

Introduction To This Guide

In London, up until 1992, human dispatchers
did the job of sending ambulances in response
to emergency calls.

That year, an automated dispatch system was
introduced to make the process more efficient.
However, this system was rolled out in a slipshod
manner without sufficient testing.

The system started glitching a few days after it
was introduced. The cause, traced to memory
leaks, meant that ambulances could not be sent
when they were needed. Eight days later, when the
system finally stopped working, 46 people had lost
their lives because of delayed response times.

Bear in mind that this was in 1992 when the
Internet was an obscure academic and military
project and almost all systems running the world
were manually operated.

Today, when software has eaten and digested the
world, poorly tested information systems have
wiped out 20% of the US stock market in 1987,
scuppered the travel plans of half a million people
in the UK in 1999, and grounded the trillion dollar
F-35 program because of faulty targeting systems.

These problems crop up because software isn’t
rigorously tested in real-world scenarios.

This is why user acceptance testing (UAT) is so
important.

Page. 01

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

Why Did We Write This Guide?

Many digital teams test their own products and
pass it off as UAT. With no third party vetting, this
process is akin to a pharma company releasing a
new drug in the market without getting approvals
from the FDA.

Rigorous UAT gives you a stable product which
works as expected, and is much cheaper to operate
and maintain in the long run.

This guide will walk you through the entire UAT
process. It will tell you how to plan, execute, and
report the actual tests, interpret the test results,
build and manage a UAT team, and help you
sidestep potential minefields so that you can
improve customer experience, increase revenues
and sales, and maintain uninterrupted business
operations.

Who Is This Guide For?

We have written this guide for senior personnel
in large enterprises, digital teams in government
departments, and decision makers in late-stage
startups. This guide draws upon our experience
of working with leading brands like Australia Post,
National Australia Bank, Treasury Wine Estates, and
many up-and-coming startups.

How Can You Use This Guide

If you are new to UAT, we recommend that you
start from the beginning as each chapter builds
on the previous one. However we have gone
really deep with this guide, and you can jump in
anywhere at the middle and follow along if you are
looking for information on a specific topic.

Page. 02

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

Interesting Data Points About Software
Fails & Software Testing

The number of incidents of software fails continues to
increase. According to a study conducted by iSentia, the
Asia-Pacific region’s leading media intelligence company,
on behalf of Bugwolf:

  786.8 million people were affected by issues with
 malfunctioning software between July 1, 2016 and
 December 31, 2016.

  These failures equated to a $4,520,141,144 (AUD)
 burden on the global economy.

  The total time cost of these disasters in terms of
 downtime, lost productivity, and lack of service
 equates to 46 years, 9 months, 2 weeks, 6 days,
 6 hours, and 11 minutes.

The proliferation of technologies like mobile, cloud and IoT
has lead to a paradigm shift in terms of QA budgets and
priorities. According to Capgemini’s World Quality Report
2016:

  60% of the QA and testing budgets are allocated to
 new technologies like cloud, mobile, BI and IoT in
 2016, up from 53% in 2015.

  48% of companies have no testing processes for
 mobile and multi channel applications, 46% don’t
 have an in-house testing environment, and 45%
 don’t have the right tools for testing.

  34% of companies are focusing on testing
 functionality, down from 54% in 2014 because most
 developers leave that part to actual users.

Page. 03

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

Page. 04

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

What is UAT And Why
Is It So Important?

Chapter

01

Page. 05

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

Defining Of UAT

You wouldn’t trust the emission and fuel efficiency figures generated by
laboratory tests of a car, right?

There is a world of difference between lab conditions and real-world
conditions.

These figures will differ widely for the same make and model depending on
variables like the driving style of the individual driver, the exact configuration
of aftermarket consumer comfort systems, driving conditions (rush hour
traffic vs. rural roads), degree of maintenance or weather conditions.

Complex software systems are the same.

Regardless of how many functional tests they pass you will never know how
the system behaves unless it’s tested in real world conditions by actual users.

These tests are called User Acceptance Tests, and the process is called UAT.

Unlike functional testing, UAT takes both software performance and human
behavior into account.

Page. 06

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

In the software development
lifecycle (SDLC), UAT comes after
development and QA phases,
but immediately before the code
goes into production. When
UAT is properly done, it gives
confidence in the capabilities of
the system before it goes live.

DEV QA UAT PROD

When is UAT performed?

	

Page. 07

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

 Pros Of UAT Cons Of UAT

Uncovers operational stresses that get

overlooked during the functional tests

of the application.

Requires some upfront investment in terms

of setting up test environments and training

users for the tests

Saves the cost of remediating bugs with

potential to wreak havoc on the system

by a factor of 15x-100x

Needs well trained users and specific

expertise in design, planning, execution,

and reporting for user acceptance tests

Shields the organisation from potential PR

nightmares and legal liabilities arising from

unpredictable software

Unless well planned, could divert valuable time

of testers who would be otherwise engaged in

revenue generating activities

Helps users assess the capabilities of the system

in terms of compatibilities with existing business

processes

Might result in some short term delays in

system rollout for fixing critical bugs uncovered

during the process

Lets organisations determine any

operational hurdles in advance of rollout

Requires testers to learn new technologies or skills

which might have no relevance to their day-to-day

activities

Catches bugs early into the SDLC making them

relatively inexpensive to fix.

Drastically cuts down on customer complaints

and support issues down the line, and improves

retention and NPS scores

Stakeholders can better understand the

needs of the target market based on

feedback from UAT

Eliminates communication gaps between

the project owners and vendors and gives

all stakeholders clarity about the business

requirements or feature changes

Creates evangelists and champions out of users as

they see the benefits of the new system first hand

Reduces the burden on developers, who might

not be subject matter experts, to get features and

workflows aligned with real-world environments

The pros of UAT outweigh the cons. That said, you will have to take
an informed decision on running UATs depending on whether your
organisation can support the process at a specific point of time.

Like most things valuable UAT requires upfront investment. But the gains
from a well run UAT program can deliver exponential returns on that
investment, especially when you consider the crippling reputation and
business costs associated with unreliable systems.

Page. 08

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

The UAT Workflow

At its most basic, a UAT process has three components: plan,
design and implement.

The diagram below gives a high level overview of the entire
testing process.

Page. 09

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

In brief, here’s what the process is about:

  Recruit And Train UAT Team

 Unlike functional tests, UAT should be
 conducted by end users. Depending
 on their exact job profile they might
 not be technically savvy or have any
 kind of familiarity with testing processes
 and software. Unless you vet and train
 these users properly there’s always the
 danger of usability tests going off the rail.

  Set Up Plan

 In this phase, the general plan of attack
 is determined. In this stage you should
 identify the purposes and business
 goals of the project, and gather business
 requirements.

  Design Test Cases

 In this phase, test cases are designed
 to closely mimic real world situations.
 These test cases will be designed whilst
 keeping the business requirements in
 mind.

  Implement Tests

 At this point, you will use the system and
 the test environment to execute all the
 test cases identified in the previous step.
 During this stage, the users will
 communicate with stakeholders and
 the development team about the status
 of the system and any high level
 corrections to be made.

	

Page. 10

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

  Report/Evaluate

 After the tests are completed the team
 will gather the results to determine
 whether they meet the acceptance
 criteria. This step is vital for determining
 next steps.

  Decision Making

 Based on the evaluation of the usability
 test results, a high level decision will
 have to be made about how to address
 the shortcomings of the system. This
 may take the form of redesign of
 features, better documentation, or more
 comprehensive end user training.

  Follow Up

 In this stage, the UAT owners
 (typically the managers) co-ordinate with
 other stakeholders like the sponsors and
 the developers so that the accepted
 changes are implemented in the system.

We will take a detailed look into each of these
phases in the later chapters.

Page. 11

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

People Involved In UAT

Because of the manual nature, UAT involves multiple stakeholders both within and outside
the organisation.

Here’s a rundown of the most important characters:

1. The Sponsor (i.e. the person or group who commissions the system or defines the
business goals).

Depending on the size of the company, the sponsor will be either the owner who signs the
cheques, or an executive who is accountable for outcomes of the project.

The sponsor will focus on identifying potential risks and barriers to success so that these can
be eliminated and a positive ROI realised in terms of revenue and profit. The sponsor will also
set the success criteria and and define test scenarios at a high level.

2. The Manager/Managers, who will be responsible for delivering business results
from the system in the real world. The business managers will go into more details,
examining the system for compatibility with existing business processes.

Based on the high level test scenarios outlined by the sponsor the business managers will
design tests which mimic the interactions of actual users over a realistic time period.

The UAT test results will also serve as a benchmark for performance of the new system.

Apart from business managers, other individuals in management roles might also be
involved, like quality managers (responsible for meeting quality standards of the new system)
and test managers (responsible for the planning and execution of the actual tests).

Page. 12

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

3. The End Users who will actually operate the system. Depending on the size of the
organisation or the context of use, there will be different types of end users.

For instance, consider the inventory management system at Amazon. That system will have
multiple users inside Amazon, and users at each of these suppliers who will need access to
the system to manage the shipments and fulfill the orders.

Because these two groups will have different expectations of the system, comprehensive
UAT would happen only if the users responsible for testing are drawn from various possible
user types. The end users are primarily responsible for designing the test cases and running
the tests.

While designing these tests the end users should also focus on identifying boundary
conditions using realistic data to test the resilience of the system.

4. The Developers responsible for supporting the entire testing process. They are
required for familiarising the actual testers with the features of the system and evaluating
data generated from the tests.

The outcomes of the entire UAT exercise will depend on how fast can the developers fix the
issues uncovered through these tests. Without the active involvement of developers, the
entire exercise is meaningless.

They are also responsible for setting up the test environment and keeping the system stable
and usable.

Summary

This chapter has given you a high level introduction into the basics of UAT. We
talked about the importance of UAT, the pros and cons and the workflow of a
typical usability test from initiation to completion.

More importantly, we talked about the people and the processes involved in the
exercise. In the next chapter we will talk about the preparation needed for the
UAT process to deliver actionable results.

Page. 13

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

Getting Started
With UAT: Business

Requirements

Chapter

02

	

Page. 14

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

The User Expectations Of Software

It’s not enough to make software that’s secure, functional,
and reliable: that’s just the basic requirement.

Users of enterprise software, for instance, have long
complained about the poor user experience, the inflexibility,
and the lack of usability of existing tools. A survey by
Forrester found that:

  75% of users couldn’t easily access information from
 existing enterprise systems.

  69% of enterprise employees want an engaging
 mobile-first experience but only 55% enterprises
 have implemented three or less mobile apps.

  Because of poor design 62% employees delay tasks
 which need them to log into multiple systems,
 affecting overall efficiency and outcomes.

The usability issues with existing enterprise tools have
contributed to the shadow IT phenomenon where
enterprise users are increasingly using user friendly third
party tools like Dropbox or Slack instead of sticking to
officially-approved software, sometimes with serious
security and data governance repercussions.

However use-centered design isn’t always a nice to have
about the product. Sometimes, it’s the product in itself:
a confusingly designed Internet banking application will
make customers jump ship even if the bank offers attractive
interest rates or better perks compared to the competition.

Poorly designed software has real-world implications
beyond a user spending twice as much time trying to
understand how a system works.

Page. 15

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

The table below shows the number of incidents associated with transportation software.
These failures resulted in $455,451,946 (AUD) worth of damage to the economy, business
and customers.

The government sector has seen the maximum number of fails (for example: the Australian
Census blunder or the US Healthcare.gov debacle) this year, with far reaching impact for
millions of people who depend on public sector services.

AUTOMOTIVE

SPACE EXPLORATION

AVIATION

TAXI SERVICES

PUBLIC TRANSPORT

MARITIME

PARKING

0 100 200 300 400

OF SOFTWARE FAILURES

Page. 16

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

On the whole, the cost of software failure has risen from 2015 to 2016 in terms of people
affected, assets impacted, and companies afflicted.

The seeds of software failure are sown early in a project, when business requirements are
not managed properly (CIO magazine found the numbers of failed projects to be as high as
71%) or when the end user doesn’t have a say in the design and execution.

ELECTORAL
WAR CYBER ATTACKS

ENERGY
SACE EXPLORATION

TAXES
EMERGENCIES
HEALTHCARE

PARKING
SECURITY
DEFENCE

BANKING
HUMAN RESOURCES

PERMIT
TELECOMMUNICATIONS

TRANSPORTATION
CIVIL WORKS
EDUCATION

INTERNET
PUBLIC TRANSPORT

0 50 100 150 200 250

OF SOFTWARE FAILURES

	

Prioritising Business Requirements

So if you want to set up your project for success you will have
to focus on getting your requirements right. In the context
of UAT, the sponsor is in charge of setting the business
requirements which will then be made into test cases.

The usability tests will have both functional as well as non-
functional (stress, reliability, performance, speed, etc.)
requirements to be tested.

One way to prioritise business requirements and user stories
is to use the MoSCoW method, which Wikipedia defines as:

The MoSCoW acronym breaks down as:

Mo: Must have this test done.
S: Should run this test, if possible.
Co: Could run this test if other issues are fixed.
W: Would run this test if possible in the future.

“a prioritisation technique used in
management, business analysis,
project management, and software
development to reach a common
understanding with stakeholders on
the importance they place on the
delivery of each requirement”

Page. 17

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

This arrangement makes it easy for sponsors to eliminate
any kind of confusion while drawing up business
requirements.

This prioritisation ensures that the most important tests
are conducted first, and more importantly, tests which don’t
really matter in the larger scheme of things are deferred for
a later date.

Given how expensive and time consuming the UAT process
can become, this process guarantees the highest impact
and keeps UAT cycles short and manageable.

UAT Acceptance Criteria

The UAT acceptance criteria (UAC) is a series of simple
statements that distill the business requirements and give
stakeholders an idea of the time and costs involved in the
entire project.

When you get your UAC right you will be laser focused on
your testing processes and not embark on a wild goose
chase.

Here’s an example of user acceptance criteria as applied to
an Internet banking scenario.

Page. 18

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

Page. 19

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

Given (inputs/preconditions)

When (actions/triggers)

Then (outputs/consequences)

Given that the customer has

one savings account

When they have logged in

successfully

Then, the account details are

listed in the following order

(Account number, Name of

Branch, Available Balance)

Verify that preconditions and

actions occur

Verify that output is generated

Steps:

1. Verify that the customer has

one savings account

2. Verify that the customer has

logged in successfully

3.Verify that the account details

are listed in the following order

(Account number, Name of

Branch, Available Balance)

10% Acceptance Criteria Fulfilled

Verify that invalid inputs occur

Verify that trigger doesn’t occur

Verify that outputs are not

generated, and an error

message is displayed

Steps

1.Verify that the customer

doesn’t have a savings account

2. Verify that the customer

cannot log in

3. Verify that an error message

is displayed

20% Acceptance Criteria Fulfilled

Acceptance Criteria 1

User Acceptance Test 1 (Positive)

User Acceptance Test 2 (Negative)

Page. 20

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

Verify that preconditions occur

Verify that actions or trigger do

not occur, and error message is

displayed

Steps

1.Verify that the customer has

a savings account

2. Verify that the customer

cannot sign in successfully

3. Verify that error message

 is displayed

30% Acceptance Criteria Fulfilled

Select attribute: performance
Verify that response time is less

than 3 seconds

40% Acceptance Criteria Fulfilled

Select attribute : security
Verify that login process is

secure

50% Acceptance Criteria Fulfilled

Select attribute: availability
Verify that the portal is online

24/7

60% Acceptance Criteria Fulfilled

Verify that the system is working

for all users
Run tests 1-6 for each user

100% Acceptance Criteria Fulfilled

User Acceptance Test 3 (Negative)

User Acceptance Test 4

User Acceptance Test 5

User Acceptance Test 6

User Acceptance Test 7

Page. 21

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

If you were to use a decision tree, this is what it would look like:

Acceptance Criteria

Scope Of UAT

Because UAT deals with user experience, it should ideally cover:

  Operational Requirements: Are the requirements around data capture, data
 processing, data distribution, and data archiving met?
  Functional Requirements: Are all business functions met as per expectations?
  Interface Requirements: Is data passing through the system as per business
 requirements?

UAT isn’t about testing whether the radio buttons on a particular form function properly.
These tests fall in the entry criteria of UAT, which also include:

  Completion of unit testing, integration testing and systems testing
  Absence of dealbreakers, high or medium level defects during integration testing
  Fixing of all major errors, except for cosmetic errors
  Defect free completion of regression testing
  Complete Requirements Traceability Matrix (RTM)
  Communication from systems testing team certifying that the system is ready for UAT.

Given

 a. Input
 b. Preconditions

When

 a. Triggers
 b. Actions

Then

 a. Output
 b. Consequences

Summary

This chapter walked you through the preparatory stages of UAT,
including collecting of business requirements, acceptance criteria of
the tests and what’s included (and not included) within UAT.

The next chapter will talk about how to set up the actual user
acceptance tests.

Page. 22

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

The Nuts And Bolts
Of UAT: Setting Up

Your Tests

Chapter

03

Page. 23

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

If you have read through the previous chapters, you will have
an idea of the preparatory steps needed before you jump into
the actual process of testing.

This chapter takes it forward, and will illustrate how to set up
the actual tests.

The Different Types Of Tests For UAT

The following types of tests are included in UAT:

  Contract Acceptance Tests: These tests
 determine whether contractual obligations are met.
 They are conducted on systems acquired from vendors
 and third parties and are based on the requirements
 outlined in the original contract.

  Regulation Acceptance Tests: These tests are used
 to determine whether the system complies with
 regulations. They are especially important for software
 designed to be used in regulated environments
 like medical and financial industries, or by government
 departments.

  Factory/site Acceptance Tests: Many systems require
 on site installations after building. For these systems
 factory acceptance tests are needed before the
 installation meets its own contractual obligations. The
 importance of such tests are even more pronounced if
 the system is to be installed overseas.

  Alpha/beta Testing: Sometimes the exact
 requirements are difficult to define or are open ended.
 In such cases, developers often run alpha tests at their
 end and customers run beta tests on specific activities
 at the discretion of the users. Beta tests (also known
 as field tests) and the results of beta tests are fed back
 to the developers for fixes and improvements.

Each of these tests will fall under different processes inside
the UAT workflow.

Page. 24

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

Fundamental UAT processes

If you want to complete UAT as efficiently as possible you will need to implement two key
processes first: the FTP (Fundamental Test Process), which lays out the right sequence
of activities done during testing, and the Test Development Process, which ensures that
you design the right tests to get a clear idea about whether the system meets business
requirements and acceptance criteria.

The Five Steps Of FTP Are:

1. Test planning, monitoring and control.
2. Test analysis and design.
3. Test implementation and execution.
4. Evaluation of exit criteria and reporting.
5. Test closure activities.

Page. 25

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

1. Test condition

A test condition highlights certain aspects of the business requirements (a function,
transaction, feature etc.) in a form which enables you to create specific tests. A test condition
can be either true or false.

For example, if you want to test the secure login functionality of a system you can create
multiple test conditions, which all need to be true.

2. Test case

A test case is a set of inputs, preconditions or expected results developed for a test condition.
Some of the test cases for our secure sign in process could be:

N.B. The preconditions and postconditions are needed for sequencing the tests so that they
make sense.

Test Conditions Table

Valid Username True True False False

Correct Password True False True False

User Logged-in True False False False

Test Case 1 Precondition User not logged in

Inputs Valid username

Valid password

Outputs None

Post Conditions User logged in

Test Case 2 Precondition User not logged in

Inputs Valid username

Non valid password

Outputs Error message

Post Conditions User not logged in

Page. 26

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

3. Test Procedure Specification (A.K.A Test Script)

To execute the test cases which are generic templates with real data you will need test
scripts.

Every test case will have multiple test scripts. Here’s the test script for the Test case #1 from
the above example:

Login 1: Normal User Login

Purpose User is able to login with an acceptable user ID and password

Preconditions User not logged into the system. Test account set up successfully.

Test Data
User ID: tester@acme.com

Password: UAT1

Process Steps

1. Click system icon

2. Enter user ID

3. Enter password

4. Click login

Results User logged in to the system on the home page.

Post Test User tester@acme.com is logged in.

Notes

Page. 27

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

Different Approaches For UAT

Unlike other types of testing, which are based
on testing outcomes against a specification,
UAT is based on three elements which revolve
around the end user:

1. Business requirements
2. Business processes
3. User expectations.

Because none of these three elements can be
adequately documented as far as the user is
concerned you need a specific approach to
take into account the idiosyncrasies of UAT.

You may go with:

1. Requirements-Based Test Cases

These test cases cover the business
requirements. They can either be written right
after the RS document is prepared, or at the
end of the project. However an error in the
requirements will also cause an error in the
test cases.

2. Business Process-Based Test Cases

These test cases are written to make sure
that the system will support the business
processes. For business process-based testing,
the tests must be sequenced so that they
reflect how those processes work in real world
environments.

Page. 28

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

3. User Interface-Driven Test Cases
User interface-driven test cases are based on data entry, interactions via the screen and
reporting. In each case these will be related through a scenario so that data is manipulated in
a realistic way. They can be run inside business process-based test cases where the business
process involves data entry, user interaction or reporting. Some test cases include checking
for:

1. Tab order.
2. Required fields.
3. Data-type errors.
4. Save and delete confirmations.
5. Shortcut functionality.

Keep in mind that the system might meet every technical specification and still fail the UAT
process if it doesn’t comply with existing business processes or is hard to use.

Summary

Traditionally, UAT is done under time pressure as it’s often the last
step prior to release. To maximise the ROI and uncover the most
critical issues you test those requirements which represent the
highest risk to the system if they fail, and then work your way down.

This chapter covered the steps you have to follow to ensure that
your UAT is complete, introduced an approach to creating test cases
and laid out a framework to build an effective set of tests for UAT.

The next chapter will be about how to build a crack UAT team to
implement the tests.

Page. 29

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

Building Your
 UAT Team

Chapter

04

Page. 30

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

We have already broadly covered the concept
of stakeholders in UAT, each with a different
role to play in UAT, in Chapter 1.

Most organisations fail at UAT because they
don’t have the right team, primarily because
UAT is so different from regular types of
testing.

This chapter will take a deep dive into
the process of building your testing team
and address its relationship with other
stakeholders.

Stakeholders In UAT

Depending on the scope of the project and the
size of the organisation the stakeholders might
include:

  Program manager, who is responsible
 for delivering a number of related
 projects.

  Project manager, who is responsible for
 delivering the project.

  Project management office (PMO) or
 administrative staff, who are
 responsible for organising UAT.

  Test/quality manager, who is
 responsible for all testing including UAT.

  UAT team leader/manager, who is
 responsible for delivering UAT.

  UAT trainer, who is responsible for
 delivering UAT training.

  Business analysts, who are responsible
 for documenting requirements.

Page. 31

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

Important Roles In A UAT Team

The UAT team’s job is to plan and execute testing and provide
the stakeholders with enough data so that they can decide
whether or not to accept the system in the current state.

The team usually consists of a team leader or manager,
business analysts, and the UA testers. Larger teams can have
additional specialist roles

Here’s a rundown of the key roles in UAT:

Business Analysts (In-house or Outsourced)

Business analysts can talk the language of both IT and
business.

Their job is centered around interpreting business
requirements into functional specifications. They will also help
in making sure that test cases and test scripts match the end-
user experience.

Business analysts are also involved in test execution and
reporting, and can help rate severity of incidents, discount
any duplicate incidents, or explain and resolve issues during
testing.

UAT Co-ordinator/Manager/Team Leader
(In-house or Outsourced)

The UAT coordinator will create a plan for UAT and organise/
plan resources for testing.

They will ensure that the test environment replicates the real
world system as closely as possible.

They will also manage and track test incidents and, along with
the business analyst, recommend to what extent the system
requires changes or if business processes can be adapted.

Page. 32

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

UA Testers (In-house/
Outsourced)

The UAT testers could be both end-users
or subject-matter experts with knowledge
of the current system or processes.
Ideally, the UA testers should be consulted
when business needs and requirements
are defined at the start of the project.

They will determine how appropriate
a test case is. They will also execute
test scripts, note incidents and provide
feedback on the UX.

The Essential Skillsets
Required For Successful
Team Members

The UAT team needs to be able to operate
independently and autonomously, with
some specialist support, so that the
content and schedule of the tests aren’t
biased in favor of a particular stakeholder.

The following skills are mandatory for a
well-oiled UAT team.

Page. 33

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

Business Analyst Team Leader Tester

In-depth knowledge of the business

requirements
 Thorough knowledge of UAT IT literacy

Real-world working product knowledge

and how that applies to the system, system

architecture knowledge, including current

fixes and workarounds

An understanding of formal testing

methodology

Recognition as an expert ability to

represent the wider user group

 Writing a UAT plan, assigning resources

and deciding which issues to escalate

Detail-oriented and diligent in collecting

proper documentation to support the test

results

Creative enough to improve existing

processes.

Depending on the size and complexity of the UAT project, other desired skills are:

  Test automation experience.
  Familiarity with requirements management, version control, IM and test planning tools.
  Familiarity with general software tools like spreadsheets.

Apart from the
intrinsic skill sets a
good UAT team can
be built only through
proper training.

Page. 34

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

How To Train Your UAT Team

Training is essential for a team to run the UAT process efficiently so that the investment in
setting up the UAT environment isn’t wasted.

In many cases UAT training is when the team will experience the new system and meet the
other stakeholders.

You should consider these questions when you are designing a UAT training program:

  Is the timing such that the participants can immediately implement the learnings?
  Does the training teach the skills necessary for a single user to be successful?
  Is there an opportunity to learn from other users or roles?
  Is the system stable enough to support training?

Depending on the different roles in the team the UAT training content should at least cover
the following topics, apart from giving trainees a basic introduction to UAT:

  Information and timeline about the project. (Project manager)
  The basic functionalities of the system. (Project manager)
  Known issues and workarounds. (Project manager)
  Expected business benefits. (Manager)
  Details about previous tests. (Project team)

Testers should be thoroughly trained on the key steps involved in executing a test script,
evaluating and logging of results, and reporting test incidents.

Summary

While UAT execution starts towards the end of the development
process, preparation starts much earlier. It’s never too late to start
building a UAT team and preparing the groundwork for successful
testing in terms of training. This chapter gives you some ideas on
how to move ahead with this process.

The next chapter will tell you how to actually plan and implement the
tests.

Page. 35

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

How To Plan And
Execute The Tests

Chapter

05

Page. 36

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

Up until now we have built a number of deliverables from
the development process including:

  A set of business requirements in the form of a
 requirement specification document.
  Functional testing done by the development team and
 perhaps also by some independent testers.
  A complete UAT ready system.
  A trained UAT team.

But these details aren’t enough to begin the planning
process. You also have to know when to stop testing and
release the system into the wild, and this decision will be
informed by the acceptance criteria.

Agreeing On Acceptance Criteria

The ideal acceptance criteria is a system which works
correctly, has zero defects and is ready for release on the
planned release date.

But that almost always never happens in the real world.

That is why we need to set realistic acceptance criteria well
before the UAT process begins.

To determine a realistic acceptance criteria here are some
questions to consider:

  What will happen if the system is not released on the
 planned date?
  How will business be affected?
  How much delay could be tolerated?
  How quickly would the costs and problems ramp up
 with a delayed release date?
  What’s the acceptable mix between critical defects
 (which prevent the system from delivering its core
 capabilities), serious defects (defects that will affect
 performance significantly), and routine defects (defects
 that are routine in nature)?
  Which functionality is essential for the system to
 achieve its business benefits?

Page. 37

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

These questions will help all stakeholders think about the tradeoffs and the compromises to
be made before the system is deemed release-worthy.

Your product roadmap will change based on the core acceptance criteria. If you’re focused on
the delivery date you might have to release the product by fixing critical bugs while pushing
certain features to be completed at a later date.

Conversely if you decide that the acceptance criteria is zero defects, you will have to push the
release date back.

Page. 38

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

Setting Up Entry Criteria And Test
Management Controls

Along with acceptance criteria, it’s also important to
establish entry criteria so that the system doesn’t change
while the UAT process is underway. Not doing so will create
nightmarish issues with change control and waste precious
time and resources.

Entry criteria for UAT include:

  All testing up to system testing is completed without
 outstanding incidents
  No critical or serious defects
  No unresolved issues affecting testing
  Any medium issues remaining have an acceptable
 workaround
  A number of low severity issues (defined at a certain
 amount)

Another important step in test planning is test management
control which includes:

  Management of defects already identified prior to UAT
 and the defects uncovered during the process
  Test logging which will tell you at any time the number
 of tests completed and tests still left to do
  Change control to ensure that all changes to the
 system or the tests are identified and followed up
  Incident management in the event of failures
 unearthed during tests (and subsequently defect
 management) where the incident is due to a defect in
 code or documentation.

Once this groundwork is completed you can now proceed to
the actual job of creating the tests.

We start by identifying test conditions.

Page. 39

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

Identifying Test Conditions

We have already covered test conditions in Chapter 3.

Each test condition represents one component of a feature that can be assessed as either
true or false, and the feature can be considered as correctly implemented if all the conditions
are true.

Creating the test conditions is a crucial stage in the test design process, especially when it
comes to complex system functionality.

In such scenarios it’s helpful to create a test condition matrix which might look like this:

You can populate this table by cross referencing the business requirements and working
with your team to come up with different conditions. This matrix can be extended both
horizontally and vertically based on the complexity of the system, and makes it easy for all
stakeholders to understand the test conditions and sign off on the process.

You also need to run risk analysis to prioritise the test conditions in the event that there are
too many of them.

Spec/Design Ref Ref I.D Req Name Condition 1 Condition 2 Condition 3

Page. 40

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

Creating A Test Set

You will now need to schedule all the tests to achieve the test strategy and assess the system
against the acceptance criteria while maintaining control over the testing process.

The test schedule:
  Ensures that all the tests outlined in the test strategy are included.
  Sequences the tests for the most efficient use of time and resources and in accordance
 with business processes.
  Allocates testing resources to different activities.
  Enables you to log testing and keep track of progress.
  Lets you reschedule in case of problems.

Your test schedule will depend on your UAT strategy. For a risk based strategy, for example,
the tests with high level risks will be run first.

Test schedules will have to take into account a number of factors, like:

  Priority of tests;
  Availability of test environment;
  Availability of testers

Page. 41

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

The UAT testing lifecycle can be depicted using this block diagram.

Reschedule

UAT Planning
Complete

Test Failed

Test Passed

Review

Resolve
Bug

Begin
Regression

Testing

Begin Testing
Test

Incomplete

Is The
Environment

Ready

Yes

No

Page. 42

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

The test schedule can help you save time by streamlining the tests based on whether the
preconditions and postconditions of different tests match up with one another or on the
basis of how the different modules deal with data input and error handling.

This table can be used to fill out a detailed testing schedule.

Sequence # v

Requirement #

Module

Test Case #

Test Case Description

Input

Expected Output

Test Script ID

Tester

Process

Date Of Completion

Page. 43

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

Determining Progress Of Testing And Reporting

You will need to assign activities from the detailed test schedule to individual testers and
ensure that they have the necessary test scripts and test environments in place. Testers then
set up and run their tests according to the test script.

Tests may be allocated on a ‘first come, first served’ basis where any available tester takes on
the next scheduled test script, or test scripts may be annotated for execution by testers from
a particular speciality.

All testing activity is entered into the test log which starts out as the copy of the test schedule.

The test log will have to be continuously updated, and will have the records of the following:

  Incidents, defects, and details of retesting.
  Tests rescheduled due to delay or lack of resources.
  Tests rescheduled around retesting.
  Regression tests.
  Feedback.

Page. 44

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

In the event that a test doesn’t give the expected output you will need to raise an incident
report. The format of the report can be something like this:

Acme Systems				 UAT			 Incident #
		
Incident Report	

Incident Date/Time

Tester: xxxxxxxx			 Contact Details; xxxxxxxxx

Test script ID: xxxxx

Incident Severity: Highly

Repeatable? : Yes

Incident Desc: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Issue #

Test-script ID

Tester

Step #

Date Raised

Module Tested

Test Case Description

Defect Desccription

Defect Severity (1-3)

Repeated

In-scope (Y/N)

Assigned To

Issue Resolution Status

Page. 45

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

The test log can look like this:

	

The test logs and the incident reports will be passed
over to the UAT team leader for evaluation, and from
there, to the development team.

The test schedule and the test logs will tell show you the
rate of progress of the UAT.

Another way to measure test progress is by
benchmarking against acceptance criteria.

Creating A Status Report

The UAT status report is a summary of all the progress
information, estimates of when UAT will be completed,
and recommendations with data to support them.

The status report will be needed for evaluating the
results of UAT and can look like this:

Acme UAT Summary Report

Date:
Overview: (Outline of tests performed since last report)

Summary Assessment:

  Tests Planned
  Tests Run
  Tests Passed
  Tests failed
  Tests blocked
  Incidents reported
  Incidents resolved

Progress To Date

  Tests run/total tests
  % Tests passed
  %Tests failed
  % coverage achieved
  Tests still to be run
  Incidents resolved

Page. 46

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

Status Against Plan

  % tests complete
  Schedule Slippage
  Schedule status
  Tests outstanding
  Blocked tests
  Regression tests outstanding

Status Against Acceptance Criteria

  % tests complete
  %requirements coverage achieved
  Defects outstanding
  Critical
  Serious
  Routine

Recommendations

Signature									 Date

Summary

In this chapter we took a look at how to plan and execute the UAT
testing process. You now know how to set testing goals, determine
acceptance criteria and entry criteria, manage the test controls,
identify test conditions and lay out the process behind creating a test
schedule.

And finally, after you have completed this chapter you will find out
how to report your results.

This chapter also has a number of templates that you can download
for identifying test conditions, filling out a test schedule, completing
a test log, and summarising the results in a status report.
The next chapter will deal with evaluation of test results.

Page. 47

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

Evaluating The
Test Results

Chapter

06

Page. 48

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

The decision of when to stop user testing and accept
the system depends on how the system was built or
acquired, who the stakeholders are, and their needs.

When To Stop Testing

If you have followed the processes laid out in the
previous chapters you will have a clear idea of the
acceptance criteria, a test plan, and an implementation
roadmap.

Ideally, testing stops when exit criteria has been met.

In the real world you might face unforeseen situations
like:

  The business requirements no longer support UAT.
  The system release is time critical.
  The testing is finding few, if any, problems.

That’s why routine reporting on the testing is necessary.
As part of that reporting, you will need to maintain
regular progress updates towards the acceptance
criteria so that you can have a clear idea of where you
are in relation to the release decision at every stage in
testing.

If you have to end testing prematurely you will have
to evaluate the risk of release and the business value
of the system so that you can be prepared for any
exigency.

To help you with this evaluation you have to consider
three factors which comprise the emergency release
criteria:

  Stability of the system
  Usability of the system
  Coverage of the testing.

An individual assessment will ensure that you are not
caught unawares when the system is released.

Page. 49

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

There are three checkboxes to tick for comprehensively
accepting UAT results:

1. Contract Acceptance Completed

If the system was outsourced or acquired from third
parties there are certain criteria associated with system
acceptance.

You will have to evaluate the criteria which relates
to testing and report the results to the relevant
stakeholders with a recommendation on whether to
accept or not to accept the results.

The process moves on to step 2 if third parties aren’t
involved.

2. Acceptance Criteria Met

You can evaluate the system based on whether
acceptance criteria has been met and make appropriate
recommendations.

You can document this in a UAT completion report that
describes the testing done for UAT and the results of
that testing in the context of acceptance criteria.

3. Risk Of Release Assessed

In case acceptance criteria are not met, you should
assess the risk of releasing the system in its current
state.

Creating The UAT Completion Report

The UAT completion report is generated once the tests
have stopped. The format of the report is something
like this:

Page. 50

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

UAT Completion Report Outline

Introduction
Purpose of the document
Identification of the system under test
Scope of UAT

Overview
Outline of test processes, testing activities,
environment, time taken, participants etc.

Acceptance criteria
Identify individual criteria and acceptance levels.

Constraints
Any constraints on testing related to environments,
availability of resources etc.

Test Results Summary
Summary of all the tests planned, run and failed.

Test Incident Summary
Summary of test incidents raised and resolved by
severity, including unresolved test incidents.

Acceptance Criteria Evaluation
Details of evaluation for each criterion.

Overall Assessment
Overall assessment of all acceptance criteria against
required levels.

Recommendations
Recommendations related to release or risk reduction.

Appendices
Detailed Test Results
Test Incident Reports

Page. 51

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

We can identify a range of possible recommendations at this point:

  Release the system as-is.
  Push release date until important risk reduction measures are in place.
  Release the system with additional support to deal with the risk of early problems.
  For critical issues, push release date and plan for risk reduction with additional support.
  Reject the system.

Summary

This chapter has walked you through a range of possible scenarios
at the end of the UAT process, and given you a framework for
determining when to stop testing and how to evaluate the test
results by working with acceptance criteria. It also gives you
recommendations for dealing with risks.

The UAT process is now officially over. But your job isn’t done yet.

Page. 52

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

After UAT,
Now What?

Chapter

07

Page. 53

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

UAT is usually an activity that is completed against a
backdrop of pressure, and completion is often a relief
to all concerned. Once you have completed the test
evaluation process, you should analyse the outcomes.

This analysis will give you the opportunity to reflect on
the learnings from the UAT process and help you think
about the activities which will guarantee successful system
rollout.

Here’s the format of a post UAT Analysis Report:

Post UAT Analysis Report

Introduction: (Purpose of system, implementation dates)

Purpose of the report: (Analysis of UAT,
recommendations for implementation)

Test Results Summary:
		 Detailed Test Results
		 Coverage Analysis

Incidents and Defects Summary:
		 Defects Analysis
		 Unresolved Incidents
		 Workarounds Identified

Support Summary:
		 Technical Support
		 Business Support (help)

Recommendations:
		 End User Training
User Guides
		 Help System and FAQs
		 Technical Support Issues	
		 Implementation Planning
		 Risk Assessment
		 Business Evaluation

Signature			 		 Date

Page. 54

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

How To Prepare A Roll Out Strategy

Depending on the size and geographical spread of the organisation, there might be a range
of possible strategies, from putting the system on every desktop at once) to a series of pilot
releases.

You should consider these points for system rollout:

  If there are high defect rates in UAT you might want to go with a smaller initial pilot
  In case of user interface problems, you can launch the pilot project with support until
 kinks are ironed out.
  You can test workarounds, help guides etc. in an initial pilot.
  If there are fewer UAT problems than anticipated you can roll out the system ahead
 of deadline.

Page. 55

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

Implementation And Post-Implementation Defect Correction

Depending on feedback from UAT, the required levels of technical support and business
support (help desk), can be estimated during implementation of the system.

Post implementation, some defects will emerge from the increased level of usage. Some of
these defects will need to be corrected urgently, while others will be placed on the prioritised
list of changes to be made over time.

In the early post-implementation period defect correction might require a new release of the
system at a smaller scale. You might have to run a mini-UAT as part of your risk reduction
strategy.

Measuring Business Benefits

You can start measuring desired business benefits when the system is completely rolled out
across the organisation by analysing the data to identify expected changes.

This process will take some time as you will need to account for the common factors present
before and after the UAT exercise.

Because the UAT team has extensive experience with the new system they can help measure
the business benefits by running the experimental data through the system before the
changes are released and then running the same data after the system is rolled out.

Summary

This chapter will help you figure out how to roll out a tested system
into service, and how to fix the flaws which the UAT process will
throw up.

It also gives you ideas on what you can do to maximise the insights
you have gained from the UAT process.

Page. 56

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

Converting
Manual Tests To
Automated Tests

Chapter

08

Page. 57

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

Cost and time factors are one of the major reasons why
organisations don’t test as extensively as they should.

Most of that time is taken up by manual testing, run
without tools or scripts, mostly through the user interface.

This strategy is resource intensive and works well in the
following scenarios:

  Exploratory Testing: In the absence of written
 specifications, manual testing can be used to test
 the limits of the system and is based on the tester’s
 knowledge, skills and experience.

  Usability Testing: Manual testing is the only way to
 find out the user experience on a platform or a
 system.

  Ad-Hoc Testing: In this scenario, manual testing can
 be used to find out the normal capabilities of a
 system. It’s not a replacement for rigorous testing.

For other types of testing like regression, load or
performance testing you CAN automate the process and
get 5-10x more tests done at the same time, subject to
certain caveats:

  The asset you are planning to run tests on is critical
 to your business
  You understand that setting up automated tests is
 equivalent to any software development project
  You have manually run the tests you wish to
 automate (sounds oxymoronic, but more on this
 point later)
  You have a handle on the various costs associated
 with test automation, from setting up the test
 environment to running and maintaining the tests
  You follow the Ideal Test Automation Pyramid by
 running multiple unit tests for every end to end test
 to maximise ROI.

Page. 58

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

Once your expectations are set, here’s how you can calculate the ROI of automated testing

If a tester on average costs $50 an hour and if a senior tester who creates automated tests
costs $75 an hour, that would cost about $400 and $600 respectively per day per tester.

Now, consider a team of 10 testers, five senior-level and five entry-level, with a monthly
loaded cost of $105,000 (for 168 hours per month). You would get a total of 1,350 hours
costing $78.00/ hour (this is assuming each tester realistically works 135 hours per month
due to breaks, training days, vacations, etc.). If you automate testing, the cost of labor
would remain the same, but for the effort of 3 test automation engineers, you would
achieve 16 hours a day of testing and will run 5x more tests per hour.

This results in the equivalent of 5,040 hours per month of manual testing created by the
three test automation engineers. Then, consider the rest of the team doing manual testing
(7 people x 135 hours/month). That amounts to 945 hours more, ending with a combined
total of 5,985 hours of testing at $17.54/hour ($105,000 divided by 5,985 hours).”

Source: Abstracta http://www.abstracta.us/2015/08/31/the-true-roi-of-test-automation/

Ideal Test Automation Pyramid

Higher ROI

More Time

End
to End
Tests

Integration
Tests

Unit Tests

Page. 59

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

But most people don’t achieve these returns and end up mothballing their automated testing
project.

The Right Way To Automate Tests

That’s because they’re approaching test automation the wrong way. They assume that setting
up an expensive test environment and writing a bunch of test scripts is all there is to the
process.

That’s like Elon Musk boring tunnels under every road in Los Angeles to solve its apocalyptic
traffic problem.

Instead, he would start by surveying traffic data to find out the busiest routes, and figure out
how to connect these areas without disrupting existing utility lines or risking the foundations
of heritage buildings.

Page. 60

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

Before automation, start with manual tests so that you can understand the capabilities and
limitations of the system. After you have run through the first iteration of manual tests you
will get a feel for different test cases and the workflows associated with these tests.

If you can convert the workflow to a given-when-then or arrange-act-assert you can convert
these into test scripts, load them up in your test tool, and press enter.

Here are a few points to keep in mind as you automate your tests:

  Understand what feature you are trying to test. As noted in the previous section,
 automated testing isn’t going to work in the context of, say, UX.
  Document how you can automate certain tests, in plain English or in pseudocode.
  Share that document with your team and other stakeholders to get their input.
  If an automated test fails don’t take it at face value. It might be a false positive because
 you might not have understood the requirements well.
  Instead of tests which just tell you whether a system is working or not, write tests which
 can isolate a specific issue.
  Because writing tests is writing software, keep an eye on the costs. You will have to
 allocate resources to maintaining the test environment.
  Manual testing should not be put off till the very end, but should be regularly run during
 the development process.

Summary

Incorporating automation to your testing process can result in more
reliable systems.

But automation isn’t a replacement for manual testing: it’s simply
a way of speeding up a subset of manual test processes. However,
don’t automate if your only goal is to save money.

Page. 61

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

	

Accelerate Test Cycles & Bullet-Proof
Software Releases with Gamified User

Acceptance Testing
Bugwolf lets you transform software testing into competitive UAT challenges that accelerate
digital releases, lower customer support calls and reduce defect costs.

Watch on as professional testers race against the clock to dramatically improve your app or
website. Six hours is all it takes to conduct deep functional, usability, user experience, or user
acceptance testing for key user journeys.

During your Bugwolf challenge, you’ll receive severity-ranked video reports that make it quick
and easy to replicate and resolve bugs.

It’s not uncommon for Bugwolf to uncover one hundred or more bugs in a single six hour
challenge. Our process and experience helps you to condense test cycles from weeks into
days, achieve a +500% return on investment, and significantly reduce costs.

“Every digital leader has a responsibility to ensure their organisation doesn’t become the next
software testing disaster story. We still encourage people to optimise their in-house teams,
however, it’s time to go a few steps further. That’s where Bugwolf comes in.” Ash Conway,
CEO & Founder of Bugwolf.

Bugwolf Is The
World’s Only Gamified

UAT Solution
We Help Accelerate Test Cycles, Bullet-Proof
Software Releases And Prevent Catastrophic

Software Event

The best way to find out more is to schedule a short,

15-minute demo with the Bugwolf team:

REQUEST A 15-MINUTE DEMO

Australia		 +61 3 9001 0270
New Zealand		 +64 48 310 703
United Kingdom 	 +44 207 048 7168
United States		 +1 415 735 3300
Singapore		 +65 3159 1102

ABN 13 151 896 721

Bugwolf | The Definitive Guide To User Acceptance Testing (UAT)

www.bugwolf.com

