
www.accusoft.com

Communicating with External
Systems in a Salesforce Application

Stephen Bucholtz
Senior Software Engineer II

www.accusoft.com

Salesforce applications provide a way to easily extend the capabilities of the popular customer
relationship management platform Salesforce. A Salesforce user can choose from thousands
of apps that are available on the Salesforce App Exchange.

One common capability provided by Salesforce apps is the ability to communicate with
external systems in order to extend the functionality of Salesforce. For example, the OnTask
Salesforce app provides the ability to launch and monitor OnTask workflows directly in
Salesforce.

As a Salesforce app developer, how does one incorporate communication with external
systems into an app? Continue reading as we provide a brief introduction to this topic.

Calling REST API Endpoints via HTTP
Web-based services frequently expose their services via a REST API. HTTP is typically the
protocol used to access these services.

Salesforce apps are developed using Apex, a strongly typed, object-oriented programming
language. Apex allows integration with external REST Web services using callouts. Callouts
allow communication with external systems via HTTP. Each callout request is associated with
an HTTP method and an endpoint.

https://appexchange.salesforce.com
https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3A00000EtDjBUAV
https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3A00000EtDjBUAV

www.accusoft.com

In order to develop a callout, several different Apex classes are used. These classes are
described below.

HTTP Class
This class is used to initiate an HTTP message exchange and obtain the response. The
method send () is used to send the message.

HTTPRequest Class
This class is used to create an HTTP request that can then be sent using the HTTP class.
Various attributes of the HTTP request can be set, such as the method, endpoint, and header
fields.

HTTPResponse Class
This class represents the response received from the HTTP class after a request has been
sent. The class has methods for getting various parts of the response, such as getStatusCode ()
and getBody ().

Example

The following example involves calling an OnTask REST API endpoint. This endpoint retrieves
the start form associated with a workflow model. The start form allows the user to provide
input data when starting a workflow.

In this example, two functions are defined:
• sendGetWorkflowStartForm () - encapsulates the lowest level processing, which consists of

constructing the HTTP request and sending the request

• getWorkflowStartForm () - calls the lower-level function and processes the response

www.accusoft.com

public static HttpResponse sendGetWorkflowStartForm(String wfModelId) {
 // Create an instance of the Http class
 Http http = new Http();

 // Create an instance of the HttpRequest class
 HttpRequest req = new HttpRequest();

 // Set the HttpRequest method to GET
 req.setMethod(‘GET’);

 // Set the API Endpoint to be called
 req.setEndpoint(baseOnTaskApiUrl + ‘/workflowModels/’ +
 wfModelId + ‘/startEventForm’);

 // Set the HttpRequest header Content-Type to indicate
 // the returned data should be JSON content
 req.setHeader(‘Content-Type’,’application/json’);

 // Send the request and store the response in an instance
 // of the HttpResponse class
 HttpResponse res = http.send(req);
 return res;
 }

public static String getWorkflowStartForm(String wfModelId) {
 String baseErrorMsg = ‘There was an error getting the start
 form. wfModelId: ‘ + wfModelId;
 try {
 // Call the function that sends the HTTP Request
 HttpResponse res = sendGetWorkflowStartForm(wfModelId);

 // Check the status code contained in the HTTP Response
 if (res.getStatusCode() == 404) {
 // A status code of 404 indicates there is no start form.
 // In this case, return null.
 return null;
 }
 else if(res.getStatusCode() == 200) {
 // Return the data contained in the HTTP Response Body.
 return res.getBody();
 } else {
 String errorMsg = ‘OnTask returned statusCode: ‘ +
 res.getStatusCode() + ‘, statusMessage: ‘ +
 res.getStatus();
 throw new OnTaskCallerException(errorMsg);
 }
 } catch (Exception e) {
 String errorMsg = e.getMessage();
 throw new OnTaskCallerException(errorMsg);
 }
 }

www.accusoft.com

Handling JSON Data
REST API endpoints typically transmit data in request and response bodies as JSON data.
Apex provides classes for generating and parsing JSON data:
• JSONGenerator - Generates standard JSON-encoded content and allows construction of

JSON content, element by element.

• JSONParser - Parses JSON-encoded content and enables parsing a JSON-formatted
response that’s returned from a call to an external service.

JSONGenerator
The following is a simple example that shows how to generate JSON content.

// Create a JSONGenerator object.
// Pass true to the constructor for pretty print formatting.
JSONGenerator gen = JSON.createGenerator(true);

// Generate the tag that signifies the start of a JSON object
gen.writeStartObject();

// Write some JSON object fields
gen.writeStringField(‘firstName’, ‘Jack’);
gen.writeStringField(‘firstName’, ‘Smith’);
gen.writeStringField(title, CEO);

// Generate the tag that signifies the end of a JSON object
gen.writeEndObject();

// Retrieve a string representation of the JSON object.
// This string can then be assigned to the body of an HTTP message.
String jsonBody = gen.getAsString();
//Create a request and set the request body to the JSON string.
HttpRequest req = new HttpRequest();
req.setMethod(‘POST’);

req.setBody(jsonBody);

www.accusoft.com

One Possible Gotcha
When making a callout to an external system, there are often related Salesforce database
updates. It is common for the results obtained in a callout to be persisted with a database
update. Conversely, a database item may be updated, then that updated data is transmitted
to an external system. It is very important to note that there is a Salesforce restriction on the
timing of callouts and database transactions:

• Callouts are not allowed when there is an uncommitted database transaction pending.

If the above rule is violated, you will encounter this error:

• “You have uncommitted work pending. Please commit or rollback before calling out.”

You will encounter this error if you have database updates interspersed with callouts. In
this scenario, all the database operations should be invoked only after you’re done with the
callouts. If you are making multiple callouts, then save all the database requests in a list or
map, then after all the callouts have been completed, you can execute the saved database
requests.

www.accusoft.com

Conclusion and Further Reading
This article has provided a brief introduction to communicating with external systems from
within a Salesforce app. We have seen that it is easy and straightforward to send REST API
requests and process the responses. There is support for both constructing and parsing JSON
data.

Hopefully this gives you a starting point for incorporating these concepts into your apps.

For additional general information on integrating with external systems, see the Integration
and Apex Utilities section of the Salesforce Apex Developer Guide.

For additional information on handling JSON content, see the JSON Support section of the
Salesforce Apex Developer Guide.

For an article on callout errors due to database transactions, see this knowledge base article.

https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_integration_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_integration_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_methods_system_json_overview.htm
https://help.salesforce.com/articleView?id=000328873&type=1&mode=1

