
How to Remove Dependencies to
Speed Up Release Time

Noah Kruswicki
Software Development Engineer in Test (SDET) III
Accusoft

www.accusoft.com

One of the challenges facing modern software development is what I have often heard called
“shifting sands.” It means the differing pace of revision in the software you rely on.

Sometimes revisions can impact your sprints. For our specific case in SaaS QA, the fast pace
of Chrome and Firefox development means putting in a request with IT to update a Teamcity
agent, who would then prioritize it for a future sprint.

This could mean waiting weeks for changes, and in one case, we had fallen behind 2 versions
of Chrome and our browser was no longer compatible with the Chrome driver.

Now expand this problem to all the other dependencies we had such as NodeJS, Java, OS
version, etc. and you quickly have a maintenance nightmare.

To solve this issue, I started exploring the use of running our test suite in a Docker container
so that we only needed an updated Teamcity agent when Docker updated.

Shifting Sands

www.accusoft.com

Docker Container Testing
After implementing the solution, I had a dockerfile that looked something like this:

Set the base image
FROM ubuntu

wget
RUN apt-get update
RUN apt-get install wget -y

Chrome
RUN apt-get install gnupg -y
RUN wget -q -O - https://dl-ssl.google.com/linux/linux_signing_key.pub | apt-key add -
RUN sh -c ‘echo “deb [arch=amd64] http://dl.google.com/linux/chrome/deb/ stable main” >> /etc/apt/sources.
list.d/google-chrome.list’
RUN apt-get update
RUN apt-get install google-chrome-stable -y

Add non-root user
RUN useradd --create-home -s /bin/bash tester
WORKDIR /home/tester
USER tester

NVM
RUN wget -qO- https://raw.githubusercontent.com/creationix/nvm/v0.33.11/install.sh | bash

www.accusoft.com

To run my tests on Docker in Teamcity, I used the Docker plugin/runner. The first step was to
build the container from my dockerfile:

www.accusoft.com

Next I needed to run my tests. I used a command line step and told Teamcity to run my tests in
the container I built in the previous step and run them with the user ‘tester.’

www.accusoft.com

At this point, I was feeling pretty good. Problem solved. Job well done. Go home, everybody.
Unfortunately, when presenting this to my boss, he reminded me that one of the specifications
for the UI regression tests were that they must run in parallel. Back to the drawing board.

www.accusoft.com

Parallelizing Tests with Docker Compose and
Selenium Grid
I knew parallelism could be achieved from Selenium Grid, but I had little experience working
with it. After doing some research, I found that it works in a server/client architecture. There
was a primary Selenium Grid server that exposed port 4444 for user communication and port
5555 for node communication. After nodes had been configured, they called out to the server
to make it aware of the new node. During test runs, the tests come in to the server, which then
delegates them out to available nodes, queuing tests when all nodes are in use.

However, as already explained, using Selenium Server in its classic bare metal or even
virtualized implementations would only exacerbate the IT bottleneck. Once again, Docker
to the rescue. I began writing several dockerfiles and having Docker Compose build them to
implement the structure listed below.

www.accusoft.com

After several failed attempts, I found that the Selenium project had already published blessed
containers on Docker Hub. From here, it was just a matter of creating my docker-compose.yml:

version: ‘2’
services:

 hub:
 image: selenium/hub
 environment:
 - GRID_MAX_SESSION=10
 - GRID_TIMEOUT=180000
 - GRID_BROWSER_TIMEOUT=180000
 - GRID_HUB_PORT=4444
 ports:
 - “4444:4444”
 container_name: hub

 chrome:
 image: selenium/node-chrome
 depends_on:
 - hub
 environment:
 - HUB_HOST=hub
 - HUB_PORT=4444
 - DBUS_SESSION_BUS_ADDRESS=/dev/null
 shm_size: 1024MB
 volumes:
 - /dev/shm:/dev/shm

 firefox:
 image: selenium/node-firefox
 depends_on:
 - hub
 environment:
 - HUB_HOST=hub
 - HUB_PORT=4444
 - DBUS_SESSION_BUS_ADDRESS=/dev/null
 shm_size: 1024MB
 volumes:
 - /dev/shm:/dev/shm

www.accusoft.com

Integrating AWS into the Build Pipeline
Now that the dockerized Selenium Grid concept was working, my next step was to find a
server somewhere to have the Grid containers running when my tests were ready. I knew from
experience running this configuration locally, I would need at least 2 CPUs and at least 8 GBs of
RAM. When gathering data, it became clear that this would be a costly server to have sitting in
a rack somewhere collecting dust most of the day. So, I thought spinning up an AWS instance
right before run time and then spinning it back down after the test runs seemed like the best
option.

Once I was able to get this working, I tried to migrate it to Teamcity. Unfortunately, due to what
I believe to be a bug in Teamcity’s Docker implementation, I was not able to get this to work
as a self contained unit. I knew this was the right way to go, so I just had to find a way to make
it work. I thought that I would spin up a VM in an attempt to host the Selenium Grid containers
there. Then, I would point my tests to port 4444 on my VM and attempt to run them from inside a
container on Teamcity. SUCCESS!!

In order to spin up the AWS instances in an automated way, I needed to use the awscli tool that
Amazon publishes. I used this in combination with a shell script. At Accusoft, we use EC2 tags to
determine billing for products groups, so including tags was very important. While often times we
had the same tags on the same images, on occasion we needed to change the tags. This meant
my script had to be easy and fast enough to hit the typical use case, but also needed the control
to change the tags on the fly if needed. One additional challenge I faced was the need to pass an
instance ID received back from the spin up script to the spin down script.

www.accusoft.com

For this, I created a temporary text file to store the number:

#!/bin/bash
PROGNAME=$0
manpage=false
team=””
key=””
secret=””
Instance Info
instanceType=“t3.large”
amiId=“ami-xxxxxxxxxx”
keyName=“Saas-QA”
securityGroupsIds=“sg-xxxxxxxxxx sg-xxxxxxxxxx sg-xxxxxxxxxx”
subnetId= “subnet-xxxxxxxxxx”
Tags
name=””
productGroup=””
rules=“none”
environment=””
owner=””
region=””
purpose=””

help() {
 $manpage=true
 cat << EOF >&2

Usage: $PROGNAME [options]

-g <product group> Must be an entry from our approved list of groups. Used for billing.

-r <rules> JSON object with a list of restrictions on the object.

-e <environment> Must be one of the following: prod,dev,qa,staging,support.

-O <owner> Engineering team or specific user who started the instance.

-l <region> AWS region. Most common use is us-east-1.

-p <purpose> String value outlining the purpose of this AWS instance.

-t <team> Team is a predefined set of tags based on known usages.

-k <key> Amazon AWS access key.

-s <secret key> Amazon AWS secret access key.

www.accusoft.com

EOF
 exit 1
}

setTeam() {
 case $team in
 team1)
 name=”team1-automation”
 productGroup=”pg1”
 rules=”disabled”
 environment=”qa”
 owner=”owner1”
 region=”us-east-1”
 purpose=”purpose1”
 ;;
 team2)
 name=”team2-automation”
 productGroup=”pg2”
 rules=”disabled”
 environment=”dev”
 owner=”owner2”
 region=”us-east-1”
 purpose=”purpose2”
 ;;
 esac
}

Override for rule breakers
if [-z $owner]
then
 owner=$USER
fi

if [-z $productGroup]
then
 productGroup=$TEAMCITY_BUILDCONF_NAME
fi

while getopts g:r:e:O:l:p:t:k:s: o; do
 case $o in
 (g) group=$OPTARG;;
 (r) rules=$OPTARG;;
 (e) environment=$OPTARG;;
 (O) owner=$OPTARG;;
 (l) region=$OPTARG;;
 (p) purpose=$OPTARG;;
 (t) team=$OPTARG; setTeam;;
 (k) key=$OPTARG;;
 (s) secret=$OPTARG;;
 (*) help; exit 2;;
 esac
done
shift “$((OPTIND - 1))”

www.accusoft.com

rm instanceId.txt

export AWS_ACCESS_KEY_ID=$key
export AWS_SECRET_ACCESS_KEY=$secret

aws ec2 run-instances \
--image-id $amiId \
--count 1 \
--instance-type $instanceType \
--key-name $keyName \
--security-group-ids $securityGroupsIds \
--subnet-id $subnetId \
--region $region \
--private-ip-address xxxxxxxxxx \
--tag-specifications \
“ResourceType=instance,Tags=[{Key=Name,Value=${name}}, \
{Key=Product Group,Value=${productGroup}}, \
{Key=Rules,Value=${rules}}, \
{Key=Environment,Value=${environment}},\
{Key=Owner,Value=${owner}}, \
{Key=Region,Value=${region}}, \
{Key=Purpose,Value=${purpose}}]” \
| grep InstanceId | awk ‘{print $2}’ | tr -d , | tr -d \” >> instanceId.txt

www.accusoft.com

Then to spin down the AWS instances I used a script similar in structure:

#!/bin/bash
PROGNAME=$0
manpage=false
key=””
secret=””

help() {
 $manpage=true
 cat << EOF >&2

Usage: $PROGNAME [options]

-k <key> Amazon AWS access key.

-s <secret key> Amazon AWS secret access key.

EOF
 exit 1
}

while getopts g:r:e:O:l:p:t:k:s: o; do
 case $o in
 (k) key=$OPTARG;;
 (s) secret=$OPTARG;;
 (*) help; exit 2;;
 esac
done
shift “$((OPTIND - 1))”

export AWS_ACCESS_KEY_ID=$key
export AWS_SECRET_ACCESS_KEY=$secret
export AWS_DEFAULT_REGION=us-east-1
id=$(<instanceId.txt)
aws ec2 terminate-instances --instance-ids $id

www.accusoft.com

[Unit]
Description=Docker compose script for selenium grid
After=network.target docker.service
[Service]
Type=simple
ExecStart=/usr/local/bin/docker-compose -f /home/weyenk/docker-compose.yml up --scale chrome=10 --scale fire-
fox=10
ExecStop=/usr/local/bin/docker-compose -f /home/weyenk/docker-compose.yml down
[Install]
WantedBy=multi-user.target

Starting Selenium Grid Containers

Now that spinning up and down the instances was complete, I needed to find a way to start
the Selenium Grid containers when the instances started up. For that, I use a systemd service
to kick off the Docker Compose script. Systemd is fairly new on the Linux scene, but it makes it
really easy to start services and to tie them to others. So in this case, I didn’t want the Selenium
services to start before the network or docker services. One quick line, and this is no longer a
concern:

www.accusoft.com

In conclusion, the addition of spin up and spin down scripts for AWS makes these tests much
cheaper to run in a fiscal sense, which makes any executive happy. Most importantly the
success of these infrastructure changes should be even better Accusoft products going
forward.

By adding Docker and Selenium Grid we are now able to overcome impediments that used to
delay our releases, sometimes by weeks. As a side benefit, I was able to add visual regression
testing to our test arsenal. Additionally, I could now expand our UI based tests to cover
additional browsers and increase the parallelism of our tests all while maintaining the
confidence our IT staff has in our systems.

