SADLIER

Common Core Progress Mathematics


Aligned to

Arizona's College and Career Ready Standards – Mathematics

Fourth Grade

Contents

- 2 Operations and Algebraic Thinking (OA)
- 3 Number and Operations in Base Ten (NBT)
- 4 Number and Operations—Fractions (NF)
- 6 Measurement and Data (MD)
- 8 Geometry (G)

Operations and Algebraic Thinking (OA) FOURTH GRADE STANDARDS / DESCRIPTION SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 4 Use the four operations with whole numbers to solve problems. 4.OA.A.1 Interpret a multiplication equation as a Lesson 1 **Interpret Multiplication Equations as** comparison, e.g., interpret $35 = 5 \times 7$ as a Comparisons—pp. 10–17 statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations. 4.OA.A.2 Multiply or divide to solve word problems Lesson 2 **Problem Solving: Use Multiplication and** involving multiplicative comparison, e.g., by Division to Make Comparisons—pp. 18–25 using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison. 4.OA.A.3 Solve multistep word problems posed with Lesson 3 Problem Solving: Multistep Problems—pp. whole numbers and having whole-number 26 - 33answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. AZ.4.OA.A.3.1 Solve a variety of problems based on the multiplication principle of counting. Represent a variety of counting a. problems using arrays, charts, and systematic lists, e.g., tree diagram. b. Analyze relationships among representations and make connections to the multiplication principle of countina. Gain familiarity with factors and multiples. Find all factor pairs for a whole number in the 4.OA.B.4 Lesson 4 **Find Factors and Multiples for Whole** range 1–100. Recognize that a whole number Numbers—pp. 34–41 is a multiple of each of its factors. Determine whether a given whole number in the range 1–100 is a multiple of a given one-digit number. Determine whether a given whole number in the range 1-100 is prime or composite.

Operations and Algebraic Thinking (OA)

FOURTH GRADE STANDARDS / DESCRIPTION

Generate and analyze patterns.

4.OA.C.5 Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself.

For example, given the rule "Add 3" and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way. SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 4

SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 4

pp. 88-95

Lesson 5

Generate and Analyze Number and Shape Patterns—pp. 42–49

Number and Operations in Base Ten (NBT)

FOURTH GRADE STANDARDS / DESCRIPTION

Generalize place value understanding for multi-digit whole numbers.

4.NBT.A.1	Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right.	Lesson 6	Understand Place Value of Whole Numbers — pp. 56–63
	For example, recognize that 700 ÷ 70 = 10 by applying concepts of place value and division.		
4.NBT.A.2	Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi- digit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.	Lesson 7	Read, Write, and Compare Whole Numbers— pp. 64–71
4.NBT.A.3	Use place value understanding to round multi-digit whole numbers to any place.	Lesson 8	Apply Place Value to Round Whole Numbers—pp. 72–79
•	alue understanding and properties ns to perform multi-digit arithmetic.		
4.NBT.B.4	Fluently add and subtract multi-digit whole numbers using the standard algorithm.	Lesson 9	Add and Subtract Fluently with Whole Numbers—pp. 80–87
4.NBT.B.5	Multiply a whole number of up to four digits	Lesson 10	Multiply Whole Numbers: Use Place Value—

two two-digit numbers, using strategies

– continued on next page –

by a one-digit whole number, and multiply

Copyright © William H. Sadlier, Inc. All rights reserved.

Number and Operations in Base Ten (NBT)

FOURTH GRADE STANDARDS / DESCRIPTION

- continued from previous page -

based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

4.NBT.B.6 Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Lesson 11	Multiply Whole Numbers: Use Properties of Operations—pp. 96–103
Lesson 12	Divide Whole Numbers: Use Place Value —pp. 104–111
Lesson 13	Divide Whole Numbers: Use Properties of

SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 4

Number and Operations—Fractions (NF)

FOURTH GRADE STANDARDS /	DESCRIPTION
--------------------------	-------------

Extend understanding of fraction equivalence and ordering.

4.NF.A.1	Explain why a fraction a/b is equivalent to a fraction $(n \times a)/(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.
4.NF.A.2	Compare two fractions with different

numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as 1/2. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.

Build fractions from unit fractions.

4.NF.B.3 Understand a fraction a/b with a > 1 as a sum of fractions 1/b.

- continued on next page -

SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 4

Operations—pp. 112–119

Lesson 14	Understand Equivalent Fractions—pp. 126– 133
Lesson 15	Write Equivalent Fractions—pp. 134–141

Lesson 16 Compare Two Fractions—pp. 142–149

Number and Operations—Fractions (NF)

		– continued from previous page –		
	a.	Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.	Lesson 17	Add and Subtract Fractions with Like Denominators—pp. 150–157
	b.	Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model.	Lesson 18	Decompose a Fraction as a Sum of Fractions—pp. 158–165
		Examples: 3/8 = 1/8 + 1/8 + 1/8 ; 3/8 = 1/8 + 2/8; 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8.		
	c.	Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction.	Lesson 19	Add and Subtract Mixed Numbers with Like Denominators—pp. 166–173
	d.	Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.	Lesson 20	Problem Solving: Add and Subtract Fractions—pp. 174–181
4.NF.B.4	of	ply and extend previous understandings multiplication to multiply a fraction by a ole number.		
	a.	Understand a fraction <i>a/b</i> as a multiple of 1/ <i>b</i> .	Lesson 21	Multiply Unit Fractions by Whole Numbers pp. 182–189
		For example, use a visual fraction model to represent 5/4 as the product $5 \times (1/4)$, recording the conclusion by the equation $5/4 = 5 \times (1/4)$.		
	b.	Understand a multiple of <i>a/b</i> as a multiple of 1/ <i>b</i> , and use this understanding to multiply a fraction by a whole number.	Lesson 22	Multiply Fractions by Whole Numbers —pp. 190–197
		For example, use a visual fraction model to express $3 \times (2/5)$ as $6 \times (1/5)$, recognizing this product as $6/5$. (In general, $n \times (a/b) = (n \times a)/b$.)		

FOURTH GRADE STANDARDS / DESCRIPTION		SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 4	
	– continued from previous page –		
	c. Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem.	Lesson 23	Problem Solving: Multiply Fractions by Whole Numbers—pp. 198–205
	For example, if each person at a party will eat 3/8 of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?		
	decimal notation for fractions, and ecimal fractions.		
4.NF.C.5	Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100.	Lesson 24	Add Fractions: Denominators of 10 and 100—pp. 206–213
	For example, express 3/10 as 30/100, and add 3/10 + 4/100 = 34/100.		
	(Students who can generate equivalent fractions can develop strategies for adding fractions with unlike denominators in general, but addition and subtraction with unlike denominators in general is not a requirement at this grade.)		
4.NF.C.6	Use decimal notation for fractions with denominators 10 or 100.	Lesson 25	Write and Compare Decimal Fractions—pp. 214–221
	For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram.		
4.NF.C.7	Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual model.	Lesson 25	Write and Compare Decimal Fractions—pp. 214–221

Number and Operations—Eractions (NE)

Measurement and Data (MD)

FOURTH GRADE STANDARDS / DESCRIPTION

Solve problems involving measurement and conversion of measurements.

4.MD.A.1	.MD.A.1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table.	Lesson 26	Convert Customary Measurement Units—pp. 234–241
		Lesson 27	Convert Metric Measurement Units—pp. 242–249
	For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36),		
4.MD.A.2	Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.	Lesson 28	Problem Solving: Measurement—pp. 250– 257
4.MD.A.3	Apply the area and perimeter formulas for rectangles in real world and mathematical problems.	Lesson 29	Problem Solving: Apply Area and Perimeter Formulas—pp. 258–265
	For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.		
Represent a	nd interpret data.		
4.MD.B.4	Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots.	Lesson 30	Problem Solving: Use Line Plots —pp. 266– 273
	For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.		

SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 4

Measure	ement and Data (MD)			
FOURTH GRADE	FOURTH GRADE STANDARDS / DESCRIPTION		SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 4	
	neasurement: understand concepts d measure angles.			
4.MD.C.5	Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement:			
	a. An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through 1/360 of a circle is called a "one-degree angle," and can be used to measure angles.	Lesson 31	Understand Angle Measures—pp. 274–281	
	b. An angle that turns through <i>n</i> one- degree angles is said to have an angle measure of <i>n</i> degrees.	Lesson 31	Understand Angle Measures—pp. 274–281	
4.MD.C.6	Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure.	Lesson 32	Use a Protractor to Measure Angles —pp. 282–289	
4.MD.C.7	Recognize angle measure as additive. When an angle is decomposed into non- overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.	Lesson 33	Problem Solving: Find Unknown Angle Measures—pp. 290–297	

Geometry (G)

FOURTH GRADE STANDARDS / DESCRIPTION

Draw and identify lines and angles, and classify shapes by properties of their lines and angles.

4.G.A.1 Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures. SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 4

Lesson 34 Draw and Identify Points, Lines, and Angles—pp. 304–311

Geometry (G)

Fourth Grade Standards / Description		SADLIER CON	SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 4	
4.G.A.2	Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.	Lesson 35	Classify Two-Dimensional Figures—pp. 312– 319	
4.G.A.3	Recognize a line of symmetry for a two- dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line- symmetric figures and draw lines of symmetry.	Lesson 36	Identify Lines of Symmetry—pp. 320–327	