
www.accusoft.com

Log Analysis with Elasticsearch
and Kibana

Aleksey Kondratov
Software Engineer, PrizmDoc Suite

www.accusoft.com

Overview
From time to time, I have had to review and analyze various logs. Over time, log file size may
reach >100 MB, which is problematic for analysis. Previously, I used Notepad++ and Autogrep
for searching and querying logs. Sometimes, I created custom parsers in Python when a deep
analysis was required. Then, I used Excel for displaying results. Creating custom solutions
can take too much time and cause headaches. Recently, I learned about the Elasticsearch
platform. Immediately, I recognized it was an excellent choice for this kind of analysis. In this
blog, I will describe the minimum steps required to create some basic researching and analysis
for a log which contains JSON entries. I will not cover advanced concepts of Elasticsearch such
as working with Aggregations and Analyzers. This article is an introduction to a great tool. So
let’s start!

Goals
1.	 Set up and run Elasticsearch
2.	 Generate a log sample for analysis with Elasticsearch
3.	 Create an index and mapping in Elasticsearch
4.	 Upload data to Elasticsearch
5.	 Set up Kibana and use it for analysis

www.accusoft.com

Prerequisites
The following apps need to be installed before starting:

•	 Docker app with Engine which is no older than version 18.09.1
•	 (This is my local version where I run all apps).

•	 Python3
•	 Curl app (it may be specific to your platform, check here).

•	 This is not required; you are free to use any application that generates rest-api requests
like Postman, for example.

•	 A terminal or console for running apps from the command line

What Is Elasticsearch?
Elasticsearch is a search engine which has a lot of capabilities for data analysis and analytics.
It also can be used as a NoSQL database. The Elasticsearch (ES) uses Apache Lucene for
searching and is written in Java. You can find more details on the official ES web page here.

Set Up Elasticsearch with Docker
It would be redundant to set up ES from packages and then make additional configurations to
run it. The easiest and fastest way to set up Elasticsearch with Docker is to use an ES Docker
image. It is available in the Docker hub here. Run the following commands to download and
run Elasticsearch:

docker pull docker.elastic.co/elasticsearch/elasticsearch:6.7.1

docker run -p 9200:9200 -p 9300:9300 -e “discovery.type=single-node” docker.elastic.co/
elasticsearch/elasticsearch:6.7.1

Note: The latest version of ES is 7.0.0, but for my examples in this blog, I’m using version 6.7.1.
This is the previous version and I’m using it because it seems to be more stable. My experience
has shown me that the latest version always has some unpredictable problems.

To check if Elasticsearch has started, run the following command:

curl -X GET localhost:9200/_cat/health

You should see something very similar to the following:

docker-cluster yellow 1 1 7 7 0 0 5 0 - 58.3%

https://curl.haxx.se/download.html
https://www.getpostman.com/downloads/
https://www.elastic.co/products/elasticsearch
https://hub.docker.com/_/elasticsearch

www.accusoft.com

You may ask, “What does the ‘yellow’ status” mean?” The answer is very simple. Elasticsearch
is a cluster platform; it runs on several nodes. If it is run on one node, it does not make backup
copies of existing indexes. When these backup copies are absent, then it reports a yellow
status. If you are interested in learning more of the details, there is a good explanation in this
article. Our Elasticsearch is running on a single node, so the “yellow” status (check the Docker
command where the container starts) is OK and it is ready. Let’s define basic terms used by ES:
index, mapping, and document. To understand this better, we can compare it with terms from a
Relational Database. Let’s compare the following:

•	 Index - This is the same thing as a table in the database. Regarding our case, this is the
entire log we are going to save in ES.

•	 Mapping - It looks like a schema definition, and it includes type definitions for all fields used
by the index. Also, it may contain additional parameters which allows ES to store, ignore, or
make indexing for a field of the index (a.k.a., table).

•	 Document - This is a JSON object which is stored in ES. It looks like a row in the table. For
our case, it will be just a single line from the log file.

Getting a Log File for Analysis
I’m going to take a real log for analysis from the product PrizmDoc Viewer. You may request
a trial edition here. It allows conversions for multiple file types (CAD, PDF, MS Office formats)
to PDF, SVG, and raster images (PNG, JPEG, TIFF). Check out the online demo. I used a
standalone version which is provided as a CCS sample with PrizmDocServer.

The idea is to take the log from the Content Conversion Service (CCS) as this service is working
behind the scenes and suggests a public RESTful API for conversion. If this topic is interesting,
check out this additional information. The demo sample utilizes this API and makes it available
for the end client.

I installed the PrizmDoc Server on my VirtualBox Windows instance, ran the CCS Demo
sample, and made several conversions from PDF and doc formats to raster and PDF ones.

http://chrissimpson.co.uk/elasticsearch-yellow-cluster-status-explained.html
http://chrissimpson.co.uk/elasticsearch-yellow-cluster-status-explained.html
https://www.accusoft.com/products/prizmdoc/get-it/
https://www.accusoft.com/demos/convert-a-document
https://help.accusoft.com/PrizmDoc/v13.7/HTML/webframe.html#How_To_Configure_the_Demo_on_Windows.html
https://help.accusoft.com/PrizmDoc/v13.7/HTML/webframe.html#content-converters.html

www.accusoft.com

Then I grabbed the ContentConversionService.log from the “log” folder under the “C:\Prizm”
installation directory. It helps to review the structure of the log we are going to use as a sample:

•	 The whole log file has a ndjson format. A file by this format is a collection of JSON objects,
separated by newlines ‘\n’. In a simple way, it looks like this:
{“name”:”ContentConversionService”,”pid”:2134, “gid”:”Ldr..”,...}
{“name”:”ContentConversionService”,”pid”:2134, “gid”:”CVHX..”,...}
{“name”:”ContentConversionService”,”pid”:2134, “gid”:”JFx..”,...}

The reason I took this log for analysis is because it has the structure which is almost ready
to push to Elasticsearch. Note that it is possible to use any other log which has the ndjson
format.

www.accusoft.com

•	 There is a small problem with the log structure because it has the field “src” which may be a
simple string value in one case and a JSON object on another one:

“src”:”C:\\Prizm\\cache\\WorkfileCache\\hbyqgOZEX6PuThiE3duV9w\\WorkfileContents.
pdf”
“src”:[{“path”:”C:\\Prizm\\cache\\WorkfileCache\\hbyqgOZEX6PuThiE3duV9w\\
WorkfileContents.pdf”,”pages”:null,”password”:”*****”}]

•	 This inconsistency provokes ES to fail to accept such entries because it does not support
fields with variable complex types. I fixed it by manually updating the entries:

“src”:[{“path”:”C:\\Prizm\\cache\\WorkfileCache\\hbyqgOZEX6PuThiE3duV9w\\
WorkfileContents.pdf”}]

Pushing Data to Elasticsearch
At this point, it looks like everything is ready for uploading data to ES. We just need to make
some additional preparations:

1.	 We need to create an index. Let’s set the “ccs” name for it by executing the following:
curl -X PUT “localhost:9200/ccs”

If it is successful, you will see:
{“acknowledged”:true,”shards_acknowledged”:true,”index”:”ccs”}

www.accusoft.com

2.	 Any index requires mapping. This step is optional because ES has an internal mechanism
to generate it if it is not set. But, I don’t want to drop it because it allows us to get a more
clear understanding of the data which we are going to upload, save, and index. So, let’s
review log entries and try to select fields that we want to analyze. Here is the typical ccs log
record:

{
 “name”: “ContentConversionService”,
 “hostname”: “win2012-tests”,
 “pid”: 7092,
 “taskid”: 9,
 “gid”: “hT5YrJZzGYMrWmOVdsRANg”,
 “level”: 30,
 “taskBegin”: true,
 “parent”: {
 “name”: “LoadBalancer”,
 “pid”: 7552,
 “taskid”: 53
 },
 “reqAccepted”: true,
 “req”: {
 “method”: “POST”,
 “path”: “/v2/contentConverters”,
 “port”: 19010
 },
 “msg”: “”,
 “time”: “2019-04-18T19:32:02.074Z”,
 “v”: 0
}

I think I will need indexing in the following fields:
•	 pid - this pid of the running service
•	 taskid - an identifier of the internal subtask
•	 gid - this a global cross identifier for all services; it allows us to track requests through

taskBegin - the flag which indicates starting the request
•	 msg - some message - e.g. “Begin: convert”, it is empty for above sample
•	 time - the time when an action occurred

www.accusoft.com

In reviewing other log entries, I found additional fields which can be indexed: type,
httpStatusCode, src, err. ES supports simple types (text, keyword, date, long, double,
boolean, it), more complex ones which may contain some hierarchical data like JSON
(objecs, nested) and some special types (geo_point, geo_shape and completion). Please
see details here. As a result, we should map all fields we find interesting to the JSON
scheme which can be used as a mapping for the “ccs” index:
 {
 “properties”: {
 “time”: {
 “type”: “date”
 },
 “pid”: {
 “type”: “long”
 },
 “taskid”: {
 “type”: “long”
 },
 “type”: {
 “type”: “keyword”
 },
 “msg”: {
 “type”: “text”
 },
 “httpStatusCode”: {
 “type”: “long”
 },
 “src”: {
 “type”: “object”,
 		 “properties”: {
 			 “path”:{
 				 “type”: “text”
 			 }
 		 }
 },
 “err”: {
 “type”: “object”,
 “properties”: {
 “message”: {
 “type”: “text”
 }
 }
 }
 }
}

https://www.elastic.co/guide/en/elasticsearch/reference/6.7/mapping.html

www.accusoft.com

Now we can save the above JSON as the file “mapping.json” and put it to ES as mapping for
the ccs index. Execute the following command:

curl -H “Content-type: application/json” -X PUT “localhost:9200/ccs/_mapping/_doc”
-d @mapping.json

To check if it is saved correctly, re-execute the command:

curl -H “Content-type: application/json” -X GET “localhost:9200/ccs/_mapping?pretty”
-d @mapping.json

and you will get the mapping schema back in the answer.

3.	 Now everything is ready for posting log data to Elasticsearch. We created the “ccs” index,
generated the mapping for it, and we have a log sample which contains JSON entries.
There is just one problem. We can’t send the log directly to Elasticsearch. Sure, it supports
bulk uploading for a set of records from the file; however, each record should be indexed
before each line in the row. The following example should be inserted:

 { “index” : { “_index” : “ccs”, “_type” : “_doc”, “_id” : “1” } }

This is not the preferred way, but it can work if there is a small log which contains only
a couple hundred entries. But, if there are millions of entries, then this can be a real
problem. Instead, I will use a help Library from Elasticsearch. It will allow me to make this
operation very trivial. This library is called “elasticsearch” and it is available for a variety of
programming languages. I’ll select Python3, but you can use another language that is more
comfortable for you if you like:

•	 Add the library “elasticsearch”

pip install elasticsearch

•	 Open any text editor and write the following Python code:

from elasticsearch import Elasticsearch

es = Elasticsearch([‘localhost’], port = 9200)
with open(‘ContentConversionService.log’,’rt’) as logFile:

 ln = logFile.readline()
 ln_count = 1
 while ln:
 print(str(ln_count) + ‘: ‘ + ln)
 es.index(index = ‘ccs’, id = ln_count, body = ln)
 ln = logFile.readline()
 ln_count += 1

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch

www.accusoft.com

Bringing It All Together
Save the above code as a Python file and execute it. If you do not have any issues, then
all your data is in the Elasticsearch storage. Now let’s connect to Kibana and start the
analysis of the uploaded log.

Set Up Kibana
Kibana is a client application for Elasticsearch. It allows to manage and navigate the stack
where it is running. It contains rich possibilities to visualize and analyze Elasticsearch data.
Again, let’s use an image of Kibana from the Docker hub and run it in the container:

docker pull docker.elastic.co/kibana/kibana:6.7.1
docker run --link id_of_elasticsearch:elasticsearch -p 5601:5601 docker.elastic.co/kibana/
kibana:6.7.1

Where id_of_elasticsearch is the container id for running elasticsearch. To get this, run the
following command:

docker ps

and you will get a list of running containers, select the CONTAINER ID value for the image
docker.elastic.co/elasticsearch/elasticsearch:6.7.1 from the provided table.

Now you can open a browser and navigate to “localhost:5601”. If Kabana is running, you will

www.accusoft.com

see its splash window.

Now, go to the Management tab and select the “Index Management” in the Elasticsearch
group:

You should see that the index “ccs” is available. You can click on “ccs” and check the Summary
information, Settings, Mapping, Stats, and Edit settings.

www.accusoft.com

www.accusoft.com

Kibana will report that the index with the name “css” has been found. Then click on “Next Step”.
It asks to select the field which will be used for time filtering. We have a field “time” for this and
when you select it, the button “Create index pattern” becomes active. After you click it, the
index pattern is ready and all the log data is available for analysis on the Discover page.

To make the data available for analysis, we need to add an Index Pattern. Just click on the
“Index Patterns” item in the Kibana group and enter “ccs” in the input box:

www.accusoft.com

To make the data available for analysis, we need to add an Index Pattern. Just click on the
“Index Patterns” item in the Kibana group and enter “ccs” in the input box:

www.accusoft.com

Do not forget to change the time frame in the top right corner; by default, it displays the last 15
minutes. If the log data was not generated in the last 15 minutes, the time frame won’t display.
There is a special input query box that uses Query Parser Syntax. You can see the details here.
This allows you to build any complex queries and create diagrams/graphics for results. To
check how it works, enter the following simple query:
err.message : PDF*
It will display all entries with error messages which contain text with the “PDF” keyword.
Congratulations!

In summary, the information provided by this article should help you to start working with ELK.
Also, it describes the basic terms of Elasticsearch. Now you are able to upload JSON logs with
help libraries and connect Kibana. This app contains a lot of tools which allow you to manage
ES and analyze the uploaded data.

https://lucene.apache.org/core/2_9_4/queryparsersyntax.html

