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Problems facing device creators (software)
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› System Images
› Softwar ethat runs on the hardware

› Toolchain
› Compilers
› Tools

› Sysroot
› Development files for system image
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Software Development Kits for Device Creation



› Yocto
› Buildroot
› Ubuntu/Debian
› Board Support Packages (BSP)

› Linux kernel (patches)
› Graphics Drivers
› Radio hardware firmware

› Wi-Fi
› Bluetooth
› NFC
› GSM
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Operating System SDK: Linux



› Pre-built images from hardware vendors.
› Microsoft provides SDK and Tooling (Visual Studio)
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Operating System SDK: Windows Embedded



› Need to go through the RTOS provider to get the image and SDK
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Operating System SDK: RTOS(s) QNX, VxWorks



› Camera and Sensors
› GPU 

› OpenGL
› OpenCL / CUDA

› Radio (Wi-Fi, Bluetooth, NFC)
› Serial, CAN, i2c, Profibus
› Audio
› Display
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Interfacing with Device Hardware

Application

Qt Libraries

Platform Native Interfaces

Linux Android
Windows 

Embedded
QNX VxWorks



› User Interface Primitives 
› Buttons, Checkboxes, Radio Buttons
› Views

› Easily converting designer’s vision into a User Interface 
› Look and Feel

› Internationalization Support
› Input methods (Virtual Keyboards, remote controls)
› Integrated Web Browser
› Multimedia playback
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Accelerating Development with Qt Middleware
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Qt Developer Offering, Cross-Platform APIs
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› IDE (Integrated Development Environment)
› Ease of deployment to devices
› Remote debugging and profiling
› Simulation/Emulation of devices
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Tooling for Rapid Iterative Development



Qt Creator
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Rapid Workflow with Qt Quick
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› Lightweight Linux Stack
› Without X11 (targets fbdev)
› Minimum dependencies to enable most Qt features

› Images and Full Development Environment available for reference hardware
› Build Scripts to further customize the image and SDK for your needs
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Boot to Qt: Pre-built Reference Stack
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Boot to Qt: 
Immediate prototyping with reference stacks

http://doc.qt.io/QtForDeviceCreation/qtee-supported-platforms.html



Demo Time!



› Toolchain
› Sysroot

› Yocto/Buildroot
› Existing image

› Host machine vs Target Image

18

Embedded Linux: Building your own Qt
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Ways of Using Qt on Embedded Platforms

© 2014 Digia

HWHW

Qt Enterprise Embedded

Qt Creator IDE, 
Development 
environment

Pre-built HW image (”Boot 
to Qt Software Stack”)

2. Configure and compile Qt directly from the 
source codes to a large variety of HW and OS 
combinations using your own software stack

1. Use pre-built, configurable software stack 
as-is in the hardware, for embedded Android or 
embedded Linux.

Tools to configure 
the software stack

Qt libraries
(source code)

Manual configuration and 
compilation



› -prefix /usr/local
› Intended install directory on the device

› -extprefix $SYSROOT/usr/local
› Location installed on host machine by “make install”

› -host prefix ~/Qt-build/
› Location to install host tools (qmake, moc, uic…)

› -sysroot $SYSROOT
› -device rasp-pi

› Name of the devices mkspec you are targeting

› -device-option CROSS_COMPILE=${location_of_toolchain}
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Qt Configure Arguments for Cross-Compilation
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From Prototype to Product with 
Qt for Device Creation

Qt Application

Boot to Qt 
Software Stack

Reference HW 
(eg. BD i.MX6 
SABRELITE)

Qt Application

Production HW 
(eg. Custom i.MX6)

Boot to Qt 
Software Stack

Customize and 
build yourself
with Boot to Qt 
Yocto recipes

Embedded Linux

No Changes

The Qt Company and Partners can help
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Demo:
Adding a New Device Kit to Qt 
Creator



Qt Quick 2D Renderer
No GPU? No Problem



• Renders Qt Quick without OpenGL
• Can render fully in Software
• Makes use of 2D Hardware 

acceleration
• DirectFB (Linux)
• Direct 2D (Windows)
• Others possible

New enterprise add-on available from Qt 5.4

Qt Quick 2D renderer
Qt Quick 2

Scene Graph

OpenGL QPainter

Direct2D DirectFb LinuxFb

Qt Quick 2D Renderer
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What is the Qt Quick 2D Renderer?

Qt Quick 2.x
QML SceneGraph

SceneGraph Adaptation Layer

Qt Quick 2D Render

QPainter QBackingStore

OpenGL Batch 
Render

OpenGL (ES) 2.0



› No GPU, or no OpenGL 2.0 support
› No requirement for:

› Particles
› 60 FPS animations
› “Eye Candy”

› Same UI across device portfolio
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Problems Qt Quick 2D Renderer Addresses



› export QMLSCENE_DEVICE=softwarecontext
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Using the Qt Quick 2D Renderer



› Qt Quick 2 (QtDeclarative module) depends on OpenGL (ES) 2
› Build Qt 5 with support for OpenGL (desktop or ES2)
› Dummy OpenGL Libraries

› OpenGL, EGL, and KHR headers
› Libraries for libGLESv2.so and libEGL.so (only symbols)
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What about the OpenGL Dependency?
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2D Hardware Acceleration with QBlittable

QBackingStore

QPixmap

fillRect

alphaFillRect

drawPixmap

drawPixmapOpacity

drawCachedGlyphs



› ShaderEffect
› Particles
› Sprites
› Custom Items with OpenGL
› RenderControls (Qt 5.4+)
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Qt Quick 2 Limitations 
with the 2D Renderer



› Works anywhere QWidget works
› Uses the same rendering path as QWidgets
› No dependency on QWidgets Module

› Desktop Platforms
› Windows (remove OpenGL dependency)
› Linux (X11 Forwarding)
› Remote Desktop
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Not Just for Embedded



Demo time!



› OpenVG
› Possible to add support
› Not planned at the moment
› Let us know if you are interested

› New Hardware
› Moving beyond DirectFB
› Partnering with HW vendors
› Customer requests

› Many improvements to come
› Close collaboration with users
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Future of 2D renderer



Qt Quick Compiler
› Optimizing Qt Quick Applications Ahead Of Time



› Qt Quick applications consist traditionally of a mixture of
› C++ code
› Declarative QML files with embedded, imperative JavaScript code
› Additional resources such as PNG image files
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Background



› C++ code gets compiled to native code in target architecture
› PNG image files and other resource get embedded into the resulting binary through the Qt Resource 

System
› QML source files need to be deployed verbatim to the target device
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Background



› On application startup:
› The QML engine parses QML source code
› Compiles JavaScript code to native code on the fly:

› Memory needs to be allocated for the generated code
› Code generation consumes precious startup time

› If target architecture is not supported by Just-in-time compiler, execution happens using slower interpreted byte-code
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Background



› Allows for compilation of .qml and .js files in Qt Quick applications ahead of time
› Output is portable C++ code that is compiled alongside the application C++ code
› Embedded in the final application binary
› Requires a commercial Qt license
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Introducing Qt Quick Compiler



1. Reducing memory consumption
2. Improving start-up time
3. Simplifies deployment
4. Conclusion
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Qt Quick Compiler Outline



› Just-in-time code generation requires the allocation of executable memory
› Memory is not shared – two processes loading the same .qml file have to allocate the memory for the 

embedded code twice.
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Reducing Memory Consumption



› Regular application C++ code is compiled into sections in the executable
› Code sections are loaded on-demand from disk using mmap(). Executing the same program twice 

results in the compiled code being shared in memory.
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Reducing Memory Consumption



› Environment: Linux, armv7, release build
› Without Qt Quick Compiler:

› smaps reports:
› Private_Clean: 4076 kB
› Private_Dirty: 12744 kB

› With Qt Quick Compiler:
› Private_Clean: 4652 kB
› Private_Dirty: 11976 kB

› è~600 kB memory became mmap()’able from disk
› Merely by flipping a switch in the build system

42

Memory Consumption: Example Samegame



1. Reducing memory consumption
2. Improving start-up time
3. Deployment
4. Conclusion
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Qt Quick Compiler Outline



› Six-fold compilation process:
› Parse QML/JavaScript Source into abstract syntax tree
› Generate intermediate representation
› Transform to SSA form
› Perform optimizations (constant value propagation, etc.)
› Transform out of SSA, perform register allocation
› Generate native code from IR

› Time consuming, but important for performance
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Just In Time Compilation on Start-Up



› Entire compilation process happens at application build time
› Qt Quick Compiler generates C++ code
› Platform compiler optimizes code
› Platform compiler generates native code
› Transparent integration in the application development cycle
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Qt Quick Compiler Compilation



› Platform: Linux, x86-64
› Counting instructions with callgrind (stable)
› Without Qt Quick Compiler:

› ~461 Million Instructions for startup

› With Qt Quick Compiler:
› ~339 Million Instructions for startup

› 27% instructions saved, merely by flipping a switch in the build system
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Start-up time: Same game example



› Qt Quick Compiler generated code is about as fast as Just-In-Time compiler in average
› Where JIT is available

› Just-In-Time compilation not supported on all platforms
› Fallback to byte-code interpreter on PowerPC, MIPS, etc.
› Qt Quick Compiler gives ~2x speed-up

› Where JIT not available
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Run-time Performance Implications



1. Reducing memory consumption
2. Improving start-up time
3. Deployment
4. Conclusion
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Qt Quick Compiler Outline



› Qt Quick application need to ship with .qml files that are loaded on start-up and at run-time
› Anyone who has file system access to where your application is installed can see your proprietary 

source code
› .qml files can be embedded in the binary as resources, but they can still be extracted to plain text from 

there with little effort
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Application Deployment



Three steps to enable Qt Quick Compiler in your application:
1. Embed your .qml and .js files using the Qt Resource System
2. Convert your application to load your files using qrc:/ URLs
3. Toggle Qt Quick Compiler usage using CONFIG += qtquickcompiler on the command line or using check box in Qt

Creator project build settings

› Cmake is also supported
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Qt Quick Compiler Usage



› Qt Quick Compiler build system integration transparently removes .qml and .js source code from the 
Qt Resource System

› Generates C++ code
› No source code shipped with your application
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Qt Quick Compiler Usage



› Port your Qt Quick application to use the Qt Resource system
› Easily toggle use of Qt Quick Compiler in your project
› The more binding expressions and JavaScript code, the greater the benefits of using the compiler
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Conclusion



Qt Quick Profiler



› Classic optimization
› Minimize the total time a program takes

› Instrument your binary to count and time function calls
› Run in an emulator to keep track of function calls

› Create Call statistics to see
› Which functions took the most time
› Which functions are called most often

› Go back and optimize

› This is not always very helpful in a Qt Quick application
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Why do you need a Profiler



› JIT compiled QML makes little sense in tools like Valgrind
› Which functions are called?
› No symbolic information available
› Stack unwinding only with 

emulating profilers

› Mainly statistical information
› 40 ms event handler

› No big deal statistically 
› When it happens is important
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Challenges



› Time for each object creation is not very important
› Number of calls a bit more interesting, but …
› Their distribution over the time frames is most important
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Challenges 
“Many” Calls



› Analyze mode
in Qt Creator

1. Start/Stop profiling
2. Control execution directly or profile external process
3. Switch recording on and off while the application is running
4. Select event types to be recorded
5. Clear current trace

› Save and load traces from the context menu
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The QML Profiler



› Pixmap Cache
› Slow loading or large pictures

› Scene Graph, Animations
› Composition of the Scene Graph

› Memory usage
› JavaScript heap and garbage collector

› Binding, Signal Handling, JavaScript, etc.
› QML and JavaScript execution time
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Timeline View



› Statistical profile of QML/JavaScript
› For problems that lend themselves to the classical workflow
› Optimize the overall most expensive parts of the application 

to get a general speedup
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Events View



› Too much JavaScript in each frame
› All JavaScript must return before GUI thread advances 
› Frames delayed/dropped if GUI thread not ready 
› Result: Unresponsive, stuttering UI

› Creating/Painting/Updating invisible items? 
› Takes time in GUI thread 
› Same effect as “Too much JavaScript” 

› Triggering long running C++ functions?
› Paint methods, signal handlers, etc. triggered from QML 
› Also takes time in GUI thread
› Harder to see in the QML profiler as C++ isn’t profiled  
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My application is slow
What is wrong?



› Watch frame rate in Animations and Scene Graph
› Gaps and orange animation events are bad
› JavaScript category shows functions and run time
› Stay under 1000/60 ≈ 16ms per frame 
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Too much JavaScript



› Check again for dropped frames
› Check for many short bindings or signal handlers 

=> Too many items updated per frame 
› QSG_VISUALIZE=overdraw shows scene layout
› Are items outside the screen or underneath visible elements 
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Invisible Items



› Dropped frames, but no JavaScript running?
› Large unexplained gaps in the timeline?
› Check your custom QQuickItem implementations 
› Use general purpose profiler to explore the details  
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Long Running C++ functions



› Qt for Device Creation
› Pre-built software stack for faster time-to-market

› Qt Quick 2D renderer
› Target more devices, and low-power hardware

› Qt Quick Profiler
› Improve code performance
› Ensure smooth animations at all time

› Qt Quick Compiler
› Shorter application start up time
› Faster application execution
› Lower application binary size
› More secure and simple-to-deployable binaries
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Conclusions



Thank you! Questions?
Louai.Al-Khanji@qt.io

Learn more
https://www.qt.io/device-creation/

Contact Us
www.qt.io/contact-us/


