SADLIER

Common Core Progress Mathematics

Aligned to the

California
Common Core
State Standards:
Mathematics (CA CCSSM)

Grade 5

Contents

- 2 Operations and Algebraic Thinking
- 2 Number and Operations in Base Ten
- 4 Number and Operations—Fractions
- 6 Measurement and Data
- 8 Geometry

Operations and Algebraic Thinking

5.OA

GRADE 5 CA CCSSM STANDARDS / DESCRIPTION		SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 5	
Write and interpret numerical expressions.			
1.	Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.	Lesson 1	Use Grouping Symbols and Evaluate Numerical Expressions—pp. 10–17
2.	Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them.	Lesson 2	Write and Interpret Numerical Expressions— pp. 18–25
	For example, express the calculation "add 8 and 7, then multiply by 2" as $2 \times (8 + 7)$. Recognize that $3 \times (18932 + 921)$ is three times as large as $18932 + 921$, without having to calculate the indicated sum or product.		
2.1	Express a whole number in the range 2-50 as a product of its prime factors.		
	For example, find the prime factors of 24 and express 24 as 2 × 2 × 2 × 3. CA		
Ana	lyze patterns and relationships.		
3.	Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane.	Lesson 3	Analyze Numerical Patterns—pp. 26–33
	For example, given the rule "Add 3" and the starting number 0, and given the rule "Add 6" and the starting number 0, generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.		

Number and Operations in Base Ten

5.NBT

GRADE 5 CA CCSSM STANDARDS / DESCRIPTION		SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 5	
Un	derstand the place value system.		
1.	Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left.	Lesson 4	Understand Place Value—pp. 40-47
2.	Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and	Lesson 5	Powers of 10: Use Patterns and Whole- Number Exponents—pp. 48–55
	– continued on next page –		

Number and Operations in Base Ten

5.NBT

GRAD	e 5 CA CCSSM STANDARDS / DESCRIPTION	SADLIER COM	MMON CORE PROGRESS MATHEMATICS, GRADE 5
	- continued from previous page - explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10.		
3.	Read, write, and compare decimals to thousandths.		
	a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392 = 3 \times 100 + 4 \times 10 + 7 \times 1 + 3 \times (1/10) + 9 \times (1/100) + 2 \times (1/1000)$.	Lesson 6	Read and Write Decimals to Thousandths—pp. 56–63
	 Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons. 	Lesson 7	Compare Decimals to Thousandths—pp. 64–71
4.	Use place value understanding to round decimals to any place.	Lesson 8	Round Decimals: Use Place Value—pp. 72–79
	form operations with multi-digit whole nbers and with decimals to hundredths.		
5.	Fluently multiply multi-digit whole numbers using the standard algorithm.	Lesson 9	Multiply Fluently with Multi-Digit Numbers—pp. 80–87
6.	Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using	Lesson 10	Divide Whole Numbers: Use Place Value Strategies—pp. 88–95
	strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	Lesson 11	Divide Whole Numbers: Use Properties of
	calculation by using equations, rectangular arrays,		Operations—pp. 96–103
7.	calculation by using equations, rectangular arrays, and/or area models. Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and	Lesson 12	Add and Subtract Decimals to Hundredths—pp. 104–111
7.	calculation by using equations, rectangular arrays, and/or area models. Add, subtract, multiply, and divide decimals to	Lesson 12 Lesson 13	Add and Subtract Decimals to Hundredths—

Number and Operations—Fractions

5.NF

GRADE 5 CA CCSSM	STANDARDS /	DESCRIPTION
------------------	-------------	-------------

SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 5

Denominators—pp. 134–141

Add and Subtract Fractions with Unlike

Use equivalent fractions as a strategy to add and subtract fractions.

- Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators.
 - For example, 2/3 + 5/4 = 8/12 + 15/12 = 23/12. (In general, a/b + c/d = (ad + bc)/bd.)
- Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers.

For example, recognize an incorrect result 2/5 + 1/2 = 3/7, by observing that 3/7 < 1/2.

Lesson 16 Problem Solving: Add and Subtract Fractions—pp. 142–149

Lesson 15

Apply and extend previous understandings of multiplication and division to multiply and divide fractions.

 Interpret a fraction as division of the numerator by the denominator (a/b = a ÷ b). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem.

For example, interpret 3/4 as the result of dividing 3 by 4, noting that 3/4 multiplied by 4 equals 3, and that when 3 wholes are shared equally among 4 people each person has a share of size 3/4. If 9 people want to share a 50-pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?

- 4. Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
 - a. Interpret the product $(a/b) \times q$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$.

- continued on next page -

Lesson 17 Interpret Fractions as Division—pp. 150–157

Lesson 18 Interpret Products of Fractions—pp. 158–165

Number and Operations—Fractions

5.NF

GRAI	DE 5 C	CA CCSSM STANDARDS / DESCRIPTION	SADLIER COM	MMON CORE PROGRESS MATHEMATICS, GRADE 5
		- continued from previous page – For example, use a visual fraction model to show $(2/3) \times 4 = 8/3$, and create a story context for this equation. Do the same with $(2/3) \times (4/5) = 8/15$. (In general, $(a/b) \times (c/d) = ac/bd$.)		
	b.	Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the a same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.	Lesson 19	Find Areas of Rectangles: Tile and Multiply—pp. 166–173
5.	Inte	erpret multiplication as scaling (resizing), by:		
	a.	Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.	Lesson 20	Interpret Multiplication of Fractions as Scaling—pp. 174–181
	b.	Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a/b = (n \times a)/(n \times b)$ to the effect of multiplying a/b by 1.	Lesson 20	Interpret Multiplication of Fractions as Scaling—pp. 174–181
6.	fra	ve real world problems involving multiplication of ctions and mixed numbers, e.g., by using visual ction models or equations to represent the problem.	Lesson 21	Problem Solving: Multiply Fractions and Mixed Numbers—pp. 182–189
7.	to	ply and extend previous understandings of division divide unit fractions by whole numbers and whole mbers by unit fractions.		
	a.	Interpret division of a unit fraction by a non-zero whole number, and compute such quotients.	Lesson 22	Divide Unit Fractions by Whole Numbers —pp. 190–197
		For example, create a story context for $(1/3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1/3) \div 4 = 1/12$ because $(1/12) \times 4 = 1/3$.		
	b.	Interpret division of a whole number by a unit fraction, and compute such quotients.	Lesson 23	Divide Whole Numbers by Unit Fractions— pp. 198–205
		continued on next page –		

Number and Operations—Fractions

5.NF

GRADE 5 CA CCSSM STANDARDS / DESCRIPTION

SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 5

- continued from previous page -

For example, create a story context for $4 \div (1/5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div (1/5) = 20$ because $20 \times (1/5) = 4$.

c. Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem.

For example, how much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?

Lesson 24 Problem Solving: Divide Unit Fractions and Whole Numbers—pp. 206–213

Measurement and Data

5.MD

GRADE 5 CA CCSSM STANDARDS / DESCRIPTION

SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 5

Convert like measurement units within a given measurement system.

 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.

Lesson 25	Convert Customary Measurement Units—p		
	226–233		

Lesson 26 Convert Metric Measurement Units—pp. 234–

Represent and interpret data.

2. Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots.

For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.

Lesson 27 Problem Solving: Use Line Plots—pp. 242–249

Measurement and Data

5.MD

GRADE 5 CA CCSSM STANDARDS / DESCRIPTION		SADLIER COMMON CO	re Progress Mathematics, Grade 5
con	ometric measurement: understand ncepts of volume and relate volume to Itiplication and to addition.		
3.	Recognize volume as an attribute of solid figures and understand concepts of volume measurement.		
	a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume.		rstand Concepts of Volume urement—pp. 250–257
	b. A solid figure which can be packed without gaps or overlaps using <i>n</i> unit cubes is said to have a volume of <i>n</i> cubic units.		rstand Concepts of Volume urement—pp. 250–257
4.	Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.	Lesson 29 Meass	ure Volume—pp. 258–265
5.	Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.		
	a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as	Lesson 30 Find \	Volume: Relate Packing of Unit Cubes to plying—pp. 266–273
	would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.	Lesson 31 Find \ pp. 27	Volume: Use the Associate Property— 4–281
	b. Apply the formulas $V = I \times w \times h$ and $V = b \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems.		em Solving: Apply Volume Formulas for s—pp. 282–289
	c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real world problems.		em Solving: Decompose Figures to Find ne—pp. 290–297

Geometry 5.G

GRADE 5 CA CCSSM STANDARDS / DESCRIPTION		SADLIER COM	SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 5	
Graph points on the coordinate plane to solve real-world and mathematical problems.				
1.	Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate).	Lesson 34	Understand Points on the Coordinate Plane—pp. 304–311	
2.	Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.	Lesson 35	Graph Points to Represent Problem Situations—pp. 312–319	
Classify two-dimensional figures into categories based on their properties.				
3.	Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.	Lesson 36	Analyze Properties to Classify Two- Dimensional Figures—pp. 320–327	
4.	Classify two-dimensional figures in a hierarchy based on properties.	Lesson 36	Analyze Properties to Classify Two- Dimensional Figures—pp. 320–327	