we describe how Parasoft's automated defect prevention
solutions help organizations overcome the challenges of an integrated SDLC approach. Lastly, we
provide a point-to-point index of FDA principles and the Parasoft capabilities that support them.

Burdens of the Least Burdensome Approach
The FDA guidance does not prescribe specific practices, tools, coding methods or any other technical
activity. The FDA, instead, prescribes the seemingly innocuous concept of the Least Burdensome
Approach. In this approach, organizations determine, and strictly adhere to their self-defined validation
and verification processes. Development activities and outcomes must be clearly defined, documented,
verified, and validated against the organization's process.

The goal of this approach is to give medical device makers enough rope to determine how to best ensure
public safety. But in practice, the effect has been that organizations have enough rope to hang
themselves. This is because the requirements, expressed in FDA 21 CFR, represent extensive planning
and testing, which require validation. The following examples are just a fraction of the total challenges
software engineers must overcome:

 The software validation process cannot be completed without an established software
requirements specification, which specifies the intended use. Results must not only verify that the
specifications are met, but they must be reproduced consistently (validation). Testing methods,
such as regression testing, can be implemented to meet the requirement.

 Validation must be established and re-established for even small changes. This means that
validation activities, including static analysis, unit testing, code review, etc., must be repeated if
the code has changed. Furthermore, as software continues to become more and more complex,
tests that validate the changes should be conducted in scale with the application to ensure that
no other part of the system is affected.

http://www.fda.gov/RegulatoryInformation/Guidances/ucm126954.htm

2

 Changes to the requirements deemed significantly different enough from the originally registered
design may require the product to be re-registered per FDA Section 501(K).

 There are no "FDA certified" tools or methods. No person, organization or tool can claim any form
of some supposed FDA certification. However, any software used to automate any part of the
device process or any part of the quality system must also be validated. You must be able to run
any tools used to assist in the verification and validation efforts on a control code base and
confirm that the results are consistent, which may affect your time-to-market.

The FDA has established grounds for approval in a way that effectively amounts to punting the
responsibility of ensuring quality and public safety back to the device makers. The true obstacles
hampering software development, though, are the breakpoints between what the software engineers
believe to be the goals of their development efforts and the business expectations, which are rarely
communicated in a way that serves all parts of the organization.

Lack of Software Development Policy
The current software development process in most organizations is modeled on a culture that fails to
bridge the gap between business goals and the development process. Software engineers either don't
know what's expected or do not understand the business objective behind the guidelines driving their
products. They are expected to write code that meets the requirements, but they are not necessarily
required to understand why requirements have been established in the first place.

We believe that overcoming the business goals and software development gap, as well as driving the
development process on a platform based on policy-driven development is the best way to satisfy the
FDA's requirements for medical device software development. Policy-driven development involves 1)
clearly defining expectations and documenting them in understandable polices, 2) training the engineers
on the business objectives driving those policies, and 3) monitoring policy adherence in an automated,
unobtrusive way. Integrating these principles into the development process gives businesses the ability to
accurately and objectively measure productivity and application quality. The result is lower cost over the
total software development lifecycle from build to support and reduced risk.

Adopting a policy-driven development process is key for achieving the following goals:

 Ensuring that engineers don’t make tradeoffs that potentially compromise reliability and
performance.

 Ensuring that engineers build security into the application, safeguarding it from potential attacks.

 Preventing defects that could result in costly recalls, litigation, or a damaged market position.

 Accurately and consistently applying quality processes.

 Gaining the traceability and auditability required to ensure continued policy compliance.

Software engineers make business decisions with every line of code, every test conducted (or not
conducted), and every guideline or standard followed (or not followed). With public safety, potential
litigation, market position and other consequences on the line, it behooves software development teams
and people in the traditional business management positions to come together on policy and implement
the strategy into their software development lifecycle. Visit www.parasoft.com for more information about
policy-driven development.

Parasoft Support for FDA Principles of Software Validation

Parasoft supports the FDA’s vision of an integrated SDLC for C, C++, Java, and .NET with Parasoft
Concerto for Medical Device Software Development, a software development management platform that
is pre-configured with processes and best practices described in FDA guidelines and medical device
industry standards.

http://www.parasoft.com/

3

Parasoft's software development management platform enables organizations to integrate project and
task management with Automated Defect Prevention and end-to-end software verification and validation.
Leveraging policy-driven development, it creates an environment that drives productivity and software
quality.

Parasoft solutions for medical device software development features:

 Configurable templates for FDA, IEC 62304, IEC, SIL and more

 Process, project, and task management

 Comprehensive requirements traceability

 Integrated defect prevention, validation and verification

 A continuous policy-driven compliance process with real-time visibility

 Correlation of all key artifacts, from tests, to requirements, to code, to builds, to project tasks

Parasoft has over 25 years of experience helping the majority of the Fortune 500 companies incorporate
these practices throughout the SDLC and knows what it takes to rapidly establish an integrated quality
process for medical device development, as well as ensure that the process is repeatable and
sustainable. Parasoft is the industry leader in defect prevention—in fact, we wrote the book on it
(Automated Defect Prevention, Wiley-IEEE, 2007).

Background: The General Principles of Software Validation
Sections 1, 2, and 3 set the “purpose,” “scope,” and “context” for software validation for medical device
software. Since these sections focus on identifying terms rather than outlining expectations, we will use
Section 4 (Principles of Software Validation) and Section 5 (Activities and Tasks) to highlight how
Parasoft delivers end-to-end solutions for the medical device software industry.

Software testing is one of many verification activities intended to confirm that software development
output meets its input requirements. However, quality software cannot be delivered by testing alone.
Quality software is delivered consistently via a solid, repeatable process, which requires an integrated
system that assists with defining requirements, ensuring good coding practices, and testing effectively.
This process needs to be visible, measurable, and—most importantly—repeatable.

Parasoft brings all these elements together. It supports:

 SDLC Integration and Process
Definition

 Quality Policy Management
 Requirements Management
 Iteration / Release Planning
 Task Management
 Static Code Analysis

 Pattern-Based
 Flow-Based
 Metrics-Based

 Automated Code Review
 Unit Testing Framework

 Code Coverage Analysis
 Runtime Error Detection
 Memory Error Detection
 Message/Protocol Testing
 Penetration Testing
 Service Virtualization
 Functional Testing
 Business Process Testing
 Load Testing
 Process Visibility & Control
 Traceability

4

FDA Principle Parasoft Support

4.1 Requirements
A documented software requirements specification
provides a baseline for both validation and verification.

The software validation process cannot be completed
without an established software requirements
specification.

 A system for mapping requirements to development tasks
and monitoring the implementation and validation of each
requirement.

 An open API and out-of-the-box configurations for the most
popular resource management and bug management
systems and tools like Excel, Word and MS Project.

 Requirements testing--highlights which requirements need
to be tested.

 Requirements traceability correlates requirements to
iterations, tasks, code, tests, builds, and artifacts.

 Graphical reporting of requirement status as indicated by
developers.

4.2 Defect Prevention
Software quality assurance needs to focus on preventing
the introduction of defects into the software development
process rather than trying to "test quality into" the
software code after it is written.

Software testing is limited in its ability to surface all latent
defects in code.

Software testing by itself is not sufficient to establish
confidence that the software is fit for its intended use.

 The industry's most comprehensive automated defect
prevention system.

 A proven automated defect prevention system that can be
implemented into any software development environment

 Technologies that automate defect prevention practices to
ensure their consistent and comprehensive application.

 An automated infrastructure that drives the defect
prevention process to ensure that it remains on track and
does not disrupt the team’s workflow.

 A system that monitors adherence to defect prevention
policies.

 Capabilities include:

o Quality Policy Management
o Static Code Analysis

 Pattern-Based
 Flow-Based
 Metrics-Based

o Automated Peer Code Review
o Contextual Peer Code Review
o Unit Testing Framework
o Code Coverage Analysis

5

FDA Principle Parasoft Support

4.3 Time and Effort
Preparation of software validation should begin early;
i.e., during design and development planning and design
input.

 Preconfigured FDA templates.

 A central system that documents and defines
requirements, expected tasks, timelines and outcomes—as
well as manages by exception to ensure that the project is
meeting expectations.

 A continuous, end-to-end quality process that ensures
defect prevention and detection tasks are not only
deployed across every stage of the SDLC, but also
ingrained into the team’s workflow.

 A system that answers in real-time:

o Will I be on time?

o Will I be on budget?

o Will I have the expected functionality?

o Will it work?

4.4 Software Life Cycle
Software validation takes place within the environment of
an established software life cycle.

The software life cycle contains software engineering
tasks and documentation necessary to support the
software validation effort.

In addition, the software life cycle contains specific
verification and validation tasks that are appropriate for
the intended use of the software.

 Software development management platform integrates
SDLC into the broader development infrastructure; flexible
process/workflow definition tool that allows for a visible and
repeatable SDLC.

 Process-based implementation drives manual and
automated validation tasks across the SDLC, ensuring
consistency and traceability.

 Services that integrate and automate the SDLC to ensure
that quality software can be produced consistently and
efficiently.

 Services that improve development productivity and form
the foundation for a repeatable, sustainable quality
process.

4.5. Plans
The software validation process is defined and controlled
through the use of a plan. The software validation plan
defines "what" is to be accomplished through the
software validation effort.

Software validation plans are a significant quality system
tool. Software validation plans specify areas such as
scope, approach, resources, schedules and the types
and extent of activities, tasks, and work items.

 Plans are expressed as customizable templates that define
common software development and validation plans.

 A system for mapping quality plan requirements to
development tasks and monitoring the implementation and
validation of each requirement.

 Services that ensure the validation plan is clearly defined
and enforceable.

 Centralized definition and management of organization-
level and team-level policies for implementing the
validation plan.

6

FDA Principle Parasoft Support

4.6 Procedures
The software validation process is executed through the
use of procedures. These procedures establish "how" to
conduct the software validation effort.

The procedures should identify the specific actions or
sequence of actions that must be taken to complete
individual validation activities, tasks, and work items.

 Policy defines procedures and the Parasoft software
development management system automatically
orchestrates the all tasks in the appropriate sequence with
complete traceability. In this way, checklist items are
converted into an executable process.

 Automated application of quality policies across the SDLC.

 Monitorable quality gates and thresholds throughout the
SDLC.

 Workflow optimization to ensure that tasks to support
quality policies can become a sustainable part of the
team's existing workflow.

 Preconfigured FDA templates.

4.7 Software Validation after a Change
Due to the complexity of software, a seemingly small
local change may have a significant global system
impact.

Whenever software is changed, a validation analysis
should be conducted not just for validation of the
individual change, but also to determine the extent and
impact of that change on the entire software system.

 Continuous regression testing, which applies a broad
range of validation methods to immediately alert the team
when modifications impact application behavior.

 Change-based testing, which helps teams identify and
execute only the test cases directly related to the most
recent source code modifications.

 Requirements traceability correlates requirements to
iterations, tasks, code, tests, builds, and artifacts.

4.8 Validation Coverage
Validation coverage should be based on the software's
complexity and safety risk - not on firm size or resource
constraints. The selection of validation activities, tasks,
and work items should be commensurate with the
complexity of the software design and the risk
associated with the use of the software for the specified
intended use.

Validation documentation should be sufficient to
demonstrate that all software validation plans and
procedures have been completed successfully.

 Automated assessment of high-risk code using industry-
standard metrics.

 Identification of specific pieces of code that exceed
industry-standard or customized complexity metrics
thresholds.

 Coverage analyzer, including statement, branch, path, and
MC/DC coverage, helps users gauge test suite efficacy
and completeness.

 Archived reports and trend graphs document validation
efforts and quality improvements.

4.9 Independence of Review
Self-validation is extremely difficult. When possible, an
independent evaluation is always better, especially for
higher risk applications.

 Objective, automated validation based on the
organization’s predefined quality goals and/or the
industry’s most comprehensive library of proven software
development best practices.

 Executable processes ensure that required review tasks
are performed at the appropriate time and record sign-offs.

7

FDA Principle Parasoft Support

4.10 Flexibility and Responsibility
Software is designed, developed, validated, and
regulated in a wide spectrum of environments, and for a
wide variety of devices with varying levels of risk.

Software validation activities and tasks may be
dispersed, occurring at different locations and being
conducted by different organizations.

However, regardless of the distribution of tasks,
contractual relations, source of components, or the
development environment, the device manufacturer or
specification developer retains ultimate responsibility for
ensuring that the software is validated.

 A policy-driven, flexible, repeatable, and traceable
validation process that can span distributed environments
and include both automated and manual tasks.

 The ability to define a test suite that starts verifying
software on the “host” development environment then
reuse that same test suite to validate software functionality
in other environments—on simulators, target devices, and
other platforms.

 The visibility and consistency needed to reduce the risks of
outsourcing and geographically-distributed development.

 An automated framework that manages software
verification methods to ensure that all software
development activities meet expectations.

 Support for defect resolution, not just defect prevention and
detection. Each issue detected is prioritized, automatically
correlated to the developer who introduced it, then
distributed to his or her IDE with direct links to the
problematic code. Eventually, developers start writing
compliant code as a matter of habit. Moreover, through
integration with the development infrastructure, results are
correlated with requirements, bugs, and source code
changes—converting data into actionable information.

5.1 Software Life Cycle Activities
Activities in a typical software life cycle model include
the following:

 Quality Planning

 System Requirements Definition

 Detailed Software Requirements Specification

 Software Design Specification

 Construction or Coding

 Testing

 Installation

 Operation and Support

 Maintenance

 Retirement

Verification, testing, and other tasks that support
software validation occur during each of these activities.
A life cycle model organizes these software development
activities in various ways and provides a framework for
monitoring and controlling the software development
project.

 A policy-based approach that defines the organization’s
expectations for quality across each of these SDLC
phases, ingrains practices for measuring policy compliance
into the team’s workflow across the SDLC, and
automatically monitors policy compliance for visibility and
traceability.

 A centralized and enforceable policy that not only
establishes the organization’s expectations, but also keeps
the team on track towards achieving those expectations—
providing a framework for producing predictable outcomes.

 The ability to define a truly comprehensive policy that not
only enforces coding requirements through static analysis,
but also addresses dynamic testing requirements regarding
unit, integration, and system-level testing, coverage
analysis, and regression testing.

 Preconfigured FDA templates.

8

FDA Principle Parasoft Support

5.2.1 Quality Planning
Design and development planning should culminate in a
plan that identifies necessary tasks, procedures for
anomaly reporting and resolution, necessary resources,
and management review requirements, including formal
design reviews.

A software life cycle model and associated activities
should be identified, as well as those tasks necessary for
each software life cycle activity.

 Plans are expressed as an interoperable business process.
Preconfigured, customizable templates define common
software quality plans.

 A system for mapping quality plan requirements to
development tasks and monitoring the implementation and
validation of each requirement.

 Services that ensure the validation plan is clearly defined
and enforceable.

 Centralized definition and management of organization-
level and team-level policies for implementing the quality
plan.

5.2.2. Requirements
The software requirements specification document
should contain a written definition of the software
functions.

A software requirements traceability analysis should be
conducted to trace software requirements to (and from)
system requirements and to risk analysis results.

In addition to any other analyses and documentation
used to verify software requirements, a formal design
review is recommended to confirm that requirements are
fully specified and appropriate before extensive software
design efforts begin.

 A system for mapping quality plan requirements to
development tasks and monitoring the implementation and
validation of each requirement.

 Traceability through requirements-based testing, which
links test cases, the requirements defined in the
specification, and the related source code—providing real-
time visibility into which requirements are actually working
as expected, and which still require testing.

 Workflow automation for design document reviews.

 Automated orchestration of approval/sign-off tasks in the
appropriate sequence, and with complete traceability.

5.2.3. Design
In the design process, the software requirements
specification is translated into a logical and physical
representation of the software to be implemented. The
software design specification is a description of what the
software should do and how it should do it.

At the end of the software design activity, a Formal
Design Review should be conducted to verify that the
design is correct, consistent, complete, accurate, and
testable, before moving to implement the design.

 Policies specify design best practices that prevent common
design pitfalls; ensure that the design is correct, consistent,
complete, accurate, and testable; and help teams satisfy
critical design attributes such as usability, performance,
efficiency, scalability, or modularity.

 Workflow automation for design document reviews.

 Automated orchestration of approval/sign-off tasks in the
appropriate sequence, and with complete traceability.

9

FDA Principle Parasoft Support

5.2.4. Construction or Coding
Source code should be evaluated to verify its
compliance with specified coding guidelines. Such
guidelines should include coding conventions regarding
clarity, style, complexity management, and commenting.

Source code evaluations are often implemented as code
inspections and code walkthroughs. Such static
analyses provide a very effective means to detect errors
before execution of the code.

A source code traceability analysis is an important tool to
verify that all code is linked to established specifications
and established test procedures. A source code
traceability analysis should be conducted and
documented to verify that:

 Each element of the software design
specification has been implemented in code;

 Modules and functions implemented in code
can be traced back to an element in the
software design specification and to the risk
analysis;

 Tests for modules and functions can be traced
back to an element in the software design
specification and to the risk analysis; and

 Tests for modules and functions can be traced
to source code for the same modules and
functions.

 Pattern-based static analysis ensures that the code meets
uniform expectations around reliability, performance,
security, and maintainability. Includes preconfigured
templates for FDA.

 Data flow static analysis detects complex runtime errors
without requiring test cases or application execution.

 Metrics analysis not only calculates metrics but also
identifies specific pieces of code that exceed industry-
standard or customized metrics thresholds.

 Peer code inspection process automation automates and
manages the peer code review workflow—including
preparation, notification, and tracking—and reduces
overhead by enabling code review on the desktop.

 Traceability through requirements-based testing, which
links test cases, the requirements defined in the
specification, and the related source code—providing real-
time visibility into which requirements are actually working
as expected, and which still require testing.

5.2.5. Testing by the Software Developer
Test plans and test cases should be created as early in
the software development process as feasible.

Once the prerequisite tasks (e.g., code inspection) have
been successfully completed, software testing begins. It
starts with unit level testing and concludes with system
level testing.

Code-based testing is also known as structural testing or
"white-box" testing. It identifies test cases based on
knowledge obtained from the source code, detailed
design specification, and other development documents.

Structural testing can identify “dead” code that is never
executed when the program is run.

The level of structural testing can be evaluated using
metrics that are designed to show what percentage of
the software structure has been evaluated during
structural testing. These metrics are typically referred to
as "coverage" and are a measure of completeness with
respect to test selection criteria.

 A framework that allows developers to start testing each
unit as soon as it is completed.

 After examining the source code to determine how to test
it, a wide variety of “white-box” test cases are automatically
generated to check code robustness, exposing potential
reliability problems.

 A framework that supports the rapid addition of user-
defined tests that verify software correctness and
functionality.

 Automated identification and refactoring of unused code,
duplicate code, and dead code.

 Coverage analyzer, including statement, branch, path, and
MC/DC coverage, helps users gauge test suite efficacy
and completeness. Parasoft follows the industry standard
in defining “coverage” as code coverage obtained by
actually executing code with test cases—not simulated
coverage.

 Automated integration-level and system-level testing.

 Runtime error detection efficiently identifies defects only
manifested at runtime.

 Memory error detection identifies difficult-to-track
programming and memory-access errors, as well as
potential defects and memory usage inefficiencies.

10

FDA Principle Parasoft Support

5.2.6. User Site Testing
User site testing should follow a pre-defined written plan
with a formal summary of testing and a record of formal
acceptance. Documented evidence of all testing
procedures, test input data, and test results should be
retained.

 Step-by-step capture of user acceptance test processes.
Each manual step is captured so the complete manual
sequence can be easily retrieved, reviewed, and
repeated—adding objective traceability to the process.

5.2.7. Maintenance and Software Changes
When changes are made to a software system, either
during initial development or during post release
maintenance, sufficient regression analysis and testing
should be conducted to demonstrate that portions of the
software not involved in the change were not adversely
impacted. This is in addition to testing that evaluates the
correctness of the implemented change(s).

 Automated generation of a regression test suite that
captures the code's current behavior as a baseline. Daily
execution of this test suite ensures that the team is
immediately alerted if code modifications impact or break
existing functionality.

 A continuous regression testing process which ensures
that the impacts of code modifications are identified and
addressed daily, and the regression test suite stays in
synch with the evolving application.

 A framework that supports the rapid addition of new tests
that verify the correctness of the implemented change(s).

About Parasoft
For 25 years, Parasoft has researched and developed software solutions that help organizations deliver
defect-free software efficiently. By integrating end-to-end testing, dev/test environment management, and
software development management, we reduce the time, effort, and cost of delivering secure, reliable,
and compliant software. Parasoft's enterprise and embedded development solutions are the industry's
most comprehensive—including static analysis, functional testing with requirements traceability, service
virtualization, and more. The majority of Fortune 500 companies rely on Parasoft in order to produce top-
quality software consistently and efficiently.

To learn more, visit http://www.parasoft.com/fda_medical_device_compilance.

Contacting Parasoft

USA
101 E. Huntington Drive, 2nd Floor
Monrovia, CA 91016
Toll Free: (888) 305-0041
Tel: (626) 305-0041
Email: info@parasoft.com
URL: www.parasoft.com

Europe
France: Tel: +33 (1) 64 89 26 00
UK: Tel: + 44 (0)208 263 6005
Germany: Tel: +49 731 880309-0
Email: info-europe@parasoft.com

Other Locations
See http://www.parasoft.com/contacts

© 2012 Parasoft Corporation
All rights reserved. Parasoft and all Parasoft products and services listed within are trademarks or registered trademarks of Parasoft Corporation. All other products, services,
and companies are trademarks, registered trademarks, or servicemarks of their respective holders in the US and/or

http://www.parasoft.com/jsp/products/parasoft_test.jsp
http://www.parasoft.com/jsp/products/virtualize_splash.jsp
http://www.parasoft.com/jsp/products/concerto/alm.jsp?itemId=473
http://www.parasoft.com/fda_medical_device_compilance

