

1

Parasoft Unit Testing Starter Kit

Unit Testing Best Practices: Tools for Unit Testing Success

Trane Case Study

Wipro Case Study

Parasoft Data Sheets

Unit Testing Best Practices:
Tools for Unit Testing Success

1

This paper is the culmination of interviews with Parasoft co-founder and former CEO Adam
Kolawa. Mr. Kolawa discussed why, when, and how to apply essential software verification
methods. The interviews also address code analysis, code review, memory error detection,
message/protocol testing, functional testing, and load testing. In this interview, Mr. Kolawa
counters claims that unit testing has peaked, explains how unit testing delivers value above and
beyond “early testing,” and warns that code coverage is not the best measure of test suite
completeness.

Is unit testing more popular in theory than in practice?

Well, there’s a huge barrier to entry because setting up realistic and useful tests can be quite
complex. People tend to have a good understanding of how the application is supposed to work
from the outside—how it’s supposed to respond to different user actions or operations—but they
have a limited grasp of how it’s supposed to work “under the hood.” This is quite a handicap
when it comes to writing unit tests.

With unit tests, you need to create relevant initial conditions so the part of the application you’re
trying to test behaves like part of the complete system. If these initial conditions aren’t set
correctly, the test won’t be exercising the code in a realistic context, and it won’t be terribly useful
to you. You can’t really tell if something is working properly if you’re not testing it under realistic
conditions. The context is critical. For instance, a beam might provide proper support under many
conditions--but if you’re building with it, you really need to know if it will hold up under your
specific construction. If it wasn’t verified to work in a similar context, you can’t rest assured that it
will work for you here.

Creating the initial conditions can be difficult, but it’s absolutely essential. I think the people who
do try to accomplish this are frustrated by the amount of work required, and those who don’t are
disappointed that they’re not getting valuable results.

Is unit testing nearing extinction?

I think that unit testing is more valuable now than ever. But I think we need a different flavor of
unit testing than the one everyone always focuses on, which is early testing. Let me explain.

The systems we’re building today, such as SOA and RIA, are growing in size and complexity—
plus developers are being asked to evolve them faster than ever before. We typically have a
good idea of what functionality we need to test because the use cases are usually well-defined in
requirements. However, their complexity renders them difficult to test in their entirety: they are
connected to the outside world, staging systems are difficult to establish and maintain, each test
requires considerable setup, and so on. It might be feasible to test each use case once, but you
really need to test all your use cases daily so that you’re immediately alerted in case your
constant modifications end up breaking them.

This is where unit testing comes in. Unit testing allows you to continuously test parts of the
application without the hassles of dealing with the complicated system. Using a technology like
Parasoft Tracer, you can create unit test cases that capture the functionality covered in your use
cases. From the application GUI or using a SOA or Web test client, you just exercise your use
cases while Tracer is enabled. As the use case is executed, Tracer monitors all the objects that
are created, all the data that comes in and goes out, and then it creates you a unit test that
represents this operation—and even sets up the proper initial conditions.

2

You can then take this unit test case and execute it on a separate machine, away from the
original system. This means that you can use a single machine—even a standard developer
desktop—to reproduce the behavior of a complicated system during your verification procedure.
Add all of these tests to your regression test suite, run it continuously, and you’ll immediately be
alerted if this functionality that you captured is impacted by your code modifications.

Essentially, this helps you address the complexity of today’s systems in two ways:

1. It relieves you from having to perform all the time-consuming and tedious work required
to set up realistic test conditions.

2. It gives you a test case that you can run apart from the system—a test case you can run
continuously and fully automatically.

Does creating unit tests after the application can realistically be exercised

mesh with the idea that unit testing is early testing?

This type of unit testing is not early testing at all. It’s a completely different flavor of unit testing,
and I think it’s even more valuable than early testing. But, there’s still a time and place for early
testing.

Say you have a brand new application that you’re writing from scratch. As you implement each
chunk of functionality, why not write a unit test that captures how this functionality is supposed to
work? At this point, you’re familiar with the requirement being implemented and you know all
about how the code works—so this is the best possible time to set up the conditions properly and
write a test that really verifies the requirement. While you’re at it, specify what requirement it
implements in the test case itself. This way, it can always be correlated to the appropriate
requirement. In other words, if the test fails, you’ll know what requirement was affected.

When you’re done writing each test, add it to the regression test suite and execute it
continuously—just like you would do with the other type of unit tests.

You could write these tests right after the code is implemented. Or you could write them before
you even start working on code, essentially practicing TDD.

Is this requirement-based test development process always a manual one?

This process of writing tests that verify requirements is always a creative one. The developer
really needs to think about the code and how to test it effectively. But, there is some help.
Automated unit testing tools like Parasoft Development Testing Platform can reduce the work
required to implement realistic and useful test cases.

For instance, the object repository stores initialized objects, which are very helpful to use when
you’re trying to set up realistic initial conditions. The stub library can be used to “stub out”
external references so the unit can be tested in isolation. It’s not a trivial task to set up stubs and
objects manually, so having this assistance can save you a lot of time. Also, Test Case
Parameterization can be used to feed additional inputs into the test cases—be it inputs from a
data source, or a stream of automatically generated inputs using corner case conditions.

These things don’t relieve you from having to think creatively about what the test should do, but
they do help you implement your plan as efficiently as possible.

3

Do you agree with the widely-held belief that achieving greater code

coverage with unit testing is more valuable?

Actually, I think that code coverage is irrelevant in most cases. People want high code coverage,
but to achieve something like 80% code coverage or higher, you inevitably end up executing
code mindlessly. It’s like asking a pianist to cover 100% of the piano keys rather than hit just the
keys that make sense in the context of a given piece of music. When he plays the piece, he gets
whatever amount of key coverage makes sense.

Another problem is that when code coverage exceeds a certain level (above about 70%) the test
suite becomes increasingly difficult to maintain. When the test suite has higher coverage than
this, it’s usually a sign that methods are executed mindlessly. You typically have very fine
granularity assertions, and these assertions are very sensitive to code changes. As a result,
many assertion failures are reported and need to be dealt with each day—but these assertion
failures typically don’t alert you to any significant changes.

Many people ask me if they can get 100% code coverage. The answer is yes—but it won’t do you
much good, other than satisfying some internal mandate for 100% code coverage.

How do you measure test suite completeness then?

While a piano concerto is complete when all the notes have been covered, the test suite is
complete when every use case has been covered.

Each use case should have at least one test case. This might be a unit test, another test, or a
combination of test types. When I have all of my use cases captured as test cases, then I can run
my regression test suite nightly and it will tell me if the day’s changes broke or negatively
impacted the functionality related to my use cases. This gives you a safety net that’s essential
when you’re constantly evolving the application.

Is there any point in even measuring code coverage then?

Yes, it actually tells you some interesting things. Say you have one test case for every use case,
and this represents only 40% code coverage. This might mean that 60% of your code is
unrelated to your use cases... which is a bit scary. Do you have a lot of useless code? Is the
application being written without a clear understanding of what it’s supposed to do? Or do you
have major omissions in your use case definitions? Maybe you’re missing some use cases for
your requirements. Or maybe your requirements themselves are incomplete. This is definitely
worth exploring.

On the other hand, what if your coverage is high even though you don’t have many test cases?
This might be a sign that you have well-written, tight code, with a lot of reuse.

Once you’ve built up a set of test cases that give you good coverage of

your use cases, what do you do with them?

You need to ensure that they’re maintained. Unit testing is not about creating unit test cases. It’s
about maintaining unit test cases. If you let them grow out of synch with the application, they
quickly become useless.

4

To keep the process going, you need a supporting infrastructure and workflow. Ideally, each night
the infrastructure automatically:

1. Gets the latest code from source control.

2. Runs the entire regression test suite.

3. Determines what assertions failed as a result of the day’s modifications.

4. Figures out which developer caused each assertion failure.

5. Distributes this information to the responsible developers.

This is all automated, and doesn’t require any development resources at all. Then, when the
developers arrive at work each morning, they import the results into their desktops or IDEs,
review any assertion failures reported for the code they authored, and respond to them. When
they respond, they are either addressing functional defects in the code or updating the test to
reflect the correct behavior of the code.

With this daily process, a little effort each morning goes a long way in terms of extending the test
cases’ value and life span—and also, of course, in terms of exposing unexpected impacts as they
are introduced so you can nip them in the bud.

Without a supporting process and an infrastructure to drive this process and keep it on track, it’s
only a matter of time before your unit testing efforts decay.

How do you keep this daily process as painless as possible?

Well, the automated assertion failure assignment and distribution I just mentioned is key. We
learned the value of this ourselves in the Parasoft development team. Years ago, when we
started examining our unit testing process, we found that developers would write functional unit
tests to verify requirements as code was implemented. However, when test assertions later failed
as the application evolved, the failures weren’t being addressed promptly.

In each case, someone needed to review the failure and decide if it was an intended change in
behavior or an unwanted regression error. Our open source unit test execution tools couldn’t tell
us what tests were failing from whom, for what, since when. Instead, our nightly often produced a
report that said that something like 150 of our 3,000+ tests failed. Each developer could not
determine if his own tests failed unless he reviewed the full list of failures—one at a time—to see
if it was something that he should fix or if it was a task for someone else. Our system was lacking
accountability.

Initially, we tried asking all developers to review all test failures, but that took a lot of time and
never became a regular habit. Then, we tried designating one person to review the test failures
and distribute the work. However, that person was not fond of the job because it was tedious and
the distribution of tasks was not well-received by the others.

Eventually, we built automated error assignment and distribution into our unit testing products,
and started using it internally. Now, assertion failures are automatically assigned to the
responsible developers based on source control data. If a developer causes one or more
assertion failures, he is notified via email, imports only the relevant results into his IDE, and
resolves them. As a result, failures are now resolved in days instead of months.

5

How do you begin and maintain a continuous process in an existing

application lacking in test cases?

Working on a code base that has minimal tests or no tests is like walking on eggshells: every
move you make has the potential to break something… but with software, the damage is not
always immediately obvious. Before you touch another line of code, start building a unit test suite
that serves as a change-detection safety net. This way, you can rest assured that you’ll be
alerted if modifications impact application behavior.

If you know what the use cases for the existing functionality are, you can start by “tracing” unit
test cases as you execute the use cases. This way, you’ll get a set of test cases that you can run
daily to ensure that you’re not breaking or changing this core functionality.

Even if you don’t have use cases, you can automatically generate what I call a behavioral
regression test suite: a baseline unit test suite that captures the code's current functionality. As I
said before, test suite maintainability really diminishes above a certain code coverage level, so if
your tool gives you a choice between generating a maintainable test suite and a high coverage
one, choose the maintainable one. To detect changes from this baseline, ensure that the evolving
code base is automatically run against this test suite on a regular basis—ideally, daily. You’ll be
alerted when the baseline functionality is impacted, and as you explore these impacts, you’ll
eventually learn more and more about the existing functionality.

Any closing comments?

Because today’s applications are so complex, your quality efforts and regression test suites also
need to be complex. Unit testing is a great starting point… but it’s not a religion. Unit testing alone
cannot deliver quality, will not expose all of your defects and change impacts, and is not a silver
bullet.

If you really want to build quality into the code and gain a 360 degree view of how your daily
modifications affect an existing application’s functionality, you need a continuous quality process
that includes everything from static analysis, to peer code reviews, to unit testing, to message/
protocol layer testing, to load testing. It takes some effort to get all the components established
and working together, but the payoff in terms of team productivity as well as improved application
quality is tremendous.

About Adam Kolawa

Adam Kolawa was truly a pioneer and a champion of software quality and developer productivity.
He was considered an authority on the topic of software development and the leading innovator
in promoting proven methods for enabling a continuous process for software quality. In 2007,
eWeek recognized him as one of the 100 Most Influential People in IT.

Mr. Kolawa co-authored two books—Automated Defect Prevention: Best Practices in Software
Management (Wiley-IEEE, 2007) and Bulletproofing Web Applications (Wiley, 2001), as well as
contributed to O'Reilly's Beautiful Code book. He has also written or contributed to hundreds of
commentary pieces and technical articles for publications such as The Wall Street Journal, CIO,
Computerworld, and Dr. Dobb's Journal, as well as authored numerous scientific papers on
physics and parallel processing.

Mr. Kolawa was granted 20 patents for software technologies he invented, including runtime
memory error detection technology (Patent 5,842,019 and 5,581,696 - granted in 1998), statically

6

analyzing source code quality using rules (Patent 5,860,011 - granted in 1999), and automated
unit test case generation technology (Patent 5,761,408 and 5,784,553 - granted in 1998).

About Parasoft

For 25 years, Parasoft has researched and developed software solutions that help organizations
define and deliver defect-free software efficiently. By integrating Development Testing, API/Cloud
Testing, and Service Virtualization, we reduce the time, effort, and cost of delivering secure,
reliable, and compliant software. Parasoft's enterprise and embedded development solutions are
the industry's most comprehensive—including static analysis, unit testing with requirements
traceability, functional & load testing, dev/test environment management, and more. The majority
of Fortune 500 companies rely on Parasoft in order to produce top-quality software consistently
and efficiently.

Contacting Parasoft

USA Phone: (888) 305-0041 Email: info@parasoft.com

NORDICS Phone: +31-70-3922000 Email: info@parasoft.nl

GERMANY Phone: +49 731 880309-0 Email: info-de@parasoft.com

POLAND Phone: +48 12 290 91 01 Email: info-pl@parasoft.com

UK Phone: +44 (0)208 263 6005 Email: sales@parasoft-uk.com

FRANCE Phone: (33 1) 64 89 26 00, Email: sales@parasoft-fr.com

ITALY Phone: (+39) 06 96 03 86 74 Email: c.soulat@parasoft-fr.com

OTHER See http://www.parasoft.com/contacts

© 2013 Parasoft Corporation
All rights reserved. Parasoft and all Parasoft products and services listed within are trademarks or registered trademarks of Parasoft Corporation. All other
products, services, and companies are trademarks, registered trademarks, or servicemarks of their respective holders in the US and/or other countries.

Trane Smoothly Transitions to C++ with Help from Parasoft’s Application Development Quality Solution1

The Trane Global Modeling and Analysis team determined that moving to object-oriented
development would ultimately enable more rapid and agile responses to business demands. By
adopting C++ as the company’s primary programming language, Trane could support a more
component-based architecture for their code, which could be shared among numerous computer
models. To help achieve this goal, Trane implemented Parasoft’s Development Testing Platform.

Migrating from a Legacy System to C++
The Global Modeling and Analysis team is spread across three different locations: La Crosse, WI;
Chicago, IL; and Shanghai, China. Some of these engineers work on code using C++ and VB.NET.
Others work on mathematical models. The La Crosse group is responsible for the mathematical
models.

The code for Trane’s mathematical models is based on engineering rules, which changes very little
over time. As a result, the legacy system had remained highly reliable for an extended period.
Engineers wrote equations over the course of many years and the derived forms are relatively stable.

Even so, the advantages of moving to object-oriented development outweighed holding on to
their legacy system. In addition to sharing components between their many computer models, the
transition would enable the Global Modeling and Analysis team to integrate their in-house tools with
multiple user interfaces—optimizing resources.

Finding a Quality Solution that Goes Above and Beyond Code Review
The Global Modeling and Analysis team created a list of coding standards to ensure that the code
met uniform expectations around reliability, performance, and maintainability as they transitioned
to C++ and .NET. To remain compliant with Six Sigma, Vikas Patnaik, Manager of Global Modeling and
Analysis team, sought a process to validate the use and control of the new coding standards.

After researching code review methods, Jim Spielbauer, Trane Development Engineer, discovered
that the manual code review processes were likely to impact the project schedule and budget, which
led to the question: Is there any way to automate code reviews?

With a weighted list of features that focused mostly on verifying coding standards, Spielbauer and
his teammate, Senior Software Developer Mike Eastey, started their search for automated testing
software. They came across Parasoft’s Development Testing Platform for C++ and .NET applications.

Trane (NYSE: TT) is a world leader in air conditioning systems, services, and solutions.
They provide highly reliable and energy efficient comfort in commercial, industrial,
institutional, and residential buildings throughout the world.

Trane Smoothly Transitions to C++
Aided by Parasoft’s Development
Testing Platform

Trane Smoothly Transitions to C++ with Help from Parasoft’s Application Development Quality Solution2

© Parasoft Corporation All rights reserved. Parasoft and all Parasoft products and services listed within are trademarks or registered trademarks of Parasoft Corporation.
All other products, services, and companies are trademarks, registered trademarks, or servicemarks of their respective holders in the US and/or other countries.

USA PARASOFT HEADQUARTERS
101 E. Huntington Drive, Monrovia, CA 91016
Phone: (888) 305-0041, Email: info@parasoft.com

Spielbauer says, “Our list of desired features got bigger when we found Parasoft’s solution and
realized its capabilities.” They were specifically drawn to automated unit testing, which allows them
to start verifying the code’s reliability and functionality as each logical unit is completed. As a result,
the length and cost of their downstream processes, such as debugging, are reduced.

Spielbauer states, “When we went into this, automated unit testing was something we didn’t realize
we could get. Even though it wasn’t part of our criteria at the beginning, discovering we could get
automated unit testing was a pleasant surprise.”

The platform’s integration with Visual Studio .NET, which enabled the engineers to test the code
directly in their development environment, was another pleasant surprise. The engineers could
develop code, then just click a button to test it with no additional project setup. Eastey remarks, “The
fact that Parasoft’s solution can also integrate with Visual Studio .NET is a huge bonus.”

Spielbauer adds that, “It’s an important benefit that Parasoft solutions can work with both C++ and
.NET languages. Parasoft provides a quality development solution that our entire team can grow with
and experience continuous improvement.”

Transitioning with Ease
Deploying Parasoft’s Development Testing Platform eased the Global Modeling and Analysis team’s
migration to C++ at a level that is both manageable and encouraging.

Because much of the team is new to C++, running their code through the platform’s C++ analysis
component helps them learn best practices and techniques. Spielbauer states, “Since I am so new
to C++, I do tend to make mistakes. Parasoft finds those errors early in the software development
process. It enables me to fix the code before it reaches our users.”

He continues that Parasoft’s Development Testing Platform “is teaching us all to be better programmers.
It helps us find errors that we didn’t even realize were errors.”

Spielbauer can create reusable tests and run them with nearly 100% coverage. The tests not only help
him and his team expose structural errors as they are introduced, but also establish a regression test
suite that determines if code modifications impact existing functionality.

Spielbauer explains, “Parasoft’s solution has saved the Global Modeling and Analysis team both time
and resources that we would have otherwise spent finding and fixing defects. Instead, we get to
spend that time adding new features and functionality.”

Increasing productivity through automation1

Reaching these high levels of software quality in a rapid and cost-effective manner is challenging.
Wipro’s demanding objectives regarding code review and error reduction, led the company to
implement Parasoft’s automated Development Testing Platform. The move has certainly paid off;
Wipro’s software quality commitments have helped establish the firm as a leading force in the
global IT services market, contributing to its dynamic growth and solid reputation for customer
focused excellence.

Objective: Maintaining Exceptional Software Quality
Considering the whirlwind growth that Wipro has experienced in recent years, the challenge of
maintaining high quality standards is always a top priority for the company. The constant initiation of
new client projects means that code review is a persistent issue.

The firm’s clients have stringent quality requirements, but Wipro’s demands are often even more
exacting. When the company conducts project evaluations, it rigorously tests software code to ensure
it adheres to fixed quality standards.

However, rapid growth, intensifying competition, and complexities associated with mixed solutions
eventually forced Wipro to find more efficient ways of meeting these standards. “We had to find ways
of doing things faster, consistently and more dependably,” says Vidya Kabra, Head of the Software
Engineering Tools Group at Wipro.

Wipro needed an automated solution that could evaluate the entire code base against a single standard.
Automated testing would be critical to ensure code reviewers would always deliver consistent and
dependable reports without spending time on activities that could be handled by a tool.

Action: Implementing Parasoft Development Testing Platform
Wipro began exploring automated software testing solutions as a means for reconciling its commitment
to software quality standards with its desire to continue driving growth. “Our challenges led us to a tool-
based approach,” explains Vidya. “It’s not only software quality, but requirements, design, integration
testing, regression testing, and unit testing that needed to be productively enhanced. We were under
pressure to complete projects faster with quality built-in. The tool-based approach represented an
automated approach--one that would save time and effort while meeting our quality goals.”

Wipro, a recognized provider of IT services to Global 1000 companies, has always
emphasized the high quality of its code. The Bangalore-based company maintains software
standards that often are far more rigorous than those that its clients have previously
experienced or presently demand. Code testing coverage, for instance, must always reach
80% to meet Wipro’s exacting standards.

Wipro Meets Exacting Software Quality
Standards and Fuels Global Growth through
Parasoft’s Development Testing Platform

Increasing productivity through automation2

After a rigorous review of potential solution providers and a series of pilots, Wipro chose to implement
Parasoft’s Development Testing Platform. “The products were reliable, customizable and cost effective,”
Vidya adds.

The Software Engineering Tools Group, which is responsible for procuring and advocating key software
development tools, initially implemented Parasoft’s development testing solution for Java, which
enabled Wipro to automate and standardize code review. Parasoft’s Development Testing Platform
includes comprehensive code analysis for Java EE, SOA, Web, and other Java-based applications.
”Parasoft has evolved well to become a comprehensive Java unit testing solution,” says Sambuddha
Deb, Chief Quality Officer, Wipro.

“Wipro has been using Parasoft successfully for years, and it is an excellent fit for Wipro’s enterprise-
wide Java development needs. By using Parasoft globally, we can deliver top-quality code to clients
faster and more cost effectively.”

Gradually, the group also integrated Parasoft’s C, C++, and .NET development testing solutions, which
enable businesses to automate and enforce their coding policies through static analysis, comprehensive
code review, unit testing, and other practices.

Wipro’s Software Engineering Tools Group is responsible for evangelizing the Parasoft Development
Testing Platform across the company and across projects. “We showcase features of the products
and pilot them,” Vidya says. “We work with project teams and provide them with a scope-based
usage approach for deploying the tools. Ultimately, the tools and new approaches get embedded
in the organization. Our job is to set standards of quality within different project teams throughout
Wipro and enable sustained commitment to these standards with code quality tools. Violation
reports from these tools are also used as an input to code quality audits, which are run frequently
by Wipro’s audit office.

Results: Enhancing Code Review Productivity by 25%
Wipro’s software quality standard requires projects to have 80% code coverage. Parasoft’s
development testing platform enables teams to reduce the time necessary to achieve the required
code coverage by 25%, estimates Alexis Samuel, General Manager of Wipro’s SEPG, Tools Group
and Office of Productivity. “Despite the dramatic mix of size, technology and complexity of the
projects that Wipro executes today, customer quality expectations are only increasing. Parasoft
tools help us deliver a quality product commensurate with the technical depth that we are known
for,” he says.

Central to Wipro’s success in the development process has been its policy of reviewing projects to
determine how to drive continual improvement. For instance, a team working on a project in the
manufacturing domain made extensive use of the powerful static analysis tools in Parasoft. The
team was able to make the following code quality gains:

 Improve code coverage and ensured quality on 27.4 KLOC
 Identify and report 2060 violations; nearly all errors were fixed (230 minor violations were

skipped) Automatically generate 1191 test cases, which contributed to overall code coverage.
 Meet customer requirements on code coverage with 23.84% effort savings.

Parasoft’s Development Testing Platform enables teams to reduce the time and effort
by 25% to reach code coverage objectives

Increasing productivity through automation3

© Parasoft Corporation All rights reserved. Parasoft and all Parasoft products and services listed within are trademarks or registered trademarks of Parasoft Corporation.
All other products, services, and companies are trademarks, registered trademarks, or servicemarks of their respective holders in the US and/or other countries.

USA PARASOFT HEADQUARTERS
101 E. Huntington Drive, Monrovia, CA 91016
Phone: (888) 305-0041, Email: info@parasoft.com

In a separate case that revolved around static analysis, a Wipro team developed a printer driver
using Parasoft’s development testing solution for C and C++. The objective was to identify coding
standards deviations in the development code. Parasoft enabled the team to identify 22,000 coding
standards violations against 187 automated coding guidelines. Wipro’s team met the customer’s
objectives in one third of the time that would have been required using manual resources for a
coding standards adherence review.

Wipro has strengthened its position as a provider of high quality software through its usage of
Parasoft’s Development Testing Platform. “We have automated and standardized our best practices
for providing customers the highest quality code,” concludes Vidya. “We have dramatically improved
the productivity of our testing efforts and this helps strengthen our position as a global provider
of IT solutions.”

Parasoft tools help us deliver a quality product commensurate
with the technical depth that we are known for.

Parasoft 'HYHORSPHQW�7HVWLQJ�/ Data Sheet1

Parasoft’s Development Testing Platform ensures
the consistent application of software quality
and security activities in the context of business
H[SHFWDWLRQV��)RU� WKH� ȴUVW� WLPH�� RUJDQL]DWLRQV�
FDQ� GHSOR\� D� XQLȴHG� VRIWZDUH� GHYHORSPHQW�
process that offers control over what needs to be
developed as well as how it should be developed.

The Development Testing Platform automates
VWDWLF� DQDOV\VLV�� XQLW� WHVWLQJ�� SHHU� FRGH� UHYLHZ��
FRYHUDJH�DQDO\VLV�� DQG� UXQWLPH�HUURU�GHWHFWLRQ��
as well as accurately and objectively measures
productivity and application quality.

2WKHU�EHQHȴWV�

 Introduces qualit\ practices as a continuous
SURFHVV��ZKLFK�LV�HVVHQWLDO�WR�DJLOH�RU�KLJKO\�
iterative development.

 3URYLGHV�XQSUHFHGHQWHG��UHDO�WLPH�
visibility into how the software is being
developed and if it is meeting expectations.

 Reduces costs and risks throughout the
entire SDLC by initiating a prevHntLve
stUategy that helps developers detect
and remediate defects before they
become bugs.

Parasoft Development Testing Platform

$XWRPDWLFDOO\�HQIRUFH�SROLFLHV�GXULQJ�ZRUNȵRZ�EDVHG�
HYHQWV��H�J��FRGH�FKHFN�LQ��DQG�H[FHSWLRQ�EDVHG�HYHQWV�
�H�J��VWDWLF�FRGH�DQDO\VLV��

 'HȴQH�H[SHFWDWLRQV�DERXW�KRZ�WKH�FRGH�VKRXOG�EH�
written in understandable human language.

 Automatically enforce policies�
 Train software engineers on the business objectives
driving policies.

Simple integration with existing development
LQIUDVWUXFWXUH��LQFOXGLQJ�VRXUFH�FRQWURO�PDQDJHPHQW��
EXJ�WUDFNLQJ��UHTXLUHPHQWV�PDQDJHPHQW��DQG�,'(�

Event- and Exception-Based Triggers

Policy Management

Infrastructure Integration

([HFXWH�D�UDQJH�RI�VRIWZDUH�DQDO\VLV�DQG�WHVWV��LQFOXGLQJ�
 6WDWLF�&RGH�$QDO\VLV�

 ,QWHJUDWLRQ�7LPH�$QDO\VLV
 &RQWLQXRXV�,QWHJUDWLRQ�$QDO\VLV
 (GLW�7LPH�$QDO\VLV
 Runtime Analysis

 Unit Testing
 Code Coverage Analysis
 5XQWLPH�(UURU�'HWHFWLRQ
 Peer Code Review
 API Testing
 0HPRU\�(UURU�'HWHFWLRQ
 Functional Testing
 Load Testing

Quality Practices

© Parasoft Corporation All rights reserved. Parasoft and all Parasoft products and services listed within are trademarks or registered trademarks of Parasoft Corporation.
All other products, services, and companies are trademarks, registered trademarks, or servicemarks of their respective holders in the US and/or other countries.

USA PARASOFT HEADQUARTERS / 101 E. Huntington Drive, Monrovia, CA 91016
Phone: (888) 305-0041 / Email: info@parasoft.com

 View metrics that focus on areas for
improving the code.

 Gain early understanding of potential risks.
 Measure performance over time.
 Accurately quantify resource requirements
and predict iteration durations.

([WHQG�WKH�'HYHORSPHQW�7HVWLQJ�3ODWIRUP�WKURXJK�
$3,V��WKLUG�SDUW\�SOXJ�LQV��DQG�FRPPXQLW\�GHYHORSHG�
libraries to build a comprehensive development
PDQDJHPHQW�HFRV\VWHP�DQG�HQDEOH�FURVV�IXQFWLRQDOLW\�
ZLWKLQ�VSHFLDOL]HG�HQYLURQPHQWV�

Extensibility Process Analysis Engine

Supported Languages and Technologies

Java / JSP / XML / Android / Spring

Hibernate / (FOLSVH / JSF / Struts / JDBC

(-%�/ Servlets /��1(7�/�&��&���&���/ Managed C

9%�1(7�/ ASP / Qt / STL

atrujillo
Typewritten Text

Parasoft C/C++test / Data Sheet1

Parasoft C/C++test is an integrated development testing solution for C and C++. It automates a broad range of
software quality practices—including static code analysis, unit testing, code review, coverage analysis, runtime
error detection and more. C/C++test enables organizations to reduce risks, cut costs, increase productivity, and
achieve compliance with industry guidelines and standards. It can be used in both host-based and target-based
code analysis and test flows, which is critical for embedded and cross-platform development.

Automate Code Analysis for Monitoring Compliance
A properly implemented policy-driven development strategy can eliminate entire classes of programming errors by
preventing defects from entering the code. C/C++test enforces your policy by analyzing code and reporting errors
directly in the developer’s IDE when code deviates from the standards prescribed in your programming policy.

Hundreds of built-in rules—including implementations of MISRA, MISRA C++, FDA, Scott Meyers’ Effective C++,
Effective STL, and other established sources—help identify bugs, highlight undefined or unspecified C/C++ language
usage, enforce best practices, and improve code maintainability and reusability. Development managers can use
the built-in rules and configurations or create highly specialized rules and configurations specific to their group
or organization. Custom rules can enforce standard API usage and prevent the recurrence of application-specific
defects after a single instance has been found.

For highly quality-sensitive industries, such as avionics, medical, automobile, transportation, and industrial automation,
C/C++test enables efficient and auditable quality processes with complete visibility into compliance efforts.

Identify Runtime Errors without Executing Software
C/C++test’s integration-time static analysis module
simulates feasible application execution paths—which
may cross multiple functions and files—and determines
whether these paths could trigger specific categories of
runtime errors. The defects C/C++test detects include:

 Using uninitialized or invalid memory
 Null pointer dereferencing
 Array and buffer overflows
 Division by zero
 Memory and resource leaks
 Various flavors of dead code

C/C++test’s customizable workflow allow users to test code
as it’s developed, then use the same tests to validate
functionality/reliability in target environments.

The ability to expose defects without executing code is
especially valuable for embedded applications, where
detailed runtime analysis for such errors is often
ineffective or impossible.

C/C++test greatly simplifies defect analysis by providing
a complete highlighted path for each potential defect
in the developer’s IDE. Automatic cross-links to code
help users quickly jump to any point in the highlighted
analysis path.

Parasoft C/C++test / Data Sheet2

Streamline Code Review
C/C++test automates preparation, notification, and tracking of peer code reviews, which enables an efficient team-
oriented process. Status of all code reviews, including all comments by reviewers, is maintained and automatically
distributed. C/C++test sup-ports two typical code review flows:

 Post-commit code review—Automatic identification of code changes in a source repository via custom
source control interfaces; creates code review tasks based on pre-set mapping of changed code to reviewers.

 Pre-commit code review—Users can initiate a code review from the desktop by se-lecting a set of files to
distribute or automatically identify all locally changed source code.

Additionally, the need for line-by-line inspections is virtually eliminated because the team’s coding policy is monitored
automatically with C/C++test’s static analysis capability. By the time code is submitted for review, violations have
already been identified and cleaned. Reviews can then focus on examining algorithms, reviewing design, and
searching for subtle errors that automatic tools cannot detect.

Unit and Integration Test with Coverage Analysis
C/C++test automatically generates complete tests, including test drivers and test cases for individual functions,
purely in C or C++ code in a format similar to CppUnit. Auto-generated tests, with or without modifications, are
used for initial validation of the func-tional behavior of the code. By using corner case conditions, the test cases also
check function responses to unexpected inputs, exposing potential reliability problems.

Specific GUI widgets simplify test creation and management and a graphical Test Case Wizard enables developers to
rapidly create black-box functional tests for selected functions without having to worry about their inner workings or
embedded data dependencies. A Data Source Wizard helps parameterize test cases and stubs—enabling increased
test scope and coverage with minimal effort. Stub analysis and generation is facilitated by the Stub View, which
presents all functions used in the code and allows users to create stubs for any functions not available in the
test scope—or to alter existing functions for specific test purposes. Test execution and analysis are centralized
in the Test Case Explorer, which consolidates all existing project tests and provides a clear pass/fail status. These
capabilities are especially helpful for supporting automated continuous integration and testing as well as “test as
you go” development.

A multi-metric test coverage analyzer, including statement, branch, path, and MC/DC coverage, helps users gauge
the efficacy and completeness of the tests, as well as demonstrate compliance with test and validation requirements,
such as DO-178B/C. Test coverage is presented via code highlighting for all supported coverage metrics—in the
GUI or color-coded code listing reports. Summary coverage reports including file, class, and function data can be
produced in a variety of formats.

Automated Regression Testing
C/C++test facilitates the development of robust regression test suites that detect if incremental code changes
break existing functionality. Whether teams have a large legacy code base, a small piece of just-completed code, or
something in between, C/C++test can generate tests that capture the existing software behavior via test assertions
produced by automatically recording the runtime test results.

As the code base evolves, C/C++test reruns these tests and compares the current results with those from the
originally captured “golden set.” It can easily be configured to use different execution settings, test cases, and stubs
to support testing in different contexts (e.g., different continuous integration phases, testing incomplete systems, or
testing specific parts of complete systems). This type of regression testing is especially critical for supporting agile
development and short release cycles, and ensures the continued functionality of constantly evolving and difficult-
to-test applications.

Parasoft C/C++test / Data Sheet3

Monitor and Eliminate Runtime
Memory Errors
Runtime error detection constantly monitors for
certain classes of problems—such as memory
leaks, null pointers, uninitialized memory, and
buffer overflows—and makes results available
immediately after the test session is finished. The
reported problems are presented in the developer’s
IDE along with details about how to fix the errors
(including memory block size, array index, allocation/
deallocation stack trace etc.). This not only improves
the quality of the application—it also increases the
skill level of your development staff.

Coverage metrics are collected during application
execution. These can be used to see what part of
the application was tested and to fine tune the set of
regression unit tests (complementary to functional
testing).

Test on the Host, Simulator,
and Target
C/C++test automates the complete test execution
flow, including test case generation, cross-
compilation, deployment, execution, and loading
results (including coverage metrics) back into the
GUI. Testing can be driven interactively from the
GUI or from the command line for automated test
execution, as well as batch regression testing. In the
interactive mode, users can run tests individually or
in selected groups for easy debugging or validation.
For batch execution, tests can be grouped based
either on the user code they are liked with, or their
name or location on disk.

C/C++test allows full customization of its test
execution sequence. In addition to using the built-
in test automation, users can incorporate custom
test scripts and shell commands to fit the tool into
their specific build and test environment. C++test’s
customizable workflow allows users to test code as
it’s developed, then use the same tests to validate
functionality/reliability in target environments preset
tool options.

C/C++test can be used with a wide variety of
embedded OS and architectures, by cross-compiling
the provided runtime library for a desired target
runtime environment. All test artifacts of C/C++test
are source code, and therefore completely portable.

 Increase productivity—Apply a comprehensive set of
best practices that reduce testing time, testing effort, and
the number of defects that reach QA.

 Achieve more with existing development resources—
Automatically vet known coding issues so more time can
be dedicated to tasks that require human intelligence.

 Increase code quality—Efficiently construct, continuously
execute, and maintain a comprehensive regression test suite
that detects whether updates break existing functionality.

 Gain unprecedented visibility into the development
process—Access on-demand objective code assessments
and track progress towards quality and sched-ule targets.

 Reduce support costs—Automate negative testing on a
broad range of potential user paths to uncover problems
that might otherwise surface only in “real-world” usage.

 Static code analysis to reduce risks at each stage of
development:

 Integration-time analysis
 Continuous integration-time analysis
 Edit-time static analysis
 Runtime static analysis

 Graphical rule editor for creating custom coding rules
 Automated generation and execution of unit and
component-level tests

 Flexible stub framework
 Full support for regression testing
 Code coverage analysis with code highlighting
 Runtime memory error detection during unit test
execution and application-level test-ing exposes hard-to-
find errors, such as:

 memory leaks
 null pointers
 uninitialized memory
 buffer overflows

 Increase test result accuracy through execution of the
monitored application in a real target environment

 HTML, PDF, and custom format reports:
 Pass/fail summary of code analysis and test results
 List of analyzed files
 Code coverage summary
 Reports can be automatically sent via email, based on a variety

of role-based fil-ters

 Full team deployment infrastructure for desktop and
command line usage

Benefits

Key Features

© Parasoft Corporation All rights reserved. Parasoft and all Parasoft products and services listed within are trademarks or registered trademarks of Parasoft Corporation.
All other products, services, and companies are trademarks, registered trademarks, or servicemarks of their respective holders in the US and/or other countries.

USA PARASOFT HEADQUARTERS / 101 E. Huntington Drive, Monrovia, CA 91016
Phone: (888) 305-0041 / Email: info@parasoft.com

Supported Host Environments

Host Platforms
Windows / Linux / Solaris UltraSPARC

IDEs
 ARM Workbench / ARM Development Studio /

ARM ADS
 Eclipse IDE for C/C++ Developers
 Green Hills MULTI
 IAR Embedded Workbench
 Keil µVision
 Microsoft eMbedded Visual C++ /

Microsoft Visual Studio
 QNX Momentics IDE (QNX Software

Development Platform)
 Texas Instruments Code Composer
 Wind River Tornado / Wind River Workbench

Host Compilers
Windows: Microsoft Visual Studio / GNU gcc/g++ / Green Hills MULTI
Linux 32 and 64 bit processor: GNU gcc/g++ / Green Hills MULTI
Solaris: Sun ONE Studio / GNU gcc/g++ / Green Hills MULTI

Target/Cross Compilers
Altera NIOS GCC / ADS (ARM Development Suite) / ARM for Keil uVision / ARM RVCT / ARM DS-5 GNU Compilation Tools /
Cosmic Software 68HC08 / eCosCentric GCC / Freescale CodeWarrior C/C++ for HC12 / Fujitsu FR Family SOFTUNE /
GCC (GNU Compiler Collection) / Green Hills MULTI / IAR C/C++ for ARM / IAR C/C++ for MSP430 / Keil C51 /
Microsoft Visual C++ for Windows Mobile / Microsoft Embedded Visual C++ / QCC (QNX GCC) / Renesas SH SERIES C/C++ /
STMicroelectronics ST20 / STMicroelectronics ST40 / TASKING 80C196 C / TASKING TriCore VX-toolset C/C++ / TI TMS320C2000 C/C++ /
TI TMS320C54x C/C++ / TI TMS320C55x C/C++ / TI TMS320C6x C/C++ / TI TMS470 / TI MSP430 C/C++ / Wind River GCC /
Wind River DIAB

Build Management
GNU make / Sun make / Microsoft nmake / ElectricAccelerator

Continuous Integration
Hudson / Jenkins / ElectricAccelerator

Source Control
AccuRev SCM / Borland StarTeam / CVS / Git / IBM Rational ClearCase / IBM Rational Synergy /
Microsoft Team Foundation Server / Microsoft Visual SourceSafe / Perforce SCM / Serena Dimensions / Subversion (SVN)

Preventing defects that impact application security, reliability, and performance
Complying with internal or regulatory quality initiatives
Ensuring consistency across large and distributed teams
Increasing productivity by automating tedious yet critical defect-prevention practices
Successfully implementing popular development methods like TDD, Agile, and XP

Capabilities

Static code analysis Facilitates regulatory compliance (FDA, PCI, etc.). Ensures that the code meets uniform expectations
around security, reliability, performance, and maintainability. Eliminates entire classes of programming
errors by establishing preventive coding conventions.

Parasoft® Jtest® is an integrated solution for automating a broad range of practices proven to improve development team
productivity and software quality. It focuses on practices for validating Java code and applications, and it seamlessly integrates with
Parasoft SOAtest to enable end-to-end functional and load testing of today's complex, distributed applications and transactions.

Parasoft's customers, including the majority of the Fortune 500, rely on Jtest for:

Data flow static
analysis

Detects complex runtime errors related to resource leaks, exceptions, SQL injections, and other security
vulnerabilities without requiring test cases or application execution.

Metrics analysis Identifies complex code, which is historically more error-prone and difficult to maintain.

Peer code review
process automation

Automates and manages the peer code review workflow- including preparation, notification, and
tracking- and reduces overhead by enabling remote code review on the desktop.

Unit test generation
and execution

Enables the team to start verifying reliability and functionality before the complete system is ready,
reducing the length and cost of downstream processes such as debugging.

Test case "tracing” Generates unit test cases that capture actual code behavior as an application is exercised providing a
fast and easy way to create the realistic test cases required for functional/regression testing.

Automated regression
testing

Generates and executes regression test cases to detect if incremental code changes break existing
functionality or impact application behavior.

Coverage analysis Assesses test suite efficacy and completeness using a multi-metric test coverage analyzer. This helps
demonstrate compliance with test and validation requirements such as

Team deployment and
workflow

Establishes a sustainable process that ensures software verification tasks are ingrained into the team's
existing workflow and automated so team members can focus on tasks that truly require human intelligence.

Runtime error
detection

Automatically exposes defects that occur as the application is exercised-including race conditions,
exceptions, resource & memory leaks, and security attack vulnerabilities.

These core capabilities are also available for C, C++, .NET languages.

FDA.

DA
TA

 SH
EE

T

www.parasoft.com

Parasoft Corporation, 101 E. Huntington Dr., 2nd Flr., Monrovia, CA 91016
Ph: (888) 305.0041, Fax: (626) 256.6884, Email: info@parasoft.com

 Built-in support for Google Android, Spring, Hibernate, Eclipse plug-ins, TDD, JSF, Struts, JDBC, EJBs, JSPs, servlets, and more (mobile, embedded, Java EE...)
 Integrates with Parasoft SOAtest for end-to-end functional and load testing for web, SOA, and cloud development.
 Exposes runtime defects that occur as the application is exercised by unit, manual, or scripted tests–including race conditions, exceptions, resource leaks, and

security attack vulnerabilities
 Without requiring execution, identifies execution paths that can trigger runtime defects
 Checks compliance to configurable sets of over 1000 built-in static analysis rules for Java
 Provides templates for OWASP Top 10, CWE-SANS Top 25, PCI DSS, and other security static standards
 Automatically corrects violations of 350+ rules with QuickFix
 Allows easy GUI-based customization of built-in rules
 Identifies and prevents concurrency defects such as deadlocks, race conditions, missed notification, infinite loops, data corruption other threading problems
 Automatically creates robust low-noise regression test suites–even for large code bases
 Generates functional JUnit test cases that capture actual code behavior as a deployed application is exercised
 Generates extendable JUnit and Cactus (in-container) tests that expose reliability problems and achieve high coverage using branch coverage analysis
 Integrates and extends manually-written unit test cases
 Continuously executes the test suite to identify regressions and unexpected side effects
 Performs runtime error detection as tests execute
 Parameterizes test cases for use with varied, controlled test input values (runtime-generated, user-defined, or from data sources)
 Monitors test coverage with multiple metrics
 Tracks code coverage from manual tests and test scripts
 Steps through tests with the debugger
 Tests individual methods, classes, or large, complex applications
 Calculates metrics such as Inheritance Depth, Lack Of Cohesion, Cyclomatic Complexity, Nested Blocks Depth, Number Of Children
 Identifies and refactors duplicate and unused code
 Automates the peer code review process (including preparations, notifications, and routing)
 Shares test settings and files team-wide or organization-wide
 Generates HTML, PDF, XML, and custom reports
 Tracks how test results and code quality change over time
 Provides GUI (interactive) and command-line (batch) mode

Key Features

Infrastructure Support

System Requirements

Error assignment and
distribution

Facilitates error review and correction. Each issue detected is prioritized, assigned to the developer who
wrote the related code, and distributed to his or her IDE with direct links to the problematic code.

Centralized reporting Ensures real-time visibility into quality status and processes. This helps managers assess and document
trends, as well as determine if additional actions are needed for regulatory compliance.

Continuous "On-the-
fly" static analysis

Automatically run static analysis in the background as developers review, add, and modify code. This
helps the team identify and fix problems as soon as they are introduced.

 Full integration with Eclipse 3.2-3.7, IBM Rational Application Developer 7.0-8.0
 Integration with Ant, Maven, CruiseControl, Hudson, and other build & release tools
 Integration with most popular source control systems
 Open Source Control API, which allows teams to integrate any other source control system

Operating System
 Windows: 7, Vista, 2000, XP, or 2003 (x86 or x86_64)
 Linux: Red Hat E.L. 3, 4, 5 or equivalent (x86 or x86_64)
 Solaris: Solaris 10 (SPARC)
 Mac: OS X 10.5 or higher

Hardware
 Intel® Pentium® III 1.0 GHZ or higher recommended
 512 MB RAM minimum; 2 GB RAM recommended
 JRE 1.3 or higher

DA
TA

 SH
EE

T

This provides teams a practical way to prevent, expose, and correct
errors in order to ensure that their .NET code works as expected.

Tests can be run directly from Visual Studio or as part of an
automated process. To promote rapid remediation, each problem
detected is prioritized based on configurable severity assignments,
automatically assigned to the developer who wrote the related
code, and distributed to his or her IDE with direct links to the
problematic code and a description of how to fix it.

Parasoft dotTEST works with programming languages that target the
Microsoft .NET Framework and .NET Compact Framework, including
C#, VB.NET, ASP.NET and Managed C++. It can test any file or
assembly that has been built to take advantage of the .NET or .NET
CF CLR.

A properly-implemented coding policy can eliminate entire classes
of programming errors by establishing preventive coding
conventions. dotTEST statically analyzes code to check compliance
with such a policy. To configure dotTEST to enforce a coding
standards policy specific to their group or organization, teams can
define their own rule sets with built-in and custom rules. dotTEST
includes 400+ rules that cover Microsoft's .NET Framework Design
Guidelines, CLS Compliance, Object Oriented Metrics, Security, and
more.

In addition to rules that examine the IL code, dotTEST also provides
rules that examine the C# source code; this enables dotTEST to check
for many code issues that cannot be identified by IL-level analysis
(for example, formatting issues, empty blocks, misuse of operators,
etc.). Custom IL-level and C# rules, which are created with a
graphical RuleWizard editor, can also enforce specific project and
organizational requirements and prevent the recurrence of
application-specific defects after a single instance has been found.

Automate Code Analysis for Compliance

TMTM

Parasoft's customers, including 58% of the Fortune 500,
rely on dotTEST for:

Benefits

dotTEST's static analysis exposes critical defects early,
without requiring code execution

dotTESTdotTEST

Parasoft® dotTEST™ is an integrated solution for automating a broad range of best practices proven to improve software development
team productivity and software quality. dotTEST facilitates:

Parasoft® dotTEST - Comprehensive Code Quality Tools
for .NET Development

 Static analysis: Static code analysis, data flow static analysis, and metrics analysis
 Peer code review process automation: Preparation, notification, and tracking
 Unit testing: Unit test creation, execution, optimization, and maintenance
 Application testing: Sets up the actual application execution environment and launches tests from it

Preventing defects that impact application security, reliability,
and performance
Complying with internal or regulatory quality initiatives
Ensuring consistency across large and distributed teams
Increasing productivity by automating tedious yet critical
defect-prevention practices
Successfully implementing popular development methods like
TDD, Agile, and XP

DA
TA

 SH
EE

T

www.parasoft.com

Parasoft Corporation, 101 E. Huntington Dr., 2nd Flr., Monrovia, CA 91016
Ph: (888) 305.0041, Fax: (626) 256.6884, Email: info@parasoft.com

BugDetective uses data flow analysis to detect runtime errors without requiring
the software to actually be executed. This enables early and effortless
detection of critical runtime errors that might otherwise take weeks to find.
Defects detected include NullReferenceExceptions, ArgumentNullExceptions,
resource leaks, division by zero, dereferencing before checking for null, SQL
injections, XSS, and other security vulnerabilities.

Identify Runtime Bugs without Executing Software

Non-Interactive Test Case Generation: Allows you to create a large number of tests with minimal time and effort. This is especially
useful for achieving high code coverage and establishing a regression baseline.
Application hosted testing: Allows you to launch unit tests from virtually any point within your application—without changing your
application or writing additional code. This lets you create complex objects in their natural environment and facilitates test
development/maintenance.
Extensive coverage analysis: Tracks coverage information for all tests—from dotTEST-based unit testing to manual application
testing—and can combine the coverage information from multiple test runs. This helps you accurately gauge test suite efficacy and
completeness, as well as demonstrate compliance with test and validation requirements.
Flexible stub support: Allows classes to be tested in isolation. This addresses one of the greatest challenges in writing unit tests: getting
complex objects in different states.

dotTEST's automated testing capabilities significantly reduce the work required to
develop and maintain an effective test suite. dotTEST's automated testing
capabilities are especially helpful for supporting continuous integration and
agile/iterative development.

The innovative Code Review module, which automates preparation,
notification, and tracking of peer code reviews, addresses the known
shortcomings of this very powerful development practice. dotTEST
automatically identifies updated code, matches the code with designated
reviewers, and tracks the progress of each review item until closure. With the
Code Review module, teams can establish a bulletproof review process—where
all new code gets reviewed and all identified issues are resolved.

Features

System Requirements

Static analysis of code for compliance with user-selected coding
standards
Graphical RuleWizard editor for creating custom coding rules
Static code path simulation for identifying potential runtime errors
Streamlined code review process with a graphical interface and progress
tracking
Automated generation and execution of unit tests
Generates functional unit test cases that capture actual code behavior as
the application is exercised
Launches tests from the actual execution environment
Flexible stub framework for use in unit tests
Full support for regression testing
Code coverage analysis for unit testing and beyond
(including application-level tests)
Test directly on target devices or emulators
Full team deployment infrastructure for desktop and command line usage
Seamless integration with Microsoft Visual Studio

Platforms
.NET Framework 2.0, 3.0, 3.5, 4
.NET Compact Framework 2.0, 3.5
Windows Mobile 5, Windows Mobile 6, Windows CE

Enable Effective and Comprehensive Team Code Review

Automate Unit and Component Testing for Instant
Verification and Regression Testing

dotTEST's .NET Compact Framework support allows you to run unit tests directly on a device. This enables you to:

Write very realistic unit tests because code runs against the .NET CF, which accurately represents realistic application behavior.

Automatically check your code against any device or emulator that supports Windows Mobile Device Center (Active Sync) communication.

Access an API, such as native API, which is available for a particular device only.

Windows 7, Windows Vista, Windows XP, Windows 2003 Server,
Windows 2008 Server

Visual Studio 2010, 2008 or Visual Studio 2005Visual Studio 2012,

dotTEST provides numerous ground-breaking technologies to facilitate unit testing,
including:

.NET Compact Framework Support

Unit Test Genie: Allows you to generate specific object factory methods and
test scenarios by interacting with dotTEST wizards. You can control precisely
what objects and test scenarios are generated.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

