Why Using pIC50 Instead of IC50 Will Change Your Life

A CDD Webinar by
Marc Navre, PhD
President
Wemberly Scientific, Inc.

www.wembsci.com

Others in the Series: Recording of Lipinski's "Entropic and Enthalpic Propensities Inherent in SBDD and HTS" available online here: https://www.collaborativedrug.com/recordings

Questions: Please ask your questions in the chat box, and we will try to answer them at the end

Thank You to our Sponsors

UUU assay depot yUy assal

ProtoLife

Predictive Science That Works

R1	R2	IC50 ($\mu \mathrm{M}$)
-H	-H	30
-OH	-H	> 30
$-\mathrm{CF}_{3}$	- H	0.000682
$-\mathrm{CH}_{2} \mathrm{NH}_{2}$	-H	1.011
-H	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	0.99
-H	$-\mathrm{CH}_{2} \mathrm{NH}_{2}$	0.90
-OH	-OH	0.8
$-\mathrm{OH}$	-CF3	0.00502
-OH	$-\mathrm{CH}_{2} \mathrm{NH}_{2}$	0.002
$-\mathrm{CF}_{3}$	$-\mathrm{CH}_{2} \mathrm{NH}_{2}$	0.001
$-\mathrm{CF}_{3}$	-OH	0.0013

gumoumw Why are these data hard to understand?

YUK!!!

- Too many digits
- Difficult to use consistent significant figures
- Reporting IC50 values encourages linear thinking about an exponential value
- Implies zero or negative values are possible
- Encourages arithmetic vs. geometric averaging
- Implies cutting the IC50 in half means you are doubling potency
- Encourages non-optimal experimental design

So how can I discourage linear thinking?

Arithmetic Scale

Start thinking logarithmically!

IBM
atraxnome watess memas
arithmetic dose scale

logrithmic dose scale

x	0	$\begin{array}{lll}7 & 2 & 3\end{array}$	456	78	$\frac{\Delta_{\text {si }}}{}$	123
50	. 6990	699870077016	702470337042	705070597067	9	123
5 I	-7076	708470937101	$\begin{array}{lllll}7110 & 7188 & 7126\end{array}$	713571437152	8	122
53	-7160	716871777185	719372027210	721872267235	8	122
53	$\cdot 7243$	$7251 \quad 72597267$	727572847292	730073087316	8	122
54	.7324	$\begin{array}{lllll}7332 & 7340 & 7348\end{array}$	735673647372	$\begin{array}{llllllllll}7380 & 7388 & 7396\end{array}$	8	12
55	. 7404	$\begin{array}{llllll}7412 & 7419 & 7427\end{array}$	$\begin{array}{lllllll}7435 & 7443 & 7451\end{array}$	745974667474	8	12
56	$\cdot 7482$	749074977505	751375207528	753675437551	8	122
57	-7559	$\begin{array}{lllllll}7566 & 7574 & 7582\end{array}$	758975977604	761276197627	8	122
58	. 7634	76427649	766476727679	768676947701	8	12
59	$\cdot 7709$	$7716 \quad 7723 \quad 7731$	773877457752	776077677774	7	12

CD. D.

So would a product that kills 99.99\% instead of 99.9\%

really be only

0.09\% better?

In anti-infective circles, 99.9\% killing is usually referred to as a "3-log kill"

O
 DEL OZOne advanced technology for secondary disinfection

Ozone Anti-Microbial Validation under ANSI/NSF Standard 50, Annex H

Pass compliance requires a $3-\log (99.9 \%)$ reduction of Pseudomonas aeruginosa and Enterococcus faecium in 30 minutes

Actual Microbial Reductions in 6 Minutes

Pseudomonas aeruginosa	$6.6 \log (>99.9999 \%)$
Enterococcus faecium	$6.7 \log (>99.9999 \%)$

Test Parameters

- Water temperature @70․ F
- 20 PPM oil insult
- 9 PPM Urea insult
- 1.6 PPM side-stream applied ozone dose
- Microorganism destruction was measured in the pool

Kills:	Fold reduction	Log kill
90%	$10 x$	1
99%	$100 x$	2

Start thinking logarithmically!

You've always been doing this...

Concentration of Hydrogen ions compared to distilled water		Examples
10,000,000	pH 0	Battery acid
1,000,000	pH 1	Hydrochloric acid
100,000	pH 2	Lemon juice, vinegar
10,000	pH 3	Grapefruit, soft drink
1,000	pH 4	Tomato juice, acid rain
100	pH 5	Black coffee
10	pH 6	Urine, saliva
1	pH 7	"Pure" water
1/10	pH 8	Sea water
1/100	pH 9	Baking soda,
1/1,000	pH 10	Great Salt Lake
1/10,000	pH 11	Ammonia solution
1/100,000	pH 12	Soapy water
1/1,000,000	pH 13	Bleach
1/10,000,000	pH 14	Liquid drain cleaner

So you have been thinking logarithmically!

So what is plC50 ?

Do you use IC50/EC50 and/or pIC50/pEC50 to report in vitro assay data where you work?

1. Only IC50
2. Mostly IC50, some pIC50
3. Mostly pIC50, some IC50
4. Only pIC50

- pIC50 is the negative log of the IC50 in Molar
- An IC50 of 1 uM is $10^{-6} \mathrm{M}$, which is pIC50 $=6.0$
- An IC50 of 1 nM is $10^{-9} \mathrm{M}$, which is pIC50 $=9.0$
- An IC50 of 10 nM is $10^{-8} \mathrm{M}$, which is pIC50 $=8.0$
- An IC50 of 100 nM is $10^{-7} \mathrm{M}$, which is pIC50 $=7.0$
- An IC50 of 30 nM is $3 \times 10^{-7} \mathrm{M}$, which is also $10^{-7.5} \mathrm{M}$, which is pIC50 $=7.5$

Do you see a pattern?

- pH is the negative log of the $[\mathrm{H}+]$ in M
- pIC50 is the negative log of the IC50 in M

It's not too different from what you're used to!

Inhibitor Potency

IC50, $\mu \mathrm{M}$	pIC50
30	4.5
>30	<4.5
0.000682	9.2
1.011	6.0
0.99	6.0
0.90	6.0
0.8	6.1
0.00502	8.3
0.002	8.7
0.001	9.0
0.0013	8.9

pH

$[\mathbf{H}+], \mathbf{m M}$	$\mathbf{p H}$
1000	0
100	1.0
10	2.0
1	3.0
0.1	4.0
0.01	5.0
0.001	6.0
0.0001	7.0
0.00001	8.0
0.000001	9.0
0.0000001	10.0

Other log scales you know and love...

Richter Scale	Value	plC50 scale
Not felt by many people; no damage	3.0	1 mM? Only if we're doing fragment based discovery
Felt by all; minor breakage of objects	4.0	Don't bother resynthesizing
Some damage to weak structures	5.0	Are you sure???
Moderate damage in populated areas	6.0	1 MM? It's a hit, not a lead
Serious damage over large areas; loss of life	$\mathbf{7 . 0}$	OK, we're making progress
Severe destruction, loss of life over large areas	$\mathbf{8 . 0}$	Getting nice potency
Epic destruction;	$\mathbf{9 . 0}$	1 nM? Call J. Med Chem!
time to move back to Kansas		

So, why will using pIC50 instead of IC50

will change my life?

W pIC50 will encourage you to look at in vitro assay data logarithmically

THE "IC50 EQUATION": ALSO KNOWN AS THE "Four-parameter logistic", "Hill" or "Sigmoid" equation

Notice that curve fitting programs actually work with \log IC50 and \log [compound], and not the linear forms.

Some older software still uses this non-log form of the equation.

Don't use it!

Dose dependent inhibition is a logarithmic phenomenon, so it makes more sense to think about the data this way

pIC50 encourages logarithmic thinking

ID	IC50 ($\mu \mathrm{M}$)	pIC50	- The transition from $\mu \mathrm{M}$ to nM is smoother - "Spacing" between IC50 values is more relevant twice as "good" as NewCo-108.
NewCo-100	30	4.5	
NewCo-101	> 30	<4.5	
NewCo-102	0.000682	9.2	
NewCo-103	1.011	6.0	
NewCo-104	0.99	6.0	
NewCo-105	0.90	6.0	
NewCo-106	0.8	6.1	
NewCo-107	0.00502	8.3	
NewCo-108	0.002	8.7	
NewCo-109	0.001	9.0	
NewCo-110	0.0013	8.9	

咞2
 pIC50 will allow you to present in viltro assay data cleanly and in an easy to read form

ID	IC50 $(\mu \mathrm{M})$	pIC50
NewCo-100	30	4.5
NewCo-101	>30	<4.5
NewCo-102	0.000682	9.2
NewCo-103	1.011	6.0
NewCo-104	0.99	6.0
NewCo-105	0.90	6.0
NewCo-106	0.8	6.1
NewCo-107	0.00502	8.3
NewCo-108	0.002	8.7
NewCo-109	0.001	9.0
NewCo-110	0.0013	8.9

- A consistent number of digits and significant figures

COLLABORATIVE
 Now your audience can focus on the SAR!

R1	R2	plC50
-H	-H	4.5
-OH	-H	< 4.5
$-\mathrm{CF}_{3}$	-H	9.2
$-\mathrm{CH}_{2} \mathrm{NH}_{2}$	-H	6.0
- H	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	6.0
- H	$-\mathrm{CH}_{2} \mathrm{NH}_{2}$	6.0
-OH	-OH	8.3
-OH	-CF3	8.7
-OH	$-\mathrm{CH}_{2} \mathrm{NH}_{2}$	8.7
$-\mathrm{CF}_{3}$	$-\mathrm{CH}_{2} \mathrm{NH}_{2}$	9.0
$-\mathrm{CF}_{3}$	-OH	8.9

Now WE'RE COMMUNICATING CLEARLY!

\#3
 plC50 will make it easy and intuitive to average your in vitro assay data

Do you average your replicate potency data (IC50/EC50 or pIC50/pEC50) using arithmetic or geometric means?

1. Arithmetic

2. Geometric
3. Don't know

Example Data
IC50 determination \# 1: $1 \mu \mathrm{M}$
IC50 determination \# 2: $10 \mu \mathrm{M}$

舞 4
 pIC50 and logarithmic thinking will improve how you plan your experiments

- Do you typically set up "half-decade" dilution curves?
- The classic 1000, 500, 100, 50, 10, 5, 1 nM , etc?

- Set up "half-log" dilution curves:
- $1000,300,100,30,10,3,1 \mathrm{nM}$, etc?

Note how the points on this plot are evenly spaced, while on the previous slide are clumped.

\# 5
 plC50 and logarithmic thilinking will limprove how you look at the relliability of your data

- Standard error of the calculated value:
- the standard deviation of that parameter if you repeated the experiment many times
- 95\% Confidence Interval
- Estimate of the precision of a measurement
- If the experiment were repeated 100 times, there is a 95 percent chance that your true value will be in this range
- If a confidence interval is very wide, your data don't define that parameter very well.
- Is approximately $2 x$ the SE above and below the mean
- Modern software will report the $95 \% \mathrm{Cl}$ of an IC50, but NOT the SE.

Analysis of the 95% confidence intervals

The error bars are not symmetrical! What does that mean?

Looking at the $95 \% \mathrm{CI}$ of the pIC50

By using pIC50, your error bars are properly symmetrical, and it's easy to see which run had the "tighter" data

\rightarrow HCC827
\rightarrow HCC827/GR
\rightarrow HCC827/ER

$\mathrm{IC}_{50}(\mathrm{nM})$	Gefitinib	Erlotinib
HCC 827	7.2 ± 0.3	15.5 ± 9.2
$\mathrm{HCC} 827 / \mathrm{GR}$	>10000	>10000
$\mathrm{HCC} 827 / \mathrm{ER}$	>10000	>10000

If we estimate the 95% confidence interval as $\sim 2 x$ the SE above and below the mean, does this mean the $95 \% \mathrm{Cl}$ is $\mathbf{- 2 . 9}$ to $\mathbf{3 3 . 9 \mathbf { n M } \text { ? }}$

Summary How can using plC50 instead of IC50 can change your life?

- Using pIC50 instead of IC50 will force/encourage you to think about your assays logarithmically
- Reviews of assay data will be easier to present (only 2 significant digits to deal with, even over a large range of potencies)
- You'll average potency properly by using simple arithmetic means of the pIC50 values - instead of Geomeans of the IC50 values
- Reliability ranges will be correct, symmetric and you will never encounter negative IC50 values!
- Using CDD Calculations, you can convert

IC50 and the IC50 Confidence Intervals to pIC50 and pIC50 Confidence Intervals

ID	IC50 ($\mu \mathrm{M}$)	$\begin{gathered} \text { MIC } \\ (\mu \mathrm{g} / \mathrm{mL}) \end{gathered}$
NewCo-200	4.4	16
NewCo-201	>30	>128
NewCo-202	0.012	1
NewCo-203	0.018	1
NewCo-204	0.018	0.125
		\downarrow
ID	pIC50	pMIC
NewCo-200	5.4	5.4
NewCo-201	<4.5	<4.4
NewCo-202	7.9	6.5
NewCo-203	7.7	6.7
NewCo-204	7.7	7.5

Why Using pIC50 Instead of IC50 Will Change Your Life

A CDD Webinar by

Marc Navre, PhD
President
Wemberly Scientific, Inc.

www.wembsci.com

Thank You. Any Questions?

More info:

CDD Vault, our hosted biological and chemical data management solution: www.cddvault.com

CDD Vision, the brand new interactive visualization environment:
www.collaborativedrug.com/vision
info@collaborativedrug.com

