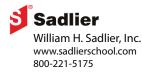
SADLIER


Common Core Progress Mathematics

Aligned to the The New Illinois Learning Standards for Mathematics

Contents

- 2 Ratios and Proportional Relationships
- 3 The Number System
- 5 Expressions and Equations
- 7 Geometry
- 8 Statistics and Probability

Sadlier *Common Core Progress Mathematics,* Grade 6, Aligned to The New Illinois Learning Standards for Mathematics Incorporating the Common Core **Grade 6**

6 th Grade Standards / Description		SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 6		
Ratios and	d Proportions			
CC.6.RP.1	Understand ratio concepts and use ratio reasoning to solve problems. Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities.	Lesson 1	Understand Ratios and Unit Rates —pp. 10– 17	
	For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."			
CC.6.RP.2	Understand ratio concepts and use ratio reasoning to solve problems. Understand the concept of a unit rate a/b associated with a ratio a : b with $b \neq 0$ (b not equal to zero), and use rate language in the context of a ratio relationship.	Lesson 1	Understand Ratios and Unit Rates —pp. 10– 17	
	For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is 3/4 cup of flour for each cup of sugar." "We paid \$75 for 15 hamburgers, which is a rate of \$5 per hamburger." (Expectations for unit rates in this grade are limited to non-complex fractions.)			
CC.6.RP.3	Understand ratio concepts and use ratio reasoning to solve problems. Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.	Lesson 8	Problem Solving: Ratios and Rates—pp. 66– 73	
CC.6.RP.3a	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.	Lesson 2	Use Ratio Tables to Find Equivalent Ratios— pp. 18–25	
		Lesson 3	Use Ratio Tables to Compare Ratios—pp. 26– 33	
CC.6.RP.3b	Solve unit rate problems including those involving unit pricing and constant speed.	Lesson 4	Solve Unit Rate Problems—pp. 34–41	
	For example, If it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?			
CC.6.RP.3c	Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means 30/100	Lesson 5	Calculate a Percent of a Quantity—pp. 42–49	
	times the quantity); solve problems involving finding the whole given a part and the percent.	Lesson 6	Find the Whole Given a Part and the Percent—pp. 50–57	

6 th Grade St <i>i</i>	ANDARDS / DESCRIPTION	SADLIER CON	IMON CORE PROGRESS MATHEMATICS, GRADE 6
CC.6.RP.3d	Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.	Lesson 7	Convert Measurement Units—pp. 58–65
The Numb	per System		
CC.6.NS.1	Apply and extend previous understandings of multiplication and division to divide fractions by fractions. Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem.	Lesson 9	Divide a Fraction by a Fraction —pp. 80–87
		Lesson 10	Problem Solving: Fraction Division —pp. 88– 95
	For example, create a story context for $(2/3) \div$ (3/4) and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2/3) \div$ (3/4) = 8/9 because 3/4 of 8/9 is 2/3. (In general, (a/b) \div (c/d) = ad/bc.) How much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 3/4-cup servings are in 2/3 of a cup of yogurt? How wide is a rectangular strip of land with length 3/4 mi and area 1/2 square mi?		
C.6.NS.2	Compute fluently with multi-digit numbers and find common factors and multiples. Fluently divide multi-digit numbers using the standard algorithm.	Lesson 11	Divide Multi-digit Numbers—pp. 96–103
CC.6.NS.3	Compute fluently with multi-digit numbers and find common factors and multiples. Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.	Lesson 12	Add and Subtract Multi-digit Decimals—pp. 104–111
		Lesson 13	Multiply and Divide Multi-digit Decimals— pp. 112–119
CC.6.NS.4	Compute fluently with multi-digit numbers and find common factors and multiples. Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12. Use the distributive property to express a sum of two whole numbers 1–100 with a common factor as a multiple of a sum of two whole numbers with no common factor.	Lesson 14	Find the Greatest Common Factor and Least Common Multiple—pp. 120–127
	For example, express 36 + 8 as 4 (9 + 2).		
CC.6.NS.5	Apply and extend previous understandings of numbers to the system of rational numbers. Understand that positive and negative numbers are used together to describe quantities having opposite directions – continued on next page –	Lesson 15	Understand Positive and Negative Numbers and Opposites—pp. 128–135

- continued from previous page -

6TH GRADE STANDARDS / DESCRIPTION

ned to corporating the Common Core	6
SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE	6

	or values (e.g., temperature above/below zero, elevation above/below sea level, debits/credits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.		
CC.6.NS.6	Apply and extend previous understandings of numbers to the system of rational numbers. Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.		
CC.6.NS.6a	Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3) = 3$, and that 0 is its own opposite.	Lesson 15	Understand Positive and Negative Numbers and Opposites—pp. 128–135
CC.6.NS.6b	Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.	Lesson 16	Locate Points with Rational Coordinates— pp. 136–143
CC.6.NS.6c	Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.	Lesson 16	Locate Points with Rational Coordinates— pp. 136–143
CC.6.NS.7	Apply and extend previous understandings of numbers to the system of rational numbers. Understand ordering and absolute value of rational numbers.		
CC.6.NS.7a	Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram.	Lesson 17	Compare and Order Rational Numbers —pp. 144–151
	For example, interpret $-3 > -7$ as a statement that -3 is located to the right of -7 on a number line oriented from left to right.		
CC.6.NS.7b	Write, interpret, and explain statements of order for rational numbers in real-world contexts.	Lesson 17	Compare and Order Rational Numbers—pp. 144–151
	For example, write $-3^{\circ}C > -7^{\circ}C$ to express the fact that $-3^{\circ}C$ is warmer than $-7^{\circ}C$.		

6 TH GRADE ST	andards / Description	SADLIER CON	MMON CORE PROGRESS MATHEMATICS, GRADE 6
CC.6.NS.7c	Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation.	Lesson 18	Understand Absolute Value—pp. 152–159
	For example, for an account balance of -30 dollars, write $ -30 = 30$ to describe the size of the debt in dollars.		
CC.6.NS.7d	Distinguish comparisons of absolute value from statements about order.	Lesson 18	Understand Absolute Value—pp. 152–159
	For example, recognize that an account balance less than –30 dollars represents a debt greater than 30 dollars.		
CC.6.NS.8	Apply and extend previous understandings of numbers to the system of rational numbers. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.	Lesson 19	Problem Solving: The Coordinate Plane —pp 160–167
Expressio	ns and Equations		
CC.6.EE.1	Apply and extend previous understandings of arithmetic to algebraic expressions. Write and evaluate numerical expressions involving whole-number exponents.	Lesson 20	Write and Evaluate Numerical Expressions with Exponents — pp. 174–181
CC.6.EE.2	Apply and extend previous understandings of arithmetic to algebraic expressions. Write, read, and evaluate expressions in which letters stand for numbers.		
CC.6.EE.2a	Write expressions that record operations with numbers and with letters standing for numbers.	Lesson 21	Write Algebraic Expressions to Record Operations—pp. 182–189
	For example, express the calculation "Subtract y from 5" as 5 – y.		
CC.6.EE.2b	Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity.	Lesson 22	Identify Parts of an Expression—pp. 190–197
	For example, describe the expression 2(8 + 7) as a product of two factors; view (8 + 7) as both a single entity and a sum of two terms.		

6 th Grade Standards / Description		SADLIER CON	SADLIER COMMON CORE PROGRESS MATHEMATICS, GRADE 6	
CC.6.EE.2c	Evaluate expressions at specific values for their variables. Include expressions that arise from formulas in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations).	Lesson 23	Evaluate Algebraic Expressions —pp. 198– 205	
	For example, use the formulas $V = s^3$ and $A = 6$ s^2 to find the volume and surface area of a cube with sides of length $s = 1/2$.			
CC.6.EE.3	Apply and extend previous understandings of arithmetic to algebraic expressions. Apply the properties of operations to generate equivalent expressions.	Lesson 24	Generate and Identify Equivalent Expressions—pp. 206–213	
	For example, apply the distributive property to the expression $3(2 + x)$ to produce the equivalent expression $6 + 3x$; apply the distributive property to the expression $24x + 18y$ to produce the equivalent expression $6 (4x + 3y)$; apply properties of operations to $y + y + y$ to produce the equivalent expression $3y$.			
CC.6.EE.4	Apply and extend previous understandings of arithmetic to algebraic expressions. Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them).	Lesson 24	Generate and Identify Equivalent Expressions—pp. 206–213	
	For example, the expressions y + y + y and 3y are equivalent because they name the same number regardless of which number y stands for.			
CC.6.EE.5	Reason about and solve one-variable equations and inequalities. Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.	Lesson 25	Identify Solutions to Equations and Inequalities—pp. 214–221	
CC.6.EE.6	Reason about and solve one-variable equations and inequalities. Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.	Lesson 26	Write Algebraic Expressions to Represent Problems—pp. 222–229	

CIADE J	tandards / Description	SABLIER CON	IMON CORE PROGRESS MATHEMATICS, GRADE 6
CC.6.EE.7	Reason about and solve one-variable equations and inequalities. Solve real-world and mathematical problems by writing and	Lesson 27	Solve Equations of the Form x + p = q—pp. 230–237
	solving equations of the form $x + p = q$ and $px = q$ for cases in which p , q and x are all nonnegative rational numbers.	Lesson 28	Solve Equations of the Form px = q—pp. 238–245
CC.6.EE.8	Reason about and solve one-variable equations and inequalities. Write an inequality of the form $x > c$ or $x < c$ to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form $x > c$ or $x < c$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams.	Lesson 29	Graph Solutions to Inequalities —pp. 246–253
CC.6.EE.9	Represent and analyze quantitative relationships between dependent and independent variables. Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.	Lesson 30	Represent Relationships Between Variables—pp. 254–261
	For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation d = 65t to represent the relationship between distance and time.		
Geometr	у		
CC.6.G.1	Solve real-world and mathematical problems involving area, surface area, and volume. Find area of right triangles, other	Lesson 31	Find Areas of Parallelograms and Triangles—pp. 268–275
	triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.	Lesson 32	Find Areas of Polygons—pp. 276–283
CC.6.G.2	Solve real-world and mathematical problems involving area, surface area, and volume. Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V = l w h$ and $V = b h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.	Lesson 33	Find Volumes of Rectangular Prisms—pp. 284–291

6 th Grade Sta	ANDARDS / DESCRIPTION	SADLIER CON	IMON CORE PROGRESS MATHEMATICS, GRADE 6
CC.6.G.3	Solve real-world and mathematical problems involving area, surface area, and volume. Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.	Lesson 34	Plot and Analyze Polygons in the Coordinat Plane—pp. 292–299
CC.6.G.4	Solve real-world and mathematical problems involving area, surface area, and volume. Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.	Lesson 35	Use Nets to Find Surface Area—pp. 300–307
Statistics	and Probability		
CC.6.SP.1	Develop understanding of statistical variability. Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers.	Lesson 36	Understand Statistical Questions and Describe Data—pp. 314–321
	For example, "How old am !?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.		
CC.6.SP.2	Develop understanding of statistical variability. Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.	Lesson 36	Understand Statistical Questions and Describe Data—pp. 314–321
		Lesson 37	Find the Median and Interquartile Range— pp. 322–329
CC.6.SP.3	Develop understanding of statistical variability. Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.	Lesson 37	Find the Median and Interquartile Range— pp. 322–329
		Lesson 38	Find the Mean and Mean Absolute Deviation—pp. 330–337
CC.6.SP.4	Summarize and describe distributions. Display numerical data in plots on a number line, including dot plots, histograms, and box plots.	Lesson 39	Display Numerical Data—pp. 338–345
CC.6.SP.5	Summarize and describe distributions. Summarize numerical data sets in relation to their context, such as by:		

6 TH GRADE	STANDAR	ds / Description	SADLIER CON	MMON CORE PROGRESS MATHEMATICS, GRADE 6
	b.	Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.	Lesson 40	Summarize Numerical Data—pp. 346–353
	с.	Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data was gathered.	Lesson 40	Summarize Numerical Data—pp. 346–353
	d.	Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data was gathered.	Lesson 40	Summarize Numerical Data—pp. 346–353