
Qt QML v HTML5 –
a practical comparison
The Sequality bottling demo application

This white paper describes the development work needed to create
Qt and HTML5 versions of the same application, and compares
the technologies from a technical and economic perspective.

Sequality, 05/2017

SOFTWARE
ENGINEER ING

From an end-user perspective, the Qt QML version
behaved exactly as expected regardless of the browser
or screen being used to view it. This is because Qt-
based applications are compiled for the target, meaning
that in terms of user observation, they behave exactly
the same no matter which platform they run on.
HTML5-based applications, on the other hand, run
on the browser of the target, for example Chrome,
meaning different platforms can show different
behavior as the browser might use different rendering
engines depending on the platform.

In terms of the sustainability of the technology, Qt QML
is a mature technology (compared to most JavaScript
frameworks) that has been developed to ensure
backwards compatibility. The AngularJS framework for
HTML5 is relatively new, and a valid concern is whether
it will be replaced by a new framework in the future.
In contrast, QML is very likely to still be supported in 5
years.

Overall, Sequality found that the development of the
applications was very different and one needs to carefully
consider the benefits and drawbacks of each technology
before deciding which one to use.

If the outcome of such an evaluation does not show
major advantages of a particular technology, we would
recommend Qt over HTML5. In our showcase, the Qt-
based application was generally faster, more responsive,
and easier to implement.

Background
Sequality is an Austrian software engineering company
that creates industrial applications, user interfaces for
touch displays, and software for embedded hardware
systems.

Over the past year, more and more customers had
been asking if they should use HTML5 or Qt using the
QML declarative UI language to develop software for
embedded devices, and wanted to better understand
the differences in using the two technologies.

In order to give the most objective advice to their
customers, Sequality decided set up a test: give the
same developer 160 hours to create a demo of an
embedded system using Qt and 160 hours to create
the demo using HTML5. These demos would show
exactly how the two technologies compare – in terms
of development, performance, and sustainability –
when used to create the same product. This white
paper describes the development work needed to
create the Qt and HTML5 demos, as well as the end
results.

The developer tasked with creating the demos was
experienced with using HMTL5 and C++, but had little
experience creating user interfaces using Qt and QML.

The demos were created independently without any
vendor input.

Results
The demos showed that although the same amount
of development time was spent on both versions,
implementation with Qt QMLdelivered a more
functional and complete user interface than the
HTML5 version. The testing and debugging process
was found to be more straightforward with Qt QML,
not least because it didn’t need testing on multiple
browsers.

In general, the Qt QML version responded more quickly
and enabled features, like keyboard and multi-touch,
that were not supported by HTML5 without additional
implementation.

Over the past year, more
and more customers had

been asking if they should use
HTML5 or Qt using the QML
declarative UI language to develop
software for embedded devices,
and wanted to better understand
the differences in using the two
technologies”

Executive summary

Sequality, 05/20172

Application requirements
The bottling demo application represents a fictional
bottling plant supervisory control and data acquisition
(SCADA) system. The dashboard-like user interface
contains most of the user interface (UI) elements that are
common in modern applications.

The application was designed to visualize the process at
the bottling plant. The following elements are shown in
the UI:

•	 Drink ingredients
•	 An animated bottle filling process
•	 The bottle labeling process
•	 Distribution (stock, maps, etc.)
•	 Metadata (users, alerts, etc.)

The application also required the following elements:

•	 Usability across multiple screens with adaptive
design, including a 1024 x 600 touch screen, a 2560
x 1600 high-definition 10-inch tablet, and a 15-inch
1024 x 768 capacitive touch screen

•	 The ability to compensate for the very high pixel
density on a high-definition tablet so that fonts and
icons are easily readable for average users

•	 A user interface with a flat or minimalist design
•	 A slider panel for settings similar to an iPhone
•	 Different color design themes switchable at run

time, for example a day and night design theme
•	 A UI with pop-overs and pin dialogs
•	 Icons for main menu items
•	 Fading animations when switching screens and

changing the size of navigation bars
•	 Round animated progress controls

Development approach

Qt demo
A developer who was quite experienced in C++ and
Qt but with little QML experience implemented the
application in 160 hours. The developer was able get
help from others with Qt and QML knowledge to get
things done more efficiently.

HTML5 demo
Once the Qt demo was complete, the same developer
developed the HTML5 version of the bottling demo.
The developer had knowledge of HTML5, but was not
experienced with AngularJS. 160 hours were also spent
developing this demo.

Implementation details
of the Qt version
The application uses QuickControls 2 with custom
styling. The user interface is written in QML with
models and logic implemented in C++ classes.
Temperature and pie indicators use a mixed approach
with graphics made with QPainter and wrapped into
QML components.

Overflow animation of progress bars and pie indicators
consists of two animations being run depending on
value change:

•	 A simple NumberAnimation running if the next value
is greater than the previous value

•	 A sequential animation consisting of two
NumberAnimations otherwise:
•	 NumberAnimation from previous value to

maximum value
•	 Unanimated reset of the current value to 0
•	 NumberAnimation from 0 to the next value

The bottling demo

Sequality, 05/20173

Implementation details of the
HTML5 version
There are different ways to handle complex animations
in HTML applications:

•	 jQuery/JavaScript approach. Although it provides
the best portability and enables complex animations
easily, it was not used because it is outdated and very
slow

•	 CSS3 animations:
•	 transition: activates on property changes.

Used in simple animations and corresponds to
NumberAnimation in QML

•	 animation with keyframes: can be used to
implement complex animations

Overflow animation is not implemented in the HTML5
demo because there’s no easy way to reproduce complex
sequential animation from arbitrary value to arbitrary
value:

•	 CSS3 transitions: it was necessary to animate from
the previous value to the max, then from 0 to the
next value. This would require at least two separate
animations that must be watched to detect their
start and end. Another challenge was that the value is
changed but the animation is incomplete

•	 CSS3 keyframes: the nature of keyframes requires
specifying static to/from values to animate. This
was not possible within the scope because the
values are dynamic and there are at least 100 * 100
combinations of values (for percentage indicators)

Hardware setup (both versions)
•	 Raspberry Pi 3

•	 1.2GHz 64-bit quad-core ARMv8 CPU
•	 1 GB RAM (50% shared with GPU)
•	 VideoCore IV 3D graphics core

•	 15 inch capacitive Touch-Display, 1024 x 768

Software setup (both versions)
•	 32-bit Raspbian Jessie (March 2017)
•	 Qt/QML Demo: Qt 5.7.0, the “vanilla” version, cross-

compiled for Raspberry Pi 3 without custom patches
•	 HTML5 Demo: stock Chromium browser from

Raspbian repositories

Results after 160 hours
of development

Note: neither demo is a fully featured application.
For example, some buttons don’t work and with the
HTML5 demo there are bigger issues concerning
browser compatibility and touch gestures. However,
these demos clearly show the strengths and
weaknesses of the technologies.

Features comparison

Qt HTML5

Dynamic theme switching x x

Lists x x

Table view x x

Dynamic search x x

Swipe gestures x x

Map x

Virtual keyboard x

View a video comparing the Qt QML and HTML5
demos at https://vimeo.com/207307640

Sequality, 05/20174

Performance
•	 The Qt QML UI was faster than the HTML5 UI

with our setup. The performance difference is likely
due to the lack of proper OpenGL support by the
Chromium browser on Raspberry Pi, whereas the
Qt QML demo is rendered using OpenGL by the
nature of Qt Quick Scene Graph

•	 Usage of AngularJS didn’t affect performance in the
HTML5 demo since data binding or DOM generation
is not used extensively. The whole DOM tree is
generated once at application start, and there is a
small number of models watched by Angular engine

•	 Enabling GPU rendering on Chromium in chrome://
gpu doesn’t fix the HTML5 demo’s performance
problem. In fact, the CPU is utilized even more, which
leads to overheating

Power consumption
•	 The Qt QML UI used less power than the HTML5

demo – HTML5 is rendered on the CPU only and
therefore CPU utilization remains high

Browser engine
•	 Browser Engine Blink was the layout and rendering

engine used by the Chromium browser on Raspberry
Pi, Chrome browser on Android, and Chrome browser
on Windows Desktop and various Linux flavors. The
HTML5 demo was tested on Chromium for Raspberry
Pi, Chrome on Android, and Chrome on Windows,
and the touch event processing varied on these three
platforms. For example, the slider widget didn’t work
as expected on Raspberry Pi, but the same code works
well on Android and Windows. Moreover, Chrome on
iOS uses WebKit as the layout engine due to Apple
Store’s limitations, meaning additional testing effort is
required when targeting this platform

•	 Both demos use V8 as the JavaScript engine

Styling facilities

Qt QML approach
•	 QML applications do not offer any decoupling of

styling, layouts, and actual components
•	 The property binding mechanism helps to

implement model view-based architectures
•	 Colors, font faces, and styles must be specified

explicitly for each component without any property
inheritance

•	 Sizes are specified in pixels only, so implementing
an application that should run on devices with
different DPIs might be tricky, the property binding
mechanism is used to bind QML element sizes to
available pixel space

•	 Dynamic theming can be achieved using a singleton
object referenced by all other components. In this
case property binding helps to achieve dynamic
colors, font sizes, and faces

•	 Dynamic layout requires either instantiating several
components/layouts or using components in
Loader. With a high degree of responsiveness in the
requirements, the application structure might quickly
become confusing

•	 Code reuse might be achieved by nesting QML
objects or using C++ classes and class inheritance

HTML5/CSS3 approach
•	 HTML applications can be easily styled with CSS
•	 Very good decoupling of styling and markup is possible
•	 Support for CSS breakpoints and usage of Flex layout

enables the creation of fluid and responsive user
interfaces with little overhead

•	 Important property inheritance (font face, size) works
automatically

•	 Sizes can be specified in relative units, which helps a
lot in displaying UIs on devices with different DPIs

•	 Dynamic theming or a totally different layout within
the same screen size can be achieved by loading
another CSS file

Comparison of the Qt QML
and HTML5 demos

Sequality, 05/20175

•	 Usage of external CSS authoring tools like Less or Sass
provide for a high degree of code reuse like variables,
functions, and mixins

•	 CSS authoring tools usually contain functions to
convert and manipulate color models, so it’s easy to
create different color schemes

Features comparison

Qt QML HTML5

Decoupling of styling and
components

x

Dynamic layout of
components

x x

Styling property inheritance x

Dynamic font faces x x

Relative units for sizes x

Code reuse x x

Manipulating color models x x

Project structure and
modularization
An important aspect of any project is keeping it
structured, comprehensible, and modularized. Project
parts should be decoupled as much as possible so that a
change in one module causes as few problems as possible
to other modules.

Some frameworks, like AngularJS, offer a project
structure model from the beginning. Some mature
programming languages like C++ have project structure
patterns that are used by most programmers.

Defining module interfaces in any way makes it easier
to wire project parts together. Singleton entities are
required in most data processing applications. Although
they might not be technically implemented (as a singleton
is considered anti-pattern) data models are a good
example of a semantic singleton entity.

Given the dependencies – for example, the fact that
Users must be instantiated before Theming because
Theme depends on User – the task of maintaining a
singleton in an application might become tricky.

C++/Qt/QML approach
•	 Implementing logic in C++ and keeping views in QML

is a way of naturally modularizing a project
•	 C++ programmers tend to put C++ classes into two

files: a header and an implementation

•	 QML still doesn’t have any common patterns for
modularization adopted by most developers, so it’s not
uncommon to see different approaches from project
to project

•	 The interface of a component is defined by its
declared properties, slots, or Q_INVOKABLE
methods

•	 There is no concept of property visibility in QML
components per se, all exposed non-read-only
properties can be overwritten by component users

•	 QML offers many choices on code recycling: inline
components, components in separate files in the
project structure, libraries in import paths (can also be
manipulated from C++ code), or creating components
dynamically from a string

•	 Singleton entities can be exposed to QML in three
ways: registering a singleton type, setting a context
property, or declaring a QML component singleton in
qmldir

•	 All of them require special treatment if the object
being instantiated has dependencies from other QML
or C++ objects, i.e. how to ensure in C++ code that
another QML singleton is instantiated

•	 Developers tend to put all context properties and type
registrations to main.cpp or to plugin.cpp which leads
to enormous wiring of these files with dependencies
and prevents good decoupling of otherwise
independent modules

•	 Making a QML component singleton requires putting
it into a library

•	 QML nests scope by default and it can’t be turned off
– misuse leads to loss of readability very quickly

•	 Keeping QML parts of the project neat and
maintaining readability requires good discipline from a
programmer

•	 Working with actual data doesn’t require any extra
servers or applications, Qt offers networking, file I/O,
database drivers, etc

HTML5/CSS3/AngularJS approach
Note: AngularJS was chosen to implement this demo.
Other frameworks might require other techniques.

•	 With its directives and components, Angular allows
the introduction of new tags to HTML markup,
effectively incapsulating implementation details

•	 Directives and components require an HTML
template and a controller (a controller is optional
for a directive)

•	 Controllers, directives, components, and HTML
templates are usually stored separately in separate
files

Sequality, 05/20176

•	 The interface of a component or directive is defined
by its bindings. Bindings also declare data flow (two-
way or one-way in either direction)

•	 Styling done in CSS is completely decoupled from all
other parts of the code, although maintaining good
readability and structure requires effort and external
tools

•	 Angular offers a convenient dependency injection
mechanism

•	 Angular offers a single mechanism for singleton
entities

•	 Angular has a concept of scopes that optionally allows
the capture of data from parent scopes, though misuse
easily leads to loss of readability

•	 A special topic is managing separate component/
directive/template files in AngularJS projects:
•	 in the most basic scenario, all these files must be

manually included in the index.html, which leads to
a radical increase in loading time

•	 in the more common scenario, these files are
processed by an external tool to produce a single
output file which is included in the index.html

•	 Actual data processing (working with a database,
file I/O, working with sensors) would require an
HTTP- or a WebSocket-Server that processes
upon request from the web interface. This
introduces additional complexity to the project

Features comparison

C++, Qt,
or QML

HTML5,
CSS3, or

AngularJS
Well-defined initial project
structure

x x

Code recycling using
components

x x

Managing component
dependencies

x x

Effort to maintain project
structure

x x

Working with data directly x

Testing and debugging

Qt/QML
QML applications use a rendering engine provided with
Qt. Normally the Qt version required can be shipped
with the application, which guarantees a consistent
environment for the application.

HTML5/AngularJS
Generally, AngularJS applications consist of many
JavaScript sources that are concatenated together
(possibly with dependency resolution) and loaded as a
single bundle by the browser. Usage of transpilers and
polyfills (for example, writing in ES6 and transpiling it to
ES5 in the end product) increases debugging effort as the
produced code is partly not the same as the actual one.
Using source maps helps but they have to be correctly
placed and recognized by the browser. Typos or errors
in AngularJS code are often silently ignored and have
to be investigated very thoroughly. There is quite a
steep learning curve with AngularJS when it comes to
data bindings and manipulating DOM in components,
leading to increased development efforts for quite simple
interactions like swipes or drags.

AngularJS has encouraged test-driven development from
the beginning (see Google’s tutorials on AngularJS). QML
and Qt provide unit-testing frameworks as well, although
do not push into using them. Overall, a TDD approach
might be extremely useful for end-product quality but
requires a lot of effort in the creation and maintenance
of tests with good coverage. This effort often not only
compares to, but also exceeds the effort of writing the
actual code that is being tested.

The fact that HTML5 applications can be executed
on a number of platforms – and a number of browser
engines on each platform – multiplies the testing
time correspondingly. Requiring a specific version
of a browser might not be an option for tablets or
smartphones where updates are installed automatically.
Even on desktop computers, the default setting is
nowadays to install browser updates without any
interference from the user.

Sequality, 05/20177

Sustainability of the technology

Web applications
With the rapid development of web applications
in recent years, new client-side and server-side
frameworks are constantly emerging. Major new
versions of frameworks are released in short cycles
and adopt new patterns in web engineering. This might
discard backwards compatibility and support for older
versions, increasing maintenance costs. Projects with
a longer lifespan may use outdated frameworks and
libraries until it becomes cheaper to write everything
from scratch using completely new technology and
architecture.

Moreover, the JavaScript language itself has undergone
revision in recent years. It now incorporates features
like scoped variables, classes, and modules (in
ECMAScript 6), leaving web developers to deal with
lack of support for all the features of the language in
major browsers. Supersets of ES6 like TypeScript are
actively used as well, and are not directly supported by
browsers, forcing web engineers to use transpilation to
the most portable old version of JavaScript. Luckily, the
new versions of the language are supersets of the older
versions and maintain backwards compatibility.

Apart from using existing frameworks, there’s always
a temptation to make your own in-house solution to
exactly fulfill the requirements of the project. This
might be considered feasible as long as the developers
working on it don’t leave the project, otherwise it
would be yet another framework to learn with most
probably non-existent or minimal documentation and
no internet resources – creating the need to rewrite
the application using existing frameworks or inventing a
new one.

The nature of web engineering forces developers to
use a complex multi-step build process to produce a
working application. Not only do frameworks change,
but the build tools change rapidly as well – like Grunt,
Gulp, webpack, etc.

Another question to consider is the browser on the
client side. With multiple rendering engines on the
market, the application has to be tested for all of them
and on all platforms. With extremely short release
cycles of browsers (like Firefox) and seamless updates
(like Chrome or Edge), it’s virtually impossible to
keep up. Targeting older browser versions also brings

problems: they don’t support newer CSS/JavaScript
features and might behave differently when rendering.
A supported version bump in the future doesn’t help
if some users keep the older version of their browsers
and are therefore unable to use the application
anymore.

The fine granularity of popular frameworks forces
developers to use several frameworks in one project
to achieve their goal. Each framework or library has its
own style, integration level, documentation, release
cycle, and level of support.

Though the web application stack will somehow
stabilize in the next few years, it’s important to make
good decisions on what technologies to use, so that
the project won’t have to be rewritten from scratch
multiple times.

Sustainability of C++/Qt/QML
C++ is a mature language that has proven to be
conservative and slow changing. The adoption of the
major C++11 standard in projects followed by its C++14
extension is fairly slow because of a lack of support by
major compilers. The 4th edition of Stroustrup’s The
C++ Programming Language including C++11 features
was published in 2013, two years after the standard
was ratified. All the C++ standards up to and including
C++17 are backwards compatible with the older
version.

The Qt framework has been on the market since 1995,
with major versions released in 1999 (Qt 2, lifespan of
2 years), 2001 (Qt 3, lifespan of 4 years), 2005 (Qt 4,
lifespan of 7 years) and 2012 (Qt 5, lifespan of at least
5 years). Source compatibility was largely maintained
during the transition from Qt 4 to 5, whereas previous
transitions broke the compilation process. That is, the
transition should have been made either completely or
not at all. Qt 4 introduced Qt3-support classes for a
smoother transition to the newer version of the library.

Paradigms and approaches used in Qt have remained
mostly the same throughout recent major releases.
That means having learned Qt once, one is able to
develop Qt applications for at least the current and
next major release. With a median cycle of major
releases every 4 years, this typically means sustainable
project development for at least 8 years.

As for now, Qt 5.x is developed in a 6-month cycle with
API and ABI compatibility.

Sequality, 05/20178

The Qt framework covers most areas of
application development one might need in a
project offering uniform class names, a single
paradigm throughout the whole framework,
accurate documentation, and good portability.

QML appeared in 2010 in Qt 4.7 and has been
developed and polished constantly ever since.
There’s been evolutionary development of the
language from the beginning while maintaining
backwards compatibility. Moreover, the module
version system ensures the correct outcome of an
application being processed by newer versions of
QML engines.

As mentioned earlier, unlike any HTML5
framework or library, Qt is a general-purpose
framework and more or less self-contained – an
application using Qt wouldn’t require additional
libraries for widgets, networking, databases, serial
bus, etc.

Sequality, 05/20179

Performance

Overall
•	 Both technologies are capable of separating design

from business logic
•	 Both technologies are capable of rendering pixel-

perfect UI designs on multiple platforms

Speed
•	 The QML version of the demo is faster than the

HTML5 version
•	 With HTML5, latency time between user interaction

and user interface response is higher with our setup

Features
•	 The QML version has complex swipe gestures

(setup-slider, multi-touch zooming) that are not
available in HTML5 out of the box

•	 The QML version has a virtual keyboard – no such
component is available with HTML5 out of the box

Platform
•	 Qt-based applications are compiled for the target,

meaning that in terms of user observation, they
behave exactly the same no matter which platform
they run on

•	 HTML5-based applications run on the browser of
the target (e.g. Chrome), meaning different platforms
can show different behavior as the browser might
use different rendering engines depending on the
platform. Browser testing is a major development
cost factor in HTML5 based applications

Connection to hardware
•	 Low-latency sensor connections to direct hardware

components are easier with C++/Qt as you have
direct contact to the embedded hardware

•	 With HTML5, if the application has to react quickly
to sensor input (for example, CAN-Bus-Value, GPIO-
Pin, RS232, bluetooth, gyrometer), it can get very
difficult to route this signal through the http-server,
browser, and javascript to the HTML5 frontend

Summary: comparing
Qt QML with HTML5

Animations
•	 Qt QML has built-in support for animations in the

language, and transitions can be fine tuned
•	 With HTML5, there are several ways to implement

animations, which can make it quite tricky to get
exactly what you want from an animation

•	 Modern embedded applications benefit by having a
dedicated OpenGL-capable graphics processer that
can render animations in a smooth way. Making use
of the OpenGL processer in an HTML5-browser-
based setting is somewhat tricky – whether actual
rendering can be done with the help of OpenGL
depends on the browser. In the HTML5 demo with
our setup, most rendering is done only on the CPU.
In the QML demo, all rendering is done by the
OpenGL-based engine

Testing and debugging
•	 Both HTML5 and QML can get somewhat tricky

to test, which is true for most complex interactive
visualizations

•	 With QML, complex logic is usually implemented in
conventional C++ code, which offers the benefit of a
strictly typed programming language - an advantage
when testing and debugging applications

•	 With AngluarJS, all logic is written in a weakly typed
environment, unless you use TypeScript, which is
again a technology that has to be learned and used

•	 Generally speaking, one uses third-party tools (e.g.
Babel, require.JS, webpack) to generate the runnable
HTML5/AngularJS application out of a project. As
a result, the code running in the browser is often
not the same as the code written in your IDE. In our
opinion, writing applications in AngularJS requires a
more profound knowledge of the whole technology
stack to develop and debug complex applications.
Additionally, the technology-stack-components within
an AngularJS application change rather rapidly, which
makes it even harder to follow and understand

Sequality, 05/201710

Sustainability considerations
•	 Qt has been around since the 1990s and Qt QML

since 2011
•	 Modern HTML5-based applications that use

frameworks like AngularJS are relatively new
and undergo changes from year to year – a valid
question is whether AngularJS (or any other
currently trendy Javascript-library) will still be a
relevant HTML5-technology in 10 years

Sequality, 05/201711

About Sequality
Sequality software engineering is an
Austrian software consulting company
that is your partner for creating solutions
in the area of industrial applications,
touch display user interfaces, and
embedded software applications.
Usability plays an important role when
creating our applications. Together
with usability engineers and UX
designers, we can ship leading-edge UI
technology applications that contain
user-friendly functionality, look great,
and deliver a seamless user interface
experience.

sequality software engineering e.U.• Softwarepark 26A-4232 Hagenberg
www.sequality.at • t. +43 7236 26 101 • m. +43 676 97 72 681
stefan.larndorfer@sequality.at • office@sequality.at

Copyright © 2017 Sequality. All rights reserved.

SOFTWARE
ENGINEER ING

