AlarmLine™ Addressable Linear Heat Detector
P/N 73-100001-003

K-73-02

DESCRIPTION
The AlarmLine Addressable Linear Heat Detector provides early detection of fire or overheat condition in protected areas or equipment. It is especially suited for confined areas or environments where adverse ambient conditions cause other detection devices to be unreliable or difficult to use. The detector consists of two major components: A sensor cable and an Addressable AlarmLine Module (AAM).

The AAM is used with any intelligent control panel that accepts SmartOne devices.

APPLICATIONS
- Open-area protection
- Cable trays
- Rack storage
- Freezer warehouses
- Belt conveyers
- Floating roof fuel tanks
- Cooling towers
- Dust collectors
- Waste fuel drum storage
- Power distribution apparatus
- Escalators
- Tunnels
- Mines
- Hangars

FEATURES
- UL Listed
- FM Approved
- CSFM
- MEA (pending)
- Low-cost interface between AlarmLine™ sensor cable and control panel accepting SmartOne™ addressable devices
- Up to 255 Addressable AlarmLine Modules (AAM) per addressable loop
- Real-time monitoring
- Software adjustable alarm set point
- Optional pre-alarm and overheat output configuration selections
- Three cable styles (standard, nylon, bronze braided)
- Sensor cable restorable up to 257°F
- Full supervision for short and open circuits
- Two-color status-LED display for alarm and trouble conditions
- Intrinsically safe option
- Flexibility in zoning
- Enhanced response time
BENEFITS

Application Flexibility: Allows installation at point of risk. Programmable pre-alarm, alarm, and overheat levels for differing ambient conditions.

Durability: Extrusion and braiding options to satisfy environmental conditions and project risks.

Reliability: Fault signaling of open and short circuit conditions, pre-alarm, alarm, and overheat reporting.

Recoverability: Cable does not need to be replaced after an alarm event as high as 257°F (125°C).

Sensitivity: Proven superiority over point-type measurement.

ANALOG HEAT SENSING

AlarmLine’s analog heat sensing characteristics offer several distinct advantages:

Field Adjustability of pre-alarm, alarm, and overheat setpoints: Pre-alarm, alarm, and overheat thresholds may be programmed to meet specific system requirements.

Integrating: It is not necessary to reduce sensor spacing with increased ceiling height per NFPA 72-2007 Section 5.6.5.5.1, Exception (1). System sensitivity remains constant as ceiling height increases without reducing spacing.

Short Circuit Discrimination: The system will produce a trouble condition instead of a false alarm in the event of a conductor to conductor short due to damage or electrical faults.

SENSOR CABLE

The AlarmLine sensor cable consists of four 26 AWG copper conductors, each color-coded in an insulated sheath containing a negative temperature coefficient polymer (where an increase in temperature decreases the resistance of the sensor).

Two of the conductors are enamelled and provide loop continuity supervision, but not temperature sensing. The conductors are twisted at thirty turns per foot (90 turns per meter) and protected by a flame-retardant outer extrusion or metallic braid (See Figure 1). The color coding of the four inner conductors is repetitively marked on the outer coating every three feet as an aid installation. Cable is sold in standard coils of 656 feet (200 meters) and 3280 ft. (1000 m).

Note: The maximum length of sensor cable per zone depends on the maximum ambient temperature defined on the nomogram(s) (See Figures 2 and 3). Regardless of ambient temperature, however, the maximum length of cable is 3280 feet (1000 meters) per zone for Type “T” cable.

PART NUMBERS

Sensor cable is available with the following part numbers:

Standard Sensor Cable
73-117068-013 (656 ft./200 m)
73-117068-113 (3280 ft./1000 m)
Recommended for environments ranging from clean and dry to moderate dust and moisture.

Nylon Coated Sensor Cable
73-117068-016 (656 ft./200 m)
73-117068-116 (3280 ft./1000 m)
Recommended for use in wet, oily, or corrosive environments or outdoors. Use in freezer warehouses.

Phosphor Bronze Braided Sensor
73-117068-019 (656 ft./200 m)
73-117068-119 (3280 ft./1000 m)
Recommended for applications requiring superior abrasion protection and/or increased tensile strength.

ADDRESSABLE ALARMLINE MODULE (AAM)

The AAM permits an AlarmLine sensor cable to be directly interfaced to any control panel that accepts SmartOne addressable loop devices. This interface will allow for pre-alarm, alarm, and trouble conditions to be transmitted to the control panel via the Signaling Line Circuit (SLC). The AAM monitors the resistance of the sensor cable and generates a pre-alarm (if enabled), alarm, or overheat output (if enabled) when the resistance drops below the programmed threshold. The module also supervises the AlarmLine cable for opens and shorts, which will generate a fault condition.

All of the pre-alarm, alarm, overheat, and trouble conditions will be displayed on the control panel. Up to 255 AAM modules can be connected to a single SLC loop. Use of multiple AAMs allows flexibility in zoning larger installations for location of alarm and zone output control; the control panel acts as a central display and control interface.

The AAM receives power directly from the SLC loop which eliminates the need for additional wiring and external power supplies.
For further information on installation and configuration of the AAM, please refer to the AlarmLine Addressable Linear Heat Detector Installation, Operation, and Maintenance Manual, P/N 06-235820-003.

The Addressable AlarmLine Module is available using the following part numbers:

**73-100001-003**
Module with operating temperature range of -40º F to 140º F (-40º C to 60º C). Mounted on a 4-inch square faceplate. AAM mounts in a 4-inch square backbox, 2-1/8-inches deep.

**73-100003-001**
NEMA-4 sealed, protective polycarbonate enclosure used to mount AAM in wet or dusty environments.

### CABLE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Standard Sensor</th>
<th>Nylon Coated Sensor</th>
<th>Bronze Braided Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length:</td>
<td>73-117068-013</td>
<td>73-117068-016</td>
<td>73-117068-019</td>
</tr>
<tr>
<td>Weight:</td>
<td>656 ft. (200 m)</td>
<td>656 ft. (200 m)</td>
<td>656 ft. (200 m)</td>
</tr>
<tr>
<td></td>
<td>7 lbs. (3.2 kg)</td>
<td>7 lbs. (3.2 kg)</td>
<td>7 lbs. (3.2 kg)</td>
</tr>
<tr>
<td>Part Number :</td>
<td>73-117068-113</td>
<td>73-117068-116</td>
<td>73-117068-119</td>
</tr>
<tr>
<td>Length:</td>
<td>3280 ft. (1000 m)</td>
<td>3280 ft. (1000 m)</td>
<td>3280 ft. (1000 m)</td>
</tr>
<tr>
<td>Weight:</td>
<td>35 lbs. (14.5 kg)</td>
<td>35 lbs. (14.5 kg)</td>
<td>35 lbs. (14.5 kg)</td>
</tr>
<tr>
<td>Jacket Construction</td>
<td>Blue PVC</td>
<td>Black nylon extrusion over blue PVC</td>
<td>Phosphor bronze braid over blue PVC</td>
</tr>
<tr>
<td>External Diameter</td>
<td>0.117 in.</td>
<td>0.153 in.</td>
<td>0.153 in.</td>
</tr>
<tr>
<td></td>
<td>(3 mm)</td>
<td>(3.9 mm)</td>
<td>(3.9 mm)</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>100 N</td>
<td>100 N</td>
<td>1000N</td>
</tr>
<tr>
<td>Conductor Insulation Costs</td>
<td>1 = Orange</td>
<td>1 = Orange</td>
<td>1 = Orange</td>
</tr>
<tr>
<td></td>
<td>2 = White</td>
<td>2 = White</td>
<td>2 = White</td>
</tr>
<tr>
<td></td>
<td>3 = Red</td>
<td>3 = Red</td>
<td>3 = Red</td>
</tr>
<tr>
<td></td>
<td>4 = Blue</td>
<td>4 = Blue</td>
<td>4 = Blue</td>
</tr>
<tr>
<td>Conductor Material</td>
<td>26 AWG Solid Copper</td>
<td>26 AWG Solid Copper</td>
<td>26 AWG Solid Copper</td>
</tr>
<tr>
<td>Conductor Diameter</td>
<td>0.018 in.</td>
<td>0.018 in.</td>
<td>0.018 in.</td>
</tr>
<tr>
<td></td>
<td>(0.460 mm)</td>
<td>(0.460 mm)</td>
<td>(0.460 mm)</td>
</tr>
<tr>
<td>Twist of Inner Conductors</td>
<td>30 per ft.</td>
<td>30 per ft.</td>
<td>30 per ft.</td>
</tr>
<tr>
<td></td>
<td>(90 per m)</td>
<td>(90 per m)</td>
<td>(90 per m)</td>
</tr>
<tr>
<td>Dielectric Material</td>
<td>Specially Doped Polymer</td>
<td>Specially Doped Polymer</td>
<td>Specially Doped Polymer</td>
</tr>
<tr>
<td>Standard Outer Jacket Material</td>
<td>High Temperature PVC</td>
<td>High Temperature PVC</td>
<td>High Temperature PVC</td>
</tr>
<tr>
<td>Voltage Proof Between PVC and a Conductor</td>
<td>10 KV</td>
<td>10 KV'</td>
<td>10 KV</td>
</tr>
</tbody>
</table>

### SENSOR MOUNTING HARDWARE

Three types of standard mounting hardware (master clamp, flange clamp, nylon cable tie) for AlarmLine permit safe, secure sensor cable installation in most applications. Other mounting means may be used as required by the specific application. The sensor should be supported at a minimum of ten foot intervals on straight runs when under tension, and more as conditions dictate at corners and transition points to provide suitable strain relief. Local codes or conditions may also require the sensor to be supported at closer intervals. Refer to the AlarmLine Addressable Linear Heat Detector Installation, Operation, and Maintenance Manual, P/N 06-235820-003 for specific mounting information.
### AAM SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
<td>73-100001-003</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>P.C. Line, 16.5 to 27.5 Vdc</td>
</tr>
<tr>
<td>Current Consumption, Standby</td>
<td>425 µAmps</td>
</tr>
<tr>
<td>Current Consumption, Alarm</td>
<td>440 µAmps</td>
</tr>
<tr>
<td>Current Consumption, Fault</td>
<td>425 µAmps</td>
</tr>
<tr>
<td>Noise Performance</td>
<td>Withstands 5% RMS 60 Hz supply noise or 1 Vrms 60 Hz sensor noise with negligible performance range. RFI immunity at 10 V/meter field strength over the band of 20 to 900 MHz</td>
</tr>
<tr>
<td>LED Pulse Modes</td>
<td>Normal: Slow flash GREEN every nine (9) seconds</td>
</tr>
<tr>
<td></td>
<td>Pre-Alarm: Slow flash RED every nine (9) seconds</td>
</tr>
<tr>
<td></td>
<td>Alarm: Fast flash RED every two (2) seconds</td>
</tr>
<tr>
<td></td>
<td>Trouble: Off</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>-40°F to 140°F (-40°C to 60°C)</td>
</tr>
</tbody>
</table>

### UL Listed and FM Approvals

- Class I, Division I, Groups A, B, C, D
- Class II, Division I, Groups E, F, G
- Class III, Division I

### Operating Temperature Range

- -4°F (-20°C) to 140°F (60°C)

### Humidity

- 5 -95% R.H.

### Terminals

- Will accept up to #12 AWG

### Working Voltage

- 6V

### Maximum Voltage

- 7.5V

### Fuse Rating

- 100 mA

### Leakage Current

- 1 mA maximum at 6V

### End-To-End Resistance

- 145 ohm maximum
- 90 ohm minimum

### Enclosures

- 73-117068-732 holds 2 barriers
- 73-117068-733 holds 5 barriers
- 73-117068-734 holds 12 barriers
- 73-117068-735 holds 24 barriers

### INTRINSIC SAFETY BARRIERS

In classified hazardous areas where potentially explosive vapors, dust, or fibers exist, AlarmLine cable must be installed using an intrinsic safety barrier. The barrier (P/N 73-117068-031) is a shunt diode safety barrier which limits the current and voltage in the sensor cable to safe levels. Each barrier handles two conductors, so two barriers are needed for each sensor cable. The barriers are designed to mount in separate weathertight enclosures. The intrinsic safety barrier’s specifications are as follows:

### SETTING THE ALARM TEMPERATURE

When determining the alarm temperature setting, the designer must take into account environmental factors that may affect the overall response of the system. By accounting for these factors, the designer minimizes unwanted alarms. Below is a step by step procedure which instructs the designer in selection of the proper alarm trip points.

The required alarm temperature and the correct alarm configuration setting for the AAM are determined using the AlarmLine nomogram(s).

Measurements are in feet/fahrenheit or meters/centigrade.

The use of the nomogram requires two known factors:

- Maximum ambient temperature of the alarm zone. (Scale A).
- The total length of the sensor cable to be used. (Scale L).

The resistance change required to create an alarm can be a result of either a predetermined minimal increase in temperature over the entire length of the sensor, or a significant increase on a shorter section of cable. The alarm temperature in either case is determined only after the alarm trip switch position for the entire sensor length is known.

A shorter section of sensor cable exposed to an overheat condition will require a higher temperature to achieve an alarm than a longer length of sensor cable exposed to the same overheat condition.

The maximum length of sensor cable per zone depends on the maximum ambient temperature defined on the nomogram. Regardless of ambient, however, the maximum length of cable connected to a single AAM is 3280 ft. (1000 m). If cable length exceeds 3280 ft., the
alarm condition could be reached at room temperature (70°F (20°C)) for most switch settings. Refer to the AlarmLine Addressable Linear Heat Detector Installation, Operation, and Maintenance Manual, P/N 06-235820-003 for more information.

Figure 2. Example for Type “T” Cable (Feet/Fahrenheit)

Figure 3. Example for Type “T” Cable (Feet/Fahrenheit)

ADDRESSABLE ALARMLINE MODULE WIRING

The Addressable AlarmLine Module (P/N 73-100001-003) may be connected to any fire control panel that accepts SmartOne addressable devices. The module is wired directly to the SLC loop of the panel as shown in Figure 4. Refer to the AlarmLine Addressable Linear Heat Detector Installation, Operation, and Maintenance Manual, P/N 06-235820-003 for complete wiring information.

NEMA-4 ENCLOSURE

The NEMA-4 polycarbonate enclosure (P/N 73-100003-001) is designed to mount the Addressable AlarmLine Module in areas requiring additional protection from wet and/or dusty environments. This enclosure is rated as follows:

- UL 508 Type 4, Type 4X, Type 6, Type 12, and Type 13
- NEMA Type 4, Type 4X, Type 6, Type 12, and Type 13
- CSA Type 4, Type 4X, Type 6, Type 12, and Type 13
- Flammability rating UL94-5V
- IEC 529, IP66

The enclosure is equipped with a clear cover so that the AAM alarm/trouble status indicator LED can be viewed. The cover also provides a molded-in wire-lead hole for tamper resistant installation. Mounting holes for the enclosure are molded directly under the cover screws. A cover gasket assures watertight and dust-tight seals.
The impact-resistant, glass-filled, polycarbonate enclosure material is easily punched, drilled, or sawed to provide access for field wiring.

For further installation information, refer to the AlarmLine Addressable Linear Heat Detector Installation, Operation, and Maintenance Manual, P/N 06-235820-003.

Figure 5. NEMA-4 Enclosure with AAM