
www.accusoft.com

How PrizmDoc Editor Uses
GitLab CI

Kyla Kolb
Software Development Engineer in Test (SDET) III

www.accusoft.com

Here at Accusoft, each product has its own, special solution for continuous integration and, in
some cases, continuous deployment. One of our newer products, PrizmDoc Editor, has taken
a new approach to this and utilized the GitLab CI tool built into GitLab. This new approach has
allowed us to have an amazingly small turnaround time for fixing product bugs and issues and
getting a better version to the customers in far less time. For this product, GitLab CI was an
obvious choice due to our monorepo and already having our repositories hosted in GitLab. This
being our first product to use the GitLab CI tool, the structure put into place for the PrizmDoc
Editor project has also been a guideline for some of our other PrizmDoc products as well.

GitLab CI Background Information
For those unfamiliar with GitLab CI, it is a tool that is fully integrated into GitLab for the purpose
of continuous integration, continuous delivery and continuous deployment. The premise is
that every time code is checked in, a pipeline of scripts is automatically run to build, test, and
validate the code changes before merging them into master. For more information, check out
the marketing website and documentation.

Essentially, what you need to know is that in order to run tests through GitLab CI, you need
to have at least one GitLab instance and at least one GitLab runner. A pipeline is split into
multiple stages and each stage has one or more jobs. Jobs are the collection of instructions
outlined in a .gitlab-ci.yml file that the GitLab runner executes in order to build, test, or deploy
code. Stages are gated when run automatically (the next stage does not start executing until
the previous one has finished and passed) unless otherwise specified. All jobs that belong to a
single stage execute in parallel when that stage is running.

https://www.accusoft.com/products/prizmdoc-editor/overview/
https://about.gitlab.com/product/continuous-integration/
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/runner/
https://docs.gitlab.com/ee/ci/yaml/README.html

www.accusoft.com

PrizmDoc Editor GitLab CI Pipeline Structure
Our GitLab runner is shared between multiple projects and exists on an always-on Ubuntu
18.04 virtual machine that uses docker-machine to spawn up to ten Ubuntu 18.04 Openstack
instances with docker installed on them.

There are two different pipelines for the product: the manual pipeline and the master pipeline.
The manual pipeline is the one available when running pipelines against individual commits to
branches, which are not master, or merge requests. The master pipeline is the pipeline that will
automatically start upon the acceptance of every merge request that is merged to master.

Manual Pipeline

The manual pipeline is associated with all commits that are not associated with the master
branch. The pipelines are separated from each other by using the `except` and `only` keywords
in the .gitlab-ci.yml file. The jobs that belong to the manual pipeline get the keyword `except: -
master` and the jobs that belong to the master pipeline get the keywords `only: - master`. This
tells the runner to not add the manual jobs to the master pipeline and that the master jobs only
belong to the master pipeline:

There are six stages in the manual pipeline: Test, Build, Fail-fast-test, Full-test, Docker-
publish, and Deploy-dev:

test-manual:
 <<: *test-job
 when: manual
 dependencies:
 - build-manual
 except:
 - master

test-master:
 <<: *test-job
 dependencies:
 - build-master
 only:
 - master

www.accusoft.com

Stage: Test

In the Test stage, there are test jobs which include unit tests and other quick tests. We have
approached our testing from a fail-fast mentality by running these two test suites before
building the product because neither one of these requires the product to be built, and they
both run in under 10 minutes. The unit job runs the Jest unit tests and junit code coverage
report in a node-based docker container. The job will fail if code coverage drops under the set
thresholds in our .jestrc.json file.

test-manual:
 <<: *test-job
 when: manual
 dependencies:
 - build-manual
 except:
 - master

When code is pushed to a branch or merge request in the remote repository, the Test
stage automatically runs. The Test stage is the only stage in the manual pipeline that runs
automatically and is also included in the master pipeline, therefore it does not get the
keyword `except: - master`. Subsequently, all of the other manual pipeline jobs have `when:
manual` specified in the gitlab-ci.yml file to let the runner know that these stages do not run
automatically. Because of this, a developer can run any test job in the manual pipeline in any
order they wish, barring dependencies on other jobs:

www.accusoft.com

Stage: Build

While this stage must be run manually and any other jobs or stages can be manually run
before/without the Build stage finishing, those jobs will fail, as the rest of the manual pipeline
depends upon the Build stage. The stage is not set to be automatic in order to save on time
and resources since the pipeline runs on every commit push to a branch or merge request and
not every commit needs more testing than the Test stage. It is noted in the gitlab-ci.yml file
that the other jobs have a dependency on the build-manual job within the Build stage:

The Build stage contains only one job: build-manual and takes approximately 15 minutes to
run. This job runs the commands necessary to build the product in a Docker-in-Docker (dind)
based container and keeps as artifacts the docker image, MySQL scripts, and version to be
used in later jobs. Because the only differences between the build-manual job, that belongs
to the manual pipeline, and the build-master job, that belongs to the master pipeline, are
keywords, the two use a common hidden job that is denoted as such by a prepending period.
The prepending period ensures that the scripts will not be processed by GitLab CI as a job, but
they can still be referenced and run using YAML features such as anchors (&), aliases (*) and
map merging (<<).

In the below code example, you can see the hidden job (.build) is anchored as build and the
two separate build jobs (build-master and build-manual) use map merging and aliases to
refer back to the hidden job. You can also see that even though the two use the same base
scripts, the build-master job is only on the master pipeline and the artifacts expire after 1
week. In comparison, the build-manual job is triggered manually, not in the master pipeline
and the artifacts expire after only 12 hours. The difference in the artifact time is due to the
volume of manual pipelines versus master pipelines as well as the usefulness of the artifacts
from a changing branch or merge request pipeline, versus a master pipeline:

test-manual:
 <<: *test-job
 when: manual
 dependencies:
 - build-manual
 except:
 - master

www.accusoft.com

Stage: Fail-fast-test

The Fail-fast-test stage is another look into our approach at failing fast. The jobs in this stage
run the quickest, are the most stable, and have the largest variety of tests that we have. This
stage is similar to a smoke stage and will allow us to know very quickly that there is something
wrong with the commit being tested. The stage takes around 12 minutes to run and consists
of jobs ranging from a smoke api test suite to a container-based test suite, to a product-level
browser journey test suite.

All of these jobs are set up similarly to the Build stage as dind containers that use a series of
map merged hidden jobs leading back to two common hidden jobs: docker-test-setup and
test-script (test-script being used in the `before_script` for each job). The api and journey tests
also share common hidden jobs that specify the configuration of the product.

.build: &build
 stage: build
 tags:
 - tag
 Image: image
 cache:
 key: cache_key
 paths:
 - path/to/something/
 script:
 - list of commands to execute in docker container
 - more commands

build-master:
 <<: *build
 only:
 - master
 artifacts:
 paths:
	 	 path/to/something/
 expire_in: 1 week

build-manual:
 <<: *build
 when: manual
 except:
	 - master
 artifacts:
 paths:
 - path/to/something/
 expire_in: 12 hours

www.accusoft.com

The main differences between the jobs at this stage are how the tests are run, the image for the
container they use in the scripts, and when the artifacts are saved. For the api and journey tests,
the artifacts are saved when encountering failure. For the docker container tests, the artifacts
are always saved. For all jobs, the artifacts expire after one week.

.container-test: &container-test
 <<: *docker-test-setup
 stage: fail-fast-test
 before_script:
 - *test-script
 script:
 - test script
 artifacts:
 when: always
 paths:
 - path/to/something/
 expire_in: 1 week

.docker-test-journey: &docker-test-journey
 <<: *docker-test-setup-configuration
 stage: fail-fast-test
 script:
 - test script
 artifacts:
 when: on_failure
 paths:
 - path/to/something/
 reports:
 junit: ‘test/app/test/journey/test-results.xml’
 expire_in: 1 week

www.accusoft.com

Stage: Full-test

The Full-test stage is the longest-running stage we have, averaging around 45 minutes of run
time. The jobs include a full api test suite, more extensive product-level browser tests, licensing
tests, and visual regression tests.

The jobs in this stage are set up similarly to those in the Fail-fast-test stage and have common
hidden jobs that they all use, all keep their artifacts `on_failure`, have differing images for the
test containers, and have differing ways of calling the actual test script.

Stage: Docker-publish

The Docker-publish stage is used in the manual pipeline to publish the built container. In the
manual pipeline, this stage has one job that publishes the built docker container to our internal
Nexus server for use in our development environments. This job uses a dind container that
builds and pushes another container based off of the artifact from the Build stage. Because
there is also a docker-publish-master, this job also uses a common hidden job. This stage
takes about a minute to run.

Stage: Deploy-dev

Deploy-dev is a stage used for deploying a review app for a specific commit or merge request.
Review apps are useful when testing out the product and needing an environment that is not
your local machine, as well as providing a common place for other developers to manually test
and review the application. There are two jobs in this stage: deploy-review and stop-review.
This stage works in accordance to the GitLab built-in review apps and dynamic environment
capabilities. It follows the guides of the review app documentation in addition to running the
scripts to start the product docker container. deploy-review and stop-review also both map
merge to a hidden job, review-stop-script, that is used to stop the product and clean up the
container.

https://docs.gitlab.com/ee/ci/review_apps/
https://docs.gitlab.com/ee/ci/environments.html#configuring-dynamic-environments
https://api.accusoft.com/editor/docs/#api-_-startingTheServer

www.accusoft.com

deploy-review:
 stage: deploy-dev
 tags:
 - review
 when: manual
 except:
 - master
 dependencies:
 - build-manual

 environment:
 name: review/$CI_COMMIT_REF_NAME
 url: url
 on_stop: stop-review
 before_script:
 - *review-stop-script
 script:
 - start product

stop-review:
 stage: deploy-dev
 dependencies: []
 tags:
 - review
 when: manual
 environment:
 name: review/$CI_COMMIT_REF_NAME
 action: stop
 script:
 - *review-stop-script

Pipeline Failures

When one of the jobs fails in the manual pipeline, the stage and job will show an icon of an
orange (!):

Failing jobs do not gate other jobs in the manual pipeline and no notifications are sent. All jobs
can be re-run any number of times by clicking the refresh button on the right side of the job
title. This is helpful if the failure is a flaky product, bug, or test infrastructure issue and you can
experiment with how often the job fails.

www.accusoft.com

Master Pipeline
The master pipeline is associated with all accepted merge requests into master. As there
should be no direct pushes to master, this is the only time that the master pipeline will fire. Our
process is to run the full manual pipeline on the merge request that we are reviewing before
pressing the ‘merge’ button. Once the button is pressed, the code is merged to master and
the master pipeline begins. The full pipeline takes approximately two hours, depending on
resource availability and pipeline flakiness.

The structure of the master pipeline is largely the same as the manual pipeline with just a
few differences. The main difference is that the entire pipeline is automated and gated on the
completion of each stage. For example, once the Test stage runs and passes, the Build stage
will automatically start and when that passes, the Fail-fast-test stage will start and so on. The
order of the stages is set at the beginning of the .gitlab-ci.yml file:

stages:
 - test
 - build
 - fail-fast-test
 - full-test
 - docker-publish
 - deploy-dev
 - notify-fail

www.accusoft.com

The first four stages in the master pipeline are the same as the manual pipeline with the
exception of them being automatic. These stages are Test, Build, Fail-fast-test, and Full-test.
The Docker-publish stage now has added jobs that publish the docker container publically.

The deploy-dev stage is different as well. Instead of a review app, this is a regular job that only
runs on master using `only: - master` and deploys the product to our internal development
environment. This is different from the review app as it is an always-up instance of the latest
version of our product for development and testing purposes.

Finally, there is now an additional stage Notify-fail. This stage contains one job, notify-failure,
that only triggers when one of the other stages in the pipeline has failed. As soon as a job has
finished and reported back that it has failed, the pipeline will finish up all the jobs in the stage
that it’s on and then skip all of the other stages to run the Notify-fail stage. A notification is then
sent to our internal Slack channel that the master pipeline has failed. At this time, we can go
investigate the failure and either roll back the changes or re-run the failed stage/job to assess
pipeline flakiness.

The failed stage and job are denoted by a red (x):

The stage-skipping is accomplished by adding `when: on_failure` to the top sub-level of the
notify-failure job in the .gitlab-ci.yml file:

notify-failure:
 stage: notify-fail
 image: $NODE_IMAGE
 tags:
 - docker
 only:
 - master
 when: on_failure
 script:
 - notify failure script

www.accusoft.com

Closing Words
So, there you have it. How PrizmDoc Editor is currently using GitLab CI to continuously
integrate and deploy our product. This pipeline has streamlined our development cycle and
aided us in becoming more agile with the way that we test and deploy the product. However,
this pipeline is never considered complete and is ever-evolving. We are constantly perfecting
it and adding new suites as we go along. We are currently working on a solution for getting
Windows-based testing into the GitLab CI pipeline which is, perhaps, a subject for another
article. I hope that this article and the result of our experiences with GitLab CI have given you
an idea of the power that a good pipeline can have.

