1. GENERAL DESCRIPTION

The Dimension C-Series are cost optimized power supplies without compromising quality, reliability and performance. The C-Series is part of the Dimension power supply family, existing alongside the high featured Q-series.

The C series includes all the essential basic functions and the devices have a power reserve of 20%. This extra current may even be used continuously at temperatures up to +45°C. The most important features are the small size, the high efficiency and the wide temperature range.

The Auto-select input makes worldwide installation and usage very simple. Defects or system failures caused by wrongly set switches can not occur.

2. SHORT-FORM DATA

Output voltage DC 48V
Adjustment range 48 - 52V
Output current 5.0 – 4.6A ambient <60°C
6.0 – 5.5A ambient <45°C
Output power 240W ambient <60°C
288W ambient <45°C
Output ripple < 100mVpp 20Hz to 20MHz
Input voltage AC 100-120 / 200-240V Auto-select Input
Mains frequency 50-60Hz ±6%
AC Input current typ. 3.73 / 2.23A at 120 / 230Vac
Power factor typ. 0.59 / 0.51 at 120 / 230Vac
AC Inrush current typ. 3A peak
DC Input not allowed
Efficiency typ. 91.0 / 91.6% at 120 / 230Vac
Losses typ. 23.7 / 22.0W at 120 / 230Vac
Temperature range -25°C to +70°C operational
Derating 6W/°C +60 to +70°C
Hold-up time typ. 46 / 47ms at 120 / 230Vac
Dimensions 60x124x117mm WxHxD

3. ORDER NUMBERS

Power Supply CS10.481 Standard unit, 48Vdc
Accessory ZM1.WALL Wall mount bracket
ZM13.SIDE Side mount bracket
YRM2.DIODE Redundancy module

4. MARKINGS

UL 508
UL 60950-1
Marine, pending

Nov. 2006 / Rev. 1.1 DS-CS10.481-EN
All parameters are specified at 48V, 5A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
INTENDED USE

The power supply shall only be installed and put into operation by qualified personnel.

This power supply is designed for installation in an enclosure and is intended for the general use, such as in industrial control, office, communication, and instrumentation equipment. Do not use this device in aircraft, trains and nuclear equipment, where malfunctioning of the power supply may cause severe personal injury or threaten human life.

TERMINOLOGY AND ABBREVIATIONS

PE and symbol PE is the abbreviation for Protective Earth and has the same meaning as the symbol ♂.

Earth, Ground This document uses the term “earth” which is the same as the U.S. term “ground”.

T.b.d. To be defined, value or description will follow later.

AC 230V A figure displayed with the AC or DC before the value represents a nominal voltage with standard tolerances (usually ±20%) included.

E.g.: DC 12V describes a 12V battery disregarding whether it is full (13.7V) or flat (10V)

As long as not otherwise stated, AC 100V and AC 230V parameters are valid at 50Hz and AC 120V parameters are valid at 60Hz mains frequency.

230Vac A figure with the unit (Vac) at the end is a momentary figure without any additional tolerances included.

DISCLAIMER

The information presented in this document is believed to be accurate and reliable and may change without notice.
5. AC-INPUT

AC input nom. AC 100-120V / 200-240V auto-select input, TN-, TT-, IT-Mains, see Fig. 5-1

AC input range
- 90-132Vac 100-120V range, continuous operation
- 180-264Vac 200-240V range, continuous operation
- 85-90Vac Short term or with output derating
- 264-300Vac < 0.5s

Input frequency nom. 50 – 60Hz ±6%

AC 100V AC 120V AC 230V

Input current typ. 4.34A 3.73A 2.23A at 48V, 5A see Fig. 5-3

Power factor *) typ. 0.61 0.59 0.51 at 48V, 5A see Fig. 5-1

Crest factor **) typ. 2.61 2.83 3.3 at 48V, 5A

Start-up delay typ. 700ms 800ms 850ms see Fig. 5-2

Rise time typ. 23ms 23ms 23ms
- 0mF, 48V, 5A, see Fig. 5-2
- 5mF, 48V, 5A, see Fig. 5-2

Turn-on overshoot max. 100mV 100mV 100mV see Fig. 5-2

Turn-on voltage typ. 80Vac 80Vac N / A steady-state value, see Fig. 5-1

Shut-down voltage typ. 75Vac 75Vac N / A steady-state value, see Fig. 5-1

*) The power factor is the ratio of the true (or real) power to the apparent power in an AC circuit.

**) The crest factor is the mathematical ratio of the peak value to the RMS value of the input current waveform.

Fig. 5-1 Input voltage range

Fig. 5-2 Turn-on behavior, definitions

Fig. 5-3 Input current vs. output load

Fig. 5-4 Power Factor vs. output load

All parameters are specified at 48V, 5A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
6. Input Inrush Current Surge

An active inrush limitation circuitry limits the input inrush current after turn-on of the input voltage. The charging current into EMI suppression capacitors is disregarded in the first milliseconds after switch-on.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inrush current</td>
<td>max. 10A<sub>peak</sub></td>
<td>10A<sub>peak</sub></td>
<td>10A<sub>peak</sub></td>
</tr>
<tr>
<td></td>
<td>typ. 3A<sub>peak</sub></td>
<td>3A<sub>peak</sub></td>
<td>3A<sub>peak</sub></td>
</tr>
<tr>
<td>Inrush energy</td>
<td>typ. 1A·s</td>
<td>1A·s</td>
<td>1A·s</td>
</tr>
</tbody>
</table>

| Temperature Range | -25°C to +70°C |

Fig. 6-1 Input inrush current, typical behavior

A: Start-up delay = Inrush delay
Input: 230Vac
Output: 48V, 5A
Ambient: 25°C
Upper curve: Input current 10A / DIV
Medium curve: Input voltage 500V / DIV
Lower curve: Output voltage 40V / DIV
Time scale: 100ms / DIV

7. Hold-up Time

<table>
<thead>
<tr>
<th>Voltage</th>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hold-up Time</td>
<td>typ. 62ms</td>
<td>107ms</td>
<td>103ms</td>
</tr>
<tr>
<td></td>
<td>typ. 23ms</td>
<td>46ms</td>
<td>47ms</td>
</tr>
<tr>
<td></td>
<td>typ. 17ms</td>
<td>35ms</td>
<td>37ms</td>
</tr>
</tbody>
</table>

Fig. 7-1 Hold-up time vs. input voltage

Note: At no load, the hold-up time can be up to several seconds. The green DC-ok lamp is on during this time.

Fig. 7-2 Shut-down behavior, definitions

Note: All parameters are specified at 48V, 5A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
8. Output

<table>
<thead>
<tr>
<th>Output voltage</th>
<th>nom.</th>
<th>48V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment range</td>
<td>min.</td>
<td>48-52V</td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>60V</td>
</tr>
<tr>
<td>Factory setting</td>
<td></td>
<td>48.0V</td>
</tr>
<tr>
<td>Line regulation</td>
<td>max.</td>
<td>70mV</td>
</tr>
<tr>
<td>Load regulation</td>
<td>max.</td>
<td>100mV</td>
</tr>
<tr>
<td>Ripple and noise voltage</td>
<td>max.</td>
<td>100mVpp</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>typ.</td>
<td>3 100µF</td>
</tr>
<tr>
<td>Output current</td>
<td>nom.</td>
<td>6A</td>
</tr>
<tr>
<td></td>
<td>nom.</td>
<td>5A</td>
</tr>
<tr>
<td></td>
<td>nom.</td>
<td>5.5A</td>
</tr>
<tr>
<td></td>
<td>nom.</td>
<td>4.6A</td>
</tr>
<tr>
<td>Output power</td>
<td>nom.</td>
<td>288W</td>
</tr>
<tr>
<td>Short-circuit current</td>
<td>min.</td>
<td>7A</td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>9A</td>
</tr>
</tbody>
</table>

Fig. 8-1 Output voltage vs. output current, typ.

Peak current capability (up to several ms)
The power supply can deliver a peak current which is higher than the specified short term current. This helps to start current demanding loads or to safely operate subsequent circuit breakers.

The extra current is supplied by the output capacitors inside the power supply. During this event, the capacitors will be discharged and causes a voltage dip on the output. Detailed curves can be found in chapter 25.1.

Peak current voltage dips	typ.	from 48V to 38 V	at 10A for 50ms, resistive load
	typ.	from 48V to 35 V	at 25A for 2ms, resistive load
	typ.	from 48V to 28 V	at 25A for 5ms, resistive load
9. **EFFICIENCY AND POWER LOSSES**

<table>
<thead>
<tr>
<th></th>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>typ. 90.7%</td>
<td>91.0%</td>
<td>91.6%</td>
</tr>
<tr>
<td>Power losses</td>
<td>typ. 5.8W</td>
<td>8.4W</td>
<td>7.5W</td>
</tr>
<tr>
<td></td>
<td>typ. 12.0W</td>
<td>12.3W</td>
<td>11.3W</td>
</tr>
<tr>
<td></td>
<td>typ. 25.1W</td>
<td>24.1W</td>
<td>22.4W</td>
</tr>
<tr>
<td></td>
<td>typ. 31.9W</td>
<td>29.6W</td>
<td>27.9W</td>
</tr>
</tbody>
</table>

All parameters are specified at 48V, 5A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
10. FUNCTIONAL DIAGRAM

![Functional diagram]

11. RELIABILITY

<table>
<thead>
<tr>
<th></th>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifetime expectancy</td>
<td>min. 45 000h</td>
<td>60 000h</td>
<td>96 000h</td>
</tr>
<tr>
<td></td>
<td>min. 33 000h</td>
<td>42 000h</td>
<td>63 000h</td>
</tr>
<tr>
<td></td>
<td>min. 97 000h</td>
<td>106 000h</td>
<td>122 000h</td>
</tr>
<tr>
<td></td>
<td>min. 126 000h</td>
<td>15 years</td>
<td>15 years</td>
</tr>
<tr>
<td>MTBF SN 29500, IEC 61709</td>
<td>627 000h</td>
<td>653 000h</td>
<td>830 000h</td>
</tr>
<tr>
<td></td>
<td>536 000h</td>
<td>558 000h</td>
<td>709 000h</td>
</tr>
<tr>
<td></td>
<td>1 060 000h</td>
<td>1 104 000h</td>
<td>1 403 000h</td>
</tr>
<tr>
<td>MTBF MIL HDBK 217F</td>
<td>459 000h</td>
<td>450 000h</td>
<td>475 000h</td>
</tr>
<tr>
<td></td>
<td>413 000h</td>
<td>406 000h</td>
<td>426 000h</td>
</tr>
<tr>
<td></td>
<td>655 000h</td>
<td>642 000h</td>
<td>659 000h</td>
</tr>
</tbody>
</table>

The Lifetime expectancy shown in the table indicates the operating hours (service life) and is determined by the lifetime expectancy of the built-in electrolytic capacitors.

Lifetime expectancy is specified in operational hours. Lifetime expectancy is calculated according to the capacitor’s manufacturer specification. The prediction model allows a calculation of up to 15 years from date of shipment.

MTBF stands for Mean Time Between Failure, which is calculated according to statistical device failures, and indicates reliability of a device. It is the statistical representation of the likelihood of a unit to fail and does not necessarily represent the life of a product.
12. FRONT SIDE AND USER ELEMENTS

Output Terminals
Screw terminals

- Positive output
- Negative (return) output
Dual pins per pole

Output voltage potentiometer
Open the flap to tune the output voltage.
Factory set: 48.0V

Input Terminals
Screw terminals

N ... Neutral input
L ... Line (hot) input
... PE (Protective Earth) input

DC-on lamp (green)
On when the voltage on the output terminals is > 37V

13. TERMINALS AND WIRING

<table>
<thead>
<tr>
<th>Type</th>
<th>Screw terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid wire</td>
<td>0.5-6mm²</td>
</tr>
<tr>
<td>Stranded wire</td>
<td>0.5-4mm²</td>
</tr>
<tr>
<td>American wire gauge</td>
<td>20-10 AWG</td>
</tr>
<tr>
<td>Ferrules</td>
<td>allowed, but not required</td>
</tr>
<tr>
<td>Wire stripping length</td>
<td>7mm / 0.275inch</td>
</tr>
<tr>
<td>Screwdriver</td>
<td>3.5mm slotted or Pozidrive No 2</td>
</tr>
<tr>
<td>Recommended tightening torque</td>
<td>0.8Nm, 7lb.in</td>
</tr>
</tbody>
</table>

Instructions:

a) Use appropriate copper cables that are designed for an operating temperature of:
 - 60°C for ambient up to 45°C and
 - 75°C for ambient up to 60°C minimum.
b) Follow national installation codes and installation regulations!
c) Ensure that all strands of a stranded wire enter the terminal connection!
d) Up to two stranded wires with the same cross section are permitted in one connection point (except PE wire).
e) Do not use the unit without PE connection.
14. EMC

The CE mark is in conformance with EMC guideline 89/336/EEC and 93/68/EEC and the low-voltage directive (LVD) 73/23/EWG. A detailed EMC Report is available on request.

<table>
<thead>
<tr>
<th>EMC Immunity</th>
<th>EN 61000-6-2, EN 61000-6-1</th>
<th>Generic standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic discharge</td>
<td>Contact discharge</td>
<td>8kV</td>
</tr>
<tr>
<td></td>
<td>Air discharge</td>
<td>15kV</td>
</tr>
<tr>
<td>Electromagnetic RF field</td>
<td>EN 61000-4-3</td>
<td>80MHz-1GHz</td>
</tr>
<tr>
<td>Fast transients (Burst)</td>
<td>EN 61000-4-4</td>
<td>Input lines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output lines</td>
</tr>
<tr>
<td>Surge voltage on input</td>
<td>EN 61000-4-5</td>
<td>L → N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N / L → PE</td>
</tr>
<tr>
<td>Surge voltage on output</td>
<td>EN 61000-4-5</td>
<td>+ → -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ / - → PE</td>
</tr>
<tr>
<td>Conducted disturbance</td>
<td>EN 61000-4-6</td>
<td>0.15-80MHz</td>
</tr>
<tr>
<td>Mains voltage dips</td>
<td>EN 61000-4-11</td>
<td>0% of 100Vac</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40% of 100Vac</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70% of 100Vac</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0% of 200Vac</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40% of 200Vac</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70% of 200Vac</td>
</tr>
<tr>
<td>Voltage interruptions</td>
<td>EN 61000-4-11</td>
<td>0Vac, 20ms</td>
</tr>
<tr>
<td>Input voltage swells</td>
<td>PULS internal standard</td>
<td>40Vac, 200ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70Vac, 500ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0Vac, 20ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80Vac, 200ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>140Vac, 500ms</td>
</tr>
<tr>
<td>Powerful transients</td>
<td>VDE 0160</td>
<td>over entire load</td>
</tr>
<tr>
<td></td>
<td></td>
<td>range</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750V, 1.3ms</td>
</tr>
</tbody>
</table>

Criterions:

A: Power supply shows normal operation behavior within the defined limits.

C: Temporary loss of function is possible. Power supply might shut-down and restarts by itself. No damages or hazards for the power supply occur.

Switching frequency 85kHz to 110kHz input voltage dependent
EMC Emission	EN 61000-6-4	Generic standards
Conducted emission	EN 55011, EN 55022, FCC Part 15, CISPR 11, CISPR 22	Class B, input lines
EN 55022	Class A, output lines	
Radiated emission | EN 55011, EN 55022 | Class B
Harmonic input current | EN 61000-3-2 | not fulfilled
Voltage fluctuations, flicker | EN 61000-3-3 | fulfilled

This device complies with FCC Part 15 rules. Operation is subjected to following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The power supply does not fulfill the harmonic current standard EN61000-3-2.

Please note:

A power supply has to comply with EN 61000-3-2 (Standard for harmonic input current) when:
1) the end-device is used within the European Union and
2) the end-device is connected to a public mains supply with a nominal voltage ≥ 220Vac and
3) the power supply is:
 - fitted in an end-device with an average input power in excess of 75W or
 - fitted in an end-device with a continuous input power in excess of 75W or
 - part of a lighting system.

Exceptions:
End-devices for professional applications with an input power > 1000W do not need to fulfill EN 61000-3-2.

Comments:
- The average input power must be determined in accordance with EN 61000-3-2.
- Industrial mains supplies with their own transformer are considered to be “non-public”.
- Where individual self-contained items of equipment are installed in a rack or case (e.g. devices connected in parallel), they are regarded as being individually connected to the mains supply. The rack or case need not be tested as a whole. Alternatively it is also permitted to assess the whole rack or case. This is recommended for devices used in professional applications with an input power greater than 1000W.
15. ENVIRONMENT

Operational temperature:
-25°C to +70°C (-13°F to 158°F) reduce output power according Fig. 15-1

Output de-rating:
3.2W/°C
6W/°C

Storage temperature:
-40 to +85°C (-40°F to 185°F) storage and transportation

Humidity:
5 to 95% r.H.

Vibration sinusoidal:
2-17.8Hz: ±1.6mm; 17.8-500Hz: 2g 2 hours / axis

Shock:
30g 6ms, 20g 11ms 3 bumps / direction, 18 bumps in total

Altitude:
0 to 6000m (0 to 20000ft) Reduce output power or ambient temperature above 2000m sea level.

Over-voltage category:
III EN 50178, altitudes up to 2000m
II Altitudes from 2000m to 6000m

Degree of pollution:
2 EN 50178, not conductive

The ambient temperature is defined 2cm below the unit.

16. PROTECTION FEATURES

Output protection: Electronically protected against overload, no-load and short-circuits

Output over-voltage protection:
typ. 56Vdc
max. 60Vdc

In case of an internal power supply defect, a redundant circuitry limits the maximum output voltage. The output shuts down and automatically attempts to restart.

Output over-current protection: electronically limited see Fig. 8-1

Degree of protection:
IP 20 EN/IEC 60529

Penetration protection:
> 3.5mm e.g. screws, small parts

Over-temperature protection:
yes output shut-down with automatic restart

Input transient protection:
MOV Metal Oxide Varistor

Internal input fuse:
T6.3A H.B.C. not user replaceable

Note: In case of a protection event, audible noise may occur.
17. SAFETY

Input / output separation
- SELV
- PELV

IEC/EN 60950-1
EN 60204-1, EN 50178, IEC 60364-4-41

double or reinforced insulation

Class of protection
- I

PE (Protective Earth) connection required

isolation resistance
- > 5MOhm

input to output, 500Vdc

PE resistance
- < 0.1Ohm

between housing and PE terminal

Touch current (leakage current)
- typ. 0.36mA

100Vac, 50Hz, TN mains

- typ. 0.50mA

120Vac, 60Hz, TN mains

- typ. 0.64mA

230Vac, 50Hz, TN mains

- < 0.45mA

110Vac, 50Hz, TN mains

- < 0.62mA

132Vac, 60Hz, TN mains

- < 0.85mA

264Vac, 50Hz, TN mains

18. DIELECTRIC STRENGTH

Fig. 18-1 Dielectric strength

Type test 60s 2500Vac 3000Vac 500Vac

Factory test 5s 2500Vac 2500Vac 500Vac

Field test 5s 2000Vac 2000Vac 500Vac

Type tests and factory tests:
Conducted by the manufacturer. Do not repeat test in field!

Rules for field test:
Use appropriate test equipment which applies the voltage with a slow ramp! Connect L and N together as well as all output poles.

The output voltage is floating and has no ohmic connection to ground.

To fulfill the PELV requirements according to EN60204-1 § 6.4.1, we recommend that either the + pole, the – pole or any other part of the output circuit shall be connected to the protective earth system. This helps to avoid situations in which a load starts unexpectedly or can not be switched off any more when unnoticed earth faults occur.
19. APPROVALS

<table>
<thead>
<tr>
<th>Approval</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60950-1</td>
<td>CB Scheme, Information Technology Equipment</td>
</tr>
<tr>
<td>UL 508</td>
<td>LISTED as Industrial Control Equipment E198865</td>
</tr>
<tr>
<td>UL 60950-1</td>
<td>RECOGNIZED E137006 recognized for the use in U.S.A. (UL 60950-1) and Canada (C22.2 No. 60950) Information Technology Equipment, Level 5</td>
</tr>
<tr>
<td>Marine pending</td>
<td>GL (Germanischer Lloyd) classified and ABS (American Bureau for Shipping) PDA for marine and offshore applications. Environmental category: C, EMC2</td>
</tr>
</tbody>
</table>

20. FULFILLED STANDARDS

- EN 61558-2-17 Safety of Power Transformers
- EN/IEC 60204-1 Safety of Electrical Equipment of Machines
- EN/IEC 61131-2 Programmable Controllers
- EN 50178 Electronic Equipment in Power Installations

21. USED SUBSTANCES

The unit does not release any silicone and is suitable for the use in paint shops.
Electrolytic capacitors included in this unit do not use electrolytes such as Quaternary Ammonium Salt Systems.
Plastic housings and other molded plastic materials are free of halogens, wires and cables are not PVC insulated.
The production material within our production does not include following toxic chemicals: Polychlorized Biphenyl (PCB), Polychlorized Terphenyl (PCB), Pentachlorophenol (PCP), Polychlorinated naphthalene (PCN), Polybrom Biphenyl (PBB), Polybrom Bipheny-oyxd (PBO), Polybrominated Diphenylether (PBDE), Polychlorinated Diphenylether (PCDE), Polydibromphenyl Oxyd (PBDO), Cadmium, Asbest, Mercury, Silicia
22. PHYSICAL DIMENSIONS AND WEIGHT

<table>
<thead>
<tr>
<th>Weight</th>
<th>700g / 1.54lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN-Rail</td>
<td>Use 35mm DIN-rails according to EN 60715 or EN 50022 with a height of 7.5 or 15mm. The DIN-rail height must be added to the depth (117mm) to calculate the total required installation depth.</td>
</tr>
</tbody>
</table>

Electronic files with mechanical data can be downloaded at www.pulspower.com

23. INSTALLATION AND OPERATION INSTRUCTIONS

Mounting Orientation:
Output terminal must be located on top and input terminal on the bottom. For other orientations see section 25.12.

Cooling:
Convection cooled, no forced cooling required. Do not cover ventilation grid (e.g. cable conduit) by more than 30%!

Installation clearances:
40mm on top, 20mm on the bottom, 5mm on the left and right side are recommended when loaded permanently with full power. In case the adjacent device is a heat source, 15mm clearance are recommended.

Risk of electrical shock, fire, personal injury or death!
Do not use the unit without proper earth connection (Protective Earth). Use the pin on the terminal block for earth connection and not one of the screws on the housing.

Turn power off before working on the power supply. Protect against inadvertent re-powering.

Make sure the wiring is correct by following all local and national codes.

Do not open, modify or repair the unit.

Use caution to prevent any foreign objects from entering into the housing.

Do not use in wet locations or in areas where moisture or condensation can be expected.

Service parts:
The unit does not contain any service parts. The tripping of an internal fuse is caused by an internal defect. If damage or malfunctioning should occur during operation, immediately turn power off and send unit to factory for inspection!

Nov. 2006 / Rev. 1.1 DS-CS10.481-EN
All parameters are specified at 48V, 5A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
24. ACCESSORY

ZM1.WALL Wall mounting bracket
This bracket is used to mount Dimension units onto a flat surface without utilizing a DIN-Rail. The two aluminum brackets and the black plastic slider of the unit have to be detached, so that the two steel brackets can be mounted.

ZM13.SIDE Side mounting bracket
This bracket is used to mount Dimension units sideways with or without utilizing a DIN-Rail. The two aluminum brackets and the black plastic slider of the unit have to be detached, so that the steel brackets can be mounted.
For sideways DIN-rail mounting, the removed aluminum brackets and the black plastic slider need to be mounted on the steel bracket.
25. APPLICATION NOTES

25.1. PEAK CURRENT CAPABILITY

Solenoids, contactors and pneumatic modules often have a steady state coil and a pick-up coil. The inrush current demand of the pick-up coil is several times higher than the steady state current and usually exceeds the nominal output current (including the PowerBoost). The same situation applies, when starting a capacitive load.

Branch circuits are often protected with circuit breakers or fuses. In case of a short or an overload in the branch circuit, the fuse needs a certain amount of over-current to trip or to blow. The peak current capability ensures the safe operation of subsequent circuit breakers.

Assuming the input voltage is turned on before such an event, the built-in large sized output capacitors inside the power supply can deliver extra current. Discharging this capacitor causes a voltage dip on the output. The following two examples show typical voltage dips:

Fig. 25-1 Peak load 10A for 50ms, typ.

Fig. 25-2 Peak load 25A for 5ms, typ.

25.2. CHARGING OF BATTERIES

The power supply shall not be used to charge batteries. Choose Q-Series for charging batteries.
25.3. BACK-FEEDING LOADS

Loads such as decelerating motors and inductors can feed voltage back to the power supply. This feature is also called return voltage immunity or resistance against Back- E.M.F. (Electro Magnetic Force).

This power supply is resistant and does not show malfunctioning when a load feeds back voltage to the power supply. It does not matter, whether the power supply is on or off.

The maximum allowed feedback voltage is 63Vdc. The absorbing energy can be calculated according to the built-in large sized output capacitor which is specified in chapter 8.

25.4. OUTPUT CIRCUIT BREAKERS

Standard miniature circuit breakers (MCBs) can be used for branch protection. Ensure that the MCB is rated for DC voltage, too. The following tests show which circuit breakers the power supply typically trips.

Circuit breakers have huge tolerances in their tripping behavior. Therefore, these typical tests can only be used as a recommendation or for comparing two different power supplies. Furthermore, the loop impedance has a major influence on whether a breaker trips or not. Two tests were performed, representing typical situations:

Test 1: Short circuit with S1 on the power supply end of the cable (loop impedance approx. 20mOhm)

![Branch protectors, test circuit 1](image1)

Parameters:
- Input voltage: 230Vac, load current: 0A

The following circuit breaker tripped during the test:
- **A- or Z- Characteristic**: equal or smaller 25A
- **B- Characteristic**: equal or smaller 16A
- **C- Characteristic**: equal or smaller 10A

Test 2: Short circuit with S1 on the load end (additional impedance included; represents longer load wire length).

![Branch protectors, test circuit 2](image2)

Parameters:
- Input voltage: 230Vac, load current: 0A

The following circuit breaker tripped during the test:
- **A- or Z- Characteristic**: ≤ 16A and R= 82mOhm
- **B- Characteristic**: ≤ 6A and R= 180mOhm
- **C- Characteristic**: ≤ 6A and R= 180mOhm

What does this resistance mean in wire length?

<table>
<thead>
<tr>
<th>Resistance</th>
<th>0.5mm²</th>
<th>0.7mm²</th>
<th>1.0mm²</th>
<th>1.5mm²</th>
<th>2.5mm²</th>
<th>4.0mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>82mOhm</td>
<td>2.3m</td>
<td>3.2m</td>
<td>4.6m</td>
<td>6.9m</td>
<td>11.4m</td>
<td>18.3m</td>
</tr>
<tr>
<td>180mOhm</td>
<td>5.0m</td>
<td>7.0m</td>
<td>10.0m</td>
<td>15.0m</td>
<td>25.1m</td>
<td>40.1m</td>
</tr>
</tbody>
</table>

Example:

Which wire gauge must be used to trip a B-Characteristic circuit breaker with a rating of 6A? The load wire length is 21m.

Answer: A 6A B-Characteristic circuit breaker requires a loop impedance of less than 180mOhm (test results). The wire length table shows that up to 25.1m wire with a cross section of 2.5mm² are below 180mOhm. A wire not smaller than 2.5mm² shall be used.
25.5. **Inductive and Capacitive Loads**
The unit is designed to supply any kind of load, including unlimited capacitive and inductive loads.

25.6. **Series Operation**
The power supply can be put in series to increase the output voltage.

Instructions for use in series:

a) It is possible to connect as many units in series as needed, providing the sum of the output voltage does not exceed 150Vdc.

b) Voltages with a potential above 60Vdc are not SELV any more and can be dangerous. Such voltages must be installed with a protection against touching.

c) For serial operation use power supplies of the same type.

d) Earthing of the output is required when the sum of the output voltage is above 60Vdc.

e) Keep an installation clearance of 15mm (left/right) between two power supplies and avoid installing the power supplies on top of each other.

Note: Avoid return voltage (e.g. from a decelerating motor or battery) which is applied to the output terminals.

25.7. **Parallel Use to Increase Output Power**
The power supply shall not be used in parallel to increase the output power.

25.8. **Parallel Use for 1+1 Redundancy**
Power supplies can be paralleled for 1+1 redundancy to gain a higher system availability. Redundant systems require a certain amount of extra power to support the load in case one power supply unit fails. The simplest way is to put two C-Series power supplies in parallel. In case one power supply unit fails, the other one is automatically able to support the load current without any interruption. This simple way to build a redundant system has two major disadvantages:

- The faulty power supply can not be recognized. The green LED will still be on since it is reverse-powered from the other power supply.
- It does not cover failures such as an internal short circuit in the secondary side of the power supply. In such a - virtually nearly impossible - case, the defective unit becomes a load for the other power supplies and the output voltage can not be maintained any more.

This can only be avoided by utilizing decoupling diodes which are included in the decoupling module YR2.DIODE or redundancy module YRM2.DIODE.

Recommendations for building redundant power systems:

a) Use separate input fuses for each power supply.

b) Monitor the individual power supply units. A DC-ok lamp and a DC-ok contact is included in the redundancy module YRM2.DIODE. This feature reports a faulty unit.

c) When possible, connect each power supply to different phases or circuits.
25.9. **EXTERNAL INPUT PROTECTION**

The unit is tested and approved for branch circuits up to 20A. External protection is only required if the supplying branch has an ampacity greater than this. In some countries local regulations might apply. Check also local codes and local requirements.

If an external fuse is necessary or utilized, a minimum value is required to avoid undesired tripping of the fuse.

<table>
<thead>
<tr>
<th>Ampacity</th>
<th>B-Characteristic</th>
<th>C-Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>max.</td>
<td>20A</td>
<td>20A</td>
</tr>
<tr>
<td>min.</td>
<td>10A</td>
<td>6A</td>
</tr>
</tbody>
</table>

25.10. **OPERATION ON TWO PHASES**

![Schematic for two phase operation](image)

Instructions for two phase operation:

- a) A phase to phase connection is allowed as long as the supplying voltage is below 240V±10%.
- b) Use a fuse or a circuit breaker to protect the N input. The N input is internally not protected and is in this case connected to a hot wire.

Appropriate fuses or circuit breakers are specified in section 25.9 “External Input Protection”.

25.11. **USE IN A TIGHTLY SEALED ENCLOSURE**

When the power supply is installed in a tightly sealed enclosure, the temperature inside the enclosure will be higher than outside. The inside temperature defines the ambient temperature for the power supply.

Results from such an installation:

- Power supply is placed in the middle of the box, no other heat producer inside the box
- Enclosure: Rittal Type IP66 Box PK 9519 100, plastic, 180x180x165mm
- Load: 48V, 4A; (=80%) load is placed outside the box
- Input: 230Vac
- Temperature inside the box: 48.9°C (in the middle of the right side of the power supply with a distance of 2cm)
- Temperature outside the box: 23.3°C
- Temperature rise: 25.6K
25.12. MOUNTING ORIENTATIONS

Mounting orientations other than input terminals on the bottom and output on the top require a reduction in continuous output power or a limitation in the max. allowed ambient temperature. The amount of reduction influences the lifetime expectancy of the power supply. Therefore, two different derating curves for continuous operation can be found below:

Curve A1 Recommended output current.
Curve A2 Max allowed output current (results approx. in half the lifetime expectancy of A1).

![Mounting Orientation A](image)

![Mounting Orientation B](image)

![Mounting Orientation C](image)

![Mounting Orientation D](image)

![Mounting Orientation E](image)