

Table of Contents

Preface: Accelerate Releases and Reduce Business Risk 	 1

Service Virtualization, Agile, DevOps, and Quality @ Speed 	 2

Simulating Snowstorms in July with Service Virtualization

and Extreme Automation	 12

How Service Virtualization Enables Continuous Delivery 	 19

Service Virtualization, Performance Testing, and DevOps	 24

Service Virtualization is Essential for Functional Testing of Complex,

Distributed Systems	 26

We Couldn’t Do Agile Development Without Service Virtualization	 29

Time to Market…with Quality	 31

Service Virtualization with API Testing	 34

Bridging the Technical Gap for Executive Buy-In	 36

A Love Letter from Cloud Dev/Test Labs to Service Virtualization:

“You Complete Me”	 38

How Service Virtualization Impacts Business Strategy	 40

About Parasoft	 43

Preface: Accelerate Releases and
Reduce Business Risk
Wayne Ariola, Chief Strategy Officer at Parasoft

The concept of leveraging a simulated test environment to “shift left” quality efforts has
recently gained much attention among large enterprise IT organizations. The idea of simulating
interactions with an application under test certainly isn’t new; organizations have been using
a stub strategy for quite some time in order to isolate tests from dependent environments.
This stubbing approach allows independent tests to be executed, but it certainly introduces a
level of risk since the functionality being stubbed is truly at the discretion of each independent
developer. It’s like asking an assortment of independent contractors to all contribute and
patch together different sections of a bridge rather than having an engineering company
plan and coordinate the effort.

Applying a unified service virtualization initiative has proven to be a powerful tool for assisting
organizations to accelerate the SDLC:

•	 An organization has a single version of the truth, removing the risks created by having
independent brittle stubs. Service virtualization introduces an environment-based
approach, allowing the entire organization to access common artifacts that represent
critical functionality.

•	 Service virtualization allows for much more complete tests to be executed earlier in
each iteration, helping the organization discover application or business risks much
earlier.

•	 Service virtualization, in conjunction with hypervisor technologies and cloud, have
solved the nagging issue associated with test environment access and control,
allowing an organization to truly remove the constraints associated with testing and
accelerate an application’s release cycle.

Over the past years, Parasoft has been heavily engaged with assisting Global 2000 companies
to adopt service virtualization technology. Reflecting back upon on our communications
with service virtualization adopters and evangelists, we have selected a handful of stories,
viewpoints, and advice that we believe will help organizations make the most of service
virtualization technology. The contributions in this “living document” span topics ranging
from gaining executive buy-in for service virtualization to implementing service virtualization
in ways that enable more agile testing processes. We hope that this collection provides
valuable insights for executives, managers, and users who are looking to either adopt or
expand their service virtualization footprint.

Service Virtualization Best Practices Insights from Industry Leaders 1

Service Virtualization, Agile, DevOps,
and Quality @ Speed
Diego Lo Giudice (Forrester’s VP, Principal Analyst) and Mike Puntumapanitch
(CareFirst’s Director of Service Transition and Quality Management)

Diego and Mike P. recently connected to explore experiences, best practices, and trends

on service virtualization, Agile, and DevOps—particularly in relation to how these topics

enable “quality @ speed.” Here are some highlights from the discussion…

Accelerating Speed without Compromising on Quality

DIEGO: Across all industries today, software really matters. Whether you’re a technology
startup, a bank, insurance, retail, etc., you must be excellent at developing, testing, and
delivering software. That’s why we keep talking about Agile, DevOps, Continuous Delivery,
and Continuous Integration. If we want to make our business more successful, software is
absolutely crucial. It’s not just about speed—it’s about speed with quality.

The old school of testing is that the more testing you do (if you do it right), the better your
quality. But if testing is an afterthought (as it is in many organizations), it occurs between
development and deployment—and it feels like something that will stop you from delivering
faster. Historically, the business says, “It doesn’t matter, just deploy, it’s the date that’s
important.” But these days, that’s changing because a bug going into production in the age
of digital is a real big problem. It will hit the news.

MIKE P: CareFirst’s executive team is very insistent that we continuously strive for, and
achieve, excellence—both in our internal operations and all our interactions with customers.
This places a lot of pressure on us, especially as we’re also asked to deliver more outcomes—
faster and cheaper. We complete about 160 projects a year at a very aggressive pace and
over 90% of those are delivered on time and on budget. Compromising on quality to meet
these deadlines is not an option, so we had to determine how to make IT more effective. As

I’ll explain a little later, service virtualization was a large part of this.

Reducing Complexity with Service Virtualization

DIEGO: As Forrester’s research shows, no industry is immune to digital disruption and
the complexity it brings—including industries that are not typically perceived as being
aggressive in innovation, like construction and industrial products. Even in those industries,
the overwhelming majority of companies are reporting that they have already experienced
digital disruption and/or anticipate digital disruption in the next 12 months. And, what’s

Service Virtualization Best Practices Insights from Industry Leaders 2

probably not too surprising to Mike, healthcare is at the top of the “digital disruption” list. 90%
of healthcare IT executives reported that their business is currently facing digital disruption
and 94% expect to experience digital disruption within the next 12 months.

MIKE P: Yes, we’ve definitely experienced this firsthand—since 2008, in fact. The challenges
we’ve faced can be grouped into three general waves.

With the realization that the health care industry would need to take giant leaps towards
modernization, the first wave can be best characterized as business transformation. There
was an executive-driven initiative to modernize our IT, perform systems consolidation, align
ourselves to new market segments, grow/retain business, measure ourselves differently
(with metrics that matter)—all while keeping the lights on. This was a two year journey.
In retrospect, I believe this helped us lay the foundation to become more agile.

Service Virtualization Best Practices Insights from Industry Leaders 3

In the next waves, the Affordable Care Act (“Obamacare”) was the primary impetus for
change. From a business perspective, it presented us with the opportunity to ramp up
innovation. To meet the demands of the Affordable Care Act, we needed to reduce
the complexity of internal systems, sunset legacy systems, globalize our IT teams, and
essentially leverage technology to do more with less.

The next—but certainly not final—wave revolved around achieving continuous improvement
with a member-driven approach. With the proliferation of smartphones, we anticipated that
members would want to interact with us using their mobile devices, so we launched the
“mobile first” initiative.

The following table sums up these three recent waves of disruption:

Phase IT Business Financial Industry

Business
Transformation

IT
modernization

System
consolidation

Business
transformation

Grow/retain the
business

Align to market
segmentation

Metrics that matter

Keep the lights on

Ramping up
Innovation

Virtualization
adoption

IT globalization

Legacy sunset

Industry disruptive
events

Innovation-driven
transformation

Do more with less Reduce
complexity

Continuous
improvement
with a member-
driven approach

24/7 delivery Attain/maintain
excellence

Provide cost
transparency

Bend the cost
curve

Deliver MORE
outcomes, better,
FASTER, cheaper

Strategic
thinking

Responding to Complexity with Service Virtualization

MIKE P: In response to all this disruption, we optimized many parts of our process to move
faster. However the complexity of our technical architecture was slowing us down and holding
us back; it made it nearly impossible to rapidly provide DevTest teams the test environments
they needed for a continuously-evolving SDLC. Each environment is extremely complex to
reproduce in a test environment. There are a lot of integrations, external dependencies,
configuration steps, and so on…and this makes environments very expensive to create and

maintain.

Service Virtualization Best Practices Insights from Industry Leaders 4

DIEGO: This same struggle reaches across all industries. The difficulty of testing effectively
given today’s complex environments is one of the largest barriers to making IT more effective.
There’s a formidable number of dependencies to deal with. For example, ING has 150 scrum
teams and PayPal has 680 scrum teams around the world. Just imagine all the dependencies
to contend with there.

To get around this complexity, you need to start simulating things—for example, if you don’t
have access to a mainframe that you need for testing, or if you’re testing against a third-
party service. Service virtualization can allow you to test and integrate on a continuous basis.
That’s how you start doing integration testing from the beginning. It’s introducing simulation into
the development process. What an idea! This approach is used in many other industries, but we
haven’t really used it in the software industry. I like to think about this as a wind tunnel: you put
the airplane in it and test the airplane by simulating all the conditions around it. That’s what we
need to do—and service virtualization helps you get there.

I’ve found that the organizations with the most complex systems, the ones with the most
legacy systems and the most applications to integrate, tend to be the ones most likely to
invest in service virtualization.

MIKE P: That’s exactly what happened at CareFirst. To understand the scope of the complexity
we’re facing, consider the following diagram, which describes the promotion of changes by

work type:

As you can imagine, it’s just not feasible to physically provision all the environments that

DevTest teams need, whenever they need them. That’s why we turned to service virtualization.

Service Virtualization Best Practices Insights from Industry Leaders 5

How Service Virtualization Enables Quality@Speed

DIEGO: Many leading organizations across all industries use service virtualization to help
achieve quality @ speed. Our research at Forrester found that “Agile experts” use service
virtualization twice as much as “Agile neophytes.” The “Agile experts” also are doing more
continuous testing, exploratory testing, and TDD—and they rely less and less on traditional
Testing Centers of Excellence (TCoEs), where all testing is executed far away from the team
and not integrated into the dev team and dev process.

Formula One pit stops offer a good analogy for how testing needs to change to enable
quality at speed. In the past 10 years, pit stops have gone down from 8-9 seconds to 2.3
seconds. In 2.3 seconds, these guys change 4 tires and add just a bit of gasoline because
if they don’t have to load the car up with gasoline, it can go faster. They’ve turned pit stops
from a necessary evil for keeping the cars running to a differentiating element of the race,
part of the strategy for winning the race. I think that’s how we need to think about testing.
These Formula One pit stop guys also test continuously. Testing is happening from the very
first moment when they start thinking about the design of the car, during the week as they
make adjustments to the car, as they’re driving the day before, and even during the race.

MIKE P: Exactly. In the spaces I control, we cannot allow quality to slip. I love the message of
“quality at speed.” We’ve been advocating that for years within our organization. I’m glad it

resonates and I’m glad that Forrester is out there bringing that message to the world.

Service Virtualization Best Practices Insights from Industry Leaders 6

I’ve prepared a couple graphics with the help of Cognizant and Infosys to show our strategy
for enabling our groups to move at the speed that the business requires. In the first graphic,
you see the various strategies and technologies we’re applying to implement quality at
speed. Our goal is to “engineer quality in.” This includes things like integrating test with
development and operations, doing more reviews on requirements, and being able to test
earlier and continuously thanks to service virtualization.

One of our main strategies for achieving quality at speed is to try to expose defects much
earlier in the lifecycle—when it’s easiest and cheapest to fix them. Service virtualization really
helps us to do that.

Service virtualization allows Development to have an immediate response from a virtual
service, which means they can discover unexpected behaviors (or defects) in the application
sooner—before it’s built and before it’s shipped to an integration environment. This really
helps Development tune their code very early in the process. They can get the code to the
state where they’re satisfied with it, then ship it to the testers, who can continue testing it in

different ways.

Service Virtualization Best Practices Insights from Industry Leaders 7

Service virtualization exposes issues before code reaches an integration environment, where
it’s very expensive to transact business. It’s critical to have our test environment available
24/7. One developer adding bad code could bring down the test environment for everyone.
When you have hundreds of geographically-distributed DevTest team members, this risk
escalates. Service virtualization mitigates this risk by providing a simulated test environment;
this allows us to automate more testing and enable automated promotions.

DIEGO: Yes, embedding quality in from the very beginning is definitely key for quality at
speed. The most successful organizations are those that start testing early in the sprints,
perform as many different types of testing as possible, and automate this testing as much
as possible. This really lies at the heart of Agile and DevOps and at the heart of delivering

better quality software.

Scaling Agile with Service Virtualization

DIEGO: We’ve found that dependencies among the various teams developing systems in
parallel is one of the greatest obstacles to scaling Agile. For example, imagine that Team A is
deploying software which needs to be tested against components delivered by Team B—but
Team A is on a more aggressive schedule than Team B. You don’t want Team A to have to
wait on Team B in order to complete all the development and testing tasks that involve Team
B’s components.

Service virtualization decouples these dependencies so that teams don’t reach dead-
locks while waiting on one another. If Team B has descriptions of these dependencies…
for example, Swagger…then those components’ responses can be simulated for Team A.
Once the actual component is available, they can be swapped in to replace the virtual assets.

Service Virtualization Best Practices Insights from Industry Leaders 8

MIKE P: Within our “Wagile” process (a hybrid of waterfall and Agile), we also use service
virtualization to enable different roles on the team to work in parallel.

For example, before developers start coding in each iteration, they create service
virtualization assets that simulate the anticipated behavior of the new components.
And as they write and fine-tune their code, they run it against service virtualization assets
representing the AUT’s dependencies to check how their code works in the context of the
complete system.

The developers share these service virtualization assets with testers. This allows the testers
to start defining tests and checking their scripts even before the code is written. Tests are
then redirected to the new functionality once it’s implemented. Moreover, end-to-end tests
leverage the service virtualization assets representing the AUT’s dependencies. In this way,
the same service virtualization assets that the developers use are also consumed by testers
to define, check, and execute their end-to-end tests.

With service virtualization being used in concert with our automated build and deployments,
potential agile/parallel development traffic jams are virtually eliminated and we are achieving
a tremendous level of automation, which is vital for our Continuous Testing. The team’s
service virtualization and test assets become a permanent part of the inventory for build
verification and regression testing—which can then be performed continuously so we’re
constantly checking that modifications don’t introduce new risks or negatively impact the

user experience.

What’s Next with Service Virtualization?

DIEGO: My research shows that service virtualization seems to be on a successful trajectory
in terms of adoption. Technologies go through several different phases: creation, survival,
growth, equilibrium, and then decline.

Service Virtualization Best Practices Insights from Industry Leaders 9

Service virtualization has already passed the creation stage and is now in the survival stage,
approaching the rapid growth stage. It should get there within the next 1-3 years. This isn’t
surprising given that it’s really a mandatory technology for enabling organizations to deliver
software faster and at a larger scale.

MIKE P: At CareFirst, we’re currently working towards an infrastructure where any of our
development, system integration, and performance testing environments can be provisioned
on demand in a self-service model. This enables us to test much earlier, faster, and more
completely; that’s why we call this initiative our “testing superhighway.” The technical nuances
of this system are outlined in the following graphic:

 With such an infrastructure, you can system test and do everything you need to do—including

business prototyping—before integration.

Benefits of Service Virtualization

DIEGO: Based on Forrester’s research, organizations tend to report that the greatest benefits

gained from service virtualization adoption are:

•	 Improved time to deployment

•	 Business value related to quicker releases

•	 Revenue increases related to quality improvements in software and applications

•	 Reduced third-party testing and service fees

Service Virtualization Best Practices Insights from Industry Leaders 10

MIKE P: Several years ago, environment availability was the #3 problem being cited at our
IT executive meetings—people talking about the time required to access environments and
how this impacted the speed of development. Once we realized that we typically didn’t need
the physical thing, we just needed the response, we adopted service virtualization and we
were able to respond to the business much faster. That’s been huge for our ability to keep
pace with digital disruption and save on costs so money can be better invested elsewhere.

I’d say that the most valuable benefits we’ve achieved so far with service virtualization are:

•	 Faster delivery speed

•	 Higher availability

•	 Accelerated automation

•	 Increased defect detection

•	 Increased control of environments

For example, with service virtualization providing simulated responses for our system
functions, we can start running our automated tests as soon as we complete them—and
with Parasoft’s API Testing solution, the exact same tests can automatically switch from the
virtual endpoints to the real ones (once they’re ready/available). Now, the DevTest teams
aren’t delayed waiting for all the different dependencies to be completed and available
in a test environment. Plus, we gain the 24/7 test environment availability that’s critical for
automated testing. With service virtualization working together with our automated build
and deployment capacity—as well as our test data management solution which injects more
comprehensive data sets into application to increase test coverage—we are able to bypass
all sorts of roadblocks and delays. It’s like having access to the FasTrak or Carpool lane
versus having to endure rush hour traffic.

In addition to helping catch the defects that our Development teams introduce before they
impact the integration environment, service virtualization also helps us mitigate the impact of
disruptions stemming from the third-party services we rely on. For instance, disruptions in our
middleware layer were causing us to have approximately 15,000 hours of unplanned down
time each year—and about 60% of that is related to third-party web services. Previously, such
disruptions would force us to curtail any DevTest activities that depended on these services.
When these services fail, service virtualization automatically simulates the required behavior
associated with those third-party services until the real service is back online again. DevTest
work can continue as normal and continuous testing is not disrupted since automated
regression test suites can execute as scheduled.

Basically, we’ve found that service virtualization really helps you do more with existing
resources so you can reinvest that savings in yourself and you can improve the quality faster,

earlier in the lifecycle.

Service Virtualization Best Practices Insights from Industry Leaders 11

Simulating Snowstorms in July with
Service Virtualization and Extreme
Automation
Ryan Papineau, Alaska Airlines Automated Test Engineer

How did Alaska Airlines receive J.D. Powers’ “Highest in Customer Satisfaction Among

Traditional Carriers” recognition for 9 years in a row, the “#1 On-Time Major North American

Carrier” award for the last 5 years, and “Most Fuel-Efficient US Airline 2011-2015”? A large

part of the credit belongs to their software testing team. Their industry-leading, proactive

approach to disrupting the traditional software testing process ensures that testers can

test—faster, earlier, and more completely. This selection details how Ryan and his team

used advanced automation in concert with service virtualization to rigorously test their

complex flight operations manager. The result: operations that run smoothly—even if they

encounter a snowstorm in July…

At Alaska Airlines, the flight operations manager application is ultimately responsible for
transporting 29 million customers to and from over 100 global destinations via 320,000
flights per year—safely and efficiently. As you might imagine, the application that drives all
these operations is rather complex, and has an intricate web of dependencies. Consider the

following diagram:

Service Virtualization Best Practices Insights from Industry Leaders 12

The application under test (AUT)—the flight operations manager—is at the middle, and all the
boxes connected to it represent its core dependencies. These dependencies include:

•	 Baggage: A web service that provides details about baggage quantity,
weight, size, shape, etc.

•	 Cargo: A similar web service that provides cargo details.

•	 Crew: A web service that provides crew details.

•	 Fuel: A web service that provides fuel details.

•	 Load plan: A back-end system that provides details on
how the plane should be loaded.

•	 Flight events: MQ events associated with flight status (departure, takeoff, arrival, etc.).

•	 Passengers: MQ events associated with passenger status (booked, checked in,
boarded, etc.).

•	 Aircraft communications: System that manages all pilot interactions with the flight
operations manager.

Further complicating matters, many of these dependencies also have their own web of
dependencies. Several years ago, all these dependencies were impacting our testers’ ability
to test as follows:

•	 Environment: Our test environment was shared and continuously evolving.
As we updated our application, we impacted others who depended on us.
And when those other teams updated their own applications, all the other teams—
including ours—were also impacted. As a result, teams spent a lot of unnecessary
time troubleshooting “issues” that were actually just side effects of environment
instability.

•	 Test Data: Often, the data required to set up realistic and comprehensive tests did
not exist or was too inconsistent to meet our needs. As I’ll explain in more detail later,
cloning from production was not ideal for our testing needs.

•	 Services: Likewise, the services we need to interact with were often unavailable or
too inconsistent for our testing purposes.

•	 Events: Since the AUT is an event-driven system, we need it to be populated with
realistic events before we can test it. However, due to all these dependencies and
their complexity, it was extremely challenging to get realistic sets of events (such as
passenger check-in/boarding/seating scenarios and flight departure/takeoff/landing/
arrival sequences) into the system. Adding the events needed to test extreme and
negative conditions was even more complicated.

How did we address these challenges? By fully isolating the AUT, then simulating advanced

events and test data.

Service Virtualization Best Practices Insights from Industry Leaders 13

Isolating the AUT

First, we used VMware to establish an entirely new “CERT” test environment that’s completely
isolated from our production environment as well as our other dev/test environments. This
way, we can control when we incorporate other teams’ updates, and we’re not constantly
impacted by instabilities and unintentional changes.

Within this isolated CERT environment, we then isolated the AUT from all of its dependencies
(e.g., cargo, baggage, passengers, fuel, etc.). This lets us give testers access to whatever
dependencies are required for testing—all configured to the exact conditions that their test
scenarios require.

We started by removing the dependencies on the services that were too unreliable and
inconsistent for our testing purposes. Using service virtualization, we recorded the AUT’s
interactions with its various dependencies. For an example of how this works, let’s take
the case of the AUT’s interactions with the aircraft web service, which in turn interacts with
several other web services.

To simulate the AUT’s interactions with these services, we placed a service virtualization
proxy between the flight operations manager and the aircraft web service.

Service Virtualization Best Practices Insights from Industry Leaders 14

We ran through an array of core scenarios and the proxy recorded that traffic. This enabled
us to disconnect all the back-end infrastructure and have our AUT interact directly with the
virtual asset simulating that service.

Now, when we run through our scenarios, we get consistent responses from those
dependencies. If the tests don’t achieve the expected results, we’re fairly certain that
something is wrong with our AUT.

We applied this same strategy to simulate realistic request/response traffic for our various
synchronous web services.

Simulating Advanced Events and Test Data

Next, we moved on to a more daunting challenge: simulating the responses of events and
data that were beyond the scope of request/response recording. The test environment and
AUT were sufficiently isolated for testing, but we needed a way to ensure that complex (and
highly-correlated) sets of events and test data were configured realistically and flexibly.

Two of the most challenging aspects of configuring the test environment involved how
to represent asynchronous flight events and passenger events. Each time a passenger
books a ticket, checks in, boards a flight, etc., an event is added to the airline’s system.

Service Virtualization Best Practices Insights from Industry Leaders 15

An appropriate set of such events must be present in order for the flight operations manager
to process a flight. Processing a flight also requires the presence of flight events: for example,
the events added when departing from the gate, taking off, landing, and arriving at the gate.

Without all of these events in a feasible state—and without all the different systems’ events,
data, and behavior all properly aligned—we simply can’t test the flight operations manager.
As you can imagine, manually configuring and correlating all these details would be
incredibly time-consuming and tedious. Cloning data and events from production would be
an improvement, but this approach has some key shortcomings:

•	 Testing times are restricted: The cloned sequences of data and events are correlated
to specific times, and manually altering the timing could easily result in misalignment.
As a result, testing would have to occur whenever the production data sets the
system to the desired state. For example, if you wanted to test versus 7 AM EST
flights, you’d have to run this test very early in the morning. Moreover, if you wanted
to repeat the test under the exact same conditions, you’d have to wait 24 hours for
the planes and flights to be aligned in that same way again.

•	 Testing scope is restricted: Cloned data is not flexible enough for exercising negative
tests, corner cases, etc. Given our on-time record, it’s really hard to find real data we
can use to create all the delays, cancellations, etc. we want to test against. Providing
an environment where testers could test against exceptional conditions (such as
minor delays at a particular airport or regional delays resulting from a storm) would
require considerable manual adjustment and re-alignment.

Rather than clone production data and events, we designed flexible event models that can
dynamically generate the events and data needed for any given test scenario. Using the
data captured during service virtualization recording as a baseline, we can instantly populate
the test environment with whatever type, number, and combination of departure/takeoff/
landing/arrival events that testers need in order to exercise different scenarios. Simulating
a flight is as easy as providing the departure and arrival details, then all the other events—
such as take-off, landing, and the time needed to unload, clean, and reload the plane—are
dynamically generated on-demand.

For example, the following screenshot shows our flight operations manager representing
the actual aircrafts and events scheduled in a given time period. Each row represents one

airplane, and the blocks represent the various flights scheduled for that airplane.

Service Virtualization Best Practices Insights from Industry Leaders 16

By simulating events with our event modelling strategy, we can instantly populate a test
environment with whatever number and combination of flights (and delays or cancellations)

that a tester needs. For example, we can instantly spin up something like this:

Service Virtualization Best Practices Insights from Industry Leaders 17

This way, testers can access the exact test environments they need at whatever times
they want. Moreover, they can instantly re-create a test environment at any point (e.g.,
if they need to reproduce a defect or verify that a defect was resolved).

We take a similar approach to test data modelling for passenger events. Given a specific
passenger scenario and departure time, we can apply a model that allows us to generate
test data sets representing everyone on that flight at different intervals before departure. For
example, 120 minutes before departure, the test data set might have 33% of the passengers
checked in but none boarded. 30 minutes before departure, 95% might be checked in and
45% boarded. As with our flight events, all the variables are entirely adjustable; as long as
we know what the tester needs for a given test scenario, we can dynamically spin up the
appropriate test data.

When dynamically generating test data in this manner, it is simple to switch between testing
versus a mostly empty flight with on-time boarding to testing versus an overbooked flight
where boarding is delayed. We can also adjust the model to accommodate different business
rules. For example, checkins for Mexico flights need to occur 45 minutes early, but we can
easily adjust all the timing for each passenger accordingly.

Results

Thanks to all this simulation and automation, testers can test whatever scenario they want,
whenever they want. Our tests are now 100% reliable and repeatable, and we’ve eliminated
all the variables that previously caused false positives and wasted time. Enabling testers to
instantly access the exact test environment configurations that their test plans call for helps
Alaska Airlines ensure smooth flight operations when faced with anything from a brief air

traffic control outage to a snowstorm in July.

Service Virtualization Best Practices Insights from Industry Leaders 18

How Service Virtualization Enables
Continuous Delivery
Senior Director of Technology at Capital One

Making the leap to Continuous Delivery is precarious for any organization, but the concerns

are greatly exacerbated when you’re a financial organization servicing over 65 million

customer accounts worldwide—predominantly over digital customer interactions. This

submission recounts how the Sr. Director of Technology at a US-based digital banking leader

transformed his organization’s DevTest culture, processes, and technical infrastructure in

their evolution to Continuous Delivery.

Business Drivers for Continuous Delivery

Several years ago, like most financial institutions, we were working on 3-6 month waterfall
release cycles. However, it was becoming apparent that our competitors were not only the
other banks in the industry; we were also competing with the leading technology companies.
To stay ahead of this competition, we needed to transform into a technology company that
continuously innovates and delivers top-quality products to our customers. As our CEO has
stated, “Digital is who we are and how we do business.”

After considerable research, we determined that the best way to achieve this goal was to
adopt Agile, transition to Continuous Delivery, and live in a DevOps-driven environment. For
us, “Continuous Delivery” means having an effective software assembly line. Upon each
commit, an automated process triggers a build, executes the appropriate tests (unit tests,
security scans, etc.), deploys the new build into test environments, runs an additional level of
testing, and then completes all the additional processes and validations needed to bring the
application to production. This process runs multiple times a day, every day.

Service Virtualization Best Practices Insights from Industry Leaders 19

The Impact to DevTest

Adopting Continuous Delivery requires change across the delivery teams. For example,
developers are now expected to be:

•	 Accountable for writing “automatable” code

•	 Responsible for passing tests (all tests)

•	 Fungible in all aspects of testing

These are indeed significant changes. Nevertheless, I think that the greatest impact has
been to the role of the tester. In waterfall processes, testing is often deferred until very late
in the SDLC, which diminishes the voice and influence of software testers. With Agile, testing
is brought into the “inner circle” and testers become an integral part of the team.

When teams first transition to Agile, it’s not uncommon for a user story to be implemented
in one sprint, then tested in the next one. After a little while, you might start talking about
automation and maybe performing some test automation—ideally, in the same sprint in which
the related functionality is implemented. However, many teams hit roadblocks at this point: the
functionality may not be completed by the time that testing needs to begin, or downstream
systems and environments required for testing might not be available. When this occurs, teams
usually end up having to schedule a hardening or regression sprint later on—which means that
your “Agile” process is really just waterfall in a somewhat different configuration.

To really embrace Agile and enable Continuous Delivery, testing needs to change significantly.
Testers need to be able to rapidly build robust, valuable tests that are geared towards
automation. This involves transforming testers’ skills, processes, tools, and even the metrics
being measured.

Service Virtualization Best Practices Insights from Industry Leaders 20

Transitioning to Continuous Delivery: What’s Needed

Once your team has committed to running tests every day, multiple times a day, it becomes
rather clear that traditional testing technologies and methods no longer suffice. Like most
testers, our testers previously relied on GUI-focused tools that allowed the tester to test
without getting into the “guts” of the application. However, to achieve the speed and
automation that our initiatives required, we had to shift away from this approach and adopt
more technical strategies such as ATDD and BDD, which we implemented with tools such as
Cucumber, Ruby, and Selenium. These tools require some level of programming knowledge,
but our testers weren’t programmers. To close that gap, we made a very concerted effort

to provide training and coaching, set up pair
programming, and so on.

With these tools in place and the team
ready to use them, a new constraint
typically manifests itself: you can’t access
all the dependent components required to
execute a meaningful test. This is where
service virtualization comes into play. For
example, assume that you’re on a team
building a UI and the downstream APIs or
back-end systems aren’t ready yet. How can
you effectively test your UI? With service
virtualization, you can simulate the dynamic
responses that those dependencies would
provide. You can then run your tests against
these virtual assets to start validating and

fine-tuning the front end’s interaction with the back end. Later, when those actual back-end
components are completed, you can just flip your tests to hit the actual endpoints instead of
the virtual ones. At this point, you’re just confirming that the AUT’s behavior does not change
when interacting with the real system.

For another example, assume that your end-to-end tests involve mainframes. This is
extremely common at financial institutions, and it presents quite a challenge. Mainframes
have transaction limits, and once you perform an operation on an account (opening a
new account or posting a specific payment), you can’t repeat that exact same transaction.
How can you run the same test over and over again, multiple times a day, when that account
expires after the first test run? We can avoid this predicament by simulating mainframe behavior
with service virtualization. It also helps to have a test data management solution that provides
instant access to data that’s reusable across our test and service virtualization efforts.

After overcoming those roadblocks, you need to learn how to plug your tests into the
Continuous Integration pipeline, which is essentially your automated assembly line. This
involves understanding how to use a tool like Jenkins to call the test suite and how to tag
tests to indicate in which phase(s) each test should run—and what to do when it fails.

Service Virtualization Best Practices Insights from Industry Leaders 21

Service Virtualization as a Process Tool

Our approach to implementing service virtualization was to establish a centralized service
virtualization practice driven by our enterprise team (a center of excellence).

When we first started with service virtualization, our initial focus was on removing perfor-
mance testing constraints. Establishing properly-scaled performance test environments in
a non-cloud environment is extremely costly, so we wanted to use service virtualization to
replace systems that were not available in our performance testing region.

We created an enterprise team and decided to have that team serve as service virtualization
experts. They would create the first round of virtual assets, then turn those assets over to the
teams they supported. Once the enterprise team created the first set of virtual assets, they
trained the performance testers on how to access them, manage them, extend or modify
them, and how to create new ones. The result: an army of performance testers skilled at
performing service virtualization.

To begin the next phase of the rollout, we identified other business application development
teams that were wrestling with system constraints. After exploring the scope of their
constraints, we developed strategies for how they could apply service virtualization to
eliminate these constraints. In some cases, we trained them on how to build virtual assets
from the start; in others, we handled the initial asset creation, then helped them take it over
from that point forward.

Today, the enterprise team does not create any virtual assets; the application development
teams all handle it themselves. People are able to take the Parasoft documentation and
supplemental training material, then start creating the virtual assets that their team needs.
We still provide guidance as needed, but the responsibility for creating assets is borne solely
by the application development teams. The enterprise team’s focus is on exploring more
advanced applications of service virtualization. For example, we’re currently looking into
how to:

•	 Take advantage of Docker with service virtualization

•	 Use cloud solutions like AWS to create test environments and load generators
on the fly

•	 Plug service virtualization into different pipelines

•	 Ensure that no human interaction is needed to execute performance or functional
tests, scale them up or down, and ensure that the test results are automatically sent to

the appropriate people

Service Virtualization Best Practices Insights from Industry Leaders 22

Tips for Transforming Test

When I discuss our DevTest transformation at conferences, a lot of people are rather
shocked. The role of the tester at our organization is significantly different than it is at many
other organizations—especially in the financial industry. Testers don’t necessarily need to
be developing applications, but they do need to understand things like Groovy and Java
in order to perform the necessary automation and take advantage of the tools and best
practices we’ve standardized on. They also need a good understanding of the Continuous
Integration pipeline, how to apply service virtualization to remove constraints, how to create
tools to get data dynamically using the cloud, and so forth.

It’s not easy, of course. But as testers learn these new skills through training, pair programming
with developers, and so on, they really extend their role to become an integral part of the

team and to help us achieve “quality at speed.”

 

Service Virtualization Best Practices Insights from Industry Leaders 23

Service Virtualization, Performance
Testing, and DevOps
Frank Jennings, Director TQM Performance Testing at Comcast

Before service virtualization, Comcast’s Performance Testing team often ran into scheduling
conflicts around sharing the test infrastructure. Sometimes downstream systems were not
available. Other times, test engineers would try to run tests at the same time, which could
affect the test results. This led to variability between tests, which made it challenging to isolate
particular problems. Learn what results they’ve been able to achieve after approximately
3 years of service virtualization—and why service virtualization is a key component of their
DevOps initiative…

We turned to service virtualization for two main reasons. First, we wanted to increase the
accuracy of performance test results. Second, we were constantly working around frequent
and lengthy downtimes in the staged test environments.

My team executes performance testing across a number of verticals in the company—from
business services, to our enterprise services platform, to customer-facing UIs, to the backend
systems that perform the provisioning and activation of the devices for the subscribers on
the Comcast network. While our testing targets (AUTs) typically have staged environments
that accurately represent the performance of the production systems, the staging systems
for the AUT’s dependencies do not.

Complicating the matter further was the fact that these environments were difficult to access.
When we did gain access, we would sometimes bring down the lower environments (the QA
or integration test environments) because they weren’t adequately scaled and just could not
handle the load. Even when the systems could withstand the load, we received very poor
response times from these systems. This meant that our performance test results were not
truly predictive of real world performance.

Another issue is that we had to work around frequent and lengthy downtimes in the staging
environments. The staging environment was not available during the frequent upgrades
or software updates. As a result, we couldn’t run our full performance tests. Performance
testing teams had to switch off key projects at critical time periods in order to keep busy–
they knew they wouldn’t be able to work on their primary responsibility because the systems
they needed to access just weren’t available.

These challenges were driving up costs, reducing the team’s efficiency, and impacting the
reliability and predictability of our performance testing. We knew we had to take action—and
that’s why we started looking at service virtualization. Ultimately, we found that the time and
cost of implementing service virtualization was far less than the time and cost associated

Service Virtualization Best Practices Insights from Industry Leaders 24

with implementing all the various systems across all those staging environments—or building
up the connectivity between the different staging environments.

Results After 3 Years of Service Virtualization

We’ve been doing service virtualization for about 3 years now. Our initial focus was on the
biggest pain points in terms of scheduling conflicts within the performance testing teams,
unavailable systems, and systems where our testing would impact other development or test
groups. Since we started, we’ve been able to virtualize about 98% of the interfaces involved
in our tests, and we’ve seen a 65% annual reduction in the amount of time it takes us to
create and maintain test data (factoring in the time we spend creating and updating virtual
assets). We’ve also reduced staging environment downtime by 60%.

Our tests are now more predictable, more consistent, and more representative of what would
be seen in production. Moreover, we’re also able to increase the scope of testing in many
cases. For example, we can’t put production loads on certain actual services, but when we’re
working with virtual services we can ramp it up with production-level loads and get realistic
responses, both in terms of data and performance. We can really isolate the AUT, not just
from a performance testing perspective, but also from a performance profiling perspective.
Instead of just telling development “this is the performance of your system,” we can also
say “this is where we’re seeing the bottlenecks and this is where we think changes might
improve the throughput of the application.”

The key benefit for the performance testing team is the increased uptime and availability
of test environments. Service virtualization has allowed us to get great utilization from our
testing staff, complete more projects on time, and also save money by lowering the overall

total cost of performing the testing required for a given release.

Service Virtualization and DevOps

Beyond performance testing in our staging environments, we’ve also been able to use service
virtualization for everything from unit testing and regression testing in the development
environment, to baseline performance testing in early downstream environments, to functional
and regression testing in the QA/integrated environment, to manual/exploratory testing in an
environment that’s quite close to production (but uses virtual assets in some cases).

All the configuration and deployment of virtual assets for the various environments is automated
as part of our DevOps infrastructure. Environments automatically switch between virtual assets
and actual assets according to the business rules we’ve defined—for example, based on what

endpoint the traffic is coming from, the data contained in the test packets, etc.

Compressing Testing From 2 Weeks to 2 or 3 Days

Since we can start working on our scripts versus virtual assets in the development environment,
we’ve typically got everything ready to go quite early in each sprint. Before, we used to need
2 weeks to performance test the code (for example, with average load tests, peak load tests,
endurance tests, etc.) once we got it in our staging environments. Now, we’ve shrunk that to

just 2 or 3 days.

Service Virtualization Best Practices Insights from Industry Leaders 25

Service Virtualization is Essential
for Functional Testing of Complex,
Distributed Systems
Sanjay Chablani, Head of SQA Biogen Idec, reflecting on the service virtualization
implementation he oversaw as Director of eCommerce Quality Management at Staples

Staples is committed to making everything easy for its customers, but ensuring positive

customer experiences on their eCommerce site is far from simple. Functional testers must

contend with the high number of dependent systems, subsystems, and services that are

required to complete almost any eCommerce transaction—but rarely available for dev/test

purposes. Learn how the eCommerce functional testing team leveraged service virtualization

to more rapidly and more exhaustively test complex transactions across highly-distributed

systems…

As the director of QA for the Staples eCommerce site, my team and I were responsible for
ensuring that every transaction involving the eCommerce application operated seamlessly
and reinforced the company’s commitment to providing an easy customer experience.

Like so many modern applications, the eCommerce application interacted with hundreds of
other systems and services, all of which were reused widely across the company and had
multiple integration points. This complex distributed architecture was great for providing
consistent reusable functionality across the organization and enabling us to minimize
application footprints. However, it definitely complicated our team’s ability to perform the
functional testing needed to ensure that end-to-end transactions across the eCommerce site
met expectations.

Some of the main challenges we faced with our functional testing included:

•	 Environment availability: With today’s enterprise systems, being able to fully replicate
environments for testing is no longer a possibility. Replicating a fully-connected
environment multiple times would require too much money and effort—and sometimes
it’s simply impossible (such as when we need access to not-yet-implemented components
being developed in parallel). Nevertheless, having complete test environment access
was critical to our ability to execute almost any test. Inability to access just one dependent
subcomponent could impact the testing of our entire eCommerce site.

Service Virtualization Best Practices Insights from Industry Leaders 26

•	 Environment scheduling: Since the subsystems, subcomponents, and services that we
(and many of the other divisions) relied up on were all owned by different groups, we
were always competing for access to these constrained resources.

•	 Access to realistic test data: To complete a single test, we needed to have test
data refreshed and synchronized across the various services, subcomponents, and
subsystems. Considerable effort and coordination among different teams was needed
to get the right test data populated across all the systems.

Our initial attempt to overcome these challenges involved stubbing. At first, we built
some basic stubs, then we moved to “semi-intelligent” stubs, which we deployed in our
test environments so they could stand in for the actual services. However, stubs had their
limitations. They’re highly static and they typically require the involvement of developers
who are familiar with how the applications interface.

When we heard about service virtualization, our group quickly recognized its potential to
address our functional testing challenges, and we were the ones that took the lead on the
company’s service virtualization initiative. What initially drew us to service virtualization was
how much easier it would be—in terms of recording traffic, deploying virtual assets that
simulated this traffic, then making those virtual assets available for on-demand provisioning.

The goal of our service virtualization initiative was to create a library of virtual assets that
would represent service providers and service consumers, including the message bus
(service proxy). Essentially, if a system was not something we were responsible for testing, we
would create virtual assets for it. This would allow us to simulate any dependency involved
in our various end-to-end tests. To promote the development of such a rich library, we made
virtual assets a required deliverable within the SDLC.

Ultimately, we found that service virtualization provided us the following benefits:

•	 Faster release cycles: With service virtualization, we could start testing earlier in each
cycle, and reduced the time required to execute our test plans. This was especially
critical on parallel development projects, such as when the Retail, Warehouse, and
eCommerce teams were all working on functionality related to online ordering with
in-store pickup. This was a complex project with a very aggressive timeline. Using
service virtualization to simulate resources that were still being developed, each team’s
development and testing could move forward without waiting on the others. With the
virtual assets, we could start integration testing much earlier than if we had to wait for
all the dependent components to be completed. This helped us get everything running
smoothly even before we integrated all the completed components. Ultimately, we not
only completed the project on budget, but actually ended up deploying it two weeks
early. This success really helped us promote service virtualization adoption across the

company.

Service Virtualization Best Practices Insights from Industry Leaders 27

•	 Greater control over environment stability and application behavior: We could

complete test scenarios that were previously impossible (due to data privacy guidelines)

since service virtualization enabled us to mimic behavior that was very data dependent.

Moreover, we could not only trust that the dependencies we needed to access would

be available, but also exert additional control over them (e.g., to test corner cases, error

conditions, etc.) to achieve greater test coverage.

•	 Ability to test on our own schedule: We no longer had to wait on others to complete

applications being developed in parallel, and we no longer had to compete with other

teams in order to schedule limited windows of access to highly-constrained shared

resources.

•	 Reduced issue and defect resolution times: Before, we had to look at all the different

subsystems to try to figure out what was causing a problem. By turning on different

virtual assets, we could really isolate different subsystems and quickly zero in on the

root cause of the problem.

 

Service Virtualization Best Practices Insights from Industry Leaders 28

We Couldn’t Do Agile Development
Without Service Virtualization
Bas Dijkstra, Test Automation and Service Virtualization Consultant

After KPN decided to adopt an Agile process with 2-week iterations, their 6-week long

QA test cycles became an immediate concern. Acceleration would be impossible unless

they addressed the underlying bottleneck: a lengthy, manual process for setting up test

environments and test data. Learn from their experiences using service virtualization to

eliminate this constraint—as well as to extend and automate testing…

At KPN, the shift to Agile would not have been possible without service virtualization. Our
team focuses on a central order management system which has numerous dependencies;
even a simple order provisioning transaction touches at least 10 other systems. One of those
systems created a major bottleneck for testing.

To complete almost any end-to-end test case through this order management system, the
test team had to execute an order provisioning transaction. However, such transactions
could not be completed unless the corresponding order information was already present in
the back-end system’s database—and the delay between requesting an order and having it
manually entered into the database could be 2 weeks or more, due to resource constraints.

Before the shift to Agile, test cycles lasted 6 weeks or more. The test team could execute
only a limited number of test cases because they had a limited number of orders at their
disposal. Approximately every other test cycle, we’d have a release. Over half of the entire
cycle was dedicated to test, which cut into development quite significantly. The process was
also delayed by all the rework and retesting that stemmed from defects being discovered so
late in the cycle.

If we tried to adopt 2-week Agile sprints without eliminating the 2-week long (or longer) test
environment access delay, the sprint would have been over before testing could even begin!

We saved weeks per test cycle by adopting service virtualization. Before, we had to wait
for orders to be entered before any testing could begin…then everything had to be tested
manually. With service virtualization, orders could be added much faster—in minutes instead

of weeks—so we could test earlier and more extensively.

Service Virtualization Best Practices Insights from Industry Leaders 29

Increased Test Coverage

We could achieve far higher test coverage with service virtualization because the more
orders that we had at our disposal, the more test cases could be executed. This enabled
much higher coverage versus requirements.

Testing could also cover a much broader range of test data. For example, the customer’s zip
code determines what types of products are available. If a test retrieves product information
from a live product availability service, the test can cover only products that are currently
available for a given zip code. With service virtualization, you can easily define and apply
data for other scenarios—like product packages that will soon be available in a certain zip

code.

Service Virtualization vs Stubbing/Mocking

KPN’s development efforts also benefited from service virtualization. Developers are using
some of the virtual assets to perform integration testing within their development environment.
Prior to service virtualization, they had to mock or stub everything themselves. They are

finding that service virtualization is not only faster, but also more flexible and more realistic.

Automated Testing

When you’re waiting weeks to be able to execute a single test case, automated testing
simply isn’t possible. Since service virtualization enables orders to be provisioned in minutes
rather than weeks, test automation has become a reality for KPN.

Service virtualization has also helped us automate the testing of some validations that we
could never perform before—with either automated or manual testing. For example, the
central order management system (the main application the testing focuses on) sends out
“fire and forget” messages to ISPs and other people that might be interested in the status of
an order or a process. Since this communication is one-way only (no response is received),
there was no way of checking whether the updates were actually sent and what the message
contained. They’re sent out into thin air, then who knows what happens.

To gain visibility into this process, we created virtual assets that act as the ISP backend
systems and actually capture the fire and forget messages. The virtual assets then store the
messages in a database so they can be picked up by Parasoft’s functional testing solution.
This enabled us to confirm whether the updates were sent and even enabled us to validate

whether the message contents met expectations.

 

Service Virtualization Best Practices Insights from Industry Leaders 30

Time to Market…with Quality
The IT Director at one of the largest telecommunications companies in Benelux

When it comes to the classic cost, quality, schedule triangle, one of the largest
telecommunications companies in Benelux is not willing to make any of the classic
compromises. To advance the company’s “Time to Market…with Quality” initiative, they
turned to Service virtualization. Learn from their experiences shifting left all phases of
their extensive quality practices (e.g., unit testing, integration testing, system testing, load/
performance testing, security testing), as well as using Service virtualization to enable a
fully-automated build-deploy-test pipeline…

Our vision around service virtualization is focused on “shift left”: starting development
and testing much earlier in the process. This helps us advance our organization’s “Time to
market… with quality” initiative.

There are three KPIs critical to project management: time, quality, and budget. When you
focus on one, the others tend to suffer. Our organization focuses on both time to market and
quality: we want to get the product to market fast, but we will not compromise quality. Quality
is critical to our brand, so we never cut corners in that respect.

Service virtualization assists us with both “time to market” and “quality.” Of course we want
to be able to develop fast, but we’ve got a very complex environment. We’re not a startup—
we have a lot of applications and a complex infrastructure with many connections and
dependencies. To give you some idea, we have about 2000 total applications. There are
about 300 main applications used in our business, and about 70 comprise the core. All these
applications talk to each other and they all assume that the others are available. Each time
we add or change something, it’s a huge effort to validate that the new functionality meets
expectations and ensure that it did not have unintended side effects.

Service virtualization gives us the opportunity to begin development and testing earlier. It
impacts the full development lifecycle, starting with development and unit testing, to system
testing, up to non-functional requirement testing, load and performance testing, and even
security testing.

To “shift left” development, we use service virtualization to validate the design that, up to that
point, exists only paper. As soon as a design is validated by different teams, we represent
it as a virtual asset so we can start understanding how it really works. At that point, anyone
who needs to develop against that interface can start immediately—before a single line of
code is written.

Service Virtualization Best Practices Insights from Industry Leaders 31

By deploying virtual assets in our test environment, we can start testing even when parts
of the system aren’t yet completed or aren’t readily available for testing. In addition to

simulating expected behavior, we also use service virtualization to simulate outages of
various dependencies. This enables us to validate how the application under test responds
when other system components fail.

Service virtualization has also provided us value in terms of our training environments.
Before, to deliver a complete end-to-end training session, we would need a full end-to-end
set of applications. That’s a huge cost—and in many cases, training involves just a fraction
of a system’s capabilities. Now, we use service virtualization to simulate different training
cases. This lets us provide complete and realistic training environments without incurring

huge infrastructure costs.

Enabling the Automated Build and Deployment Process

We see service virtualization as a layer that supports all of our projects and improvement
activities across the full development lifecycle—including the way we develop, the way we
test, and the way we release and deploy software.

As part of our “automated software build and deployment” initiative, we have set a goal to
have a nightly build that triggers regression testing, unit testing, etc. The results are reported
to development daily. Before the application is promoted to integration testing, certain
policies for coverage and success rates need to be achieved. We view service virtualization
as a way to increase the scope and success rate of the automated regression tests. The
more endpoints are available for testing, the more regression tests we can execute, and the
fewer false positives we’ll have to review.

To support this initiative, we’re designing our own “best-of-breed” system that builds the
applications and tracks quality metrics. For instance, for Java projects, we have a mixture of
commercial and open source tools for source code management system, automated build
and deployment, quality management, security testing, and unit testing. Currently, we have
around 115 applications subscribed to that framework, and we’re in the process of building it
out to cover our .NET development projects as well.

Since we also have a lot of software developed by partners, we would like to contractually
set the targets that they need to reach in terms of quality and regression testing, unit testing,
etc. When dependent systems are not available for testing or are maybe not yet even
implemented, service virtualization assets can be used instead.

Server and Service Virtualization

Currently, we have a lot of servers virtualized, but they’re all static. We don’t have a build and
destroy process for our test environments. They’re built once and used for quite a while. We
have 3 or 4 major releases per year, and we build and destroy the environment each time—
and of course, the environment grows each time.

Service Virtualization Best Practices Insights from Industry Leaders 32

Each time a new application needs to be deployed, we have 5 corporate test environments
ranging from integration testing to post-production environments. If you need to deploy an
application in each of these environments, a considerable amount of configuration effort is
required. That’s why we’re considering whether we really need the entire application in each
environment, or whether a virtual asset will enable us to achieve the same objective much
faster.

We’ve already reached our goal of 80% server virtualization and we’re setting a target of
80% service virtualization. Of course, sometimes the two are linked.

At this level of virtualization, it’s time to consider on-demand provisioning. We have a lot
of non-corporate environments that are set up for specific projects. They should be set
up for build and destroy, but they’re not destroyed. We’re currently planning to use both
server and service virtualization to set up temporary development environments or system
test environments specifically for certain new projects. These would be partially virtualized

servers and partially service virtualization assets … that’s the next phase for us.

Think Big, But Start Small

Our main advice to anyone getting started with service virtualization is “Think big, but start
small.” Start using service virtualization where it delivers the greatest value. This way, it’s
much easier to sell the organization on the value of service virtualization. You don’t want to
make a tool available and have to push people to use it. It’s much better to create a high
demand, where you have more people than you can handle approaching you asking to
use it.

Look for the “low-hanging fruits” associated with frequency and demand and make sure
those are available. Sometimes, even a relatively easy service virtualization task can make
a big difference when it comes to enabling testing. For instance, one rather simple virtual
service allowed us to replace a very complex appointment booking system. Another virtual
service that was extremely easy for us to create helps us test negative scenarios—something
that was quite valuable in our test environment.

When we were debating where to start, we talked about all the different use cases for service
virtualization. For example, we looked at recording behavior and having virtual assets play
it back, data-driven virtual assets, algorithmically-driven virtual assets, virtual assets that
simulate a system that is not yet implemented, those that simulate a system that will never
be available for test because it’s too expensive, and so on. For every possible use case, we
implemented something to prove that it works and to demonstrate the value. We have now
demonstrated the value across the board. It’s not always the most complex virtual asset, but

we have proven that it’s possible in every use case.

 

Service Virtualization Best Practices Insights from Industry Leaders 33

Service Virtualization with API Testing
Aaron Martin, Programme Test Manager at Ignis Asset Management

Ignis Asset Management is a global asset management company, headquartered in

London, with over $100 billion (USD) in assets under management. They needed to

accelerate testing for parallel and Agile development. Learn how they applied service

virtualization as part of a broader test automation initiative to reduce testing time for

their regression test plan from 10 days to a half day…

Ignis recently embarked on a large project aimed at outsourcing the back office as well as
implementing the architecture and applications required to support the outsourcing model.
To meet the business’s needs, a number of projects have to be developed and delivered in
parallel. However, we didn’t have the resources, budget, and management capacity required
to create and maintain multiple test environments internally. This limited test environment
access impeded our ability to validate each application under test’s (AUT) integration with
third-party architectures. Moreover, our third-party providers also had limited test environment
access, which restricted the time and scope of their joint integration testing.

At the same time, the company was transitioning to an agile development methodology. To
support this initiative, we needed to adopt an automated testing solution to provide faster
feedback after each build.

It soon became apparent that the existing testing process had to be optimized in order
to meet these new demands. Executing the core test plan required 10 man-days.
This process involved manually entering transactions in the originating application, which
wasn’t the primary AUT. Moreover, we were also manually building simple stubs to simulate
interactions with third-party components that were not integrated. To enable complete testing
to occur in more agile, parallel development—without requiring additional test environments
to be built and maintained— we needed ways to:

•	 Enable applications (or parts of the target architecture) to be tested against
the Ignis architecture before integration into the complete Ignis system.

•	 More efficiently simulate the AUT’s interactions with third-party systems not yet

integrated into the Ignis system.

Service Virtualization Best Practices Insights from Industry Leaders 34

Starting Integration Testing Prior to Integration

With automated API testing and service virtualization, we were able to establish a test
automation framework that not only addressed the challenges outlined above, but also
helped extend test automation across the SDLC.

Our initial implementation of the API Testing solution focused on automating the generation
of order management traffic at the API level. The AUT was the message architecture,
which interfaces with third-party components—both existing services provided by business
partners as well as services being implemented in parallel by outsourcing providers. From
the application initiating the order, live trade scenarios were used to form the basic test
transactions. With the API testing solution, we were able to run the full transaction test plan,
generating new instances of the message from data sources.

In parallel with the functional test automation, we adopted service virtualization to simulate
the expected transaction response messages from third-party components. First, we
rapidly implemented simple virtual assets that provided positive responses to all generated
transactions, enabling us to simulate third-party responses without manually developing and
managing stubs. The virtual assets were then extended to handle more complex response
scenarios.

Additionally, we implemented automated tests and virtual assets to test outsourced
components fully- decoupled from the Ignis environment. We used this to establish a “quality
gate” that had to be passed before progressing to the integration phase. This was quite
useful, since their code quality was poor and repeated testing in our integrated environment

would have impacted other deliverables.

Reduced Test Time from 10 Days to Half a Day

We were able to reduce the execution and verification time for our transaction regression test
plan from 10 days to half a day. This testing is not only automated, but also quite extensive.
For example, to test the Ignis system’s integration with one business partner’s trading system,
our fully automated regression testing now covers 300 test scenarios in a near UAT-level
approach—with 12,600 validation checkpoints per test run.

Previous automation implementations focused on automating testing at the UI level—with
varying levels of success. We determined that we really needed to generate transaction
scenarios and traffic at the API level instead. Now, we’re able to focus on the core test

requirements and get more value from our investment in automation.

 

Service Virtualization Best Practices Insights from Industry Leaders 35

Bridging the Technical Gap for Executive
Buy-In
Alvaro Chavez, Manager of Software Architecture at Hiper SA

Hiper SA is an independent software vendor that provides custom financial services software

to clients such as Procesos MasterCard Peru, Banco de Credito del Peru, Scotiabank Peru,

BBVA Peru, BAC (Bank of Central America), Visanet Peru, and many other Latin American

businesses. The software they build integrates with numerous third-party systems in order

to ensure secure, reliable, and compliant banking and payment transactions. They adopted

service virtualization so that they could begin extensive integration testing even before the

third-party systems were readily available for testing. Learn how Hiper’s technical leaders

gained executive buy-in for the service virtualization purchase…

What convinced our executives of the value of service virtualization was its potential for us
to increase our competitiveness while isolating business risk. Our software supports financial
transactions where even a “minor” glitch could have consequences for the business. To
make sure the software we build is very reliable and does not bring risk to our customers,
we need to extensively test how it works with the customer systems we are integrating with.
However, we cannot access the actual customer systems for testing until we are ready to
bring our completed software into the customer environment (we cannot remotely connect
to the customer’s system from our site). This means that integration testing cannot start until
late in the process and it’s difficult to complete all the testing we want to perform.

The proof of concept with service virtualization convinced us that we could simulate the type
of complex transactions we work with—for example, transactions that directly hit 15 systems
(and indirectly involve hundreds of systems) interacting over many different protocols
and formats such as ISO 8583 and FIX. Once we saw this, we were confident that service
virtualization would help us start testing how our software integrates with customer systems
as soon as we completed each “component” internally. We knew this would help our team
do the same (or greater) amount of testing a lot faster.

When we approached management for approval, the main selling point was that service
virtualization would enable us to complete each project faster without any additional
business risk. To the company, this meant that we could propose shorter timelines than
our competitors when we bid for a project. It also meant that we could allocate our own
resources more efficiently. Instead of having testers wait until late in each cycle to be able
to test, they could start testing earlier, finish testing earlier, then move on to other projects.

Service Virtualization Best Practices Insights from Industry Leaders 36

As a result, we could get payment for each project sooner as well as increase our capacity
to take on more projects over time.

Now that we have service virtualization approved and we are beginning the implementation,
we expect that we will shorten the length of each cycle and that fewer cycles will be needed
in order to satisfy client expectations. We are also anticipating that when we finally connect to
the customer system, we won’t have many big issues since we will have already completed so
much testing against the simulated interfaces. This will make project timelines and budgets
much more predictable. With service virtualization, we know that we can complete projects

faster and ensure that they have the same, if not greater, level of quality.

Service Virtualization Best Practices Insights from Industry Leaders 37

A Love Letter from Cloud Dev/Test Labs
to Service Virtualization:
“You Complete Me”
Jason English, Galactic Head, Product Marketing at Skytap, Inc.—a provider of cloud-
based Environments-as-a-Service for enterprise software development and testing

Drawing on a varied background of interactive design and marketing for supply chain

and enterprise development vendors including CA, ITKO, Agency.com and i2, Jason has

appeared as an author and pundit in numerous technical trade publications and co-wrote

the book “Service Virtualization: Reality is Overrated.” The following submission takes

a lighthearted look at the “relationship” between two complementary technologies:

service virtualization and cloud dev/test labs…

Dear SV,

Hey, I know it’s been a while since we started being “a thing.” When we met, everyone said
you were just mocking, and that I wasn’t real enough to make a living, with my head in the
clouds. Yet, here we are, a few years later.

Service Virtualization, you complete me.

As a young Dev/Test Cloud, I always wanted to try new things. And what better use for Cloud
than experimenting with software for startup companies? I was flexible, I thought I had the
capacity to handle anything. I’d stay up all night studying or partying, but sometimes I’d
crash. So what if some college kid’s cloud-based photo-sharing site experiment goes down?
It wasn’t going to impact anyone’s life.

But when it came to serious business, there was always something missing. What was I going
to make of myself? Who could trust their future to me, and develop things that really matter
in the cloud? Clearly I didn’t have everything I needed – I was lacking certain critical systems
and data, and it was preventing me from maturing. But you came along and together, we
changed all that.

One thing I’ve learned is that I don’t always have to handle everything by myself. A dev/test
cloud environment is not just a place to store and run VMs for application work—it needs
the same clustering, network settings, load balancers, security and domain/IP control as you
have in production. I can handle a lot, for sure.

Service Virtualization Best Practices Insights from Industry Leaders 38

But there are certain items developers and testers need that don’t image so well. Like a
secure data source that should be obscured due to HIPAA regulations, or a mainframe system
the app needs to talk to, but would be unwieldy to represent in a Cloud like me. That’s when
I say Service Virtualization makes every day a great day.

We’ve come a long way since then, and we’ve handled increasingly serious challenges.
Simulating some very complex interaction models between systems, and deploying those
into a robust cloud environment of real VMs and virtual services that can be copied, shared
and stamped out at will across teams. We work together so well, we can practically finish
each other’s sentences.

Hard to believe all this started less than 10 years ago. Here’s to us, Dev/Test Cloud and

Service Virtualization standing the test of time. Now let’s go make some history together.

	 Yours faithfully,

	 Cloudy

 

Service Virtualization Best Practices Insights from Industry Leaders 39

How Service Virtualization Impacts
Business Strategy
Christine D. Eliseev, Founder and Managing Partner at QMAT Solutions (a staffing,
recruiting and training firm that specializes in Quality Management and Testing), Big 4
alumni, and national speaker on current testing trends

Founder and former Director of the Quality Management & Testing consulting practice at

PricewaterhouseCoopers LLP, Christine grew PWC’s practice into a global network, offering

traditional project-based software test strategy and management, as well as enterprise-

wide Quality Transformations. Christine has been in systems integration consulting for 20

years, leading enterprise-level transformation projects for many Fortune 100 clients, as well

as defining the test strategy and approach for some of the most complex mission critical

systems. Draw from her experience as she shares her insights on how service virtualization

influences business strategy…

Service Virtualization’s Impact Beyond IT

Service virtualization has historically been viewed as a tactical solution to an immediate
problem: we had a lot of development and testing work to do, and we were looking for
ways to complete it more efficiently. Service virtualization definitely helped us achieve that—
by now, it’s quite clear that service virtualization reduces development cycles and exposes
more defects earlier.

To date, service virtualization conversations have primarily focused on IT strategy:
“How do we implement service virtualization tools and processes within our IT organization
so that we can deliver higher quality software faster?” I think the next logical conversation we
need to have as an industry is “How does service virtualization influence business strategy?”

Service virtualization’s impact on the business extends far beyond IT. Since testing has
traditionally created such a formidable process bottleneck, removing this constraint may bring
changes and opportunities throughout the business. For example, when we’re planning how
long it will take us to bring a new product/campaign/service to the market, the process by
which we perform estimations has to change because our variables have changed. Assume
that we’re launching a new retail campaign. We would have to understand how quickly we
could get all the different components mobilized: updating the web sites and mobile apps,
adjusting online pricing, updating in-store registers, and so on. If the organization has now
successfully deployed service virtualization, this affects estimations for all those aspects of

the campaign. It could also enable more “just in time” activities, since the release cycle is

Service Virtualization Best Practices Insights from Industry Leaders 40

significantly shorter. In terms of our campaign example, this could give you the freedom to
defer certain promotion details until you’re closer to the planned campaign start date—for
instance, to better align the campaign with your current inventory, to take advantage of any
unexpected trends that recently surfaced, etc. The cross-corporate impacts outside of IT can
even extend beyond marketing and sales. For example, if you know you’ll be putting out a
product faster, you might need to ramp up hiring.

We’re undeniably in a blended business enablement environment. Yes, the enabling
technology is software and infrastructure, but as we bring those two things together it’s not
just about IT strategy—it’s really a matter of business strategy. Since service virtualization can
bring such impressive efficiencies, it really is significant enough to impact the business as a
whole.

Disruptors as game-changing as service virtualization influence how people approach
business strategy: given this “gift” of extra time and the ability to move faster, what should
we do next in order to provide the greatest value to the business…and how long will it take
us to do it? From sales, to marketing, to human resources and beyond, the business is now
remarkably impacted by the fact that not only can we enable so much of the business with
technology, but we can enable it so much faster than we could previously.

Time to Raise Your Definition of Quality?

Another interesting subject is the potential of service virtualization to fundamentally change
an organization’s definition of quality. It enables us to shift from an inside-out approach to a
business-driven approach. In other words, rather than basing targets on what we’re currently
achieving, we now can (and should) aim for a higher level that’s more closely aligned with
business risks.

“The definition of quality” at the level of the particular application, division, or project typically
revolves around your level of failure tolerance. If you know that service virtualization enables
you to find 60-90% of your defects earlier, what was considered “good” before might not
be good enough now, given the new ability to test earlier, faster, and more extensively.
The move to service virtualization could be a prime opportunity to re-examine your current
expectations and consider whether you can now raise the bar on quality.

At a higher level, you have the organization’s definition of quality. In addition to expectations
for the application or project, this could also cover expectations for the people who are using
service virtualization. For example, you might want to adjust KPIs like failures per LOC based
on what’s now possible given this new disruptive technology. Moreover, you might start
measuring people on metrics that you never even considered before, such as measuring
developers on how many tests were run prior to deployment. This wouldn’t have been
feasible 5 years ago, when the focus was on doing just enough testing to ensure something

was releasable—not on achieving and logging a certain level of test coverage.

Service Virtualization Best Practices Insights from Industry Leaders 41

Widening the Gap Between “Verification and Validation”

From a business strategy perspective, the divide between verification (making sure that the
software works) and validation (making sure we built the right thing) is actually increasing as
a result of simulation technologies like service virtualization.

Previously, that line was much more blurred. You would bring in users to perform some
system integration testing, let them play around with the system a little, do a final check
off, then call that “user acceptance testing.” However, this was hardly an ideal approach.
Bringing end users into the testing cycle is costly because any amount of time users spend on
testing means less time available to complete their core job responsibilities. Not surprisingly,
many managers are reluctant to have their employees participate in user acceptance testing
because it siphons time and resources away from achieving their main goals.

Now, that gap is increasing to a point that it offloads a lot of work from the users. IT can
demonstrate to the end users the greater depth of verification that has been completed by
taking advantage of service virtualization, leaving the users to indicate whether it meets
their needs. This is a huge relief to most users. When they realize that the application has
already been exhaustively tested by the time they see it, most are thrilled because this saves
them a considerable amount of time. In many cases, users are requesting to skip actual user

acceptance testing and base their acceptance decision on what they see in a demo.

What Service Virtualization Means for Testers

As service virtualization surfaced, many testers worried that it was a threat to their jobs.
However, that couldn’t be farther from the truth. I think it’s become clear that this isn’t the end
of the tester; it’s the beginning of the next phase of testing.

Service virtualization has emerged as an enabler that allows us to take “test” from a tactical
time-boxed activity into a more strategic activity that spans the lifecycle of the release
candidate and is much more closely aligned with the business risks associated with the
application. Of course, to achieve this, we need to think through some things differently in
terms of what to do, when to do it, and how to do it.

This is truly an evolution of the terms of testing. We can’t keep doing things the same
way because we just don’t live in that world anymore. Service virtualization is an enabling
technology, a stepping stone that will bring us to the next phase of testing…one that

I expect will involve an array of different automation techniques and technologies.

 

Service Virtualization Best Practices Insights from Industry Leaders 42

About Parasoft
This resource was curated by Parasoft, industry-leader in Service Virtualization, API Testing,
and Development Testing.

Parasoft researches and develops software solutions that help organizations deliver defect-
free software efficiently. To combat the risk of software failure while accelerating the SDLC,
Parasoft offers a Development Testing Platform and Continuous Testing Platform. Parasoft’s
enterprise and embedded development solutions are the industry’s most comprehensive—
including static analysis, unit testing, requirements traceability, coverage analysis, functional
& load testing, dev/test environment management, and more. The majority of Fortune 500
companies rely on Parasoft in order to produce top-quality software consistently and efficiently
as they pursue agile, lean, DevOps, compliance, and safety-critical development initiatives.

Upon entering the API Testing marketplace in 2002 with Parasoft SOAtest, Parasoft pioneered
service virtualization capabilities beginning with the industry’s first “stub server.” Since then,
Parasoft has been leading the service virtualization marketplace, as recognized by Gartner,
voke, Forrester, and Bloor, as well as awards including the Jolt Grand Prize, Info-Tech: Trend
Setter and Market Innovator Awards, and Wealth & Finance Award for Most Innovative

Software Vendor.

Contacting Parasoft

Headquarters

101 E. Huntington Drive, 2nd Floor

Monrovia, CA 91016

Toll Free: (888) 305-0041

Tel: (626) 305-0041

Email: info@parasoft.com

Global Offices

Visit www.parasoft.com/contact for contacting Parasoft in EMEAI, APAC, and LATAM.

© 2016 Parasoft Corporation

All rights reserved. Parasoft and all Parasoft products and services listed within are trademarks or registered

trademarks of Parasoft Corporation. All other products, services, and companies are trademarks, registered

trademarks, or servicemarks of their respective holders in the US and/or other countries.

www.parasoft.com

