SADLIER

Common Core Progress Mathematics

Aligned to the

Kentucky Core Academic Standards Mathematics

Grade 4

Contents

- 2 Operations and Algebraic Thinking
- 3 Number and Operations in Base Ten
- 4 Number and Operations—Fractions
- 6 Measurement and Data
- 8 Geometry

Operations and Algebraic Thinking

4.0A

GRADE 4 STANDARDS / DESCRIPTION		SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 4	
	the four operations with whole numbers olve problems.		
1,	Interpret a multiplication equation as a comparison, e.g., interpret $35 = 5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 . Represent verbal statements of multiplicative comparisons as multiplication equations.	Lesson 1	Interpret Multiplication Equations as Comparisons—pp. 10–17
2.	Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.	Lesson 2	Problem Solving: Use Multiplication and Division to Make Comparisons—pp. 18–25
3.	Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.	Lesson 3	Problem Solving: Multistep Problems—pp. 26–33
Gain familiarity with factors and multiples.			
4.	Find all factor pairs for a whole number in the range 1–100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1–100 is a multiple of a given one-digit number. Determine whether a given whole number in the range 1–100 is prime or composite.	Lesson 4	Find Factors and Multiples for Whole Numbers—pp. 34–41
Generate and analyze patterns.			
5.	Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself.	Lesson 5	Generate and Analyze Number and Shape Patterns—pp. 42–49
	For example, given the rule "Add 3" and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way.		

Number and Operations in Base Ten

4.NBT

GRADE 4 STANDARDS / DESCRIPTION		SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 4	
Generalize place value understanding for multi-digit whole numbers.			
1.	Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right.	Lesson 6	Understand Place Value of Whole Numbers—pp. 56–63
	For example, recognize that $700 \div 70 = 10$ by applying concepts of place value and division.		
2.	Read and write multi-digit whole numbers using baseten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.	Lesson 7	Read, Write, and Compare Whole Numbers—pp. 64–71
3.	Use place value understanding to round multi-digit whole numbers to any place.	Lesson 8	Apply Place Value to Round Whole Numbers—pp. 72–79
Use place value understanding and properties of operations to perform multi-digit arithmetic.			
4.	Fluently add and subtract multi-digit whole numbers using the standard algorithm.	Lesson 9	Add and Subtract Fluently with Whole Numbers—pp. 80–87
5.	Multiply a whole number of up to four digits by a one- digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	Lesson 10	Multiply Whole Numbers: Use Place Value—pp. 88–95
6.	Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	Lesson 11	Multiply Whole Numbers: Use Properties of Operations—pp. 96–103
		Lesson 12	Divide Whole Numbers: Use Place Value —pp. 104–111
		Lesson 13	Divide Whole Numbers: Use Properties of Operations—pp. 112–119

Number and Operations—Fractions

4.NF

GRADE 4 STANDARDS / DESCRIPTION		SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 4		
		understanding of fraction equivalence lering.		
1.	Explain why a fraction a/b is equivalent to a fraction ($n \times a$)/($n \times b$) by using visual fraction models, with attention to how the number and size of the parts differ		Lesson 14	Understand Equivalent Fractions—pp. 126– 133
	eve size	en though the two fractions themselves are the same e. Use this principle to recognize and generate uivalent fractions.	Lesson 15	Write Equivalent Fractions—pp. 134–141
2.	diff der ber cor to t wit	mpare two fractions with different numerators and ferent denominators, e.g., by creating common nominators or numerators, or by comparing to a nachmark fraction such as 1/2. Recognize that mparisons are valid only when the two fractions refer the same whole. Record the results of comparisons h symbols >, =, or <, and justify the conclusions, e.g., using a visual fraction model.	Lesson 16	Compare Two Fractions—pp. 142–149
and	eration	enctions from unit fractions by applying ending previous understandings of ons on whole numbers.		
٥.		ctions 1/b		
	a.	Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.	Lesson 17	Add and Subtract Fractions with Like Denominators—pp. 150–157
	b.	Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model.	Lesson 18	Decompose a Fraction as a Sum of Fractions—pp. 158–165
		Examples: 3/8 = 1/8 + 1/8 + 1/8; 3/8 = 1/8 + 2/8; 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8.		
	C.	Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction.	Lesson 19	Add and Subtract Mixed Numbers with Like Denominators—pp. 166–173
	d.	Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.	Lesson 20	Problem Solving: Add and Subtract Fractions—pp. 174–181

Number and Operations—Fractions

4.NF

GRADE 4 STANDARDS / DESCRIPTION		SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 4		
4.	Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.			
	a.	Understand a fraction <i>a/b</i> as a multiple of 1/ <i>b</i> .	Lesson 21	Multiply Unit Fractions by Whole Numbers—
		For example, use a visual fraction model to represent 5/4 as the product $5 \times (1/4)$, recording the conclusion by the equation $5/4 = 5 \times (1/4)$.		pp. 182–189
	b.	Understand a multiple of <i>a/b</i> as a multiple of 1/ <i>b</i> , and use this understanding to multiply a fraction by a whole number. a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model.	Lesson 22	Multiply Fractions by Whole Numbers—pp. 190–197
		For example, use a visual fraction model to express 3 \times (2/5) as 6 \times (1/5), recognizing this product as 6/5. (In general, n \times (a/b) = (n \times a)/b.)		
	c.	Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem.	Lesson 23	Problem Solving: Multiply Fractions by Whole Numbers—pp. 198–205
		For example, if each person at a party will eat 3/8 of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?		
		tand decimal notation for fractions, and e decimal fractions.		
5.	Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100.		Lesson 24	Add Fractions: Denominators of 10 and 100—pp. 206–213
		example, express 3/10 as 30/100, and add 3/10 + 4/100 4/100.		
6.		e decimal notation for fractions with denominators or 100.	Lesson 25	Write and Compare Decimal Fractions—pp. 214–221
		example, rewrite 0.62 as 62/100; describe a length as 2 meters; locate 0.62 on a number line diagram.		
7.	abo	mpare two decimals to hundredths by reasoning out their size. Recognize that comparisons are valid y when the two decimals refer to the same whole.	Lesson 25	Write and Compare Decimal Fractions —pp. 214–221
		– continued on next page –		
		_		_

Number and Operations—Fractions

4.NF

GRADE 4 STANDARDS / DESCRIPTION

SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 4

- continued from previous page -

Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual model.

Measurement and Data

4.MD

GRADE 4 STANDARDS / DESCRIPTION

Solve problems involving measurement and conversion of measurements.

- Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a twocolumn table.
 - For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ...
- 2. Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
- 3. Apply the area and perimeter formulas for rectangles in real world and mathematical problems.

For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.

SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 4

- **Lesson 26 Convert Customary Measurement Units**—pp. 234–241
- Lesson 27 Convert Metric Measurement Units—pp. 242–249
- **Lesson 28** Problem Solving: Measurement—pp. 250–257

Lesson 29 Problem Solving: Apply Area and Perimeter Formulas—pp. 258–265

Represent and interpret data.

4. Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots.

For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.

Lesson 30 Problem Solving: Use Line Plots—pp. 266–273

Measurement and Data

4.MC

GRADE 4 STANDARDS / DESCRIPTION		SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 4	
	ometric measurement: understand cepts of angle and measure angles.		
5.	Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement:		
	a. An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through 1/360 of a circle is called a "one-degree angle," and can be used to measure angles.	Lesson 31	Understand Angle Measures—pp. 274–281
	b. An angle that turns through <i>n</i> one-degree angles is said to have an angle measure of <i>n</i> degrees.	Lesson 31	Understand Angle Measures—pp. 274–281
6.	Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure.	Lesson 32	Use a Protractor to Measure Angles —pp. 282–289
7.	Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.	Lesson 33	Problem Solving: Find Unknown Angle Measures—pp. 290–297

Geometry 4.6

GRADE 4 STANDARDS / DESCRIPTION		SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 4	
	w and identify lines and angles, and classify pes by properties of their lines and angles.		
1.	Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.	Lesson 34	Draw and Identify Points, Lines, and Angles—pp. 304–311
2.	Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.	Lesson 35	Classify Two-Dimensional Figures—pp. 312–319
3.	Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.	Lesson 36	Identify Lines of Symmetry—pp. 320–327