
Performance Driven Development on Low-
Cost Embedded Hardware
› Increasing Return-On-Investment & shortening time-to-market

› Louai Al-Khanji
› Principal Consultant, The Qt Company

› Qt for Device Creation
› Qt Quick 2D Renderer

› What is it?
› What pain does it address?
› Demo

› Qt Quick Compiler
• Reducing memory consumption
• Improving start-up time
• Deployment

• QML Profiler
• Demo!
• Conclusion

Agenda

Qt for Device Creation
Problems facing Device Creation
How Qt for Device Creation addresses those problems
Boot to Qt pre-built stack

Problems facing device creators (software)

24 May 2016 Presentation name / Author4

SW
Dev Kit

Finding a
software

development kit

HW
Interface

Middle-
ware Tooling

Porting
Specs
Design

(….)

Accelerated
development

(….)

Rapid iterative
development

Save time
Code re-use

Pre-made controls

› System Images
› Softwar ethat runs on the hardware

› Toolchain
› Compilers
› Tools

› Sysroot
› Development files for system image

24 May 2016 Presentation name / Author5

Software Development Kits for Device Creation

› Yocto
› Buildroot
› Ubuntu/Debian
› Board Support Packages (BSP)

› Linux kernel (patches)
› Graphics Drivers
› Radio hardware firmware

› Wi-Fi
› Bluetooth
› NFC
› GSM

6

Operating System SDK: Linux

› Pre-built images from hardware vendors.
› Microsoft provides SDK and Tooling (Visual Studio)

7

Operating System SDK: Windows Embedded

› Need to go through the RTOS provider to get the image and SDK

8

Operating System SDK: RTOS(s) QNX, VxWorks

› Camera and Sensors
› GPU

› OpenGL
› OpenCL / CUDA

› Radio (Wi-Fi, Bluetooth, NFC)
› Serial, CAN, i2c, Profibus
› Audio
› Display

9

Interfacing with Device Hardware

Application

Qt Libraries

Platform Native Interfaces

Linux Android
Windows

Embedded
QNX VxWorks

› User Interface Primitives
› Buttons, Checkboxes, Radio Buttons
› Views

› Easily converting designer’s vision into a User Interface
› Look and Feel

› Internationalization Support
› Input methods (Virtual Keyboards, remote controls)
› Integrated Web Browser
› Multimedia playback

10

Accelerating Development with Qt Middleware

11

Qt Developer Offering, Cross-Platform APIs

GUI

non-GUI

Essentials
Add-onsWidgets

C++
Native L&F
Layouts
Styles
OpenGL

Qt Quick

QML
Controls
Layouts
Styles
OpenGL

WebEngine
+ WebView

HTML 5
Hybrid UIs SVG

Canvas 3D

Serial PortCore

Processes
Threads
IPC
Containers
I/O
Strings
Etc.

Multimedia

Audio
Video
Radio
Camera

Sql

SQL and Oracle
databases

Network

HTTP
FTP
TCP/UDP
SSL

Qt Test

Bluetooth

Positioning Concurrency

Printing Scripting

NFC Platform Extras

XML Sensors

Image formats

Charts

In-App Purchasing

Data Visualization

Virtual Keyboard

› IDE (Integrated Development Environment)
› Ease of deployment to devices
› Remote debugging and profiling
› Simulation/Emulation of devices

12

Tooling for Rapid Iterative Development

Qt Creator

14

Rapid Workflow with Qt Quick

Declarative UI Design

Modern User Interfaces, written with QML. Ideal for rapid UI
prototyping.

Imperative Logic

Power of Cross-Platform Native Qt/C++

Core

Processes, Threads,
IPC, Containers,
I/O, Strings,
Etc.

Network

HTTP
FTP
SSL

Sql

SQL
&
Oracle
Databases

X
M

L

Bl
ue

to
ot

h

Po
si

tio
ni

ng

N
FC

Se
ria

l P
or

t

+ Direct Hardware Access

Developer

Designer

› Lightweight Linux Stack
› Without X11 (targets fbdev)
› Minimum dependencies to enable most Qt features

› Images and Full Development Environment available for reference hardware
› Build Scripts to further customize the image and SDK for your needs

15

Boot to Qt: Pre-built Reference Stack

16

Boot to Qt:
Immediate prototyping with reference stacks

http://doc.qt.io/QtForDeviceCreation/qtee-supported-platforms.html

Demo Time!

› Toolchain
› Sysroot

› Yocto/Buildroot
› Existing image

› Host machine vs Target Image

18

Embedded Linux: Building your own Qt

19

Ways of Using Qt on Embedded Platforms

© 2014 Digia

HWHW

Qt Enterprise Embedded

Qt Creator IDE,
Development
environment

Pre-built HW image (”Boot
to Qt Software Stack”)

2. Configure and compile Qt directly from the
source codes to a large variety of HW and OS
combinations using your own software stack

1. Use pre-built, configurable software stack
as-is in the hardware, for embedded Android or
embedded Linux.

Tools to configure
the software stack

Qt libraries
(source code)

Manual configuration and
compilation

› -prefix /usr/local
› Intended install directory on the device

› -extprefix $SYSROOT/usr/local
› Location installed on host machine by “make install”

› -host prefix ~/Qt-build/
› Location to install host tools (qmake, moc, uic…)

› -sysroot $SYSROOT
› -device rasp-pi

› Name of the devices mkspec you are targeting

› -device-option CROSS_COMPILE=${location_of_toolchain}

20

Qt Configure Arguments for Cross-Compilation

21

From Prototype to Product with
Qt for Device Creation

Qt Application

Boot to Qt
Software Stack

Reference HW
(eg. BD i.MX6
SABRELITE)

Qt Application

Production HW
(eg. Custom i.MX6)

Boot to Qt
Software Stack

Customize and
build yourself
with Boot to Qt
Yocto recipes

Embedded Linux

No Changes

The Qt Company and Partners can help

21

Demo:
Adding a New Device Kit to Qt
Creator

Qt Quick 2D Renderer
No GPU? No Problem

• Renders Qt Quick without OpenGL
• Can render fully in Software
• Makes use of 2D Hardware

acceleration
• DirectFB (Linux)
• Direct 2D (Windows)
• Others possible

New enterprise add-on available from Qt 5.4

Qt Quick 2D renderer
Qt Quick 2

Scene Graph

OpenGL QPainter

Direct2D DirectFb LinuxFb

Qt Quick 2D Renderer

25

What is the Qt Quick 2D Renderer?

Qt Quick 2.x
QML SceneGraph

SceneGraph Adaptation Layer

Qt Quick 2D Render

QPainter QBackingStore

OpenGL Batch
Render

OpenGL (ES) 2.0

› No GPU, or no OpenGL 2.0 support
› No requirement for:

› Particles
› 60 FPS animations
› “Eye Candy”

› Same UI across device portfolio

26

Problems Qt Quick 2D Renderer Addresses

› export QMLSCENE_DEVICE=softwarecontext

27

Using the Qt Quick 2D Renderer

› Qt Quick 2 (QtDeclarative module) depends on OpenGL (ES) 2
› Build Qt 5 with support for OpenGL (desktop or ES2)
› Dummy OpenGL Libraries

› OpenGL, EGL, and KHR headers
› Libraries for libGLESv2.so and libEGL.so (only symbols)

28

What about the OpenGL Dependency?

29

2D Hardware Acceleration with QBlittable

QBackingStore

QPixmap

fillRect

alphaFillRect

drawPixmap

drawPixmapOpacity

drawCachedGlyphs

› ShaderEffect
› Particles
› Sprites
› Custom Items with OpenGL
› RenderControls (Qt 5.4+)

30

Qt Quick 2 Limitations
with the 2D Renderer

› Works anywhere QWidget works
› Uses the same rendering path as QWidgets
› No dependency on QWidgets Module

› Desktop Platforms
› Windows (remove OpenGL dependency)
› Linux (X11 Forwarding)
› Remote Desktop

31

Not Just for Embedded

Demo time!

› OpenVG
› Possible to add support
› Not planned at the moment
› Let us know if you are interested

› New Hardware
› Moving beyond DirectFB
› Partnering with HW vendors
› Customer requests

› Many improvements to come
› Close collaboration with users

33

Future of 2D renderer

Qt Quick Compiler
› Optimizing Qt Quick Applications Ahead Of Time

› Qt Quick applications consist traditionally of a mixture of
› C++ code
› Declarative QML files with embedded, imperative JavaScript code
› Additional resources such as PNG image files

35

Background

› C++ code gets compiled to native code in target architecture
› PNG image files and other resource get embedded into the resulting binary through the Qt Resource

System
› QML source files need to be deployed verbatim to the target device

36

Background

› On application startup:
› The QML engine parses QML source code
› Compiles JavaScript code to native code on the fly:

› Memory needs to be allocated for the generated code
› Code generation consumes precious startup time

› If target architecture is not supported by Just-in-time compiler, execution happens using slower interpreted byte-code

37

Background

› Allows for compilation of .qml and .js files in Qt Quick applications ahead of time
› Output is portable C++ code that is compiled alongside the application C++ code
› Embedded in the final application binary
› Requires a commercial Qt license

38

Introducing Qt Quick Compiler

1. Reducing memory consumption
2. Improving start-up time
3. Simplifies deployment
4. Conclusion

39

Qt Quick Compiler Outline

› Just-in-time code generation requires the allocation of executable memory
› Memory is not shared – two processes loading the same .qml file have to allocate the memory for the

embedded code twice.

40

Reducing Memory Consumption

› Regular application C++ code is compiled into sections in the executable
› Code sections are loaded on-demand from disk using mmap(). Executing the same program twice

results in the compiled code being shared in memory.

41

Reducing Memory Consumption

› Environment: Linux, armv7, release build
› Without Qt Quick Compiler:

› smaps reports:
› Private_Clean: 4076 kB
› Private_Dirty: 12744 kB

› With Qt Quick Compiler:
› Private_Clean: 4652 kB
› Private_Dirty: 11976 kB

› è~600 kB memory became mmap()’able from disk
› Merely by flipping a switch in the build system

42

Memory Consumption: Example Samegame

1. Reducing memory consumption
2. Improving start-up time
3. Deployment
4. Conclusion

43

Qt Quick Compiler Outline

› Six-fold compilation process:
› Parse QML/JavaScript Source into abstract syntax tree
› Generate intermediate representation
› Transform to SSA form
› Perform optimizations (constant value propagation, etc.)
› Transform out of SSA, perform register allocation
› Generate native code from IR

› Time consuming, but important for performance

44

Just In Time Compilation on Start-Up

› Entire compilation process happens at application build time
› Qt Quick Compiler generates C++ code
› Platform compiler optimizes code
› Platform compiler generates native code
› Transparent integration in the application development cycle

45

Qt Quick Compiler Compilation

› Platform: Linux, x86-64
› Counting instructions with callgrind (stable)
› Without Qt Quick Compiler:

› ~461 Million Instructions for startup

› With Qt Quick Compiler:
› ~339 Million Instructions for startup

› 27% instructions saved, merely by flipping a switch in the build system

46

Start-up time: Same game example

› Qt Quick Compiler generated code is about as fast as Just-In-Time compiler in average
› Where JIT is available

› Just-In-Time compilation not supported on all platforms
› Fallback to byte-code interpreter on PowerPC, MIPS, etc.
› Qt Quick Compiler gives ~2x speed-up

› Where JIT not available

47

Run-time Performance Implications

1. Reducing memory consumption
2. Improving start-up time
3. Deployment
4. Conclusion

48

Qt Quick Compiler Outline

› Qt Quick application need to ship with .qml files that are loaded on start-up and at run-time
› Anyone who has file system access to where your application is installed can see your proprietary

source code
› .qml files can be embedded in the binary as resources, but they can still be extracted to plain text from

there with little effort

49

Application Deployment

Three steps to enable Qt Quick Compiler in your application:
1. Embed your .qml and .js files using the Qt Resource System
2. Convert your application to load your files using qrc:/ URLs
3. Toggle Qt Quick Compiler usage using CONFIG += qtquickcompiler on the command line or using check box in Qt

Creator project build settings

› Cmake is also supported

50

Qt Quick Compiler Usage

› Qt Quick Compiler build system integration transparently removes .qml and .js source code from the
Qt Resource System

› Generates C++ code
› No source code shipped with your application

51

Qt Quick Compiler Usage

› Port your Qt Quick application to use the Qt Resource system
› Easily toggle use of Qt Quick Compiler in your project
› The more binding expressions and JavaScript code, the greater the benefits of using the compiler

52

Conclusion

Qt Quick Profiler

› Classic optimization
› Minimize the total time a program takes

› Instrument your binary to count and time function calls
› Run in an emulator to keep track of function calls

› Create Call statistics to see
› Which functions took the most time
› Which functions are called most often

› Go back and optimize

› This is not always very helpful in a Qt Quick application
54

Why do you need a Profiler

› JIT compiled QML makes little sense in tools like Valgrind
› Which functions are called?
› No symbolic information available
› Stack unwinding only with

emulating profilers

› Mainly statistical information
› 40 ms event handler

› No big deal statistically
› When it happens is important

55

Challenges

› Time for each object creation is not very important
› Number of calls a bit more interesting, but …
› Their distribution over the time frames is most important

56

Challenges
“Many” Calls

› Analyze mode
in Qt Creator

1. Start/Stop profiling
2. Control execution directly or profile external process
3. Switch recording on and off while the application is running
4. Select event types to be recorded
5. Clear current trace

› Save and load traces from the context menu

57

The QML Profiler

› Pixmap Cache
› Slow loading or large pictures

› Scene Graph, Animations
› Composition of the Scene Graph

› Memory usage
› JavaScript heap and garbage collector

› Binding, Signal Handling, JavaScript, etc.
› QML and JavaScript execution time

58

Timeline View

› Statistical profile of QML/JavaScript
› For problems that lend themselves to the classical workflow
› Optimize the overall most expensive parts of the application

to get a general speedup

59

Events View

› Too much JavaScript in each frame
› All JavaScript must return before GUI thread advances
› Frames delayed/dropped if GUI thread not ready
› Result: Unresponsive, stuttering UI

› Creating/Painting/Updating invisible items?
› Takes time in GUI thread
› Same effect as “Too much JavaScript”

› Triggering long running C++ functions?
› Paint methods, signal handlers, etc. triggered from QML
› Also takes time in GUI thread
› Harder to see in the QML profiler as C++ isn’t profiled

60

My application is slow
What is wrong?

› Watch frame rate in Animations and Scene Graph
› Gaps and orange animation events are bad
› JavaScript category shows functions and run time
› Stay under 1000/60 ≈ 16ms per frame

61

Too much JavaScript

› Check again for dropped frames
› Check for many short bindings or signal handlers

=> Too many items updated per frame
› QSG_VISUALIZE=overdraw shows scene layout
› Are items outside the screen or underneath visible elements
62

Invisible Items

› Dropped frames, but no JavaScript running?
› Large unexplained gaps in the timeline?
› Check your custom QQuickItem implementations
› Use general purpose profiler to explore the details
63

Long Running C++ functions

› Qt for Device Creation
› Pre-built software stack for faster time-to-market

› Qt Quick 2D renderer
› Target more devices, and low-power hardware

› Qt Quick Profiler
› Improve code performance
› Ensure smooth animations at all time

› Qt Quick Compiler
› Shorter application start up time
› Faster application execution
› Lower application binary size
› More secure and simple-to-deployable binaries

64

Conclusions

Thank you! Questions?
Louai.Al-Khanji@qt.io

Learn more
https://www.qt.io/device-creation/

Contact Us
www.qt.io/contact-us/

