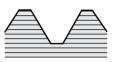


Female thread creation: Screw tapping

When creating a thread by tapping, a core hole and counterbore must be made in the material. The screw tap carries out the cutting motion. Thus, the thread pitch determines the feed rate. Material is cut out and the chips are removed via flutes.

Advantages:


- high machining speed
- cost-effective tools
- simple tool handling and well-known procedure
- broad field of application
- use on simple machines possible
- regrindable tools

Disadvantages:

- clamping problems with very deep threads
- screw tap breakage with difficult materials
- average surface quality
- risk of axial cutting (taper)
- of the thread
- tapping chuck required

Ŷ

Female thread creation: Thread forming (thread tapping)


In contrast to tapping, where sections are cut out of the material, the process of thread forming does not involve cutting. The material is made to flow through the polygon shape of the thread former. The fibre pattern is not interrupted.

Advantages:

- Very high working speed and process reliability
- Very high surface quality
- One tool for through hole and blind hole
- No clamping problems
- Higher thread strength
- Tools are easier to use
- Long service life, less breakage
- Deep threads

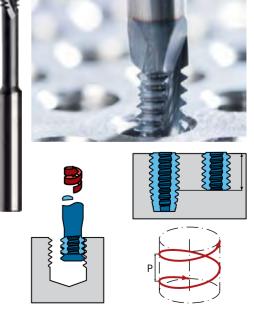
Disadvantages:

- Higher torque
- Special pre-drilling diameter with tight tolerance
- Incomplete moulding of cores (claw)
- Minimum expansion of tool must be ensured
- Regrinding not possible
- Lubrication essential
- Where used in the food or medicine industries, there is a risk of germ build-up in the area of the moulding recess.

Female thread creation: Milling cutter

The development of computer-controlled machines has made the thread milling procedure another option for creating female threads. The thread is produced by the helical diagonal immersion of a rotating tool. In the process, the axial movement of the tool in one revolution produces the pitch. For this procedure, a CNC machine with at least three axes is required (XYZ).

Advantages, tool cost minimisation:


- right-hand and left-hand thread can be manufactured with a tool
- thread milling cutters cover different threads with the same pitch
- for partial thread profiles, a wide range of threads can be produced with a cutting insert

Advantages, process reliability:

- · Extremely high process reliability with very expensive components
- Reliable process solution for problem materials with poor chip breaking and difficult chip formation
- First choice with thin-walled workpieces or unstable clamping operations
- High thread quality
- Thread can be made right to the base of a blind hole
- Radius compensation programming enables thread tolerance to be adjusted easily

Disadvantages:

- machine requirements (XYZ axes) machining times generally longer in
- series production
- thread milling

169

www.iconridge.com

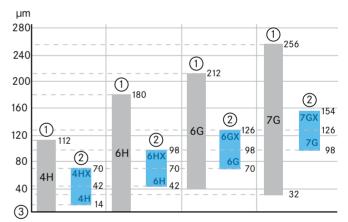
- limited experience of the user in

Thread production process at a glance

	Screw tapping	Thread forming	Milling cutter
Process reliability	0	+	++
Surface quality	0	++	+
Machining speed	+	++	0
Service life	0	++	+
Flexibility/universal use	0	+	++
Thread depth	0	++	++

 \circ = limited suitability | + = well suited | ++ = very well suited

Tolerances for threads


standards ensure that male and female threads of the desired form fit together. depending on the application, the appropriate tolerance must be taken into account for the screw tap or thread former. in thread milling, the tolerance can be produced as desired using radius correction. the graphic shows the different tolerance classes and their use.

DIN	I EN 22857						DIN 802 part 1	
Application of	lass of the screw tap] Tole	rance ra	nge of r be cut	nut threa	ad to	Tolerance class	Technical application
Name	Identification			DO DUI			of the screw tap	
Class 1	ISO 1	4H	5H				4H	Screw connection with little play
Class 2	ISO 2			6H			6H	Standard screw connection
Class 3	ISO 3				6G		6G	Screw connection with a lot of play
-	-					7		As a preventive measure against warping in heat treatment

The graphic shows the position of the tolerance field of the nut thread in the different tolerance classes, such as 6H (highlighted in grey). The blue tolerance fields show the position of the tolerance field for the corresponding screw taps or thread formers.

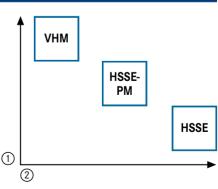
It can be advantageous to produce screw taps and thread formers in a different tolerance class. This tolerance is indicated by an X after the tolerance class (e.g. 6HX instead of 6H). The X represents a manufacturer-specific tolerance and can differ between manufacturers.

Tough materials have recoiling properties. To counteract this effect, the X range is used in the ATORN thread cutting programme for these tough materials. Screw taps for titanium and nickel alloys, for example, are produced in the X range. Where abrasive materials (those with friction or a grinding effect) are concerned, it also makes sense to produce tools in the X range. This results in a longer service life, because the screw taps are still within tolerance even having been subject to wear. The red ring screw tap for cast and short-chipping non-ferrous metals is produced in this tolerance range.

① Nut thread tolerance field ② Screw tap tolerance class ③ Tolerances

The following list of cutting materials is used for female thread machining in the screw tapping, thread moulding and thread milling processes. The graphic shows the toughness/breaking strength parameters in comparison to wear resistance/hardness.

${\rm SC-solid\ carbide}$


Very high level of hardness

Cutting materials and cutting process during thread cutting

- Cutting material for applications up to 65 HRC
- Very high cutting speed, high precision
- HSSE-PM high speed steel, powder metal
- Cutting material for applications up to 1300 N/mm²
- Medium to high cutting speed
- High elasticity, high cutting speed

HSSE – high-speed steel

- Cutting material for applications up to 1300 N/mm²
- Low to medium cutting speeds
- 5% cobalt content
- Very high elasticity

① Hardness/wear resistance/cutting speed ② Toughness/breakage resistance

Source: Hahn+Kolb Werkzeuge GmbH Technical data subject to change. Availability subject to country specific rules and regulations.

Screw tapping

Screw tapping produces extremely high torsional forces. Particularly when producing blind holes in long-chipping materials, the chips must be broken at the changeover point. The following procedure for blind hole tapping illustrates the relationship.

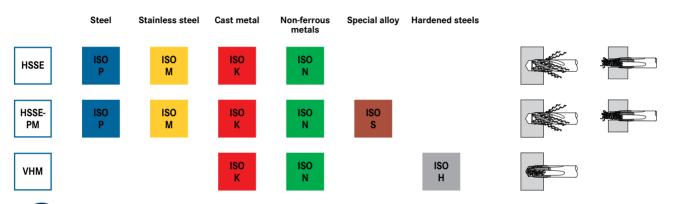
The thread is in the cutting process and guides the chips to the top.

after reaching the thread depth the switching process follows, in which the forces return to almost zero.

back of the screw tap.

The forces reach maxi-

mum level.



drastically reduced.

For this reason, primarily HSSE and HSSE-PM cutting materials are used for screw taps. These cutting materials can work with all material groups except hardened materials. Solid carbide is only used as a cutting material in a few tapping applications.

If the material hardness is too high, such as in hardened material above 55 HRC, solid carbide must be used. However, solid carbide is also used as a cutting material with short-chipping materials, since torsion forces are low in these applications. The following graphic shows the various machining tasks and the appropriate cutting material for the application.

Coatings and surface treatments for tapping

Coatings form a protective layer between the workpiece and the cutting tool. Through the use of coatings and surface treatments, the following properties are achieved.

- Higher wear resistance
- Increased hardness

- Higher cutting speed and feed rate Corrosion protection
- Reduced friction
- Higher temperature resistance

We differentiate between the following coatings and surface treatments:

titanium nitride

universal layer for universal machining.

- Vickers hardness: 2200–2300 HV
- Friction coefficient: 0.5
- Temperature resistance: 500-600°C
- Colour: Gold

Titanium carbon nitride

Its high level of hardness and excellent wear resistance make the TiCN layer suitable for machining difficult materials.

- Vickers hardness: 3500 HV
- Friction coefficient of steel: 0.2
- Temperature resistance: 400°C
- Colour: Blue grey (anthracite)

TICN

Universal layer for high-performance machining with high cutting speed.

- Vickers hardness: 3200 HV
- Friction coefficient of steel: 0.55
- Temperature resistance: 700-800°C
- Colour: Dark blue grey

ULTRA HL

This modern layer has been specially developed for thread machining and is currently the highest-performing layer due to being extremely smooth and very heat resistant while at the same time exhibiting low thermal conductivity. Particularly in processing stainless steel.

- Vickers hardness: 3000 HV
- Friction coefficient of steel: 0.15-0.20
- Temperature resistance: 800°C
- Colour: Dark grey

TiAIN

Thread tools \ Technical introduction – thread tapping

CARBO

A new type of special coating for high-performance machining of non-ferrous metals (aluminium alloys, wrought alloys), which are characterised by good emergency running properties and low edge build-up formation.

- Vickers hardness: 6000 HV
- Friction coefficient: 0.1
- Temperature resistance: 700°C
- Colour: Black

Thread types and thread depths when tapping

CARBO

In thread machining, we distinguish between through holes and blind holes. The blind hole places the most demands on a screw tap, as the chips in long-chipping materials have to be transported upwards out of the hole and must be broken at the changeover point. As a result, spiralised screw taps must be used with long-chipping materials.

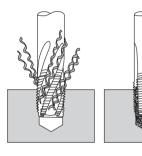
Vaporisation

classic coating.

during tapping.

This is a chemical surface treatment rather than a

This steam treatment ensures that the lubricating

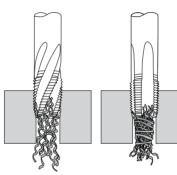

film on the screw tap surface does not tear off

A spiralised design is not necessary with short-chipping materials, as the short chips fall into the blind hole and are rinsed out by the coolant.

As a rule, a thread depth of 3xD can be achieved in blind hole machining, depending on the material. maximum process reliability is achieved but with thread depths up to 2.5xD.

Through holes can be made with thread depths of up to 4xD. Here too, for process reliability can be expected for 3xD.

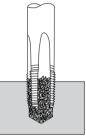
The through hole is a relatively non-critical process, as the chips are removed in the direction of feed. The chips are removed either through a spiral point or a lefthand spiral. Screw taps designed for both blind and through holes are another consideration. However, these only work with short-chipping materials or very low thread depths.



Blind hole machining with spiralised screw tap in long-chipping materials

Blind hole machining with straightgrooved screw tap in short-chipping materials

Max. thread depth 2.5xD of blind hole (e.g. M6 = max. thread depth 15 mm)



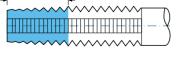
Through-hole machining with left-hand spiralised screw tap in long-chipping materials

Through-hole machining with spiral point in long-chipping materials

Max. thread depth 3xD of blind hole (e.g. M6 = max. thread depth 18 mm)

Blind hole and through-hole machining with straightgrooved screw tap

Blind and through-hole machining with straightgrooved screw tap (e.g. M6 = max. thread depth 15 mm)

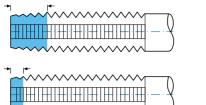


Cutting point shapes and their function

on a screw tap, the point plays an important role in the thread cutting process and is decisive when it comes to service life and thread quality. We distinguish between the following five point shapes. Apart from point shape B with a spiral point, which is only a straight-grooved shape, all other point shapes can be combined with the different chip flutes.

In principle: Longer points mean a longer service life. This a particular advantage at high quantities. However, the required torque also increases, producing higher forces. Short point shapes enable the thread to be cut nearly to the base of the hole.

Common point shapes are B, C and E.



Long, 6-8 turns for short through holes

Medium, 3.5–5.5 turns with spiral point, for all through holes and large thread depths in medium- and long-chipping materials

C (2-3)

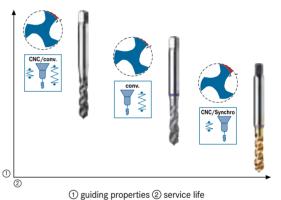
Medium, 3.5-5 turns for short through holes

Short, 2-3 turns

Extremely short, 1.5-2 turns for blind holes with a very short thread run-out; avoid if possible

for blind holes and generally for aluminium, grey cast iron and brass

We distinguish between two fundamental designs for screw tapping. DIN 371 with reinforced shank well as DIN 376 and DIN 374 with continuous shank.



Usage conditions and clearance angle

The size of the clearance angle has an effect on the service life and guiding properties of the screw tap.

A large clearance angle minimises friction and increases the service life; a smaller clearance angle improves the guidance of the screw tap.

In principle, spiralised screw taps for blind holes have a smaller clearance angle than straightgrooved screw taps. If the clearance angle were too large, the chips would jam during the reverse motion, leading to breakage of the screw tap.

CNC/conventional

These screw tap types are designed for both conventional and CNC machines, and they represent a compromise between the ideal guidance and an increase in the service life through increasing the clearance angle.

This mixed type is the most common and the best solution for the majority of machining tasks. By moderate machining conditions, we mean e.g.

cutting of threads on a CNC machine in a length compensation chuck or a synchronous chuck. With this machine tap type, for example, a thread can also be cut on a conventional drill with a length compensation chuck.

Conventional use

These threaded drill types are suitable for conventional machining in the small and medium quantity range in unstable clamping conditions. Its very long guide part and the low clearance angle make these screw taps ideal in unstable machining conditions on old machines with a standard length compensation chuck or cutting by hand.

CNC/synchro

In comparison with the conventional CNC types, these screw taps are characterised by a minimal guide part and a very large clearance angle. Their very free geometry ensures a long service life in the medium to high quantity range. However, correct tool clamping must be ensured

in the synchronous chuck or as a rigidly clamped tool. In addition, the thread must be created on a synchronous CNC machine with low play. These screw taps are all equipped with an H6 shank in order that they can be clamped rigidly in a surface chuck or shrink-fit chuck.

Clamping device recommendation for screw taps

	Length compen- sation chuck	Synchronous tapping chuck	Collet chucks	Shrink-fit chucks	Hydro-expansion chucks	Surface chuck
	Ŧ	T	圕			T
Length compensation range	9-15 mm	0.5-1 mm	0	0	0	0
Suitable for usage conditions	Unstable	Unstable-stable (synchronous)	Stable (synchronous)	Stable (synchronous)	Stable (synchronous)	Stable (synchronous)
Suitable for conventional machines	0	0	0	0	0	0
Suitable for CNC machines	0		0	0	0	0
Suitable for conventional screw taps (low relief grinding)	0	0	0	0	0	0
Suitable for standard screw taps (medium relief grinding)	0	0	0	0	0	0
Suitable for synchronous screw taps (high relief grinding)			0	0	0	0

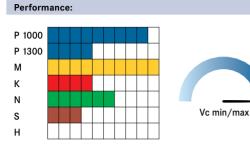
= very well suited

O = suitable

O = limited suitability

Ŷ

each material has its specific characteristics and needs individual chip geometries. this means that the chip angle, clearance angle and guide length must be set to achieve an optimal result. stainless steels and steels need positive cutting to reliably penetrate the material and safely remove the chips. for processing very hard materials, the cutter must be as stable as possible.


Screw tap UNI MAX 50HL Speed For universal high-performance use up to 1200 N/mm² in series production

Conditions of use:

Unstable / conventional

Stable / synchronous CNC

\$

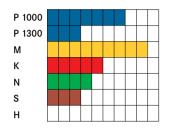
UNI MAX 50HL Speed

	Ø	Cutting material	Surface	Tol.	Lead angle shape	Coolant supply	Twist angle		page
13201020-100	M2-M30	HSSE-PM	ULTRA HL	ISO 2X (6HX)	В	External	0°		184
13201730-800	M3-M20	HSSE-PM	ULTRA HL	ISO 3X (6GX)	В	External	0°		184
13202020-100	M2-M30	HSSE-PM	ULTRA HL	ISO 2X (6HX)	С	External	50° (right)		184
13202730-800	M3-M20	HSSE-PM	ULTRA HL	ISO 3X (6GX)	С	External	50° (right)		184
13202820-900	M3-M20	HSSE-PM	ULTRA HL	ISO 3X (6GX)	С	External	50° (right)		184
13201460-500	M6-M20	HSSE-PM	ULTRA HL	ISO 2X (6HX)	В	Internal	0°		-
13202460-500	M6-M20	HSSE-PM	ULTRA HL	ISO 2X (6HX)	С	Internal	50° (right)		-
13202520-600	M6-M20	HSSE-PM	ULTRA HL	ISO 2X (6HX)	С	Internal	50° (right)		-
13211086-203	MF8-MF20	HSSE-PM	ULTRA HL	ISO 2X (6HX)	В	External	0°		208-209
13204086-203	MF8-MF20	HSSE-PM	ULTRA HL	ISO 2X (6HX)	С	External	50° (right)	- 1000 B	208-209
13213010-080	G 1/8-G 1 inch	HSSE-PM	ULTRA HL		В	External	0°		219

Source: Hahn+Kolb Werkzeuge GmbH Technical data subject to change. Availability subject to country specific rules and regulations.

Screw tap UNI MAX 45HL Control for universal use up to 1200 N/mm²

application:


machine tap for universal application up to 1000 N/mm² both on modern CNC machines and on conventional machines.

- advantages:
- Universal application in steel, stainless steel, cast iron and non-ferrous metals ensures maximum flexibility
- Problem-solver in stainless steel machining!
- Innovative cutting geometry ensures reliable thread cutting even in stainless steel
- Ultra HL coating for very long service life in stainless steel and steel
- Broad product range in MF and G threads

Conditions of use:

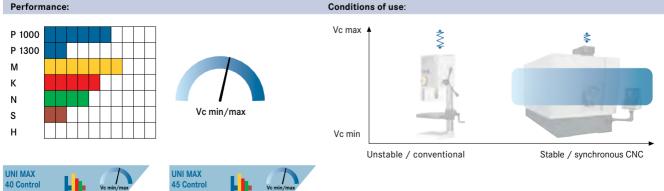
Performance:

Unstable / conventional

Stable / synchronous CNC

UNI MAX 45HL Control

	ø	Cutting material	Surface	Tol.	Lead angle shape	Coolant supply	Twist angle	page
13103	MF6-MF24	HSSE	ULTRA HL	ISO 2 (6H)	В	External	0°	209
13315	MF6-MF24	HSSE	ULTRA HL	ISO 2 (6H)	С	External	45° (right)	209
13208	G 1/16-G 7/8 inch	HSSE	ULTRA HL	ISO 2 (6H)	В	External	0°	220
13377	G 1/16-G 1 inch	HSSE	ULTRA HL	ISO 2 (6H)	С	External	45° (right)	220


Screw tap UNI MAX 40 + 45 Control For universal use up to 1000 N/mm²

Application:

Machine tap for universal high-performance use up to 1000 N/mm² both on modern CNC machines and on conventional machines.

- Advantages:
- Universal application in steel, stainless steel, cast iron and non-ferrous metals ensures maximum flexibility and extremely long service life in series production
- Problem-solver for all tough stainless steels
- Innovative cutting geometry ensures reliable thread cutting even in stainless steel
- Ideal chip breaking in difficult machining conditions

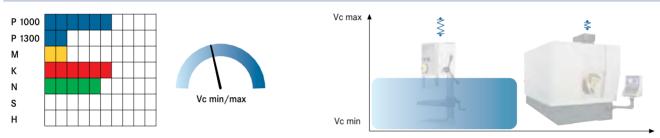
Ŷ

	Ø	Cutting material	Surface	Tol.	Lead angle shape	Coolant supply	Twist angle	page
13217230-560	M3-M36	HSSE V3	Vaporised	ISO 2 (6H)	В	External	0°	187
13218230-760	M3-M36	HSSE V3	Vaporised	ISO 2 (6H)	С	External	40° (right)	 187

Screw tap UNI 40 Control black ring For universal use up to 1000 N/mm²

application:

machine tap for universal application up to 1000 N/mm² both on modern CNC machines and on conventional machines.


advantages:

- Universal application in steel, stainless steel, cast iron and non-ferrous metals ensures maximum flexibility
- Innovative cutting geometry provides reliable thread cutting
- Wide range of cutting materials and coatings
- Good value for money

Performance:

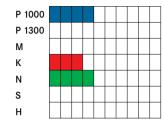
Conditions of use:

Unstable / conventional

Stable / synchronous CNC

	Ø	Cutting material	Surface	Tol.	Lead angle shape	Coolant supply	Twist angle		page
13121010-100	M1-M30	HSSE	Vaporised	ISO 2 (6H)	В	External	0°	-	188-189
13125010-100	M1-M30	HSSE	Vaporised	ISO 2 (6H)	С	External	40° (right)	- 10	188-189
13121430-500	M3-M20	HSSE	TiN	ISO 2 (6H)	В	External	0°		188-189
13125430-500	M3-M20	HSSE	TiN	ISO 2 (6H)	С	External	40° (right)	Star Berlin	188-189
13049430-500	M3-M20	HSSE	ULTRA HL	ISO 2 (6H)	В	External	0°		190
13049030-100	M3-M20	HSSE	ULTRA HL	ISO 2 (6H)	С	External	40°		190
13050730-800	M3-M20	HSSE-PM	ULTRA HL	ISO 2 (6H)	В	External	0°		190
13050330-400	M3-M20	HSSE-PM	ULTRA HL	ISO 2 (6H)	С	External	40°		190
13207310-400	G 1/8-G 1 1/4 inch	HSSE	Vaporised	ISO 2 (6H)	В	External	0°		220-221
13378310-400	G 1/8-G 1 1/4 inch	HSSE	Vaporised	ISO 2 (6H)	С	External	40° (right)		220-221
13121630-760	M3-M16	HSSE	Vaporised	ISO 2 (6H)	В	External	0°	10000	189
13125630-760	M3-M16	HSSE	Vaporised	ISO 2 (6H)	С	External	40° (right)	487574 i	189
13121900-916	UNC 7/16- UNC 1 inch	HSSE	Vaporised	ISO 2 (6H)	В	External	0°		222-223
13125900-916	UNC 7/16- UNC 1 inch	HSSE	Vaporised	ISO 2 (6H)	С	External	40° (right)	1000	222-223
13121930-946	UNC 7/16- UNC 1 inch	HSSE	Vaporised	ISO 2 (6H)	В	External	0°		223
13125930-946	UNC 7/16- UNC 1 inch	HSSE	Vaporised	ISO 2 (6H)	С	External	40° (right)		223

Screw tap P Max 1000 Control For universal use up to 1000 N/mm²


Application:

Machine tap for universal application up to 1000 N/mm² optimised for use on conventional machines. Advantages:

- Universal application in steel, cast iron and non-ferrous metals ensures maximum flexibility
- Optimised geometry for conventional application cutting of thread minimised
- Wide product range in M, MF

Performance:

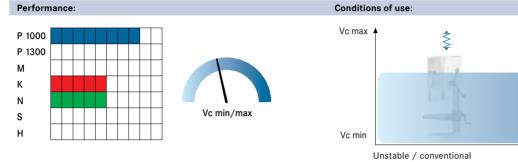
Conditions of use:

Unstable / conventional

Stable / synchronous CNC

P 1000 Control

	Ø	Cutting material	Surface	Tol.	Lead angle shape	Coolant supply	Twist angle		page
13063	M2-M24	HSSE	Uncoated	ISO 2 (6H)	В	External	0°		191
13100030-100	M3-M20	HSSE	Uncoated	ISO 2 (6H)	D	External	15° (left)		-
13106014-100	M1,4-M24	HSSE	Uncoated	ISO 2 (6H)	В	External	0°		193-194
13101	M1,6-M36	HSSE	Uncoated	ISO 2 (6H)	В	External	0°		194-195
13326020-100	M2-M20	HSSE	Uncoated	ISO 2 (6H)	С	External	40° (right)	0000	194-195
13320	MF3-MF36	HSSE	Uncoated	ISO 2 (6H)	С	External	0°		209-210
13144	MF3-MF40	HSSE	Uncoated	ISO 2 (6H)	В	External	0°		210-211
13335	MF8-MF20	HSSE	Uncoated	ISO 2 (6H)	С	External	40° (right)	Carrier Contraction	210-211


Screw tap P Max 1000 For universal use up to 1000 N/mm²

Application:

Machine tap for universal application up to 1000 N/mm² both on CNC machines and on conventional machines.

- Advantages:
- Universal application in steel, cast iron and non-ferrous metals ensures maximum flexibility
- Very long service life, in particular in steel materials
- Large selection of coatings
- Wide product range in M, MF, G, NPT

\$

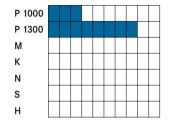
-

P MAX 1000 Control

	Ø	Cutting material	Surface	Tol.	Lead angle shape	Coolant supply	Twist angle		page
13113010-100	M1-M10	HSSE	Vaporised	ISO 2 (6H)	В	External	0°		195-196
13115430-500	M3-M24	HSSE	TiN	ISO 2 (6H)	В	External	0°		196-197
13307030-100	M3-M20	HSSE	TiN	ISO 2 (6H)	С	External	40° (right)	3000	196-197
13115030-100	M3-M20	HSSE	TiCN	ISO 2 (6H)	В	External	0°		-
13117	M2-M36	HSSE	Vaporised	ISO 2 (6H)	В	External	0°		197-198
13283	M3-M36	HSSE	Vaporised	ISO 2 (6H)	С	External	40° (right)	(ADI)	197-198
13281020-100	M2-M24	HSSE	Uncoated	ISO 2 (6H)	С	External	15° (right)		-
13311	M3-M10	HSSE	Vaporised	ISO 2 (6H)	E	External	40° (right)	1111	-
13116	M3-M10	HSSE	Vaporised	ISO 3 (6G)	В	External	0°		-
13099030-100	M3-M10	HSSE	Vaporised	ISO 3 (6G)	С	External	40° (right)	1312	-
13108	M3 L-M10 L	HSSE	TiN	ISO 2 (6H)	В	External	0°		199
13113330-400	M3 L-M20 L	HSSE	TiN	ISO 2 (6H)	С	External	40° (right)	CALL -	199
13059	M3-M16	HSSE	Uncoated	ISO 2X (6HX)		External	0°		197
13161	MF5-MF50	HSSE	Vaporised	ISO 2 (6H)	В	External	0°		211-212
13332	MF4-MF30	HSSE	Vaporised	ISO 2 (6H)	С	External	40° (right)		211-212
13207	G 1/8-G 1 1/4 inch	HSSE	Vaporised	ISO 2 (6H)	В	External	0°		221
13378	G 1/16-G 1 inch	HSSE	Vaporised	ISO 2 (6H)	с	External	40° (right)	000-	221
13359	NPT 1/8- NPT 1 inch	HSSE	Uncoated	ISO 2 (6H)	с	External	15° (right)		225
13347	UNC Nr.4-UNC 3/8 inch	HSSE	Vaporised	2B	В	External	0°		223-224
13348025-110	UNC Nr.2-UNC 1 inch	HSSE	Vaporised	2B	с	External	40° (right)		223-224
13357040-110	UNF Nr.4-UNF 5/8 inch	HSSE	Vaporised	2B	В	External	0°		224
13358070-110	UNF 7/16- UNF 1 inch	HSSE	Vaporised	2B	С	External	40° (right)		224

Screw tap P Max 1300 For universal use up to 1300 N/mm²

Application:


Machine tap for universal application up to 1300 N/mm² both on CNC machines and on conventional machines.

- Advantages: • Very long service life in high-strength steel
- Very long service life in high-strength st
 Large selection of coatings
- Wide product range in M, MF



Conditions of use:

Performance:

Unstable / conventional

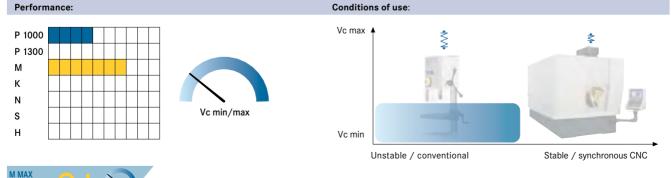
Stable / synchronous CNC

P MAX 1300 Control

	Ø	Cutting material	Surface	Tol.	Lead angle shape	Coolant supply	Twist angle		page
13130020-100	M2-M24	HSSE	Vaporised	ISO 2 (6H)	В	External	0°		200-201
13306020-100	M2-M12	HSSE	Vaporised	ISO 2 (6H)	С	External	40° (right)		200-201
13128030-100	M3-M20	HSSE	TiCN	ISO 2 (6H)	В	External	0°		201
13305030-100	M3-M20	HSSE	TiCN	ISO 2 (6H)	С	External	40° (right)	CITCLE	201
13308	M3-M30	HSSE	Vaporised	ISO 2 (6H)	С	External	40° (right)	(Sec	202
13077030-100	M3-M10	HSSE	Vaporised	ISO 3 (6G)	В	External	0°		202-203
13309	M2-M10	HSSE	Vaporised	ISO 3 (6G)	С	External	40° (right)		202-203

Screw tap M max Control For use on stainless steel

Application:


Machine tap for application in stainless steel both on CNC machines and on conventional machines.

Advantages:

Control

- Very long service life in stainless steel
- Large selection of coatings
- Wide product range in M, MF

Ŷ

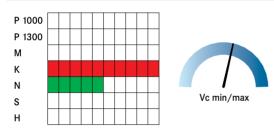
Thread tools $\ Machine tap overview page$

	Ø	Cutting material	Surface	Tol.	Lead angle shape	Coolant supply	Twist angle		page
13136030-100	M3-M30	HSSE	Vaporised	ISO 2 (6H)	В	External	0°		203-204
13288020-100	M2-M30	HSSE	Vaporised	ISO 2 (6H)	С	External	40° (right)	1919	203-204
13107030-100	M3-M30	HSSE	TiN	ISO 2 (6H)	В	External	0°		204
13088	M3-M10	HSSE	Uncoated	ISO 2 (6H)	В	External	0°		-
13143	MF4-MF50	HSSE	Vaporised	ISO 2 (6H)	В	External	0°		212-213
13324	MF4-MF30	HSSE	Vaporised	ISO 2 (6H)	С	External	15° (right)		212-213
13360	NPT 1/8- NPT 3/4 inch	HSSE	Vaporised	ISO 2 (6H)	С	External	15° (right)		222
13361	NPT 1/8- NPT 3/4 inch	HSSE	TiN	ISO 2 (6H)	С	External	15° (right)		222

Screw tap K max Control For use in cast iron and short-chipping non-ferrous metals

Application:

Machine tap for application in stainless steel both on CNC machines and on conventional machines.


Advantages:

- Very long service life in cast iron and short-chipping non-ferrous metals
- Large selection of coatings and cutting materials
- Optimised geometry for short-chipping materials

Performance:

Conditions of use:

Unstable / conventional

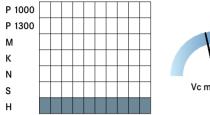
Stable / synchronous CNC

K MAX Control

	Ø	Cutting material	Surface	Tol.	Lead angle shape	Coolant supply	Twist angle	page
13290030-100	M3-M24	HSSE	TiAIN	ISO 2X (6HX)	С	External	0°	206
13291	M5-M10	HSSE	TiAIN	ISO 2X (6HX)	С	Internal	0°	206

Ŷ

Screw tap H max Control For use in hard machining from 55-65 HRC

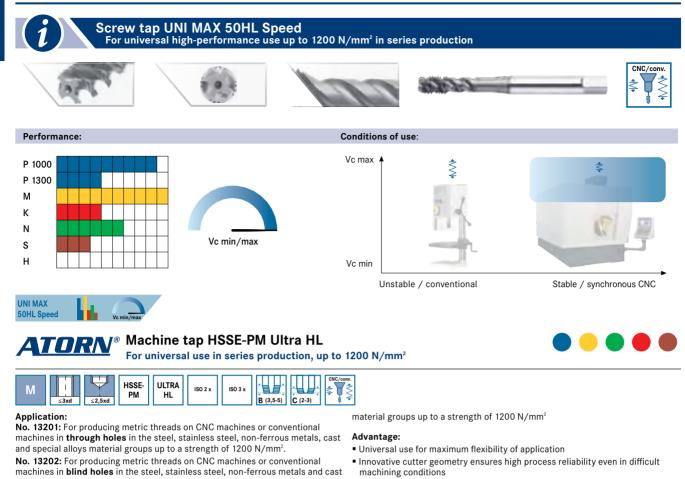

Application:

machine tap in hard machining both on CNC machines and on conventional machines.

Advantages: Very long service life in hard machining

· High-quality cutting materials and coatings ensure long service life

Unstable / conventional


Stable / synchronous CNC

H MAX	
Control	Vc min/max

	Ø	Cutting material	Surface	Tol.	Lead angle shape	Coolant supply	Twist angle	page
13152086-126	MF8-MF12	HSSE-PM	TiCN	ISO 2 (6H)	D	External	0°	213
13153060-126	MF6-MF12	VHM	TiCN	ISO 2 (6H)	D	External	0°	213

Vc min

																- ;			V _c
													p. 170	0 p.1	74 p	o. 22	p. 757	p. 284	p. 185
Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ISS	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13201020-100	22	16	12	12	12	14	30	17	24	12	20	30	16	18	7	6	6		
13201120-300	22	16	12	12	12	14	30	17	24	12	20	30	16	18	7	6	6		
13201730-800	22	16	12	12	12	14	30	17	24	12	20	30	16	18	7	6	6		
13201820-900	22	16	12	12	12	14	30	17	24	12	20	30	16	18	7	6	6		
13202020-100	22	16	12	12	12	14	30	17	24	12	20	30	16	18	7	6	6		
13202120-300	22	16	12	12	12	14	30	17	24	12	20	30	16	18	7	6	6		
13202730-800	22	16	12	12	12	14	30	17	24	12	20	30	16	18	7	6	6		
13202820-900	22	16	12	12	12	14	30	17	24	12	20	30	16	18	7	6	6		

					Cut	tting material	н	SSE-PM	н	SSE-PM	н	SSE-PM	H	SSE-PM
						Surface	UL	TRA HL	UI	TRA HL	U	LTRA HL	UL	TRA HL
						Tol.	ISO	2X (6HX)	ISO	2X (6HX)	ISO	3X (6GX)	ISO	3X (6GX)
					Lead	l angle shape		В		С		В		С
						Twist angle		0°	50)° (right)		0°	50	° (right)
					Co	polant supply	E	xternal	E	xternal	E	External	E	xternal
	L T mm	++ mm	L mm	+ mm	→→ mm	DIN	1320 Ident.		1320 Ident.		1320 Ident.		1320: Ident.	
M2	0.4	1.6	45	2.8	2.1	371	020	•	020	•	-	-	-	-
M2.5	0.45	2.05	50	2.8	2.1	371	025	•	025	•	-	-	-	-
M3	0.5	2.5	56	3.5	2.7	371	030	•	030	•	730	•	730	•
M4	0.7	3.3	63	4.5	3.4	371	040	•	040	•	740	•	740	•
M5	0.8	4.2	70	6	4.9	371	050	•	050	•	750	•	750	•
M6	1	5	80	6	4.9	371	060	•	060	•	760	•	760	•
M8	1.25	6.8	90	8	6.2	371	080	•	080	•	780	•	780	•
M10	1.5	8.5	100	10	8	371	100	•	100	•	800	•	800	•
M12	1.75	10.2	110	9	7	376	120	•	120	•	820	•	820	•
M14	2	12	110	11	9	376	140	•	140	•	-	-	-	-
M16	2	14	110	12	9	376	160	•	160	•	860	•	860	•
M20	2.5	17.5	140	16	12	376	200	•	200	•	900	•	900	•
M24	3	21	160	18	14.5	376	240	•	240	•	-	-	-	-
M27	3	24	160	20	16	376	270	•	270	•	-	-	-	-
M30	3.5	26.5	180	22	18	376	300	•	300	•	-	-	-	-

Prod. Gr. 1KA

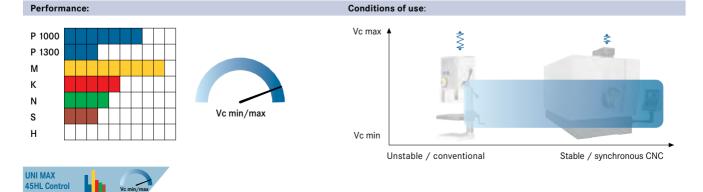
Usage values, screw tap, HSSE PM ULTRA HL

-	-	
Sad man 2		
	132	01020-100

13201020-100 13202020-100 13201120-300 13201460-500, 13201520-600, 13201730-800, 13201820-900, 13202120-300, 13202460-500, 13202520-600, 13202730-800, 13202820-900, 13204086-203, 13211086-203, 13213010-080, 13216010-080, 13217830-980

1.10

	Strength Class [N/mm ²]	Description regarding DIN	Vc [m/min]
1. Steels			
1.1 Free machining steel	< 900	9 S 20	16-30
1.2 Structural steel	<500	ST 37-2	16-30
1.3 Structural steel	> 500	ST 60-2	14-25
1.4 Heat-treated steel	<1000	42 CrMo 4	10-18
.5 Cast iron	<1000	GS-45	10-18
I.6 Case-hardened steel	<1200	16 MnCr 5	10-16
1.7 Ferritic/martensitic stainless steel	<1100	X 10 Cr 13	10-14
1.8 Heat-treated steel	>1000	43 CrMo 4	10-16
1.9 Nitriding steel	<1300	31 CrMoV 9	10-16
1.10 Tool steel	<1300	X 38 CrMoV 5 1	6-12
2. Stainless steels			
2.1 Austenitic stainless steel	<1100	G-X 2 CrNiMo 18 15	10-14
3. Non-ferrous metals			
3.1 Long-chipping aluminium	<500	AI99.9	20-30
3.2 Short-chipping aluminium	<500	G-AlSi12	12-16
3.3 Copper alloy bronze, long-chipping	<1200	CuSn4	15-25
3.4 Copper alloy bronze, short-chipping	<850	CuNi12Zn24	8-16
3.5 Copper alloy brass, long-chipping	<600	Cu Zn 20	15-25
3.6 Copper alloy brass, short-chipping	<600	Cu Zn 39 Pb 3	15-20
3.7 Thermoplastic	<100	PVC, Acrylglas	10-30
3.8 Duroplast	<150	Bakelit, Melamin	8-25
3.9 Fibre-reinforced plastics	<1500	CFK, GFK	5-12
3.10 Graphite	<60	C8000	10-20
3.11 Composite materials			
I. Cast metal			
4.1 Cast iron with lamellar graphite	<260 HB	GG10	15-25
1.2 Nodular cast iron	<310 HB	GGG 40	15-25
4.3 Ductile iron	<280 HB	GTW-55	15-25
5. Special alloys		•	
5.1 Titanium alloy	<1200	TiAI5Sn2,5	4-8
5.2 Nickel-based alloy	<1400	NiCr21Mo	2-8
5.3 Super alloys	<1400	X45CrSi 9 3	2-8


Screw tap UNI MAX 45HL Control for universal use up to 1200 N/mm²

application:

machine tap for universal application up to 1000 N/mm² both on modern CNC machines and on conventional machines. advantages:

- Universal application in steel, stainless steel, cast iron and non-ferrous metals ensures maximum flexibility
- Problem-solver in stainless steel machining!
- Innovative cutting geometry ensures reliable thread cutting even in stainless steel
- Ultra HL coating for very long service life in stainless steel and steel
- Broad product range in MF and G threads

Screw tap UNI MAX 40 + 45 Control For universal use up to 1000 N/mm²

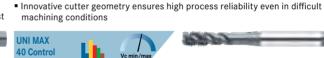
Application:

Machine tap for universal high-performance use up to 1000 N/mm² both on modern CNC machines and on conventional machines.

- Advantages:
- Universal application in steel, stainless steel, cast iron and non-ferrous metals ensures maximum flexibility and extremely long service life in series production
- Problem-solver for all tough stainless steels
- Innovative cutting geometry ensures reliable thread cutting even in stainless steel

for universal use up to 1200 N/mm2

the local sector


No. 13218 020-13218 100

М	≤3xd	<u>≤2,5xd</u>	HSSE V3	ISO 2	* B (3,5-5)	с (2-3)	CNC/conv.
---	------	---------------	------------	-------	----------------	---------	-----------

Application:

No. 13217: For producing metric threads on CNC machines or conventional machines in through holes in the steel, stainless steel, non-ferrous metals, cast and special alloys material groups up to a strength of 1200 N/mm².


No. 13218: For producing metric threads on CNC machines or conventional machines in blind holes in the steel, stainless steel, non-ferrous metals and cast

Advantage:

material groups up to a strength of 1200 N/mm²

Universal use for maximum flexibility of application

No. 13217

		~~		
p. 755	p. 170	p. 174	p. 22	p. 757

Application	Ste	el (N/m	n²)	Stainle	ss steel	A	u	Bra	ISS	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13217020-100	18	12	6	8	8	8	18	6	16	10	14	15		15	3	3	3		
13218020-100	18	12	6	8	8	8	18	6	16	10	14	15		15	3	3	3		
13218530-960	18	12	6	8	8	8	18	6	16	10	14	15		15	3	3	3		

						Cutting material	HSSE V3	HSSE V3	HSSE V3
						Surface	Vaporised	Vaporised	Vaporised
						Tol.	ISO 2 (6H)	ISO 2 (6H)	ISO 2 (6H)
					L	ead angle shape	В	С	С
						Twist angle	0°	40° (right)	45° (right)
					Coolant supply	External	External	External	
	I mm	+ + mm	ļ.	+ mm	mm	DIN	13217 Ident. No.	13218 Ident. No.	13218 Ident. No.
M2	0.4	1.6	45	2.8	2.1	371	020 •	020 •	520 •
M2.5	0.45	2.05	50	2.8	2.1	371	025 •	025 •	525 •
M3	0.5	2.5	56	3.5	2.7	371	030	030	530 •
M3.5	0.6	2.9	56	4	3	371	035 •	035 •	535 •
M4	0.7	3.3	63	4.5	3.4	371	040	040 •	540
M5	0.8	4.2	70	6	4.9	371	050 •	050 •	550 •
M6	1	5	80	6	4.9	371	060	060	560 •
M8	1.25	6.8	90	8	6.2	371	080	080	580 •

Thread tools \ Machine tap M

						Tol.	IS) 2 (6H)	IS	O 2 (6H)	ISC	2 (6
					L	ead angle shape		В		С		С
						Twist angle		0°)° (right)		° (rig
						Coolant supply		xternal		xternal		terna
	<mark>↓</mark> T	→ + +	T	+++	 mm	DIN	1321: Ident.		1321 Ident.		13218 Ident. I	
M10	1.5	8.5	100	10	8	371	100	•	100	•	600	
M12	1.75	10.2	110	9	7	376	-	-	-	-	620	
M14	2	12	110	11	9	376	-	-	-	-	640	
M16	2	14	110	12	9	376	-	-	-	-	660	
M18	2.5	15.5	125	14	11	376		-	-	-	680	
M20	2.5	12.5	140	16	12	376	-	-	-	-	700	
M22	2.5	19.5	140	18	14.5	376	-	-	-	-	720	
M24	3	21	160	18	14.5	376	-	-	-	-	840	
M27	3	24	160	20	16	376		-	-	-	870	
M30	3.5	26.5	180	22	18	376	-	-	-	-	900	
M33	3.5	29.5	180	25	20	376	-	-	-	-	930	
M36	4	32	200	28	22	376	-	-	-	-	960	

for universal use up to 1200 N/mm2

100

No. 13218

Application:

No. 13217

No. 13217: For producing metric threads on CNC machines or conventional machines in **through holes** in the steel, stainless steel, non-ferrous metals, cast and special alloys material groups up to a strength of 1200 N/mm².

No. 13218: For producing metric threads on CNC machines or conventional machines in **blind holes** in the steel, stainless steel, non-ferrous metals and cast

iron material groups up to a strength of 1200 $\ensuremath{N/mm^2}$

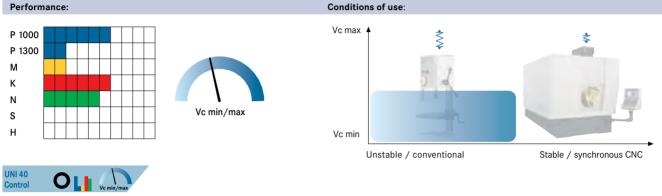
Advantage:

- Universal use for maximum flexibility of application
- Innovative cutter geometry ensures high process reliability even in difficult machining conditions

														p. 7	55 p	. 170	p. 174	p. 22	p. 757
Application	Ste	eel (N/m	m²)	Stainle	ss steel	A	lu	Bra	ISS	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13217230-560	18	12	6	8	8	8	18	6	16	10	14	15		15	3	3	3		
13218230-760	18	12	6	8	8	8	18	6	16	10	14	15		15	3	3	3		

								1
						Cutting material		HSSE V3
		-		-		Surface		Vaporised
						Tol.	ISO 2 (6H)	ISO 2 (6H)
						Lead angle shape		С
						Twist angle	0°	40° (right)
						Coolant supply	External	External
	T mm	→ I J ← I I I I I I I I I I I I I I I I I I I	T mm	+∎+ mm	→→← ∭ mm	DIN	13217 Ident. No.	13218 Ident. No.
M3	0.5	2.5	56	2.2	-	376	230 •	230
M4	0.7	3.3	63	2.8	2.1	376	240 •	240
M5	0.8	4.2	70	3.5	2.7	376	250 •	250 •
M6	1	5	80	4.5	3.4	376	260 •	260 •
M8	1.25	6.8	90	6	4.9	376	280 •	280
M10	1.5	8.5	100	7	5.5	376	300 •	300 •
M12	1.75	10.2	110	9	7	376	320 •	320 •
M14	2	12	110	11	9	376	340 •	340
M16	2	14	110	12	9	376	360 •	360 •
M18	2.5	15.5	125	14	11	376	380 •	380 •
M20	2.5	17.5	140	16	12	376	400 •	400 •
M22	2.5	19.5	140	18	14.5	376	420 •	420 •
M24	3	21	160	18	14.5	376	440 •	440 •
M27	3	24	160	20	16	376	470 •	470 •
M30	3.5	26.5	180	22	18	376	500 •	500 •
M33	3.5	29.5	180	25	18	376	530 •	730 •
M36	4	32	200	28	22	376	560 •	760 •

Prod. Gr. 1KA


Screw tap UNI 40 Control black ring For universal use up to 1000 N/mm²

application:

machine tap for universal application up to 1000 N/mm² both on modern CNC machines and on conventional machines.

- advantages:
- Universal application in steel, stainless steel, cast iron and non-ferrous metals ensures maximum flexibility
- Innovative cutting geometry provides reliable thread cutting
- Wide range of cutting materials and coatings
- Good value for money

ATORN[®] HSSE machine tap

For universal use up to 1000 N/mm²

М			HSSE	TiN	ISO 2	
	<u>≤</u> 3xd	<u>≤</u> 2,5xd				B (3,5-5) C (2-3)

Application:

No. 13121: For producing metric threads on CNC machines or conventional machines in **through holes** in the steel, stainless steel, non-ferrous metals and cast iron material groups up to a strength of 1000 N/mm².

No. 13125: For producing metric threads on CNC machines or conventional machines in **blind holes** in the steel, stainless steel, non-ferrous metals and cast iron material groups up to a strength of 1000 N/mm²

No. 13121 010-13121 300

 Structural dimensions in accordance with: DIN 371 = reinforced shank (up to M10), DIN 376 = over-long shank (from M12)

Advantage:

- Universal use for maximum flexibility in use
- Innovative cutter geometry ensures high process reliability even in difficult machining conditions

p. 755 p. 170 p. 174 p. 22 p. 757 p. 193

													p. 70	o p. i	70 p	. 17 4	p. 22	p. 7 07	p. 170
Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13121010-100	18	12	8	8	8		18		19		18	15		15					
13121120-300	18	12	8	8	8		18		19		18	15		15					
13121430-500	18	12	8	8	8		18		19		18	15		15					
13121520-600	18	12	8	8	8		18		19		18	15		15					
13125010-100	18	12	8	8	8		18		19		18	15		15					
13125120-300	18	12	8	8	8		18		19		18	15		15					
13125430-500	18	12	8	8	8		18		19		18	15		15					
13125520-600	18	12	8	8	8		18		19		18	15		15					

					Cut	ting material		HSSE		HSSE		HSSE		HSSE
						Surface	Va	aporised	Va	aporised		TiN		TiN
						Tol.	ISC	0 2 (6H)	IS	0 2 (6H)	IS	O 2 (6H)	ISC	O 2 (6H)
					Lead	angle shape		В		C		В		C
		-			-	Twist angle		0°	40	° (right)		0°	40	° (right)
					Co	olant supply	E	xternal	E	xternal	E	xternal	E	xternal
	₩ T mm	→ ↓ ↓ mm	L mm	→ ← mm	mm	DIN	1312 Ident.		1312 Ident.		1312 Ident.		1312 Ident.	
M1	0.25	0.75	40	2.5	2.1	371	010	•	010	•	-	-	-	-
M1.2	0.25	0.95	40	2.5	2.1	371	012	•	012	•	-	-	-	-

Thread tools \ Machine tap M

					Cut	tting material	¹ Н:	ISSE	+	HSSE	1	HSSE		HSSE
						Surface		porised		porised	+	TiN	1	TiN
						Tol.		2 (6H)		D 2 (6H)	ISC	0 2 (6H)	IS	0 2 (6H)
					Leao	d angle shape		B	<u> </u>	C		B		C
						Twist angle		0°	40	° (right)	<u> </u>	0°	40)° (right)
					C	oolant supply	Ext	ternal		xternal	E.	xternal		xternal
	₩ mm	→ + + mm	T mm	+++	mm	DIN	13121. Ident. N		13125 Ident. I		1312 Ident.		1312 Ident.	
M1.4	0.3	1.1	40	2.5	2.1	371	014	•	014	•	-	-	-	-
M1.6	0.35	1.25	40	2.5	2.1	371	016	•	016	•	-	-	-	
M1.7	0.35	1.35	40	2.5	2.1	371	017	•	017	•	-	-	-	-
M1.8	0.35	1.45	40	2.5	2.1	371	018	•	018	•	<u> </u>	-	-	
M2	0.4	1.6	45	2.8	2.1	371	020	•	020	•	-	-	-	-
M2.2	0.45	1.75	45	2.8	2.1	371	022	•	022	•	-		-	
M2.3	0.4	1.9	45	2.8	2.1	371	023	٠	023	•	-	-	-	-
M2.5	0.45	2.05	50	2.8	2.1	371	025	•	025	•	-	-	-	-
M2.6	0.45	2.15	50	2.8	2.1	371	026	٠	026	•	-	-	-	-
M3	0.5	2.5	56	3.5	2.7	371	030	•	030	•	430	•	430	•
M4	0.7	3.3	63	4.5	3.4	371	040	•	040	•	440	•	440	•
M5	0.8	4.2	70	6	4.9	371	050	٠	050	•	450	•	450	•
M6	1	5	80	6	4.9	371	060	•	060	•	460	•	460	•
M8	1.25	6.8	90	8	6.2	371	080	•	080	•	480	•	480	•
M10	1.5	8.5	100	10	8	371	100	•	100	•	500	•	500	•
M12	1.75	10.2	110	9	7	376	120	•	120	•	520	•	520	•
M16	2	14	110	12	9	376	160	٠	160	•	560	•	560	•
M20	2.5	17.5	140	16	12	376	200	•	200	•	600	•	600	•
M24	3	21	160	18	14.5	376	240	•	240	•	-	-	-	-
M27	3	24	160	20	16	376	270	٠	270	•	-	-	-	-
M30	3.5	26.5	180	22	18	376	300	•	300	•	-	-	-	-

Prod. Gr. 1KA

ATORN[®] HSSE machine tap, extra long For universal use up to 1000 N/mm²

No. 13121

Stee <700

18

18

Application

No 13121630-760

13125630-760

No. 13121: For producing metric threads on CNC machines or conventional machines in **through holes** in the steel, stainless steel, non-ferrous metals and cast iron material groups up to a strength of 1000 N/mm².

No. 13125: For producing metric threads on CNC machines or conventional machines in blind holes in the steel, stainless steel, non-ferrous metals and cast

No. 13125

iron material groups up to a strength of 1000 N/mm².

Advantage:

Universal use for maximum flexibility of application

Innovative cutter geometry ensures high process reliability even in difficult machining conditions

											p. 75	5 p. 1	7 0	p. 174	p. 22	p. 757	V c
el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze		Graphite	GG(G)	Titan-		Super-	Hard	mat.
<1000		marten.	austen.	short	long	short	long	short	long	tics	G(Ć)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
12	8	8	8		18		19		18	15		15					
12	8	8	8		18		19		18	15		15					
											Cut	ting mat Sur	erial face	HSS Vapori		HS Vapo	-
													Tol.	ISO 2		ISO 2	
											Lead	angle sh	nape	В		()
												Twist a	ngle	0°		40° (right)
											Co	olant su	pply	Exter	nal	Exte	rnal
			+ +						+	F				13121 Ident. No.		13125 Ident. No	

	mm	mm	<u>t</u>	mm	mm				
M3	0.5	2.5	112	3.5	2.7	630	•	630	•
M4	0.7	3.3	126	4.5	3.4	640	•	640	•
M5	0.8	4.2	140	6	4.9	650	•	650	•
M6	1	5	160	6	4.9	660	•	660	•
M8	1.25	6.8	180	8	6.2	680	•	680	•
M10	1.5	8.5	200	10	8	700	•	700	•
M12	1.75	10.2	220	9	7	720	•	720	•
M14	2	12	220	11	9	740	•	740	•
M16	2	14	220	12	9	760	•	760	•

Prod. Gr. 1KA

TORN[®] HSSE/HSSE-PM ULTRA HL machine tap

For universal use up to 1000 N/mm²

Application:

Δ

No. 13049 030–13049 200, 13050 330–13050 500: For producing metric threads on CNC machines or conventional machines in **blind holes** in the steel, stainless steel, non-ferrous metals and cast iron material groups up to a strength of 1000 N/mm²

No. 13049 430–13049 600, 13050 730–13050 800: For producing metric threads on CNC machines or conventional machines in **through holes** in the steel, stainless steel, non-ferrous metals and cast iron material groups up to a strength of 1000 N/mm².

No. 13050 820-13050 900: For producing metric threads on CNC machines or conventional machines in through holes in the steel, stainless steel, non-ferrous

No. 13049 430-13049 600, 13050 500-13050 900 No. 13049 030-13049 200, 13050 330-13050 460 metals and cast iron material groups up to a strength of 1200 N/mm².

Execution:

- No. 13049 030-13050 800: Structural dimensions in accordance with: DIN 371 = reinforced shank (up to M10), DIN 376 = over-long shank (from M12)
- No. 13050 820-13050 900: Structural dimensions in accordance with: DIN 371 = reinforced shank (up to M10), DIN 376 = protruding shank (from M12)

Advantage:

 Innovative cutter geometry and newly developed ULTRA HL coating ensures high process reliability even in difficult machining conditions

Application	Ste	el (N/m	n²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13049030-100	18	12	8	8	8		18		19		18	15		15					
13049120-200	18	12	8	8	8		18		19		18	15		15					
13049430-500	18	12	8	8	8		18		19		18	15		15					
13049520-600	18	12	8	8	8		18		19		18	15		15					
13050330-400	22	15	8	11	11		25		28		20	20		22					
13050420-500	22	15	8	11	11		25		28		20	20		22					
13050730-800	22	15	8	11	11		25		28		20	20		22					
13050820-900	22	15	8	11	11		25		28		20	20		22					

					Cut	tting material	HSS	E		HSSE	HS	SSE-PM	HSS	SE-PM
						Surface	ULTRA	\ HL	UL	TRA HL	UL	TRA HL	ULT	RA HL
						Tol.	ISO 2 ((6H)	ISC	D 2 (6H)	ISC) 2 (6H)	ISO	2 (6H)
					Lead	angle shape	В			C		В		C
						Twist angle	0°			40°		0°	4	-0°
					Co	polant supply	Exter	nal	E:	xternal	E>	kternal	Ext	ernal
	mm	→ + +	<u>I</u> mm	+++	mm	DIN	13049 Ident. No.	External External 3049 13049 dent. No. Ident. No.		13050 Ident. I		13050. Ident. N		
M3	0.5	2.5	56	3.5	2.7	371	430	•	030	•	730	•	330	٠
M4	0.7	3.3	63	4.5	3.4	371	440	•	040	•	740	•	340	•
M5	0.8	4.2	70	6	4.9	371	450	•	050	•	750	•	350	•
M6	1	5	80	6	4.9	371	460	•	060	•	760	•	360	٠
M8	1.25	6.8	90	8	6.2	371	480	•	080	•	780	•	380	٠
M10	1.5	8.5	100	10	8	371	500	•	100	•	800	•	400	•
M12	1.75	10.2	110	9	7	376	520	•	120	•	820	•	420	•
M16	2	14	110	12	9	376	560	•	160	•	860	•	460	•
M20	2.5	17.5	140	16	12	376	600	•	200	•	900	•	500	•

Prod. Gr. 1KA

Ŷ

Screw tap P Max 1000 Control For universal use up to 1000 N/mm²

Application:

Machine tap for universal application up to 1000 N/mm² optimised for use on conventional machines. Advantages:

- Universal application in steel, cast iron and non-ferrous metals ensures maximum flexibility
- Optimised geometry for conventional application cutting of thread minimised
- Wide product range in M, MF

Performance: Conditions of use: Vc max P 1000 \$ \$ P 1300 Vc min/max Vc min Unstable / conventional Stable / synchronous CNC

HSS machine tap, short (DIN 352) ATORN[®] ORION For universal conventional use up to 1000 N/mm²

or conventional machines and by hand in through

holes in the steel, (stainless steel), non-ferrous met-

als and (cast iron) material groups up to a strength of

Application: For producing metric threads on CNC machines

1000 N/mm².

Μ К Ν

s н

Execution:

- Machine tap, short design
- Advantage:
- Easy accessibility thanks to short design

					V _c
p. 755	p. 170	p. 174	p. 22	p. 757	p. 193

ſ	Application	Ste	el (N/mr	n²)	Stainle	ss steel	A	lu	Bra	ISS	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	
ſ	No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Ċ)FK	GjMŴ	alloy	alloy	alloy	<55 HRC	<65 HRC
Γ	13063	16	11		9		18	18	15	18	15	15	13		16					
	13064	15	10		9		18	18	15	18	15	15	13		16					

							ATORN*	O RION [®]
						Cutting material	HSSE	HSSE
						Surface	Uncoated	Uncoated
						Tol.	ISO 2 (6H)	ISO 2 (6H)
						Lead angle shape	В	В
						Twist angle	0°	0°
						Coolant supply	External	External
	T mm	→ + + - + - + - + - + - + - + - +	I	→ I+ mm	-►	DIN	13063 Ident. No.	13064 Ident. No.
M2	0.4	1.6	36	2.8	2.1	352	020 •	020
M2.5	0.45	2.05	36	2.8	2.1	352	025 •	025 •
M3	0.5	2.5	40	3.5	2.7	352	030	030
M4	0.7	3.3	45	4.5	3.4	352	040 •	040
M5	0.8	4.2	50	6	4.9	352	050 •	050 •
M6	1	5	50	6	4.9	352	060 •	060 •
M8	1.25	6.8	56	6	4.9	352	080	080
M10	1.5	8.5	70	7	5.5	352	100 •	100 •
M12	1.75	10.2	75	9	7	352	120 •	120 •
M16	2	14	80	12	9	352	160 •	160 •
M18	2.5	15.5	95	14	11	352	180	
M20	2.5	17.5	95	16	12	352	200 •	
M22	2.5	19.5	100	18	14.5	352	220 •	
M24	3	21	110	18	14.5	352	240 •	

ORION = Prod. Gr. 1DB

ATORN[®] ORION[®] Machine tap, HSSE

For universal conventional use up to 1000 N/mm²

For producing metric threads on conventional machines in **blind holes and through holes** in the steel, (stainless steel), non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm².

Execution:

- No. 13270: Structural dimensions according to: DIN 371 = reinforced shank (up to M10), DIN 376 = protruding shank (from M12)
- No. 13323: Dimensions in accordance with: DIN 371 = reinforced shank (up to M10), DIN 376 = transition-fit shank (from M12)

Advantage:

- No. 13270: Long service life and good process reliability due to innovative cutting geometry and universal use for maximum application versatility
- No. 13323: Long service life and high process reliability thanks to innovative cutting geometry, and universal use for maximum flexibility in use.

		~~			V _c ∠∠
p. 755	p. 170	p. 174	p. 22	p. 757	p. 193

Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMŴ	alloy	alloy	alloy	<55 HRC	<65 HRC
13270020-100	16	11		9		18	18	15	18	15	15	13		16					
13270120-360	16	11		9		18	18	15	18	15	15	13		16					
13323030-100	16	11		9		18	18	15	18	15	15	13		16					
13323120	16	11		9		18	18	15	18	15	15	13		16					

							ATORN [®]	ORI	DN°
						Cutting material	HSSE		HSSE
						Surface	Uncoated	Ur	ncoated
						Tol.	ISO 2 (6H)	ISC	O 2 (6H)
						Lead angle shape	С		С
						Twist angle	0°		0°
						Coolant supply	External		xternal
	↓ ↑ mm	◆ ◆ -	T mm	→ + mm	-►I I mm	DIN	13270 Ident. No.	13323 Ident.	
M2	0.4	1.6	45	2.8	2.1	371	020	-	-
M2.5	0.45	2.05	50	2.8	2.1	371	025 •	-	-
M3	0.5	2.5	56	3.5	2.7	371	030	030	•
M4	0.7	3.3	63	4.5	3.4	371	040 •	040	•
M5	0.8	4.2	70	6	4.9	371	050 •	050	•
M6	1	5	80	6	4.9	371	060 •	060	•
M8	1.25	6.8	90	8	6.2	371	080	080	•
M10	1.5	8.5	100	10	8	371	100 •	100	•
M12	1.75	10.2	110	9	7	376	120 •	120	•
M14	2	12	110	11	9	376	140 •	-	-
M16	2	14	110	12	9	376	160 •	-	-
M18	2.5	15.5	125	14	11	376	180 •	-	-
M20	2.5	17.5	140	16	12	376	200 •	-	-
M24	3	21	160	18	14.5	376	240 •	-	-
M30	3.5	26.5	180	22	18	376	300 •	-	-
M36	4	32	200	28	22	376	360 •	-	-

ORION = Prod. Gr. 1DB ATORN^e = Prod. Gr. 1KA

Usage values, screw tap, HSSE

 13105030-100
 13077030-100
 1312120-300

 13121010-100, 13121520-600, 13125010-100, 13125120-300, 13125430-500, 13125520-600, 13048030-100, 13048120, 13059, 13063, 13064, 13083030-100,
 13083120-160, 13048120, 13059, 13063, 13064, 13083030-100,

 13083120-160, 13088, 13099030-100, 13100030-100, 13100120-200, 13101, 13105120, 13106014-100, 13106120-240, 13113010-100, 13116, 13117, 13118020-100, 13119105-300, 13130020-100, 1310120-240, 13136030-100, 1316120-300, 13144, 13145030-100, 13145120-240, 131260, 13228, 13229, 13249030-100, 13249120, 13254030-100, 13254120-200, 13266, 13261, 13264120-100, 13264120-240, 13260, 13264120-100, 13264120-100, 13266120-240, 13267020-100, 13267120-360, 13268120, 13270020-100, 13270120-360,

 13271030-100, 13271120-240, 13274, 13279030-100, 13279120, 13281020-100, 13281120-240, 13283, 13288020-100, 13288120, 300, 133206020-100, 13326120, 200, 13326120-200, 13326120-200, 13326120-200, 13326120-200, 13326020-100, 13325112, 13319030-100, 13319120, 1335110, 13357150-170, 13358070-110, 13357120-180, 13379, 13104500-565, 13207310-400, 13348120-160, 13378310-400, 13121630-760, 13121630-760, 13121930-946, 13125630-760, 13125630-760, 13125930-946

	Strength Class [N/mm ²]	Description regarding DIN	Vc [m/min]
I. Steels		•	
1.1 Free machining steel	< 900	9 S 20	10-18
1.2 Structural steel	<500	ST 37-2	10-18
1.3 Structural steel	> 500	ST 60-2	10-15
1.4 Heat-treated steel	<1000	42 CrMo 4	8-12
1.5 Cast iron	<1000	GS-45	8-12
1.6 Case-hardened steel	<1200	16 MnCr 5	8-12
1.7 Ferritic/martensitic stainless steel	<1100	X 10 Cr 13	6-8
1.8 Heat-treated steel	>1000	43 CrMo 4	8-12
1.9 Nitriding steel	<1300	31 CrMoV 9	8-12
1.10 Tool steel	<1300	X 38 CrMoV 5 1	6-12
2. Stainless steels			
2.1 Austenitic stainless steel	<1100	G-X 2 CrNiMo 18 15	6-8
3. Non-ferrous metals			
3.1 Long-chipping aluminium	<500	AI99.9	15-25
3.2 Short-chipping aluminium	<500	G-AISi12	15-20
3.3 Copper alloy bronze, long-chipping	<1200	CuSn4	10-20
3.4 Copper alloy bronze, short-chipping	<850	CuNi12Zn24	10-20
3.5 Copper alloy brass, long-chipping	<600	Cu Zn 20	10-25
3.6 Copper alloy brass, short-chipping	<600	Cu Zn 39 Pb 3	10-25
3.7 Thermoplastic	<100	PVC, Acrylglas	10-20
3.8 Duroplast	<150	Bakelit, Melamin	8-15
3.9 Fibre-reinforced plastics	<1500	CFK, GFK	5-12
3.10 Graphite	<60	C8000	15-25
3.11 Composite materials			5-12
1. Cast metal			
4.1 Cast iron with lamellar graphite	<260 HB	GG10	15-20
4.2 Nodular cast iron	<310 HB	GGG 40	12-20
4.3 Ductile iron	<280 HB	GTW-55	12-18

ATORN® Machine tap, HSSE

For universal conventional use up to 1000 N/mm²

Application:

No. 13106: For producing metric threads on conventional machines in through holes in the steel, (stainless steel), non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm².

No. 13267: For producing metric threads on conventional machines in blind holes in the steel, (stainless steel), non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm².

Execution:

No. 13106: structural dimensions in accordance with: DIN 371 = reinforced shank (up to M10), DIN 376 = over-long shank (from M12)

• No. 13267: Structural dimensions according to: DIN 371 = reinforced shank (up to M10), DIN 376 = protruding shank (from M12)


Advantage:

- No. 13106: good service life and process reliability thanks to innovative cutting geometry and universal use for the greatest flexibility in applications
- No. 13267: Long service life and good process reliability due to innovative cutting geometry and universal use for maximum application versatility

						- U i	• • •				V _c
					p. 75	5 p.1	70 p	. 174	p. 22	p. 757	p. 193
steel	Alu	Brass	Bronze	Plas-	Graphite	GG(G)	Titan-		Super-	Hard	mat.
usten.	short long	short long	short long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC

Application	Ste	el (N/mi	m²)	Stainles	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	l mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13106014-100	16	11		9		18	18	15	18	15	15	13		16					
13106120-240	16	11		9		18	18	15	18	15	15	13		16					
13267020-100	16	12		9		18	18	15	18	15	15	13		16					
13267120-360	16	12		9		18	18	15	18	15	15	13		16					

						Cutting material	HSS	F		HSSE
						Surface	Uncoa			coated
						Tol.	ISO 2 () 2 (6H)
						Lead angle shape	B	0117		C
						Twist angle	0°		40	° (right)
						Coolant supply	Exterr	nal		kternal
	↓ T mm	++ ++ + mm	mm	+ ∎ mm	→ IIII mm	DIN	13106 Ident. No.		13267 Ident.	·
M1.4	0.3	1.1	40	2.5	2.1	371	014	•	-	-
M1.6	0.35	1.25	40	2.5	2.1	371	016	•	-	-
M1.7	0.35	1.3	40	2.5	2.1	371	017	•	-	-
M1.8	0.35	1.45	40	2.5	2.1	371	018	•	-	-
M2	0.4	1.6	45	2.8	2.1	371	020	•	020	•
M2.2	0.45	1.75	45	2.8	2.1	371	022	•	-	-
M2.3	0.4	1.9	45	2.8	2.1	371	023	•	-	-
M2.5	0.45	2.05	50	2.8	2.1	371	025	•	025	•
M2.6	0.45	2.15	50	2.8	2.1	371	026	•	-	-
M3	0.5	2.5	56	3.5	2.7	371	030	•	030	•
M3.5	0.6	2.9	56	4	3	371	035	•	035	•
M4	0.7	3.3	63	4.5	3.4	371	040	•	040	•
M5	0.8	4.2	70	6	4.9	371	050	•	050	•
M6	1	5	80	6	4.9	371	060	•	060	•
M8	1.25	6.8	90	8	6.2	371	080	•	080	•
M10	1.5	8.5	100	10	8	371	100	•	100	•
M12	1.75	10.2	110	9	7	376	120	•	120	•
M14	2	12	110	11	9	376	140	•	140	•
M16	2	14	110	12	9	376	160	•	160	•
M20	2.5	17.5	140	16	12	376	200	•	200	•
M24	3	21	160	18	14.5	376	240	•	240	•
M18	2.5	15.5	125	14	11	376	-	-	180	•
M30	3.5	26.5	180	22	18	376	-	-	300	•
M36	4	32	180	28	22	376	-	-	360	•

Prod. Gr. 1KA

ATORN® Machine tap, HSSE (DIN 376)

For universal conventional use up to 1000 N/mm²

No. 13326

18

18

15

Application:

Ap

13326020-100 13326120-200

No. 13101

16

11

No. 13101: For producing metric threads on conventional machines in **through** holes in the steel, (stainless steel), non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm².

No. 13326: For producing metric threads on conventional machines in **blind** holes in the steel, (stainless steel), non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm².

Execution:

• No. 13101: With protruding shank

• No. 13326: With transition-fit shank

Advantage:

- No. 13101: Long service life and high level of process reliability thanks to innovative cutting geometry and universal application for maximum flexibility in use
- No. 13326: Long service life and high process reliability thanks to innovative cutting geometry, and universal use for maximum flexibility in use.

													Ĭo=	- 0	•5				V _c
													p. 75	5 p.1	70 p	. 174	p. 22	p. 757	p. 193
pplication	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13101	15	11		9		18	18	15	18	15	15	13		16					
326020-100	16	11		9		18	18	15	18	15	15	13		16					

15

15 13

18

						Cutting material		HSSE		HSSE
						Surface		ncoated	Ur	coated
						Tol.	ISC	O 2 (6H)	ISC	D 2 (6H)
						Lead angle shape		В		С
						Twist angle		0°	40	° (right)
						Coolant supply	E	xternal	E	kternal
	L ↑ mm	+ _ + - - - - - - - - - - - - - - - - - - -	T mm	→	mm	DIN	1310 Ident.		13320 Ident.	
M1.6	0.35	1.25	40	1.2	-	376	016	•	-	-
M1.8	0.35	1.45	40	1.2	-	376	018	•	-	-
M2	0.4	1.6	45	1.6	-	376	020	•	020	•
M2.2	0.45	1.75	45	1.6	-	376	022	•	-	-
M2.3	0.4	1.9	45	1.6	-	376	023	•	-	-
M2.5	0.45	2.05	50	1.8	-	376	025	•	025	•
M2.6	0.45	2.15	50	1.8	-	376	026	•	-	-
M3	0.5	2.5	56	2.2	-	376	030	•	030	•
M3.5	0.6	2.9	56	2.5	2.1	376	035	•	-	-
M4	0.7	3.3	63	2.8	2.1	376	040	•	040	•
M5	0.8	4.2	70	3.5	2.7	376	050	•	050	•
M6	1	5	80	4.5	3.4	376	060	•	060	•
M8	1.25	6.8	90	6	4.9	376	080	•	080	•
M10	1.5	8.5	100	7	5.5	376	100	•	100	•
M12	1.75	10.2	110	9	7	376	120	•	120	•

 194
 Source: Hahn+Kolb Werkzeuge GmbH

 Technical data subject to change.

 Availability subject to country specific rules and regulations.

. .

						Cutting material	HSSE	HSSE
						Surface	Uncoated	Uncoated
						Tol.	ISO 2 (6H)	ISO 2 (6H)
						Lead angle shape	В	С
						Twist angle	0°	40° (right)
						Coolant supply		External
	, T mm	→ · · · · · · · · · · · · · · · · · · ·	I	→ 🕂 mm	 mm	DIN	13101 Ident. No.	13326 Ident. No.
M14	2	12	110	11	9	376	140 •	140 •
M16	2	14	110	12	9	376	160 •	160 •
M18	2.5	15.5	125	14	11	376	180 •	180
M20	2.5	17.5	140	16	12	376	200 •	200 •
M22	2.5	19.5	140	18	14.5	376	220 •	
M24	3	21	160	18	14.5	376	240 •	
M27	3	24	160	20	16	376	270 •	
M30	3.5	26.5	180	22	18	376	300 •	
M33	3.5	29.5	180	25	20	376	330 •	
M36	4	32	200	28	22	376	360 •	

Prod. Gr. 1KA

Screw tap P Max 1000 For universal use up to 1000 N/mm²

Application:

Machine tap for universal application up to 1000 N/mm² both on CNC machines and on conventional machines.

- Advantages:
- Universal application in steel, cast iron and non-ferrous metals ensures maximum flexibility
- Very long service life, in particular in steel materials
- Large selection of coatings
- Wide product range in M, MF, G, NPT

Performance: Conditions of use: P 1000 P 1300 M K N S H Unstable / conventional Conditions of use: Vc max Vc max

ATORN[®] ORION[®] Machine tap, HSSE, vaporised For universal use up to 1000 N/mm²

Application:

No. 13113–13119: For producing metric threads on CNC machines or conventional machines in through holes in the steel, (stainless steel), non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm².
 No. 13264–13318: For producing metric threads on CNC machines or conventional machines in blind holes in the steel, (stainless steel), non-ferrous metals

and (cast iron) material groups up to a strength of 1000 N/mm².

Execution:

- No. 13113: structural dimensions in accordance with: DIN 371 = reinforced shank (up to M10), DIN 376 = over-long shank (from M12)
- No. 13119: Dimensions to: DIN 371 = reinforced shank (to M10), DIN 376 = protruding shank (from M12)

No. 13264-13318

- No. 13264: Structural dimensions according to: DIN 371 = reinforced shank (up to M10), DIN 376 = protruding shank (from M12)
- No. 13318: Dimensions in accordance with: DIN 371 = reinforced shank (up to M10), DIN 376 = transition-fit shank (from M12)

Advantage:

- No. 13113: good service life and process reliability thanks to innovative cutting geometry and universal use for the greatest flexibility in applications
- No. 13119: Standard geometry with very good price/performance ratio
- No. 13264: Long service life and good process reliability due to innovative cutting geometry and universal use for maximum application versatility
- No. 13318: Standard geometry with an excellent price-performance ratio

p. 170

p. 174

p. 755

n 22

p. 757

p. 193

Application	Ste	el (N/m	m ²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	l mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMŴ	alloy	alloy	alloy	<55 HRC	<65 HRC
13113010-100	17	12		10		19	19	17	19	17	17	15		18					
13119030-100	16	11		9		18	18	15	18	15	15	13		16					
13264020-100	17	12		10		19	19	17	19	17	17	15		18					
13264120-200	17	12		10		19	19	17	19	17	17	15		18					
13318020-100	17	12		10		19	19	17	19	17	17	15		18					
13318120	17	12		10		19	19	17	19	17	17	15		18					

							ATO	<u>RN</u> *	ORI	DN°			ATO	<u>R/V</u> °
					Cut	tting material		HSSE		HSSE	1	HSSE		HSSE
						Surface	Va	aporised	Va	aporised	Va	aporised	Va	porised
						Tol.	ISC	Ó 2 (6H)	IS	Ó 2 (6H)	IS	0 2 (6H)	ISC	D 2 (6H)
					Lead	l angle shape		В		В		С		С
						Twist angle		0°		0°	40	° (right)	40	° (right)
					Co	oolant supply	E	xternal	E	xternal	E	xternal	E:	xternal
	mm t	+ ++ mm		→ mm	+++ mm	DIN	1311: Ident.		1311 Ident.		1331 Ident.		13264 Ident.	
M1	0.25	0.75	40	2.5	2.1	371	010	•	-	-		-		-
M1.4	0.3	1.1	40	2.5	2.1	371	014	•	-	-	-	-	-	-
M1.6	0.35	1.25	40	2.5	2.1	371	016	•	-	-	-	-	-	-
M1.7	0.35	1.3	40	2.5	2.1	371	017	•	-	-		-	-	-
M1.8	0.35	1.45	40	2.5	2.1	371	018	•	-	-		-		-
M2	0.4	1.6	45	2.8	2.1	371	020	•	-	-	020	•	020	•
M2.5	0.45	2.05	50	2.8	2.1	371	025	•	-	-	025	•	-	-
M3	0.5	2.5	56	3.5	2.7	371	030	•	030	•	030	•	030	•
M3.5	0.6	2.9	56	4	3	371	035	•	-	-	-	-	-	-
M4	0.7	3.3	63	4.5	3.4	371	040	•	040	•	040	•	040	•
M5	0.8	4.2	70	6	4.9	371	050	•	050	•	050	•	050	•
M6	1	5	80	6	4.9	371	060	•	060	•	060	•	060	•
M8	1.25	6.8	90	8	6.2	371	080	•	080	•	080	•	080	•
M10	1.5	8.5	100	10	8	371	100	•	100	•	100	•	100	•
M12	1.75	10.2	110	9	7	376	-	-	-	-	120	•	120	•
M14	2	12	110	11	9	376	-	-	-	-	-	-	140	•
M16	2	14	110	12	9	376	-	-	-	-	-	-	160	•
M20	2.5	17.5	140	16	12	376	-	-	-	-	-	-	200	•

ORION = Prod. Gr. 1DB

ATORN[®] HSSE TiN machine tap For universal use up to 1000 N/mm²

Application:

No. 13115: For producing metric threads on CNC machines or conventional machines in **through holes** in the steel, (stainless steel), non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm².

No. 13307: For producing metric threads on CNC machines or conventional machines in **blind holes** in the steel, (stainless steel), non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm².

Execution:

196

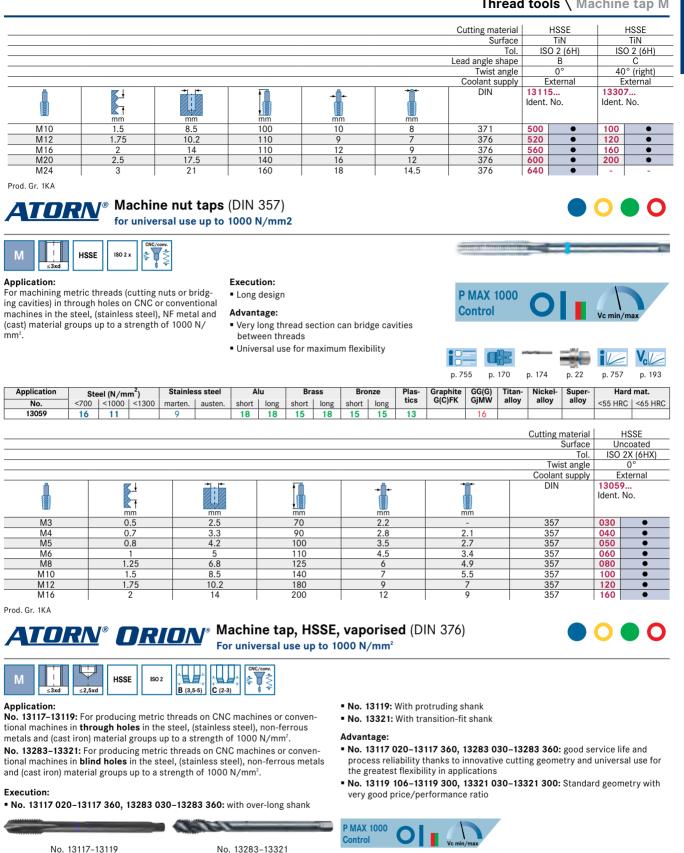
 structural dimensions in accordance with: DIN 371 = reinforced shank (up to M10), DIN 376 = over-long shank (from M12)

Advantage:

- No. 13115: good service life and process reliability thanks to innovative cutting geometry and coating as well as universal use for the greatest flexibility in applications
- No. 13307: Long service life and high level of process reliability thanks to innovative cutter geometry and coating and universal application for maximum flexibility in use

p. 755	p. 170	p. 174	p. 22	p. 757

														p. /	55 p	. 170	p. 174	p. 22	p. 757
Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ISS	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13115430-500	18	13		10		19	19	17	19	17	17	15		18					
13115520-640	18	13		10		19	19	17	19	17	17	15		18					
13307030-100	18	13		10		19	19	17	19	17	17	15		18					
13307120-200	18	13		10		19	19	17	19	17	17	15		18					


						Cutting material	HSS	SE		HSSE
						Surface	Til	1		TiN
						Tol.	ISO 2	(6H)	ISC	D 2 (6H)
		Lead angle shape	В			С				
		Twist angle	0,0	>	40	° (right)				
			Exter	mal	E:	xternal				
	<mark>↓</mark> ↑ mm	→ ↓ ↓ mm	T	+ + mm	→ → → mm	13115 Ident. No.		13303 Ident.		
M3	0.5	2.5	56	3.5	2.7	371	430	•	030	•
M4	0.7	3.3	63	4.5	3.4	371	440	•	040	•
M5	0.8	4.2	70	6	4.9	371	450	•	050	•
M6	1	5	80	6	4.9	371	460	•	060	•
M8	1.25	6.8	90	8	6.2	371	480	•	080	•

Ŷ

																-	100		
													p. 75	5 p.1	70 p	. 174	p. 22	p. 757	p. 193
Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Ċ)FK	GjŴŴ	alloy	alloy	alloy	<55 HRC	<65 HRC
13117	16	11		9		18	18	15	18	15	15	13		16					
13119105-300	16	11		9		18	18	15	18	15	15	13		16					
13283	17	12		10		19	19	17	19	17	17	15		18					
13321030-300	17	12		10		19	19	17	19	17	17	15		18					

							ATOR	<u>!N</u> *			ORI	<u>DN</u> "		
					Cut	ting material	Н	ISSE		HSSE		HSSE		HSSE
						Surface	Vap	orised	Va	porised	Va	porised	Va	porised
						Tol.	ISÓ	2 (6H)	IS	Ó 2 (6H)	ISC	2 (6H)	ISC	
					Lead	angle shape		В		C		C		B
						Twist angle		0°	40	° (right)	40	° (right)		0°
					Co	olant supply	Ex	ternal	E	xternal	E	xternal	E	xternal
	₩ M mm	+1 + +	L mm	+ +	mm	13117. Ident. N		1328: Ident.		1332 Ident.		1311 Ident.		
M2	0.4	1.6	45	1.4	2.1	376	020	•	-	-	-	-	-	-
M3	0.5	2.5	56	2.2	2.7	376	030	•	030	•	030	•	-	-
M4	0.7	3.3	63	2.8	2.1	376	040	•	040	•	040	•	-	-
M5	0.8	4.2	70	3.5	2.7	376	050	•	050	•	050	•	-	-
M6	1	5	80	4.5	3.4	376	060	•	060	•	060	•	106	•
M8	1.25	6.8	90	6	4.9	376	080	•	080	•	080	•	108	•
M10	1.5	8.5	100	7	5.5	376	100	•	100	•	100	•	110	•
M12	1.75	10.2	110	9	7	376	120	•	120	•	120	•	120	•
M14	2	12	110	11	9	376	140	•	140	•	-	-	-	-
M16	2	14	110	12	9	376	160	•	160	•	160	•	160	•
M18	2.5	15.5	125	14	11	376	180	•	180	•	-	-	-	-
M20	2.5	17.5	140	16	12	376	200	•	200	•	200	•	200	•
M22	2.5	19.5	140	18	14.5	376	220	•	-	-	-	-	-	-
M24	3	21	160	18	14.5	376	240	•	240	•	240	•	240	•
M27	3	24	160	20	16	376	270	•	270	•	-	-	-	-
M30	3.5	26.5	180	22	18	376	300	•	300	•	300	•	300	•
M36	4	32	200	28	22 376			•	360	•	-	-	-	-

ORION = Prod. Gr. 1DB

Usage values, screw tap, HSSE

131	050	0.30-	.10

100

13077030-100

13121120-300

 13105030-100
 13077030-100
 13121120-300

 1312 1010-100, 1312 1520-600, 13125010-100, 13125120-300, 13125430-500, 13125520-600, 13048030-100, 13059, 13059, 13053, 13064, 13083030-100,
 13083120-160, 13059, 13059, 13059, 13059, 13059, 13059, 13059, 13064, 13083030-100,

 13083120-160, 13099030-100, 13109030-100, 13100120-200, 13101120-240, 13106120-240, 1316120-300, 13114, 13144, 13144, 13145303-100, 13145120-240,
 1318120-240, 1319030-100, 13119105-300, 13130120-240, 13130120-240, 13136030-100, 13144, 13144, 13144, 5030-100, 13145120-240,

 13147, 13149030-100, 13149120, 13161, 13207, 13209, 13215030-300, 13228, 13229, 13249030-100, 13254120, 100, 13254120-200, 13260, 13261,
 13263, 13264020-100, 13264120-200, 13266120-240, 13267020-100, 13267120-360, 13268030-100, 13268120, 30200-100, 13279120, 320,

 13271030-100, 13271120-240, 13279030-100, 13279120, 13281020-100, 13267120-360, 13288020-100, 1328120-300, 13306020-100, 13306120,
 13318120, 13319030-100, 13319120, 133291020-100, 132281320, 3323030-100, 1332120, 1332210, 3306120,

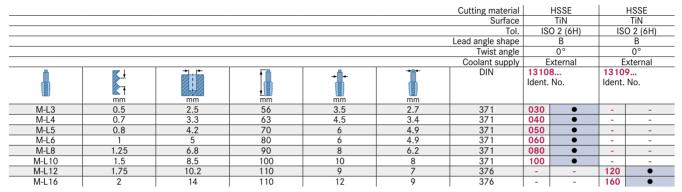
 1336, 13309, 13311, 13318020-100, 13379120, 1325100-100, 1325150-170, 13358070-110, 13352120, 13322, 335, 13347, 13348025-110, 13357040-110, 13357150-170, 13358070-110, 13358120-180, 13359, 13360, 13378, 13379, 13104500-565, 13207310-400, 13348120-160, 13378310-400, 13121630-760, 13121900-916, 13121930-946, 13125630-760, 13125630-760, 13125630-760, 13125630-760, 1312590-946

	Strength Class [N/mm ²]	Description regarding DIN	Vc [m/min]
1. Steels			
1.1 Free machining steel	< 900	9 S 20	10-18
1.2 Structural steel	<500	ST 37-2	10-18
1.3 Structural steel	> 500	ST 60-2	10-15
1.4 Heat-treated steel	<1000	42 CrMo 4	8-12
1.5 Cast iron	<1000	GS-45	8-12
1.6 Case-hardened steel	<1200	16 MnCr 5	8-12
1.7 Ferritic/martensitic stainless steel	<1100	X 10 Cr 13	6-8
1.8 Heat-treated steel	>1000	43 CrMo 4	8-12
1.9 Nitriding steel	<1300	31 CrMoV 9	8-12
1.10 Tool steel	<1300	X 38 CrMoV 5 1	6-12
2. Stainless steels			
2.1 Austenitic stainless steel	<1100	G-X 2 CrNiMo 18 15	6-8
3. Non-ferrous metals			
3.1 Long-chipping aluminium	<500	AI99.9	15-25
3.2 Short-chipping aluminium	<500	G-AISi12	15-20
3.3 Copper alloy bronze, long-chipping	<1200	CuSn4	10-20
3.4 Copper alloy bronze, short-chipping	<850	CuNi12Zn24	10-20
3.5 Copper alloy brass, long-chipping	<600	Cu Zn 20	10-25
3.6 Copper alloy brass, short-chipping	<600	Cu Zn 39 Pb 3	10-25
3.7 Thermoplastic	<100	PVC, Acrylglas	10-20
3.8 Duroplast	<150	Bakelit, Melamin	8-15
3.9 Fibre-reinforced plastics	<1500	CFK, GFK	5-12
3.10 Graphite	<60	C8000	15-25
3.11 Composite materials			5-12
4. Cast metal			
4.1 Cast iron with lamellar graphite	<260 HB	GG10	15-20
4.2 Nodular cast iron	<310 HB	GGG 40	12-20
4.3 Ductile iron	<280 HB	GTW-55	12-18

Ŷ

Execution:

- For producing metric threads on CNC machines or conventional machines in through holes in the steel, (stainless steel), non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/ mm².
- structural dimensions in accordance with: DIN 371 = reinforced shank (up to M10), DIN 376 = overlong shank (from M12)


Advantage:

 good service life and process reliability thanks to innovative cutting geometry and coating as well as universal use for the greatest flexibility in applications

Appli	cation	Ste	el (N/mr	n²)	Stainle	ss steel	A	lu	Bra	ISS	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
N	lo.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMŴ	alloy	alloy	alloy	<55 HRC	<65 HRC
13	108	18	12		10		19	19	17	19	17	17	15		18					
13	109	18	12		10		19	19	17	19	17	17	15		18					

Prod. Gr. 1KA

TORN[®] HSSE TiN left-handed machine tap

For universal use up to 1000 N/mm²

Application:

For producing metric threads on CNC machines or conventional machines in blind holes in the steel, (stainless steel), non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm².

Advantage:

good service life and process reliability thanks to innovative cutting geometry and coating as well as universal use for the greatest flexibility in applications

170

Ĭŏ

766

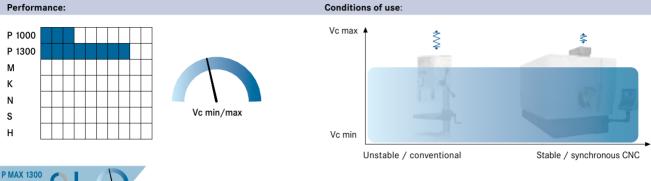
Execution:
structural dimensions in accordance with: DIN 371
inferred about (in the M10) DIN 07(

= reinforced shank (up to M10), DIN 376 = overlong shank (from M12)

10118 01101111 (111		.)												p.	/55	p. 170	p. 174	p. 22	p. 757
Application			m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13113330-400	17	12		10		19	19	17	19	17	17	15		18					
13113420-540	17	12		10		19	19	17	19	17	17	15		18					

						Cutting material	HSSE			
						Surface	TiN			
						Tol.	ISO 2 (6H)			
						Lead angle shape	С			
						Twist angle	40° (right)			
						Coolant supply	External			
İ	L ↑ mm	+ + mm	↓ mm	mm mm DIN 13 Ide						
M-L3	0.5	2.5	56	3.5	2.7	371	330 •			
M-L4	0.7	3.3	63	4.5	3	371	340 •			
M-L5	0.8	4.2	70	6	4.9	371	350 •			
M-L6	1	5	80	6	4.9	371	360 •			
M-L8	1.25	6.8	90	8	6.2	371	380 •			
M-L10	1.5	8.5	100	10	8	371	400 •			
M-L12	1.75	10.2	110	9	7	376	420 •			
M-L16	2	14	110	12	9	376	460 •			
M-L18	2.5	15.5	125	14	11	376	500 •			
M-L20	2.5	17.5	140	16	12	376	540 •			

Prod. Gr. 1KA


Screw tap P Max 1300 For universal use up to 1300 N/mm²

Application:

Machine tap for universal application up to 1300 N/mm² both on CNC machines and on conventional machines.

- Advantages:
- Very long service life in high-strength steel
- Large selection of coatings
- Wide product range in M, MF

ATORN[®] ORION[®] Machine tap, HSSE For use in high-strength steel up to 1300 N/mm²

Application:

No. 13130-13149: For producing metric threads on CNC machines or conventional machines in through holes in the high-strength steel material group up to a strength of 1300 N/mm².

No. 13306-13319: For producing metric threads on CNC machines or conventional machines in **blind holes** in the high-strength steel material group up to a strength of 1300 N/mm².

Execution:

200

- No. 13130: Dimensions to: DIN 371 = reinforced shank (to M10), DIN 376 = protruding shank (from M12)
- No. 13149 030-13149 120, 13319 030-13319 120: Dimensions in accordance with: DIN 371 = reinforced shank (up to M10), DIN 376 = transition-fit shank (from M12)
- No. 13306: structural dimensions in accordance with: DIN 371 = reinforced shank (up to M10), DIN 376 = over-long shank (from M12)

Advantage:

- No. 13130: Long service life and process reliability through innovative cutting geometry for use in high-strength steel
- No. 13149 030-13149 120, 13319 030-13319 120: Standard geometry with an excellent price-performance ratio
- No. 13306: good service life and process reliability thanks to innovative cutting geometry and coating for use in high-strength steel

													p. 75	5 p.1	70 p	. 174	p. 22	p. 757	p. 193
Application	Ste	Steel (N/mm ²) Stainless steel					lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13130020-100	16	12	9																
13130120-240	16	12	9																
13149030-100	16	12	9																
13149120	16	12	9																
13306020-100	16	12	9						1										
13306120	16	12	9																
13319030-100	16	12	9																
13319120	16	12	9																

							ATOR		ORI		ATO		ORI	
					Cut	tting material	-	ISSE	-	HSSE	-	HSSE		HSSE
						Surface		oorised		aporised		aporised		ncoated
						Tol.		2 (6H)	ISC	O 2 (6H)	IS	O 2 (6H)	ISU	O 2 (6H)
					Lead	d angle shape		В		В		С	\perp	С
						Twist angle		0°		0°		0° (right))° (right)
					1	oolant supply		ternal	-	xternal	-	External		xternal
		→ + + + mm	mm	++ mm	mm	DIN	13130. Ident. N		13149 Ident.		13300 Ident.		13319 Ident.	
M2	0.4	1.6	45	2.8	2.1	371	020	•	-	-	020	•	-	-
M2.5	0.45	2.05	50	2.8	2.1	371	025	•	-	-	025	•	-	-
M3	0.5	2.5	56	3.5	2.7	371	030	•	030	•	030	•	030	•
M4	0.7	3.3	63	4.5	3.4	371	040	•	040	•	040	•	040	•
M5	0.8	4.2	70	6	4.9	371	050	•	050	•	050	•	050	•
M6	1	5	80	6	4.9	371	060	•	060	•	060	•	060	•
M8	1.25	6.8	90	8	6.2	371	080	•	080	•	080	•	080	•
M10	1.5	8.5	100	10	8	371	100	•	100	•	100	•	100	•
M12	1.75	10.2	110	9	7	376	120	•	120	•	120	•	120	•
M16	2	14	110	12	9	376	160	•	-	-	-	-		
M20	2.5	17.5	140	16	12	376	200	•	-	-	-	-		-
M24	3	21	160	18	14.5	376	240	•	-	-	-	-	-	-

ORION = Prod. Gr. 1DB

ATORN® HSSE TICN machine tap

For use in high-strength steel up to 1300 N/mm²

Application:

No. 13128: For producing metric threads on CNC machines or conventional machines in **through holes** in the high-strength steel material group up to a strength of 1300 N/mm².

No. 13305: For producing metric threads on CNC machines or conventional machines in blind holes in the high-strength steel material group up to a strength of 1300 N/mm².

Execution:

• No. 13128: Dimensions to: DIN 371 = reinforced shank (to M10), DIN 376 = protruding shank (from M12)

• No. 13305: structural dimensions in accordance with: DIN 371 = reinforced shank (up to M10), DIN 376 = over-long shank (from M12)

Advantage:

- No. 13128: Long service life and process reliability through innovative cutting geometry for use in high-strength steel
- No. 13305: good service life and process reliability thanks to innovative cutting geometry for use in high-strength steel

n 755	n 170	n 174	n 22	n 757

														p. /	55 p	. 170	p. 174	p. zz	p. 757
Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Ć)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13128030-100	18	13	10																
13128120-200	18	13	10																
13305030-100	18	13	10																
13305120-200	18	13	10																

						Cutting material	HSSE	HSSE
						Surface	TiCN	TiCN
						Tol.	ISO 2 (6H)	ISO 2 (6H)
						Lead angle shape	В	C
						Twist angle	0°	40° (right)
						Coolant supply	External	External
		+ + +	T mm	+ + mm		DIN	13128 Ident. No.	13305 Ident. No.
M3	0.5	2.5	56	3.5	2.7	371	030 •	030 •
M4	0.7	3.3	63	4.5	3.4	371	040 •	040 •
M5	0.8	4.2	70	6	4.9	371	050 •	050 •
M6	1	5	80	6	4.9	371	060 •	060 •
M8	1.25	6.8	90	8	6.2	371	080	080
M10	1.5	8.5	100	10	8	371	100 •	100 •
M12	1.75	10.2	110	9	7	376	120 •	120 •
M16	2	14	110	12	9	376	160 •	160 •
M20	2.5	17.5	140	16	12	376	200 •	200 •

Prod. Gr. 1KA

Stainless steel

marten. austen.

For producing metric threads on CNC machines or

conventional machines in blind holes in the highstrength steel material group up to a strength of

1300 N/mm² in individual part and series production.

Steel (N/mm²) <700 | <1000 | <1300

Execution:

With protruding shank

Advantage:

Alu

short

good service life and process reliability thanks to innovative cutting geometry and coating for use in high-strength steel

						lo	- U	2-5				V _c
						p. 7	55 p.	170	p. 174	p. 22	p. 757	p. 193
u	Bra	ISS	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
long	short	long	short	long	tics	G(C)FK	GjMŴ	alloy	alloy	alloy	<55 HRC	<65 HRC

NO.	~/00	~1000	~1300	marten.	austen.	511011	long	SHOLL	long	511011	long	1	-	-	-	-	~33 HKG	<03 HKC
13308	16	12	9															
															Cutting I			SSE
																Surface	Vap	orised
																Tol.	ISO	2 (6H)
														L	ead angl	e shape		С
															Twi	st angle	40°	(right)
															Coolan	t supply	Ext	ernal
		m			+ ↓ ↓ mm			I			→ -		nm		DIN		13308. Ident. N	
M3		0).5		2.5			56			2.2		-		376		030	•
M4).7		3.3			63			2.8	2	2.1		376		040	•
M5		0).8		4.2			70			3.5		3.4		376		050	•
M6			1		5			80			4.5	3	3.4		376		060	•
M8		1.	.25		6.8			90			6	4	1.9		376		080	•
M10		1	.5		8.5			100			7	Ę	5.5		376		100	•
M12		1.	.75		10.2			110			9		7		376		120	•
M14			2		12			110			11		9		376		140	•
M16			2		14			110			12		9		376		160	•
M18		2	2.5		15.5			125			14		11		376		180	•
M20		2	2.5		17.5			140			16		12		376		200	•
M24			3		21			160			18	1	4.5		376		240	•
M30		3	3.5		26.5			180			22		18		376		300	•

Prod. Gr. 1KA

Application

No

ATORN® Machine tap HSSE vaporised, oversize ISO 3 (6G) (DIN 371)

No. 13309

For use in high-strength steel up to 1300 N/mm²

Application:

No. 13077

No. 13077: For manufacturing oversized metric threads to ISO 3 (for subsequent surface treatment or thread shrinking as part of a hardening process) in through holes on CNC and conventional machines in the steel material group up to a strength of 1300 N/mm².

No. 13309: For creating metric threads with ISO 3 oversize (for subsequent surface treatment or shrinking of the thread in the course of hardening) in the blind hole on CNC or conventional machines for the material group of steel up to a strength of 1300 N/mm².

Execution: • No. 13077: With reinforced shank

No. 13309: with reinforced shank

Advantage:

- No. 13077: Long service life and high level of process reliability thanks to innovative cutting geometry and coating for use in high-strength steel
- No. 13309: good service life and process reliability thanks to innovative cutting geometry and coating for use in high-strength steel

																_			V _c ∠∠
													p. 75	5 p.1	70 p	o. 174	p. 22	p. 757	p. 193
Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-		Har	d mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Ć)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13077030-100	16	12	9																
13309	16	12	9																
													Cut	ting mat		HS	-		SSE
														Sui	face	Vapo			orised
															Tol.	ISO 3			3 (6G)
													Lead	angle s		0			В
														Twist a		40° (i			0°
											,		Co	polant su		Exte	rnal		ernal
		<u>↓</u> mm		+ 		r	nm		-			mm		DIN	1	13309 dent. No	•	13077. Ident. N	
M2		0.4		1.6			45		2.8			2.1		371		020	•	-	-
M3		0.5		2.5			56		3.5			2.7		371		030	•	030	•
M4		0.7		3.3			63		4.5			3.4		371		040	•	040	•
M5		0.8		4.2			70		6			4.9		371	1	050	•	050	•

Thread tools \ Machine tap M

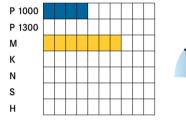
Ŷ

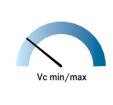
						Cutting material	HSSE	HSSE
						Surface	Vaporised	Vaporised
						Tol.	ISO 3 (6G)	ISO 3 (6G)
						Lead angle shape	С	В
						Twist angle		0°
						Coolant supply	External	External
_	K I	*	₩	_ _	+++	DIN	13309	13077
							Ident. No.	Ident. No.
	K †							
	mm	mm	mm	mm	mm			
M6	1	5	80	6	4.9	371	060	060 •
M8	1.25	6.8	90	8	6.2	371	080	080
M10	1.5	8.5	100	10	8	371	100 •	100 •

Prod. Gr. 1KA

Screw tap M max Control For use on stainless steel

Application:


Machine tap for application in stainless steel both on CNC machines and on conventional machines.


Advantages:

- Very long service life in stainless steel
- Large selection of coatings
- Wide product range in M, MF

Performance:

Conditions of use

Unstable / conventional

Stable / synchronous CNC

M MAX Control

ATORN[®] **ORION**[®] HSSE machine taps, vaporised For use on stainless steels

M ≤2,5xd ≤3xd HSSE ISO 2 C (2-3) B (3,5-5)

Application:

No. 13136–13145: For producing metric threads on CNC or conventional machines in through holes in the stainless steel material group.

No. 13279-13288: For producing metric threads on CNC machines or conventional machines in **blind holes** in the stainless steel material group.

Execution:

- No. 13136: Dimensions to: DIN 371 = reinforced shank (to M10), DIN 376 = protruding shank (from M12)
- No. 13145: Dimensions in accordance with: DIN 371 = reinforced shank (up to M10), DIN 376 = transition-fit shank (from M12)
- No. 13279: Structural dimensions according to: DIN 371 = reinforced shank (up to M10), DIN 376 = protruding shank (from M12)

 No. 13288: structural dimensions in accordance with: DIN 371 = reinforced shank (up to M10), DIN 376 = over-long shank (from M12)

Advantage:

- No. 13136: Long service life and process reliability through innovative cutting geometry in machining stainless steel
- No. 13145 120–13145 240: Standard geometry with an excellent price-performance ratio
- No. 13279: Standard geometry with very good price/performance ratio
- No. 13288: long service life and high process reliability thanks to innovative cutting geometry for machining stainless steel

M MAX Control

														- 0					V_c
													p. 75	5 p.1	170 p	. 174	p. 40	p. 757	p. 193
Application	Ste	el (N/m	m ²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-		Hard	l mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Č)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13136030-100	16	12		9	10														
13136120-300	16	12		9	10														
13145030-100	16	12		9	10														
13145120-240	16	12		9	10														
13279030-100	16	12		9	10														
13279120	16	12		9	10														
						•													

Application	Ste	el (N/mr	m²)	Stainle	ss steel	A	lu	Bra	ISS	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	l mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Č)FK	GjŴŴ	alloy	alloy	alloy	<55 HRC	<65 HRC
13288020-100	16	12		9	10														
13288120-300	16	12		9	10														
										1					1				

							ATO	<u>RN</u> *			<u>ORI</u>	<u>ON</u> '		
					Cut	tting material		HSSE		HSSE		HSSE		HSSE
						Surface	Va	porised	Va	aporised	Va	aporised	Va	porised
						Tol.		O 2 (6H)	IS	O 2 (6H)		O 2 (6H)	ISC	O 2 (6H)
					Lead	angle shape		C		B		В		C
						Twist angle	40	° (right)		0°		0°	40	° (right)
					Co	polant supply	E	xternal	E	xternal	E	xternal	E	xternal
	L T mm	* * * mm		++	mm	DIN	13288 Ident.		1313 Ident.		1314 Ident.		13279 Ident.	
M2	0.4	1.6	45	2.8	2.1	371	020	•	-	-	-	-	-	-
M2.5	0.45	2.05	50	2.8	2.1	371	025	•	-	-	-	-	-	-
M3	0.5	2.5	56	3.5	2.7	371	030	•	030	•	030	•	030	•
M4	0.7	3.3	63	4.5	3.4	371	040	•	040	•	040	•	040	•
M5	0.8	4.2	70	6	4.9	371	050	•	050	•	050	•	050	•
M6	1	5	80	6	4.9	371	060	•	060	•	060	•	060	•
M8	1.25	6.8	90	8	6.2	371	080	•	080	•	080	•	080	•
M10	1.5	8.5	100	10	8	371	100	•	100	•	100	•	100	•
M12	1.75	10.2	110	9	7	376	120	•	120	•	120	•	120	•
M14	2	12	110	11	9	376	140	•	140	•	-	-	-	-
M16	2	14	110	12	9	376	160	•	160	•	160	•	-	-
M18	2.5	15.5	125	14	11	376	180	•	180	•	-	-	-	-
M20	2.5	17.5	140	16	12	376	200	•	200	•	200	•	-	-
M24	3	21	160	18	14.5	376	240	•	240	•	240	•	-	-
M30	3.5	26.5	180	22	18	376	300	•	300	•	-	-	-	-

ORION = Prod. Gr. 1DB

ISSE TIN machine tap OR For use on stainless steels

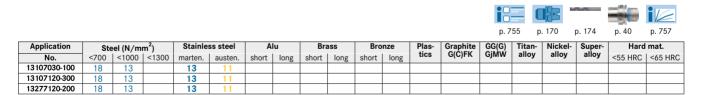
Application:

No. 13107: For producing metric threads on CNC or conventional machines in through holes in the stainless steel material group.

No. 13277: For producing metric threads on CNC machines or conventional machines in blind holes in the stainless steel material group.

Execution:

• No. 13107: structural dimensions in accordance with: DIN 371 = reinforced shank (up to M10), DIN 376 = over-long shank (from M12)


No. 13277

• No. 13277: Structural dimensions according to: DIN 371 = reinforced shank (up to M10), DIN 376 = protruding shank (from M12)

Advantage:

- No. 13107: long service life and high process reliability thanks to innovative cutting geometry for machining stainless steel
- No. 13277: Long service life and good process reliability due to innovative cutting geometry when machining stainless steel

							A <u>TORN</u> °		
						Cutting material	HSSE	F	HSSE
						Surface	TiN		TiN
						Tol.	ISO 2 (6H)	ISO) 2 (6H)
						Lead angle shape			С
						Twist angle			° (right)
						Coolant supply	External		ternal
	↓ ↑ mm	-+ . +- ↓ ↓ ↓	I	+ + mm	mm	DIN	13107 Ident. No.	13277 Ident. N	
M3	0.5	2.5	56	3.5	2.7	371	030 •	-	-
M4	0.7	3.3	63	4.5	3.4	371	040 •	-	-
M5	0.8	4.2	70	6	4.9	371	050 •	-	-
M6	1	5	80	6	4.9	371	060 •	-	-
M8	1.25	6.8	90	8	6.2	371	• 080		-
M10	1.5	8.5	100	10	8	371	100 •	-	-
M12	1.75	10.2	110	9	7	376	120 •	120	•
M14	2	12	110	11	9	376	140 •	-	-
M16	2	14	110	12	9	376	160 •	160	•
M18	2.5	15.5	125	14	11	376	180 •	-	-
M20	2.5	17.5	140	16	12	376	200 •	200	•
M24	3	21	160	18	14.5	376	240 •	-	-
M30	3.5	26.5	180	22	18	376	300 •	-	-

Prod. Gr. 1KA

ATORN[®] HSSE machine taps with interrupted teeth For use on non-ferrous metals

Application:

For producing metric threads on CNC or conventional machines in **through holes** in the non-ferrous metals material group.

Execution:

 Dimensions pursuant to: DIN 371 = reinforced shank (up to M10), DIN 376 = transition-fit shank (from M12)

Advantage:

- Innovative cutting geometry with exposed teeth reduces the torque, improves lubricant distribution and ensures very high process reliability and chip removal
- Specialised insert with optimised chipping geometry for use in NF metals with adhesive or lubricating properties


		~~~		i	V _c
n 755	n 170	n 174	n 22	n 757	n 193

13083030-100 16 18 18 15 18 15 13 1	Application	Ste	el (N/m	m ² )	Stainle	ss steel	A	u	Bra	ISS	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
	No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GJMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13083120-160 16 18 18 15 18 15 13	13083030-100	16					18	18	15	18	15	15								
	13083120-160	16					18	18	15	18	15	15	13							

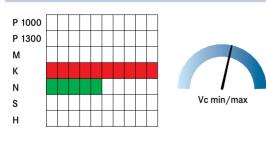
						Cutting material	HSSE
						Surface	Uncoated
						Tol.	ISO 2 (6H)
						Lead angle shape	В
						Twist angle	0°
						Coolant supply	External
	<u>↓</u> T	→ + + +	<b>T</b> mm	+ +		DIN	13083 Ident. No.
M3	0.5	2.5	56	3.5	2.7	371	030 •
M4	0.7	3.3	63	4.5	3.4	371	040 •
M5	0.8	4.2	70	6	4.9	371	050 •
M6	1	5	80	6	4.9	371	060 •
M8	1.25	6.8	90	8	6.2	371	080
M10	1.5	8.5	100	10	8	371	100 •
M12	1.75	10.2	110	9	7	376	120 •
M16	2	14	110	12	9	376	160 •

Prod. Gr. 1KA



#### Screw tap K max Control For use in cast iron and short-chipping non-ferrous metals

#### Application:


Machine tap for application in stainless steel both on CNC machines and on conventional machines.

Advantages:

- Very long service life in cast iron and short-chipping non-ferrous metals
- Large selection of coatings and cutting materials
- Optimised geometry for short-chipping materials



#### Performance:



## Conditions of use:



Unstable / conventional

Stable / synchronous CNC



Source: Hahn+Kolb Werkzeuge GmbH Technical data subject to change. Availability subject to country specific rules and regulations.



# TORN[®] Machine tap, HSSE

For use on cast and short-chipping non-ferrous metals



#### Application:

Δ

For producing metric threads on CNC or conventional machines in through holes and blind holes in the non-ferrous metals (short-chipping) and cast iron material groups.

#### Execution:

structural dimensions in accordance with: DIN 371 = reinforced shank (up to M10), DIN 376 = over-long shank (from M12)



No. 13291 High-efficiency HSSE-PM tap with internal cooling ensures secure chip removal and outstanding tool life



Iong service life and high degree of process reliability thanks to innovative

• No. 13291: optimum chip removal thanks to inner cooling

cutting geometry for machining cast iron and short-chip non-ferrous metals

														p. 7	55 p	. 170	p. 174	p. 22	p. 757
Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-		Harc	l mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13290030-100						22		20		19		17	16	21					
13290120-240						22		20		19		17	16	21					
13291						22		20		19		17	16	21					

Advantage:

						Cutting material		HSSE		HSSE
						Surface	-	Tiain		TiAIN
						Tol.	ISO	2X (6HX)	ISO	2X (6HX)
						Lead angle shape		C		C
						Twist angle		0°		0°
						Coolant supply	E>	kternal	lr	nternal
	₩ T mm	→L ↓ L	, mm	+ + mm	→→→ mm	DIN	13290 Ident. I		1329 Ident.	
M3	0.5	2.5	56	3.5	2.7	371	030	•	-	-
M4	0.7	3.3	63	4.5	3.4	371	040	•	-	-
M5	0.8	4.2	70	6	4.9	371	050	•	050	•
M6	1	5	80	6	4.9	371	060	•	060	•
M8	1.25	6.8	90	8	6.2	371	080	•	080	•
M10	1.5	8.5	100	10	8	371	100	•	100	•
M12	1.75	10.2	110	9	7	376	120	•	-	-
M16	2	14	110	12	9	376	160	•	-	-
M18	2.5	15.5	125	14	11	376	180	•	-	-
M20	2.5	17.5	140	16	12	376	200	•	-	-
M24	3	21	160	18	14.5	376	240	•	-	-

Prod. Gr. 1KA



#### Screw tap S max Control For use in titanium and nickel alloys

### Application:

Machine tap in titanium and nickel alloys both on CNC machines and on conventional machines.

#### Advantages:

Μ Κ Ν

s Н

206

- Very long service life in titanium and nickel alloys
- High-quality cutting materials and coatings ensure long service life



### Vc min Unstable / conventional

Stable / synchronous CNC



www.iconridge.com





## **ATORN**[®] HSSE-PM machine tap For use in titanium and nickel alloys up to 1000 N/mm²



#### Application:

No. 13134: For producing metric threads on CNC machines or conventional machines in through holes in the titanium and nickel alloy material group up to 1000 N/mm².

No. 13286–13287: For producing metric threads on CNC machines or conventional machines in **blind holes** in the titanium and nickel alloy material group **up** to 1000 N/mm².

#### Execution:

- No. 13134: Dimensions to: DIN 371 = reinforced shank (to M10), DIN 376 = protruding shank (from M12)
- No. 13286-13287: structural dimensions in accordance with: DIN 371 = reinforced shank (up to M10), DIN 376 = over-long shank (from M12)

#### Advantage:

- No. 13134: Long service life and process reliability through innovative cutting geometry and coating for use in titanium-and-nickel alloys
- No. 13286–13287: good service life and process reliability thanks to innovative cutting geometry and coating for use in titanium and nickel alloys

S MAX

N	o. 13134	4			I	No. 132	286					No. 132	287					Vc min/	max
														p. 7		. 170	p. 174	p. 40	p. 757
Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13134020-100															6	5			
13134120-160															6	5			
13286030-100															6	5			
13286120-160															6	5			
40007000 400			1			1	1		1	1						-			
13287030-100															6	5			

						Cutting material		SE-PM	Ц	SSE-PM		SSE-PM
							-	-			-	
						Surface		iCN		porised		TiCN
						Tol.	ISO 2	2X (6HX)	ISO	2X (6HX)	ISC	O 2 (6H)
					L	ead angle shape		В		С		С
						Twist angle		0°	30	° (right)	30	° (right)
						Coolant supply	Ex	ternal	E>	xternal	E	xternal
	₩ T mm	→ · · ·	<b>I</b> mm	+ ∎ mm	mm	DIN	13134 Ident. N		13286 Ident.		1328 Ident.	
M2	0.4	1.6	45	2.8	2.1	371	020	•	-	-	-	-
M2.5	0.45	2.05	50	2.8	2.1	371	025	•	-	-	-	-
M3	0.5	2.5	56	3.5	2.7	371	030	•	030	•	030	•
M3.5	0.6	2.9	56	4	3	371	035	•	-	-	-	-
M4	0.7	3.3	63	4.5	3.4	371	040	•	040	•	040	•
M5	0.8	4.2	70	6	4.9	371	050	•	050	•	050	•
M6	1	5	80	6	4.9	371	060	•	060	•	060	•
M8	1.25	6.8	90	8	6.2	371	080	•	080	•	080	•
M10	1.5	8.5	100	10	8	371	100	•	100	•	100	•
M12	1.75	10.2	110	9	7	376	120	•	120	•	120	•
M16	2	14	110	12	9	376	160	•	160	٠	160	•

Prod. Gr. 1KA

## BALL® HSSE-PM machine tap

For use in titanium and nickel alloys over 1000 N/mm²



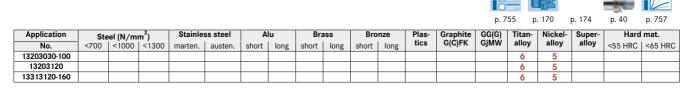
#### Application:

No. 13203: For manufacturing metric threads on CNC or conventional machines in through holes in the titanium and nickel alloy material group over 1000 N/ mm².

No. 13313: For producing metric threads on CNC machines or conventional machines in **blind holes** in the titanium and nickel alloy material group **over** 1000 N/mm².



No. 13313


#### Execution:

Dimensions in accordance with: DIN 371 = reinforced shank (up to M10), DIN 376 = transition-fit shank (from M12)

#### Advantage:

 Long service life and high process reliability thanks to innovative cutting geometry and coating for use with titanium and nickel alloys





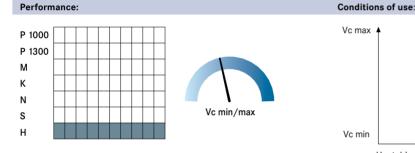


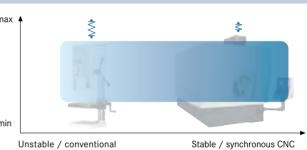
						Cutting material	H H	SSE-PM	H	SSE-PM
						Surface		TiAIN		TiAIN
						Tol.	IS	O 2 (6H)	IS	O 2 (6H)
						Lead angle shape		В		С
						Twist angle		0°		° (right)
						Coolant supply		xternal		xternal
	<b>↓</b> mm	→I ↓ I I I I I I I I I I I I I I I I I I	<b>T</b> mm	+ +	→ → → mm	DIN	1320 Ident.		1331: Ident.	
M3	0.5	2.5	56	3.5	2.7	371	030	•	-	-
M4	0.7	3.3	63	4.5	3.4	371	040	•	040	•
M5	0.8	4.2	70	6	4.9	371	050	•	050	•
M6	1	5	80	6	4.9	371	060	•	060	•
M8	1.25	6.8	90	8	6.2	371	080	•	080	•
M10	1.5	8.5	100	10	8	371	100	•	100	•
M12	1.75	10.2	110	9	7	376	120	•	120	٠
M16	2	14	110	12	9	376	-	-	160	•

Prod. Gr. 1KA



For use in hard machining from 55-65 HRC


#### **Application:**


machine tap in hard machining both on CNC machines and on conventional machines.

#### Advantages:

- Very long service life in hard machining
- · High-quality cutting materials and coatings ensure long service life







H MAX Contro

No. 13211

#### machine tap HSSE PM Ultra HL (DIN 374) ATOR

No. 13204

for universal use up to 1200 N/mm2



Application:

208

No. 13204: For producing fine metric threads on CNC machines or conventional machines in through holes in the steel, stainless steel, non-ferrous metals, cast and special alloy material groups up to a strength of 1200 N/mm².

No. 13211: For producing fine metric threads on CNC machines or conventional machines in blind holes in the steel, stainless steel, non-ferrous metals, cast

iron and special alloy material groups up to a strength of 1200 N/mm².

#### Advantage:

Universal use for maximum flexibility of application

 Innovative cutter geometry ensures high process reliability even in difficult machining conditions



															<b>•</b> •••			i	V _c
													p. 75	5 p.1	70 p	. 174	p. 22	p. 757	p. 185
Application	Ste	el (N/m	m²)	Stainle	ss steel			ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel		Hard	l mat.	
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13204086-203	22	16	12	12	12	14	30	17	24	12	20	30	16	18	7	6	6		
13211086-203	22	16	12	12	12	14	30	17	24	12	20	30	16	18	7	6	6		





						Cutting material	HSSE-PM	HSSE-PM
						Surface	ULTRA HL	ULTRA HL
						Tol.	ISO 2X (6HX)	ISO 2X (6H)
						Lead angle shape	С	В
						Twist angle		0°
						Coolant supply	External	External
	₩ T mm	→ + +	mm	+++ mm		DIN	13204 Ident. No.	13211 Ident. No.
MF8	1	7	90	6	4.9	374	086	086
MF10	1	9	90	7	5.5	374	103 •	103 •
MF10	1.25	8.8	100	7	5.5	374	106	106
MF12	1	11	100	9	7	374	120 •	120 •
MF12	1.25	10.8	100	9	7	374	123 •	123 •
MF12	1.5	10.5	100	9	7	374	126 •	126 •
MF14	1.5	12.5	100	11	9	374	146 •	146 •
MF16	1.5	14.5	100	12	9	374	165 •	165 •
MF18	1.5	16.5	110	14	11	374	183 •	183 •
MF20	1.5	18.5	125	16	12	374	203 •	203 •

## ATORN[®] Machine tap, HSSE Ultra HL (DIN 374) For universal use, for use up to 1000 N/mm²

No. 13315



#### Application:

No. 13103

No. 13103: For producing fine metric threads on CNC machines or conventional machines in through holes in the steel, stainless steel, non-ferrous metals, cast iron and special alloy material groups up to a strength of 1000 N/mm².

No. 13315: For producing fine metric threads on CNC machines or conventional machines in blind holes in the steel, stainless steel, non-ferrous metals, cast iron and special alloy material groups up to a strength of 1000 N/mm².

### Execution:

With transition-fit shank

#### Advantage:

- Ideal for long service life requirements and materials that are difficult to machine, such as stainless steel
- Innovative cutting geometry and ULTRA HL coating guarantee high process reliability even under difficult machining conditions



p. 755	p. 170	p. 174	p. 22	p. 757

														P				P	1
Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13103	18	12	8	11	10	19	19	17	19	17	18	13		18	7	6	6		
13315	18	12	8	11	10	19	19	17	19	17	18	13		18	7	6	6		

						Cutting material		HSSE		HSSE
						Surface	UL	TRA HL	UL	TRA HL
						Tol.	ISC	O 2 (6H)	ISC	O 2 (6H)
						Lead angle shape		В		С
						Twist angle		0°	45	° (right)
						Coolant supply	E	xternal	E	xternal
	, L T mm	→L + - - - - - - - - - - - - - - - - - - -	mm	+∎+ mm	+++ mm	DIN	1310: Ident.		1331 Ident.	
MF6	0.75	5.2	80	4.5	3.4	374	065	•	065	•
MF8	0.75	7.2	80	6	4.9	374	-	-	083	•
MF8	1	7	90	6	4.9	374	086	•	086	•
MF10	1	9	90	7	5.5	374	103	•	103	•
MF10	1.25	8.8	100	7	5.5	374	-	-	106	•
MF12	1	11	100	9	7	374	120	•	120	•
MF12	1.5	10.5	100	9	7	374	126	•	126	•
MF12	1.25	10.8	100	9	7	374	-	-	123	•
MF14	1.5	12.5	100	11	9	374	146	•	146	•
MF16	1.5	14.5	100	12	9	374	165	•	165	•
MF18	1.5	16.5	110	14	11	374	183	•	183	•
MF20	1.5	18.5	125	16	12	374	-	-	203	•
MF24	1.5	22.5	140	18	14.5	374	243	•	243	•
MF24	2	22	140	18	14.5	374	246	•	-	-

Prod. Gr. 1KC

#### Machine tap, HSSE (DIN 374) ATORI for universal use up to 1000 N/mm2

MF	HSSE 2xd	ISO 2	∴ ↓ ↓ C (2-3)

#### Application:

For producing fine metric threads on CNC machines or conventional machines in through holes and blind holes in the steel, (stainless steel), non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm².

### Execution:

With transition-fit shank

#### Advantage:

Long service life and high process reliability thanks to innovative cutting geometry, and universal use for maximum flexibility in use.





Ŷ



													p. 7	55 p.	170	p. 174	p. 22	p. 757	p. 193
Application	Ste	el (N/m	m ² )	Stainle	ss steel	AI	u	Bra	SS	Bror	ıze	Plas-	Graphite		Titan-	Nickel-	Super-	Har	d mat.
No.		<1000		marten.	austen.	short	long	short	long	short	long	tics	G(Č)FK	GjMŴ	alloy	alloy	alloy	<55 HRC	<65 HRC
13320	16	11		9		18	18	15	18	15	15	13	14	16					
																	material		SSE
																	Surface		coated
																and and	Tol.		<u>2 (6H)</u> C
																ead angl	e snape st angle		<u>0°</u>
																	t supply		ternal
A		27	• 1		* *			<b>TA</b>			A		-	<b>0</b> +		DIN		13320.	
			4								+			8		Dire		Ident. N	
			T		+ +														
MEO			im o c		mm			mm			mm			nm		074			
MF3 MF4			35		2.65			56			2.2			-		374 374		030	•
MF4 MF5			.5 .5		3.5 4.5			<u>63</u> 70			2.8			.1 .7		374		045	•
MF5 MF6	-		.5		5.5			80			4.5			/ 6.4		374		060	•
MF6			. <u>.</u> 75		5.2			80			4.5					374		065	•
MF8			.5		7.5			80			6			.9		374		080	•
MF8			75		7.2			80			6			.9		374		083	•
MF8			1		7			90			6		4	.9		374		086	•
MF9			1		8			90			7			.5		374		090	•
MF10		0.	75		9.2			90			7			i.5		374		100	•
MF10			1		9			90			7		5	i.5		374		103	•
MF10			25		8.8			100			7			.5		374		106	•
MF12			1		11			100			9			7		374		120	•
MF12 MF12			25 .5		10.8			100			9 9			7 7		374 374		123 126	•
MF12 MF14			. <u>.</u> 1		13			100			11			/ 9		374		140	•
MF14			25		12.8			100			11			9 9		374		140	•
MF14	_		.5		12.5			100			11			, 9		374		146	•
MF15			1		14			100			12			<u>,</u> 9		374		154	•
MF16			1		15			100			12			9		374		160	•
MF16		1	.5		14.5			100			12			9		374		165	•
MF18			1		17			110			14			11		374		180	•
MF18			.5		16.5			110			14			11		374		183	•
MF20			1	_	19			125			16			12		374		200	•
MF20			2		18			140			16			12		374		206	•
MF22 MF24			.5 1		20.5 23			125 140			18 18			4.5 4.5		<u>374</u> 374		223 240	•
MF24 MF24			.5		23			140			18			4.5 4.5		374		240	•
MF24			. <u>.</u> 2		22.5			140			18			4.5 4.5		374		243	•
MF26			.5		24.5			140			18			4.5 4.5		374		260	•
MF27			.5		25.5			140			20			16		374		270	•
MF27			2		25			140			20			16		374		273	•
MF30			.5		28.5			150			22			18		374		303	•
MF30			2		28			150			22			18		374		306	•
MF36		1	.5		34.5			170			28		2	22		374		360	•

Prod. Gr. 1KC

## ATORN® ORION® HSSE machine tap (DIN 374) For universal use up to 1000 N/mm²



MF	HSSE ISO 2	B (3,5-5) C (2-3) C (2-3)
----	------------	---------------------------

Application: No. 13144-13147: For producing fine metric threads on CNC machines or conventional machines in through holes in the steel, (stainless steel), non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm². No. 13335: For producing fine metric threads on CNC machines or conventional machines in blind holes in the steel, (stainless steel), non-ferrous metals and cast iron material groups up to a strength of 1000 N/mm².

#### Execution:

210

• No. 13144: With protruding shank



No. 13144-13147

No. 13335

#### • No. 13147–13335: With transition-fit shank

#### Advantage:

- No. 13144: Long service life and process reliability through innovative cutting geometry and universal use for maximum application flexibility
- No. 13147: Long service life and high process reliability thanks to innovative cutting geometry, and universal use for maximum flexibility in use.
- No. 13335: Standard geometry with an excellent price-performance ratio



																-		i	V _c
													p. 75	5 p.1	70 p	. 174	p. 22	p. 757	p. 193
Application	Ste	el (N/m	n²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-		Hard	l mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMŴ	alloy	alloy	alloy	<55 HRC	<65 HRC
13144	16	11		9		18	18	15	18	15	15	13	14	16					
13147	16	11		9		18	18	15	18	15	15	13	14	16					
13335	16	11		9		18	18	15	18	15	15	13	14	16					



									,			
							ATOR	<u>?//</u> *	ORI	<u>ON</u> "		
						Cutting material	F	HSSE	1	HSSE	Τ	HSSE
						Surface		icoated		ncoated		ncoated
						Tol.		0 2 (6H)		0 2 (6H)		O 2 (6H)
					Le	ead angle shape		В	L	В		C
						Twist angle		0°		0°	40	)° (right)
						Coolant supply	Ex	ternal	E	xternal	E	xternal
ĥ	<u> </u>	+ +		<b>.</b>	+	DIN	13144	l	13142	7	1333	5
	<b>™</b>	mm	mm	mm	mm		Ident. N	No.	Ident.	No.	Ident.	No.
MF3	0.35	2.65	56	2.2	-	374	030	•	-	-	-	-
MF4	0.5	3.5	63	2.8	2.1	374	045	•	-	-	-	-
MF5	0.5	4.5	70	3.5	2.7	374	050	•	-	-	-	-
MF6	0.5	5.5	80	4.5	3.4	374	060	•	-	-	-	-
MF6	0.75	5.2	80	4.5	3.4	374	065	•	-	-	-	-
MF7	0.75	6.2	80	5.5	4.3	374	070	•	-	-	-	-
MF8	0.5	7.5	80	6	4.9	374	080	•	-	-	-	-
MF8	0.75	7.2	80	6	4.9	374	083	•	- 086	-	-	-
MF8	1	7	90	6	4.9	374	086	•	086	•	086	•
MF9 ME10	1 0.75	8 9.2	90 90	777	5.5	374 374	090	•	-	-	-	-
MF10 MF10	0.75	9.2	90	7	5.5	374	100	•	- 103	-	- 103	-
MF10 MF10	1.25	9 8.8	90	7	5.5	374	103	•	103	•	103	-
MF10 MF11	1.25	8.8	90	8	6.2	374	110	•	110	•	-	-
MF11 MF12	1	10	100	9	0.2	374	120	•	120	•	120	-
MF12 MF12	1.25	10.8	100	9	7	374	120	•	120	•	120	•
MF12 MF12	1.25	10.8	100	9	7	374	125	•	123	•	123	•
MF12 MF14	1.5	13	100	11	9	374	140	•	140	•	-	-
MF14 MF14	1.25	12.8	100	11	9	374	140	•	-	-	-	-
MF14	1.5	12.5	100	11	9	374	145	•	146	•	146	•
MF15	1	14	100	12	9	374	150	•	150	•	-	-
MF15	1.5	13.5	100	12	9	374	154	•	154	•	-	-
MF16	1	15	100	12	9	374	160	•	160	•	-	-
MF16	1.5	14.5	100	12	9	374	165	•	165	•	165	•
MF18	1	17	110	14	11	374	180	•	-	-	-	
MF18	1.5	16.5	110	14	11	374	183	•	183	•	183	•
MF18	2	16	125	14	11	374	185	•	185	•	-	-
MF20	1	19	125	16	12	374	200	•	200	•	-	-
MF20	1.5	18.5	125	16	12	374	203	•	203	•	203	•
MF20	2	18	140	16	12	374	206	•	-	-	-	-
MF22	1	21	125	18	14.5	374	220	•	-	-	-	-
MF22	1.5	20.5	125	18	14.5	374	223	•	-	-	-	-
MF22	2	20	140	18	14.5	374	226	•	-	-	-	-
MF24 MF24	1	23	140	18	14.5	374	240	•	-	-	-	-
MF24 MF24	1.5	22.5	140 140	18	14.5	374 374	243 246	•	-	-	-	-
MF24 MF26	2	22 24.5	140	18	14.5	374 374	246 260	-		-	-	-
MF26 MF27	1.5	24.5 25.5	140	18 20	14.5	374 374	260 270	•	-	-	-	-
MF27 MF27	1.5	25.5	140	20	16	374	270	•	-	-	-	-
MF27 MF30	1.5	25	140	20	16	374	303	•	-	-	-	-
MF30	2	28.5	150	22	18	374	303	•	-	-	-	-
MF30 MF32	1.5	30.5	150	22	18	374	300	•	-	-	-	-
MF32 MF33	1.5	30.5	160	25	20	374	320	•	-	-	-	-
MF35	1.5	33.5	170	23	20	374	350	•	-	-	-	-
MF36	1.5	34.5	170	28	22	374	360	•	-	-	-	-
MF38	1.5	36.5	170	28	22	374	380	•	-	-	-	-
MF40	1.5	38.5	170	32	24	374	405	•	-	-	-	-

ORION = Prod. Gr. 1DB ATORN^{*} = Prod. Gr. 1KC

#### HSSE machine tap (DIN 374) ATOR/ For universal use up to 1000 N/mm²



#### Application:

No. 13161: For producing fine metric threads on CNC machines or conventional machines in through holes in the steel, (stainless steel), non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm².

No. 13332: For producing fine metric threads on CNC machines or conventional machines in blind holes in the steel, (stainless steel), non-ferrous metals and cast iron material groups up to a strength of 1000 N/mm².



No. 13332

#### Execution:

• No. 13161: With transition-fit shank

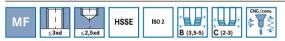
• No. 13332: With protruding shank

#### Advantage:

· Long service life and high process reliability thanks to innovative cutting geometry, and universal use for maximum flexibility in use.



													p. 75	5 p. 1	<u></u>	. 174	p. 22	p. 757	<b>V</b> c
Application							Plas-	Graphite	GG(G)	Titan-	Nickel-		Hard	mat.					
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13161	16	11		9		18	18	15	18	15	15	13	14	16					
13332	16	11		9		18	18	15	18	15	15	13	14	16					






						Cutting material		HSSE	+	ISSE
						Surface	Va	aporised	Va	oorised
						Tol.	IS	0 2 (6H)	ISC	2 (6H)
						Lead angle shape		C		B
						Twist angle	40	)° (right)		0°
						Coolant supply	E	xternal	Ex	ternal
	L T	+		+++	+++	DIN	1333 Ident.		13161 Ident. I	
	mm	mm	mm	mm	mm					
MF4	0.5	3.5	63	2.8	2.1	374	045	•	-	-
MF5	0.5	4.5	70	3.5	2.7	374	050	•	050	•
MF6	0.75	5.2	80	4.5	3.4	374	065	•	065	•
MF8	0.75	7.2	80	6	4.9	374	083	•	083	•
MF8	1	7	90	6	4.9	374	086	•	086	•
MF10	1	9	90	7	5.5	374	103	•	103	•
MF10	1.25	8.8	100	7	5.5	374	106	•	-	-
MF12	1	11	100	9	7	374	120	•	120	•
MF12	1.25	10.8	100	9	7	374	123	•	-	-
MF12	1.5	10.5	100	9	7	374	126	•	126	•
MF14	1.5	12.5	100	11	9	374	146	•	146	•
MF16	1	15	100	12	9	374	160	•	-	-
MF16	1.5	14.5	100	12	9	374	165	•	165	•
MF18	1.5	16.5	110	14	11	374	183	•	183	•
MF20	1.5	18.5	125	16	12	374	203	•	203	•
MF22	1.5	20.5	125	18	14.5	374	-	-	220	•
MF24	1.5	22.5	140	18	14.5	374	243	•	243	•
MF24	2	22	140	18	14.5	374	-	-	246	•
MF26	1.5	24.5	140	18	14.5	374	-	-	260	•
MF28	1.5	26.5	140	20	16	374	280	•	-	-
MF30	1.5	28.5	150	22	18	374	303	•	303	•
MF30	2	28	150	22	18	374	-	-	306	•
MF36	1.5	34.5	170	28	22	374	-	-	360	•
MF42	1.5	40.5	170	32	24	374	-	-	420	•
MF45	1.5	43.5	180	36	29	374	-	-	450	•
MF48	1.5	46.5	190	36	29	374	-	-	480	•
MF50	1.5	48.5	190	36	29	374	-	-	500	•

Prod. Gr. 1KC

## **ATORN**[®] HSSE machine tap (DIN 374) For universal use up to 1000 N/mm²



#### Application:

Execution:

• No. 13143: With protruding shank

No. 13143

No. 13143: For producing fine metric threads on CNC or conventional machines in through holes in the stainless steel material group.

No. 13324: For producing fine metric threads on CNC machines or conventional machines in **blind holes** in the stainless steel material group.

No. 13324

#### • No. 13324: With transition-fit shank

#### Advantage:

 No. 13143: Long service life and process reliability through innovative cutting geometry in machining stainless steel

**O** (

 No. 13324: Long service life and high process reliability thanks to innovative cutting geometry for use on stainless steels



													p. 75	5 p. 1	2-5	o. 174	p. 22	p. 757	<b>V</b> . 193
Application	Ste	el (N/m	$m^2$	Stainle	ss steel	A	u	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	•	d mat.
No.	<700	<1000		marten.	austen.	short	long	short	long	short	long	tics	G(Ċ)FK	GjŴŴ	alloy	alloy	alioy	<55 HRC	< <65 HRC
13143	16	11		9	10														
13324	16	11		9	10														
													Cu	tting ma Su	rface	HSS	ised	Vap	SSE orised
															Tol.	ISO 2	(6H)	ISO	2 (6H)
													Lead	l angle s		B		150	C (right)
													C	Twist a oolant su		Exter			(right) ternal
		mm L		+ + mm		n			+ mm			→ → → mm		DIN	I	13143 dent. No.		13324. Ident. N	
MF4		0.5		3.5			53		2.8			2.1		374		045	•	045	•
MF5		0.5		4.5			<b>'</b> 0		3.5			2.7		374		050	•	050	•
MF6		0.5		5.5			30		4.5			3.4		374		060	•	060	•
MF6	_	0.75		5.2			30		4.5			3.4		374		065	•	065	•
MF7		0.75		6.2			30		5.5	5		4.3		374		070	•	-	-
MF8	_	0.5		7.5			30	_	6			4.9		374		080	•	-	-
MF8	_	0.75		7.2			30		6			4.9		374		083	•	083	•
MF8	_	1		7			20	_	6		_	4.9		374		086	•	086	•
MF9		0.75		8			20		7			5.5		374		090	•	-	-
MF10		0.75		9.2			20 20	_	7			5.5 5.5		374 374		100	•	- 102	-
MF10 MF10		1.25		9 8.8	_		00		7			5.5 5.5		374		103 106	-	103	•
MF10 MF11		1.25		8.8			00	_	/ 8		-			374		110	•	100	•
MF11 MF12		1		10			00		<u>8</u> 9			6.2		374		120	•	120	-
		I		11			00		9			/		3/4		120	•	120	•



## Thread tools \ Machine taps MF

						Cutting material Surface	HSSE Vaporise		HSSE porise
						Tol.	ISO 2 (6F		) 2 (6F
						Lead angle shape	B	., 150	C
						Twist angle	0°	15	° (righ
						Coolant supply	Externa		kterna
		→」 ↓ ↓ ↓ mm	mm	+ <b>↓</b> + mm	mm	DIN	13143 Ident. No.	13324 Ident. I	ł
MF12	1.25	10.8	100	9	7	374	123 •	-	-
MF12	1.5	10.5	100	9	7	374	126	126	•
MF14	1	13	100	11	9	374	140	-	-
MF14	1.25	12.8	100	11	9	374	143	-	-
MF14	1.5	12.5	100	11	9	374	146	146	•
MF15	1	14	100	12	9	374	150	-	-
MF16	1	15	100	12	9	374	160	-	-
MF16	1.5	14.5	100	12	9	374	165	165	•
MF18	1	17	110	14	11	374	180	-	-
MF18	1.5	16.5	110	14	11	374	183	183	•
MF20	1	19	125	16	12	374	200		-
MF20	1.5	18.5	125	16	12	374	203	203	•
MF20	2	18	140	16	12	374	206	206	•
MF22	1	21	125	18	14.5	374	220		
MF22	1.5	20.5	125	18	14.5	374	223	223	•
MF24	1	23	140	18	14.5	374	240		-
MF24	1.5	22.5	140	18	14.5	374	243	243	•
MF24	2	22	140	18	14.5	374	246	-	-
MF26	1.5	24.5	140	18	14.5	374	200	-	-
MF30	1.5	28.5	150	22	18	374	000	-	-
MF30	2	28	150	22	18	374	000	306	•
MF33	1.5	31.5	160	25	20	374	000	-	-
MF33	2	31	160	25	20	374	000	-	-
MF36	2	34	170	28	22	374	000	-	-
MF35	1.5	33.5	170	28	22	374	350	• -	-
MF36	1.5	34.5	170	28	22	374	000	-	-
MF38	1.5	36.5	170	28	22	374	000	• -	-
MF42	1.5	40.5	170	32	24	374	420	• -	-
MF48	1.5	46.5	190	36	29	374		• -	-
MF50	1.5	48.5	190	36	29	374	500	- 0	-

Prod. Gr. 1KC

## ATORN[®] HSSE-PM and solid carbide machine tap (DIN Similar to 371) For machining hardened steels

MF VHM HSSE- PM TiCN ISO 2 D(3.5-5)
----------------------------------------

No. 13152

Application: No. 13152: For producing fine metric threads on CNC machines in through holes and blind holes in the hardened steel material group up to 55 HRC. No. 13153: For manufacturing fine metric threads on CNC machines in through and blind holes in the hardened steel material group up to 65 HRC.

#### Execution:

With reinforced shank

### Advantage:

 Long service life and high process reliability thanks to innovative cutting geometry and coating for use on hardened steel





														p. 7	55 p	. 170	p. 174	p. 22	p. 757
Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite		Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13152086-126																		3	
13153060-126																		3	2
					•								÷			•	•		

						Cutting material		VHM	н	SSE-PM
						Surface		TiCN		TICN
						Tol.	IS	O 2 (6H)	IS	O 2 (6H)
						Lead angle shape		D		D
						Twist angle		0°		0°
						Coolant supply	E	xternal	E	xternal
	, ↓ mm	→L ↓ 	<b>T</b> mm	<b>→</b> mm	<b>→</b> mm	DIN	1315 Ident.		1315 Ident.	
MF6	0.5	5.5	80	6	4.9	Similar to 371	060	•	-	-
MF8	1	7	90	8	6.2	Similar to 371	086	•	086	•
MF10	1	9	90	10	8	Similar to 371	103	•	103	•
MF12	1	11	100	12	9	Similar to 371	120	•	120	•
MF12	1.5	10.5	100	12	9	Similar to 371	126	•	126	•

Prod. Gr. 1KC



ATORN[®] HSS hand tap (DIN 352) For universal use up to 1000 N/mm²



#### Application:

Ident. No. 010-420: For manually tapping metric threads in through holes and blind holes in the steel, NF metal and (cast) material groups up to a strength of 1000 N/mm² in single part production.

Ident. No. 720-952: For producing metric threads by hand in through holes and blind holes, in steel, non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm² in single-part production.

#### Execution:

Ident. No. 010-420: Set consisting of taper tap (form A), second tap (form D) and third tap (form C)

	-#1	
ldent. No. 010–752 Taper tap, shape A	ldent. No. 010-420, 820-852 Second tap, shape D	lde

- Ident. No. 720–752: Taper tap with notch shape A with one ring
- Ident. No. 820-852: Second tap with notch shape D with two rings
- Ident. No. 920–952: Third tap (plug) with notch shape C without ring

#### Advantage:

- Ident. No. 010–420: Long service life and high level of process reliability thanks to innovative cutting geometry and universal application for maximum flexibility in use
- Ident. No. 720-952: Long service life and process reliability through innovative cutting geometry and universal use for maximum application flexibility

	And the second s	-	AMALIAN
- THINKIPPE	- minimum		The second se
			and a second
			TTTT PTC
Ident No. 010, 420, 020, 052			Ident. No. 010-420, 920-952

Third tap, shape C

															-		•		i
														p. 7	55 p	. 170	p. 62	p. 282	p. 283
Application	Ste	el (N/mr	m ² )	Stainle	ss steel	A	lu	Bra	ISS	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	d mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13010010-420				0		0							0	0					
13010720-752				0		0							0	0					
13010820-852				0		0							0	0					
13010920-952				0		0							0	0					

					Version	Set	Ta	aper tap	Sec	cond tap	Tł	nird tap
				Le	ead angle shape	A/D/C		А		D		С
	<b>↓</b> mm	+ + mm	<b>T</b>	+++	mm	13010 Ident. No.	1301 Ident.		13010 Ident.		13010 Ident.	
M1	0.25	0.75	32	2.5	2.1	010 •	-	-	-	-	-	-
M1.2	0.25	0.95	32	2.5	2.1	012 •	-	-	-	-	-	-
M1.4	0.3	1.1	32	2.5	2.1	014 •	-	-	-	-	-	-
M1.6	0.35	1.25	32	2.5	2.1	016 •		-	-	-	-	-
M1.7	0.35	1.3	32	2.5	2.1	017 •	-	-	-	-	-	-
M1.8	0.35	1.45	32	2.5	2.1	018 •		-	-	-	-	-
M2	0.4	1.6	36	2.8	2.1	020 •	720	•	820	•	920	•
M2.3	0.4	1.9	36	2.8	2.1	023 •	-	-	-	-	-	-
M2.5	0.45	2.05	40	2.8	2.1	025 •		-	-	-	-	-
M2.6	0.45	2.1	40	2.8	2.1	026 •	726	•	826	•	926	•
M3	0.5	2.5	40	3.5	2.7	030 •	730	•	830	•	930	•
M3.5	0.6	2.9	45	4	3	035 •		-	-	-		-
M4	0.7	3.3	45	4.5	3.4	040 •	734	•	834	•	934	•
M4.5	0.75	3.7	50	6	4.9	045 •	1.1	-	-	-	-	-
M5	0.8	4.2	50	6	4.9	050 •	738	•	838	•	938	•
M6	1	5	50	6	4.9	060 •	740	•	840	•	940	•
M7	1	6	50	6	4.9	070 •		-	-	-	-	-
M8	1.25	6.8	56	6	4.9	• 080	744	•	844	•	944	•
M9	1.25	7.8	63	7	5.5	090 •		-	-	-	-	-
M10	1.5	8.5	70	7	5.5	100 •	748	•	848	•	948	•
M11	1.5	9.5	70	8	6.2	110 •		-	-	-	950	•
M12	1.75	10.2	75	9	7	120 •	752	•	852	•	952	•
M14	2	12	80	11	9	140 •		-	-	-	-	-
M16	2	14	80	12	9	160 •		-	-	-	-	-
M18	2.5	15.5	95	14	11	180 •		-	-	-	-	-
M20	2.5	17.5	95	16	12	200 •		-	-	-	-	-
M24	3	21	110	18	14.5	240 •		-	-	-	-	-
M36	4	32	150	28	22	360 •	-	-	-	-	-	-
M42	4.5	37.5	150	32	24	420 •	-	-	-	-	-	-

Prod. Gr. 1KM







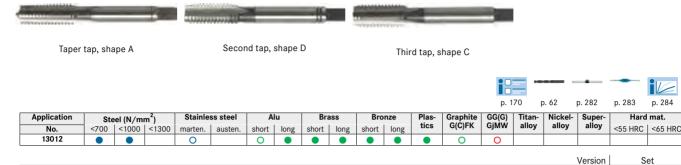
Ŷ

# ATORN® HSS left-hand hand tap set (DIN 352)

For universal use up to 1000 N/mm²



#### Application:


For manually tapping metric left-hand threads in through holes and blind holes in the steel, NF metal and (cast) material groups up to a strength of 1000 N/mm² in single part production.

#### Execution:

Set consisting of taper tap (form A), second tap (form D) and third tap (form C)

#### Advantage:

Long service life and high level of process reliability thanks to innovative cutting geometry and universal application for maximum flexibility in use



					Lead angle shape	A/D/F
	, L mm	→   <del>  +</del>   +   +	<b>T</b> mm	+ + mm	<b>→</b> mm	13012 Ident. No.
M-L4	0.7	3.3	45	4.5	3.4	040 •
M-L5	0.8	4.2	50	6	4.9	050 •
M-L6	1	5	50	6	4.9	060
M-L8	1.25	6.8	56	6	4.9	• 080
M-L10	1.5	8.5	70	7	5.5	100 •
M-L12	1.75	10.2	75	9	7	120 •
M-L14	2	12	80	11	9	140 •
M-L16	2	14	80	12	9	160 •
M-L20	2.5	17.5	95	16	12	200 •

Prod Gr 1KM

#### HSS hand tap (DIN 352) ■];{[])

For universal use up to 1000 N/mm²



#### Application:

Ident. No. 010-300: For manually tapping metric threads in through holes and blind holes in the steel, NF metal and (cast) material groups up to a strength of 1000 N/mm² in single part production.

Ident. No. 720-968: For producing metric threads by hand in through holes and blind holes, in steel, non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm² in single-part production.

#### Execution:

13013820-868

- Ident. No. 010-300: Set consisting of taper tap (form A), second tap (form D) and third tap (form C)
- Ident. No. 720-768: Taper tap with notch shape A with one ring Ident. No. 820-868: Second tap with notch shape D with two rings
- Ident. No. 920-968: Third tap (plug) with notch shape C without ring

#### Advantage:

- Ident. No. 010–300: Standard geometry with a very good price-performance ratio
- Ident. No. 720-968: Standard geometry with very good price/performance ratio

p. 170

Titan-

alloy

GG(G) GjMW

C

C

p. 62

Nickel-

alloy

p. 282

Super alloy

p. 283

	1000	-		<b>Annual Content</b>		-		-#1					_	3
	ent. No. 01 per tap, sh			lo	dent. No. Secor	010-30 nd tap,				lde		. 010-3 d tap, s	00, 920-9 hape C	68
Applicatio	n St	eel (N/m	m ² )	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	
Applicatio No.	n St <700	<b>eel (N/m</b>   <1000	<b>m²)</b>   <1300	Stainle: marten.	ss steel austen.	A short	l <b>u</b> long	Bra short	ass long	Bro short	nze long	Plas- tics	Graphite G(C)FK	GG GjN
	<700													

					Version		Set	Ta	aper tap	Sec	ond tap	Th	nird tap
					Lead angle shape	A	/D/C		A		D		С
	₩ mm	* : + mm	mm	→ → → → → → → → → → → → → → → → → → →	mm	13013 Ident. I		1301 Ident.		13013 Ident. I		13013 Ident.	
M1	0.25	0.75	32	2.5	2.1	010	•	-	-	-	-	-	-
M2	0.4	1.6	36	2.8	2.1	020	•	720	•	820	•	920	•
M2.2	0.45	1.75	36	2.8	2.1	022	•	-	-	-	-	-	-
M2.5	0.45	2.05	36	2.8	2.1	025	•	725	•	825	•	925	•
M3	0.5	2.5	40	3.5	2.7	030	•	730	•	830	•	930	•



p. 284

Hard mat.

<55 HRC | <65 HRC

					Version	Set		Таре	er tap	Sec	ond tap	Th	ird tap
				Le	ad angle shape	A/D/	C		A		D		С
	K ↓ T mm	*  !*   	<b>T</b> mm	→ + mm	mm	13013 Ident. No.		3013 ent. No		13013 Ident. I		13013 Ident. N	
M3.5	0.6	2.9	45	4	3	035	•	-	-	-	-	-	-
M4	0.7	3.3	45	4.5	3.4	040	• 7	34	•	834	•	934	•
M5	0.8	4.2	50	6	4.9	050	• 7	38	•	838	•	938	•
M6	1	5	50	6	4.9	060	• 7	40	•	840	•	940	•
M7	1	6	50	6	4.9	070	•	-	-		-	-	-
M8	1.25	6.8	56	6	4.9	080	• 7	44	•	844	•	944	•
M10	1.5	8.5	70	7	5.5	100	• 7	48	•	848	•	948	•
M12	1.75	10.2	75	9	7	120	• 7	52	•	852	•	952	•
M14	2	12	80	11	9	140	• 7	54	•	854	•	954	•
M16	2	14	80	12	9	160	• 7	56	•	856	•	956	•
M18	2.5	15.5	95	14	11	180	• 7	58	•	858	•	958	•
M20	2.5	17.5	95	16	12	200	• 7	60	•	860	•	960	•
M22	2.5	19.5	100	18	14.5	220	•	-	-	-	-	-	-
M24	3	21	110	18	14.5	240	• 7	64	•	864	•	964	•
M27	3	24	110	20	16	270	•	-	-	-	-	-	-
M30	3.5	26.5	125	22	18	300	• 7	68	•	868	•	968	•

Prod. Gr. 1DA

## ATORN® HSSE hand tap (DIN 352)

For machining stainless steel

M HSS HSSE	ISO 2 A (6-8) ISO 2 A (5-8) A (5-5) A (2-3) A (2-3)
------------	-----------------------------------------------------------------------

#### Application:

**Ident. No. 020–200:** For manually tapping metric threads in through holes and blind holes in the (steel), stainless steel, (cast) and special alloy material groups up to a strength of 1300 N/mm² in single part production.

**Ident. No. 220–800:** For producing metric threads by hand in through holes and blind holes, in (steel), stainless steel, (cast iron) and special alloys material groups up to a strength of 1300 N/mm² in single-part production.

#### Execution:

 Ident. No. 020-200: Set consisting of taper tap (form A), second tap (form D) and third tap (form C)



- Ident. No. 220-400: Taper tap with notch shape A with one ring
- Ident. No. 420-600: Second tap with notch shape D with two rings
- Ident. No. 620-800: Hand tap, third tap (plug) with notch shape C without ring

#### Advantage:

- Ident. No. 020-200: Long service life and high level of process reliability thanks to innovative cutting geometry for machining stainless steel and special alloys
- Ident. No. 220–800: Long service life and process reliability through innovative cutting geometry in machining stainless steel and special alloys



Ident. No. 620-800 Third tap, shape C

															-		•		i
														p. 1	70 p	o. 62	p. 282	p. 283	p. 284
Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-		Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13014020-200					•														
13014220-400					•														
13014420-600					•														
13014620-800																			

					Version	Set	Taper tap	Second tap	Third tap
				Le	ead angle shape	A/D/C	A	D	С
	<u>↓</u> mm	* : mm	<b>I</b>	+ mm	mm	13014 Ident. No.	13014 Ident. No.	13014 Ident. No.	13014 Ident. No.
M2	0.4	1.6	36	2.8	2.1	020	220	420 •	620 •
M2.5	0.45	2.05	40	2.8	2.1	025 •	225 •	425 •	625 •
M3	0.5	2.5	40	3.5	2.5	030	230	430 •	630 •
M3.5	0.6	2.9	45	4	2.9	035 •	235 •	435 •	635 •
M4	0.7	3.3	45	4.5	3.3	040	240	440 •	640 •
M5	0.8	4.2	50	6	4.2	050	250 •	450 •	650 •
M6	1	5	56	6	5	060	260	460 •	660 •
M8	1.25	6.8	63	6	6.8	080	280	480	680
M10	1.5	8.5	70	7	8.5	100 •	300	500 •	700 •
M12	1.75	10.2	75	9	10.2	120 •	320	520 •	720 •
M16	2	14	80	12	14	160 •	360 •	560 •	760 •
M20	2.5	17.5	95	16	17.5	200 •	400 •	600 •	800 •

Prod. Gr. 1KM







#### Application:

Ident. No. 020-160: For manually tapping metric threads in through holes and blind holes in the (steel), stainless steel, (cast) and special alloy material groups up to a strength of 1300 N/mm² in single part production.

ATORN® HSSE hand tap set (DIN 352)

For high-strength steels < 1300 N/mm²

Ident. No. 720-952: For producing metric threads by hand in through holes and blind holes, in steel, (stainless steel), cast iron and (special alloys) material groups up to a strength of 1300 N/mm² in single-part production.

#### Execution:

- Ident. No. 020–160: Set consisting of taper tap (form A), second tap (form D) and third tap (form C)
  - Ident. No. 020-752 Taper tap, shape A

Ident. No. 020-160, 820-852 Second tap, shape D

- Ident. No. 720–752: Taper tap with notch shape A with one ring
- Ident. No. 820–852: Second tap with notch shape D with two rings
- Ident. No. 920–952: Third tap (plug) with notch shape C without ring

#### Advantage:

- Ident. No. 020–160: Long service life and high level of process reliability thanks to innovative cutting geometry for machining high-strength steel
- Ident. No. 720-952: Long service life and process reliability through innovative cutting geometry in machining high-strength steel



Third tap, shape C

														p. 1	70	o. 62	p. 282	p. 283	p. 284
Application	Ste	el (N/m	m ² )	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-		Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Ċ)FK	GjŴŴ	alloy	alloy	alloy	<55 HRC	<65 HRC
13015020-160	0	0		0		0	0	0	0	0	0	0			0	0	0		
13015720-752	0	0		0		0	0	0	0	0	0	0		•	0	0	0		
13015820-852	0	0		0		0	0	0	0	0	0	0			0	0	0		
13015920-952	0	0		0		0	0	0	0	0	0	0			0	0	0		

					Version		Set	Ta	aper tap	Se	cond tap	T	hird tap
				Le	ead angle shape	A	A/D/C		A		D		С
	₩ T mm	→ , ← i i mm	<b>T</b> mm	+ mm	mm	1301 Ident.		1301 Ident.		1301 Ident.		1301 Ident.	
M2	0.4	1.6	36	2.8	2.1	020	•	720	•	820	•	920	•
M2.5	0.45	2.05	40	2.8	2.1	025	•	-	-	-	-	-	-
M3	0.5	2.5	40	3.5	2.7	030	•	730	•	830	•	930	•
M4	0.7	3.3	45	4.5	3.4	040	•	734	•	834	•	934	•
M5	0.8	4.2	50	6	4.9	050	•	738	•	838	•	938	•
M6	1	5	50	6	4.9	060	•	740	•	840	•	940	•
M8	1.25	6.8	56	6	4.9	080	•	744	•	844	•	944	•
UN10	1.5	8.5	70	7	5.5	100	•	-	-	-	-	-	-
M10	1.5	8.5	70	7	5.5	-	-	748	•	848	•	948	•
M12	1.75	10.2	75	9	7	120	•	752	•	852	•	952	•
M14	2	12	80	11	9	140	•	-	-	-	-	-	-
M16	2	14	80	12	9	160	•	-	-	-	-	-	_

Prod. Gr. 1KM

#### HSSE-PM hand tap (DIN 352) For high-strength steels < 1300 N/mm²



#### Application:

Ident. No. 030-120: For manually tapping metric threads in through holes and blind holes in the (steel), stainless steel, (cast) and special alloy material groups up to a strength of 1300 N/mm² in single part production.

Ident. No. 734-944: For producing metric threads by hand in through holes and blind holes, in steel, (stainless steel), cast iron and (special alloys) material groups up to a strength of 1300 N/mm² in single-part production.

#### Execution:

Ident. No. 030–120: Set consisting of taper tap (form A), second tap (form D) and third tap (form C)



Ident. No. 030-120, 744-844 Second tap, shape D

Ident. No. 030-120, 934-944 Third tap, shape C

- Ident. No. 734-744: Taper tap with notch shape A with one ring
- Ident. No. 834–844: Second tap with notch shape D with two rings
- Ident. No. 934-944: Third tap (plug) with notch shape C without ring

#### Advantage:

- Ident. No. 030-120: Long service life and high level of process reliability thanks to innovative cutting geometry for machining high-strength steel
- Ident. No. 734-944: Long service life and process reliability through innovative cutting geometry in machining high-strength steel



														10	_				
														p. 1	70 p	o. 62	p. 282	p. 283	p. 284
Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ISS	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Č)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13017030-120	0	0		0		0	0	0	0	0	0	0		•	0	0	0		
13017734-744	0	0		0		0	0	0	0	0	0	0			0	0	0		
13017834-844	0	0		0		0	0	0	0	0	0	0		•	0	0	0		
13017934-944	0	0		0		0	0	0	0	0	0	0			0	0	0		

Source: Hahn+Kolb Werkzeuge GmbH Technical data subject to change Availability subject to country specific rules and regulations.

www.iconridge.com





					Version		Set	Ta	aper tap	See	cond tap	T	nird tap
				Le	ad angle shape	A	A/D/C		А		D		С
	<u>↓</u> mm	⇒i i i i mm	<b>T</b> mm	→ ← mm	mm	1301 Ident.		1301 Ident.		1301 Ident.		1301 Ident.	
M3	0.5	2.5	40	3.5	2.7	030	•	-	-	-	-	-	-
M4	0.7	3.3	45	4.5	3.4	040	•	734	•	834	•	934	•
M5	0.8	4.2	50	6	4.9	050	•	738	•	838	•	938	٠
M6	1	5	50	6	4.9	060	•	740	•	840	•	940	•
M8	1.25	6.8	56	6	4.9	080	•	744	•	844	•	944	•
M10	1.5	8.5	70	7	5.5	100	•	-	-	-	-	-	-
M12	1.75	10.2	75	9	7	120	•	-	-	-	-	-	-

Prod. Gr. 1KM

## **DRION**[®] **ATORN**[®] **HSS hand tap** (DIN 2181) For universal use up to 1000 N/mm²



#### Application:

No. 13020 045–13020 360, 13023 803–13023 886: For manually tapping fine metric threads in through holes and blind holes in the steel, NF metal and (cast) material groups up to a strength of 1000 N/mm² in single part production.

No. 13023 030-13023 786: For producing metric fine threads by hand in through holes and blind holes, in steel, non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm² in single-part production.

#### Execution:

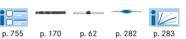
• No. 13020: Set consisting of taper tap (form A) and third tap (form C)

- No. 13023 030–13023 280: Set containing taper tap (form A) and third tap (plug) (form C)
- No. 13023 703–13023 786: Taper tap with notch shape A with one ring
- No. 13023 803-13023 886: Third tap notch shape C without ring

#### Advantage:

- No. 13020: Long service life and high level of process reliability thanks to innovative cutting geometry and universal application for maximum flexibility in use
- No. 13023 030–13023 786: Standard geometry with very good price/performance ratio
- No. 13023 803–13023 886: Standard geometry with a very good price-performance ratio






No. 13020 045-13023 786

Taper tap, shape D

No. 13020 045-13023 280, 13023 803-13023 886

Third tap, shape C



Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13020				0		•							0	0					
13023030-280				0									0	0					
13023703-786				0									0	0					
13023803-886				0									0	0					

						ORI	<u>ON'</u>	ATO	<u>RN</u> °	ORI	<b>DN</b> °		
					Version		Set		Set	Та	iper tap	Tł	nird tap
				ا ا	ad angle shape		D/C		D/C	10		+	C
	, ↓ mm	→ + +	<b>M</b> mm	→ + mm	mm	1302 Ident.	3	13020 Ident.	0	1302: Ident.	3	13023 Ident.	3
MF3	0.35	2.65	40	3.5	2.7	030	•	-	-	-	-	-	-
MF4	0.5	3.5	45	4.5	3.4	045	•	045	•	-	-	-	-
MF5	0.5	4.5	50	6	4.9	050	•	050	•	-	-	-	-
MF6	0.5	5.5	50	6	4.9	-	-	060	•	-	-	-	-
MF6	0.75	5.2	50	6	4.9	065	•	065	•	-	-	-	-
MF7	0.75	6.2	50	6	4.9	-	-	070	•	-	-	-	-
MF8	0.5	7.5	50	6	4.9	-	-	080	•	-	-		-
MF8	0.75	7.2	50	6	4.9	083	•	083	•	-	-		-
MF8	1	7	56	6	4.9	086	•	086	•	786	•	886	•
MF10	1	9	63	7	5.5	103	•	103	•	703	•	803	•
MF10	1.25	8.8	70	7	5.5	106	•	106	•	-	-	-	-
MF10	0.75	9.2	68	7	5.5	-	-	100	•	-	-	-	-
MF12	1	11	70	9	7	120	•	120	•	720	•	820	•
MF12	1.25	10.8	70	9	7	123	•	123	•	-	-		-
MF12	1.5	10.5	70	9	7	126	•	126	•	726	•	826	•
MF14	1	13	70	11	9	140	•	140	•	-	-	-	-
MF14	1.25	12.8	70	11	9	143	•	143	•	-	-		-
MF14	1.5	12.5	70	11	9	146	•	146	•	742	•	842	•
MF15	1	14	70	12	9	-	-	150	•	-	-		-
MF16	1	15	70	12	9	160	•	160	•	-	-	-	-
MF16	1.5	14.5	70	12	9	165	•	165	•	765	•	865	•
MF18	1	17	80	14	11	180	•	180	•	780	•	880	•
MF18	1.5	16.5	80	14	11	183	•	183	•	783	•	883	•
MF20	1	19	80	16	12	200	•	200	•	-	-	-	-
MF20	1.5	18.5	80	16	12	203	•	203	•	713	•	813	•
MF20	2	18	80	16	12	206	•	-	-	-	-	-	-
MF22	1.5	20.5	80	18	14.5	223	•	223	•	-	-	-	-
MF22	1	21	80	18	14.5	220	•	-	-	-	-	-	-
MF24	1	23	90	18	14.5	-	-	240	•	-	-		-
MF24	1.5	22.5	90	18	14.5	243	•	243	•	-	-	- 1	-
MF24	2	22	90	18	14.5	-	-	246	•	-	-	-	-
MF26	1.5	24.5	90	18	14.5	260	•	-	-	-	-	-	-
MF27	2	25	90	20	16	-	-	275	•	-	-	-	-
MF28	1.5	26.5	90	20	16	280	•	-	-	-	-	-	-
MF30	1.5	28.5	90	22	18	-	-	303	•	-	-	-	-
MF30	2	28	90	22	18	-	-	306	•	-	-	-	-
MF36	1.5	34.5	100	28	22	-	-	360	٠	-	-	-	-

## ORION = Prod. Gr. 1DA

218

Technical data subject to change.

Availability subject to country specific rules and regulations.







#### Application:

For producing metric fine threads by hand in through holes and blind holes, in steel, non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm² in single-part production.

#### Execution:

• Set containing taper tap (form A) and third tap (plug) (form C)

#### Advantage:

 Long service life and process reliability through innovative cutting geometry and universal use for maximum application flexibility



Taper tap, shape D



Third tap, shape C

Version

Set

															·				
														p. 2	755 p	o. 170	p. 62	p. 282	p. 283
Application	Stee	l (N/mr	n ² )	Stainles	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No. <7	<700   ·	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13022				0									0	0					

					Lead angle shape	D/C
	L ↑ mm		<b>T</b> mm	+ + mm	<b>→</b>	13022 Ident. No.
MF-L8	1	7	56	6	4.9	086
MF-L10	1	9	63	7	5.5	103
MF-L12	1	11	70	9	7	120 •
MF-L12	1.5	10.5	70	9	7	126
MF-L14	1.5	12.5	70	11	9	146 •
MF-L16	1.5	14.5	70	12	9	165 •
MF-L18	1.5	16.5	80	14	11	183
MF-L20	1.5	18.5	80	16	12	203 •

Prod. Gr. 1KM

#### machine tap HSSE PM Ultra HL (DIN 5156) ® ATORN for universal use up to 1200 N/mm2

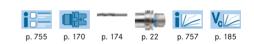
	G	≤3xd	HSSE- PM	ULTRA HL	∴ ↓ ↓ B (3,5-5)
A	pplica	tion:			

For manufacturing pipe threads on CNC or conven-

groups up to a strength of 1200 N/mm².

tional machines in through holes in the steel, stainless steel, NF metal, cast and special alloy material

 Innovative cutter geometry ensures high process reliability even in difficult machining conditions


Technical data: PICTO=1749639: 0 mm

#### Advantage:

- Universal use for maximum flexibility of application

DIN: 5156





**50HL Speed** 

Application	Ste	el (N/m	m ² )	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Haro	d mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Č)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13213010-080	22	16	12	12	12	14	30	17	24	12	20	30	16	18	7	6	6		
																Cutting I			E-PM
															1		Surface		RA HL B
															L	ead angl.	e snape st angle		<u> </u>
																	t supply		ernal
		1				-+1  +	-			-		1					t supply	13213	
			<u> </u>										-			181		Ident. N	
			Mm (			mm	2			<b>↓</b> mm			mm		mm				
G 1/8 ir	า		28			8.8				90			7			5.5		010	•
G 1/4 ir	۱		19			11.8				100			11			9		020	•
G 3/8 ir	۱		19			15.2	5			100			12			9		030	•
G 1/2 ir	۱		14			19				125			16			12		040	•
G 5/8 ir	۱		14			21				125			18			14.5		050	•
G 3/4 ir	า		14			24.5				140			20			16		060	•
G 1 in			11			30.7	5			160			25			20		080	•

Prod. Gr. 1KC



Ŷ

## TORN® Machine tap, HSSE Ultra HL (DIN 5156) for universal use up to 1000 N/mm2





#### Application:

No. 13208: For manufacturing pipe threads on CNC or conventional machines in through holes in the steel, stainless steel, NF metal, cast and special alloy material groups up to a strength of 1000 N/mm².

No. 13377: For producing pipe threads on CNC machines or conventional machines in blind holes in the steel, stainless steel, non-ferrous metals, cast iron and special alloy material groups up to a strength of 1000 N/mm².

#### Execution:

With transition-fit shank

#### Advantage:

#### No. 13208:



Innovative cutting geometry and ULTRA HL coating guarantee high process reliability even under difficult machining conditions

- High-quality, torsion-resistant HSSE cutting material and cutting edge finish for very high service life requirements
- Universal use for maximum flexibility in use

#### No. 13377:

- Innovative cutting geometry and newly developed ULTRA HL coating guarantee high process reliability even under difficult machining conditions.
- High-quality, torsion-resistant HSSE cutting material and cutting edge finish for very high service life requirements.
- Universal use for maximum flexibility in use.



															_ (				
														p. 7	55 p	. 170	p. 174	p. 22	p. 757
Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMŴ	alloy	alloy	alloy	<55 HRC	<65 HRC
13208	18	12	8	11	10	19	19	17	19	17	18	13		18	7	6	6		
13377	18	12	8	11	10	19	19	17	19	17	18	13		18	7	6	6		

						Cutting material		HSSE		HSSE
						Surface	UL	TRA HL	UL	TRA HL
						Tol.	ISC	) 2 (6H)	ISC	D 2 (6H)
						Lead angle shape		В		С
						Twist angle		0°	45	° (right)
						Coolant supply	E>	xternal	E	xternal
	- -	+				DIN	13208 Ident.		1337 Ident.	
G 1/16 in		6.8		mm	4.9	5156	005	•	005	•
				6						
G 1/8 in	28	8.8	90	/	5.5	5156	010	•	010	•
G 1/4 in	19	11.8	100	11	9	5156	020	•	020	•
G 3/8 in	19	15.25	100	12	9	5156	030	•	030	•
G 1/2 in	14	19	125	16	12	5156	040	•	040	•
G 5/8 in	14	21	125	18	14.5	5156	-	-	050	•
G 3/4 in	14	24.5	140	20	16	5156	060	•	060	•
G 7/8 in	14	28.25	150	22	18	5156	070	•	070	•
G 1 in	11	30.75	160	25	20	5156	-	-	080	•

Prod. Gr. 1KC

## ISSE machine tap (DIN 374) For universal use up to 1000 N/mm²



#### Application:

220

No. 13207

No. 13207: For manufacturing pipe threads in through holes on CNC or conventional machines in the steel, stainless steel, NF metal and cast material groups up to a strength of 1000 N/mm².

No. 13378: For producing pipe threads on CNC machines or conventional machines in blind holes in the steel, stainless steel, non-ferrous metals and cast material groups up to a strength of 1000 N/mm².



Execution:

Advantage:

With protruding shank

machining conditions

Universal use for maximum flexibility of application

Innovative cutter geometry ensures high process reliability even in difficult

																-			V _c
													p. 75	5 p.1	170 p	. 174	p. 22	p. 757	p. 193
Application	Ste	eel (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-		Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13207310-400	18	12	8	8	8		18		19		18	15		15					
13378310-400	18	12	8	8	9		18		19		18	15		15					







## ATORN[®]

							ATORN*	
						Cutting material	HSSE	HSSE
						Surface	Vaporised	Vaporised
						Tol.	ISO 2 (6H)	ISO 2 (6H)
						Lead angle shape		С
						Twist angle		40° (right)
						Coolant supply		External
	, T mm	→ + +	<b>T</b>	+ +	mm	DIN	13207 Ident. No.	13378 Ident. No.
G 1/8 in	28	8.7	90	7	5.5	374	310 •	310 •
G 1/4 in	19	11.8	100	11	9	374	320 •	320 •
G 3/8 in	19	15.3	100	12	9	374	330 •	330 •
G 1/2 in	14	19	125	16	12	374	340 •	340 •
G 3/4 in	14	24.5	140	20	16	374	360 •	360 •
G 1 in	11	30.75	160	25	20	374	380 •	380 •
G 1-1/4 in	11	39.5	170	32	24	374	400 •	400 •
Prod. Gr. 1KC								





#### Application:

No. 13207-13209: For manufacturing pipe threads on CNC or conventional machines in through holes in the steel, (stainless steel), NF metal and (cast iron) material groups up to a strength of 1000 N/mm².

**No. 13378–13379:** For producing pipe threads on CNC machines or conventional machines in **blind holes** in the steel, (stainless steel), non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm².

#### Advantage:

- No. 13207: Long service life and high process reliability thanks to innovative cutting geometry, and universal use for maximum flexibility in use.
- No. 13209: Standard geometry with an excellent price-performance ratio
- No. 13378–13379: Long service life and high level of process reliability thanks to innovative cutter geometry and universal application for maximum flexibility in use

#### Execution:

With transition-fit shank



```
No. 13207-13209
```

No. 13378-13379



Т

Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13207	16	12		9		18	18	15	18	15	15	13		16					
13209	16	12		9		18	18	15	18	15	15	13		16					
13379	16	12		9		18	18	15	18	15	15	13		16					

Т

							ATOR	<b>№</b> °			ORIO	<b>)/\</b> *		
					Cut	ting material	H	SSE		HSSE	H	ISSE	H	SSE
						Surface	Vapo	orised	Va	porised	Vap	orised	Vap	orised
						Tol.	ISO :	2 (6H)	ISC	) 2 (6H)	ISO	2 (6H)	ISO	2 (6H)
					Lead	angle shape		В		С		С		В
						Twist angle		0°		° (right)		(right)	_	0°
					Co	polant supply		ernal		ternal		ternal		ternal
	mm +	+ + + mm		+ mm	mm	DIN	13207 Ident. No.		13378 Ident.		13379 Ident. N		13209 Ident. N	
G 1/8 in	28	8.8	90	7	5.5	5156	010	•	010	•	010	•	010	•
G 1/4 in	19	11.8	100	11	9	5156	020	•	020	•	020	•	020	•
G 3/8 in	19	15.25	100	12	9	5156	030	•	030	•	030	•	030	•
G 1/2 in	14	19	125	16	12	5156	040	•	040	•	040	•	040	•
G 5/8 in	14	21	125	18	14.5	5156	-	-	050	•	050	•		-
G 3/4 in	14	24.5	140	20	16	5156	060	•	060	•	060	•	060	•
G 7/8 in	14	28.25	150	22	18	5156	-	-	070	•	-	-		-
G 1 in	11	30.75	160	25	20	5156	080	•	080	•	080	•	080	•
G 1-1/4 in	11	39.25	170	32	24	5156	100	•	-	-	-	-	100	•

ORION = Prod. Gr. 1DB ATORN^{*} = Prod. Gr. 1KC



# ATORN® Machine tap, HSSE (DIN Similar to 371)

For use on stainless steels



#### Application:

For manufacturing NPT (National Pipe Taper) on CNC or conventional machines in the (steel) and stainless steel material groups up to a strength of 1000 N/mm².

#### Execution:

With protruding shank

#### Advantage:

- Innovative cutting geometry for very high dimensional accuracy, process reliability and chip removal.
- High-quality, torsion-resistant HSSE cutting material and cutting edge finish for very high service life requirements.
- No. 13360: Specialised use with optimised chip geometry for use in stainless steels.
- No. 13361: Universal use for maximum flexibility in use.



A ANALY	

No. 13360



														- Ui	<u></u>				V _c
													p. 75	5 p.1	70 p	. 174	p. 22	p. 757	p. 193
Application	Ste	eel (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	l mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Ċ)FK	GjŴŴ	alloy	alloy	alloy	<55 HRC	<65 HRC
13360	16	11		11	10														
13361	17	12		10	11														
													Cut	tting mat	erial	HSS	SE	HS	SSE
														Su	face	Vapor	ised	T	iN
															Tol.	ISO 2	(6H)	ISO 2	2 (6H)
													Lead	l angle s	hape	С		(	C

						Lead angle shape	C	C
						Twist angle	15° (right)	15° (right)
						Coolant supply	External	External
	<mark>↓</mark> T mm	→ ( *	mm	+ + mm	mm	DIN	13360 Ident. No.	13361 Ident. No.
NPT 1/8 in	27	8.5	90	11	9	Similar to 371	010 •	010 •
NPT 1/4 in	27	11	100	14	11	Similar to 371	020 •	
NPT 1/4 in	18	11	100	14	11	Similar to 371		020 •
NPT 3/8 in	18	14.4	110	16	12	Similar to 371	030	030
NPT 1/2 in	14	17.8	125	18	14.5	Similar to 371	040 •	040
NPT 3/4 in	14	23.1	140	22	18	Similar to 371	050 •	050 •

Prod. Gr. 1KC

#### **HSSE** machine tap B





#### Application:

No. 13121: For producing metric threads on CNC machines or conventional machines in through holes in the steel, stainless steel, non-ferrous metals and cast iron material groups up to a strength of 1000  $\ensuremath{\,\text{N/mm^2}}$  .

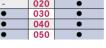
No. 13125: For producing metric threads on CNC machines or conventional machines in blind holes in the steel, stainless steel, non-ferrous metals and cast



iron material groups up to a strength of 1000 N/mm².

#### Advantage:

- Universal use for maximum flexibility of application
- Innovative cutter geometry ensures high process reliability even in difficult machining conditions




																-			V _c
													p. 75	5 p.1	70 p	. 174	p. 22	p. 757	p. 193
Application	Ste	el (N/m	m ² )	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Har	d mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Ć)FK	GjMŴ	alloy	alloy	alloy	<55 HRC	<65 HRC
13121900-916	18	12	8	8	8		18		19		18	15		15					
13125900-916	18	12	8	8	8		18		19		18	15		15					
														ting mat		HSS			SSE
	Si												Sui	face	Vapor			orised	
															Tol.	ISO 2			2 (6H)
													Lead	angle s		B			C
														Twist a		0°			(right)
										_			C	polant su		Exter	nal		ernal
i i		E	<u>z</u> i					Ī			- <b>-</b>	•		-		3121		13125.	
		E	×-													dent. No.		Ident. N	0.
											mm	1		mm					
UNC 1/4 in	UNC 1/4 in 20 5.2							mm 80			7			5.5	9	900	•	900	•
UNC 5/16 ii	UNC 5/16 in 18 6.6							90			8			6.2	9	902	•	902	•
UNC 3/8 in	UNC 3/8 in 16 8							100			9			7	9	904	•	904	•
UNC 7/16 ii	n		14		9.4			100			8			6.2	9	906	•	906	•

www.iconridge.com







3.4.

.

## Thread tools \ Machine tap UNC/UNF

					Cutting material	HSSE	HSSE
					Surface	Vaporised	Vaporised
					Tol.	ISO 2 (6H)	ISO 2 (6H)
					Lead angle shape	В	С
					Twist angle	0°	40° (right)
					Coolant supply		External
	L ↑ mm	→   <del>*</del>	, mm	→ → → → → → → → → → → → → → → → → → →		13121 Ident. No.	13125 Ident. No.
UNC 1/2 in	13	10.8	110	9	7	908	908
UNC 5/8 in	11	13.6	110	12	9	910 •	910
UNC 3/4 in	10	16.5	125	14	11	912 •	912 •
UNC 7/8 in	9	19.5	140	18	14.5	914 •	914 •
UNC 1 in	8	22.3	160	20	16	916	916 •
d. Gr. 1KC	HSSE mac	hine tap					



#### Application:

No. 13121: For producing metric threads on CNC machines or conventional machines in through holes in the steel, stainless steel, non-ferrous metals and cast iron material groups up to a strength of 1000 N/mm².

No. 13125: For producing metric threads on CNC machines or conventional machines in blind holes in the steel, stainless steel, non-ferrous metals and cast

	1000	U
No. 13121	No. 13125	0

iron material groups up to a strength of 1000 N/mm².

#### Advantage:

- Universal use for maximum flexibility of application
- Innovative cutter geometry ensures high process reliability even in difficult machining conditions



													p. 75	5 p. 1	70	p. 174	p. 22	p. 757	<b>V</b> c
Application	Ste	el (N/mr	n ² )	Stainle	ss steel	A	lu	Bra	ISS	Bro	nze	Plas-	Graphite	GG(G)	Titan-			Haro	l mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMŴ	alloy	alloy	alloy	<55 HRC	<65 HRC
13121930-946	18	12	8	8	8		18		19		18	15		15					
13125930-946	18	12	8	8	8		18		19		18	15		15					
													Cut	ting mat	terial	HS	-		SSE

					Juliace	VO	iponseu	v a	ponseu
					Tol.	ISC	O 2 (6H)	ISC	D 2 (6H)
					Lead angle shape		В		С
					Twist angle		0°	40	° (right)
					Coolant supply	E	xternal	E	kternal
	↓ ↑ mm	→ ↓ ←	E	<b>→</b>		1312 Ident.		1312 Ident.	
UNF 1/4 in	20	5.2	80	7	5.5	930	•	930	•
UNF 5/16 in	18	6.6	90	8	6.2	932	•	932	•
UNF 3/8 in	16	8	100	9	7	934	•	934	•
UNF 7/16 in	20	9.9	100	8	6.2	936	•	936	•
UNF 1/2 in	20	11.5	100	9	7	938	•	938	•
UNF 5/8 in	18	14.5	100	12	9	940	•	940	•
UNF 3/4 in	16	17.5	110	14	11	942	•	942	•
UNF 7/8 in	14	20.4	125	18	14.5	944	•	944	•
UNF 1 in	12	23.3	140	18	14.5	946	•	946	•

Prod. Gr. 1KC ΔΠ

## Machine tap, HSSE (DIN Similar to 371) for universal conventional use up to 1000 N/mm2



#### Application:

No. 13347: For producing UNC (Unified Coarse) threads on CNC machines or conventional machines in through holes in the steel, (stainless steel), non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm². No. 13348: For producing UNC (Unified Coarse) threads on CNC machines or conventional machines in blind holes in the steel, (stainless steel), non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm².

# No. 13347

No. 13348

#### Execution:

• No. 13347 030-13347 110, 13348 120-13348 160: With transition-fit shank

• No. 13348 025-13348 110: With reinforced shank

### Advantage:

 Long service life and high process reliability thanks to innovative cutting geometry, and universal use for maximum flexibility in use.



p. 755 p. 170 p. 174 p. 757 p. 193 p. 22



Ŷ

Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ISS	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Ċ)FK	GjMŴ	alloy	alloy	alloy	<55 HRC	<65 HRC
13347	16	11		9		18	18	15	18	15	15	13	14	16					
13348025-110	16	11		9		18	18	15	18	15	15	13	14	16					
13348120-160	16	11		9		18	18	15	18	15	15	13	14	16					

						Cutting material	н	ISSE		HSSE
						Surface	Vap	oorised	Va	porised
						Tol.		2B		2B
						Lead angle shape		С		В
						Twist angle	40°	° (right)		0°
						Coolant supply	Ex	ternal	E	kternal
<b>A</b>	<b>×</b> +	+ +	Ŧ	_ <b>_</b>	+ +	DIN	13348		13347	·
	mm	mm	L. M.	mm	mm		Ident. N	No.	Ident.	No.
UNC 2 in	56	1.85	45	2.8	2.1	Similar to 371	025	•	-	-
UNC 4 in	40	2.35	56	3.5	2.7	Similar to 371	030	•	030	•
UNC 5 in	40	2.65	56	3.5	2.7	Similar to 371	-	-	035	•
UNC 6 in	32	2.85	56	4	3	Similar to 371	050	•	050	•
UNC 8 in	32	3.5	63	4.5	3.4	Similar to 371	060	•	060	•
UNC 10 in	24	3.9	70	6	4.9	Similar to 371	070	•	070	•
UNC 12 in	24	4.5	80	6	4.9	Similar to 371	-	-	075	•
UNC 1/4 in	20	5.1	80	7	5.5	Similar to 371	090	•	090	•
UNC 5/16 in	18	6.6	90	8	6.2	Similar to 371	100	•	100	•
UNC 3/8 in	16	8	100	10	8	Similar to 371	110	•	110	•
UNC 7/16 in	14	9.4	100	8	6.2	Similar to 371	120	•	-	-
UNC 1/2 in	13	10.8	110	9	7	Similar to 371	130	•	-	-
UNC 9/16 in	12	12.2	110	11	9	Similar to 371	135	•	-	-
UNC 5/8 in	11	13.5	110	12	9	Similar to 371	140	•	-	-
UNC 3/4 in	10	16.5	125	14	11	Similar to 371	145	•	-	-
UNC 7/8 in	9	19.5	140	18	14.5	Similar to 371	150	•	-	-
UNC 1 in	8	22.5	160	18	14.5	Similar to 371	160	•	-	-

Prod. Gr. 1KC

## **ATORN**[®] HSSE machine tap For universal use up to 1000 N/mm²



#### Application:

No. 13357: For producing UNF (Unified Fine) threads on CNC machines or conventional machines in through holes in the steel, (stainless steel), non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm².
 No. 13358: For producing UNF (Unified Fine) threads on CNC machines or

No. 13358: For producing UNF (Unified Fine) threads on CNC machines or conventional machines in **blind holes** in the steel, (stainless steel), non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm².

#### Execution:

No. 13357

No. 13357 040-13357 110, 13358 070-13358 110: With reinforced shank

No. 13358

- No. 13357 150-13357 170: With transition-fit shank
- No. 13358 120-13358 180: With protruding shank

#### Advantage:

- Innovative cutting geometry for very high dimensional accuracy, process reliability and chip removal.
- High-quality, torsion-resistant HSSE cutting material and cutting edge finish for very high service life requirements.
- Universal use for maximum flexibility in use.



															<b>••••</b>				V _c
													p. 75	5 p. 1	70 p	. 174	p. 22	p. 757	p. 193
Application	Ste	el (N/mr	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite		Titan-	Nickel-		Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13357040-110	14	10		8		18	18	15	18	15	15	13	14	16					
13357150-170	14	10		8		18	18	15	18	15	15	13	14	16					
13358070-110	16	11		9		18	18	15	18	15	15	13	14	16					
13358120-180	16	11		9		18	18	15	18	15	15	13	14	16					

						Cutting material		HSSE		HSSE
						Surface	Va	aporised	Va	porised
						Tol.		2B		2B
						Lead angle shape		В		С
						Twist angle		0°	40	° (right)
						Coolant supply	E	xternal	E	kternal
<b>h</b>		+ +		- <b>1</b> -	++++	DIN	1335	7	13358	3
	T T						Ident.	No.	Ident.	No.
	mm	mm	mm	mm	mm					
UNF 4 in	48	2.4	56	2.2	0	Similar to 371	040	•	-	-
UNF 6 in	40	2.95	56	2.5	2.1	Similar to 371	050	•	-	-
UNF 10 in	32	4.1	70	6.0	4.9	Similar to 371	070	•	070	•
UNF 12 in	28	4.6	80	6.0	4.9	Similar to 371	-	-	080	•
UNF 1/4 in	28	5.5	80	7.0	5.5	Similar to 371	-	-	090	•
UNF 1/4 in	28	5.5	80	4.5	3.4	Similar to 371	100	•	-	-
UNF 5/16 in	24	6.9	90	8.0	6.2	Similar to 371	-	-	100	•
UNF 3/8 in	24	8.5	90	10.0	8.0	Similar to 371	110	•	110	•
UNF 5/8 in	18	14.5	100	12.0	9.0	Similar to 376	150	•	150	•
UNF 7/8 in	14	20.4	125	19.0	14.5	Similar to 376	170	•	170	•
UNF 7/16 in	20	9.9	90	8.0	6.2	Similar to 376	-	-	120	•
UNF 1/2 in	20	11.5	100	9.0	7.0	Similar to 376	-	-	130	•
UNF 1 in	12	23.25	140	20.0	14.5	Similar to 376	-	-	180	•

Prod. Gr. 1KC







#### Application:

For manufacturing NPT (National Pipe Taper) on CNC or conventional machines in the steel, NF metal and (cast) material groups up to a strength of 1000 N/ mm².

#### Execution:

With protruding shank

- Advantage:
- Innovative cutting geometry for very high
- dimensional accuracy, process reliability and chip removal.
- High-quality, torsion-resistant HSSE cutting material and cutting edge finish for very high service life requirements.
- Universal use for maximum flexibility in use.





																			•C
													p. 7	55 p.	170	p. 174	p. 22	p. 757	p. 193
Application	Ste	el (N/m	m²)	Stainle	ss steel	A	u	Bra	ass	Bro	nze	Plas-	Graphite		Titan-	Nickel-	Super-	Har	d mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Ċ)FK	GjMŴ	alloy	alloy	alloy	<55 HRC	<65 HRC
13359	16	11				18	18	15	18	15	15	13							
																Cutting r	material	н	SSE
																	Surface		oated
																	Tol.		2 (6H)
															L	ead angl	e shape		C
																Twi	st angle	15°	(right)
																Coolan	t supply		ernal
		m	_ <u>↓</u> _¶ 1m		→ + + + mm			, mm			+++			1m		DIN		13359. Ident. N	
NPT 1/8 in			27		8.5			63			7		5	5.5		Similar to	371	010	•
NPT 1/4 in		1	18		11.1			63			11			9		Similar to	371	020	•
NPT 3/8 in		1	18		14.5			70			12			9		Similar to	371	030	•
NPT 1/2 in			14		17.75			80			16			12		Similar to	371	040	•
NPT 3/4 in		1	14		23			100			20			16		Similar to	371	050	•
NPT 1 in		1	1,5		29			110			25			20		Similar to	371	060	•

Prod. Gr. 1KC

#### HSS hand tap set 'ORN ® for universal use up to 1000 N/mm2



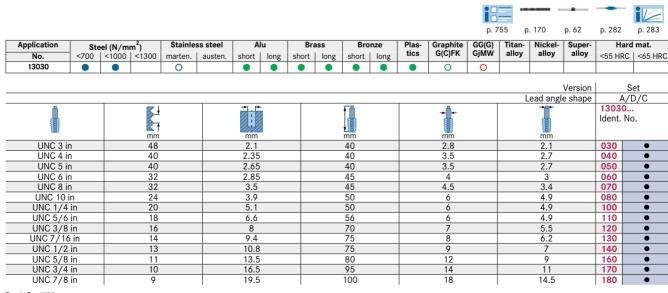
#### Application:

For producing UNC (unified coarse threads) by hand in through holes and blind holes, in steel, non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm² in single-part production.

#### Execution:

Set containing taper tap (form A), second tap (form D) and third tap (plug) (form C)

#### Advantage:


Third tap, shape C

 Long service life and process reliability through innovative cutting geometry and universal use for maximum application flexibility



Taper tap, shape A

Second tap, shape D



Prod. Gr. 1KM







in through holes and blind holes, in steel, non-fer-

rous metals and (cast iron) material groups up to a strength of 1000 N/mm² in single-part production.



## **ATORN**[®] HSS hand tap set (DIN 2181) for universal use up to 1000 N/mm2



#### Application: Execution: For producing UNC (unified coarse threads) by hand Set conta

 Set containing taper tap (form D) and third tap (plug) (form C)

#### Advantage:

 Long service life and process reliability through innovative cutting geometry and universal use for maximum application flexibility



Third tap, shape C



Taper tap, shape D

Version

Sot

															р.	755	p. 170	p. 62	p. 282	p. 283
ſ	Application	Ste	el (N/m	m²)	Stainles	ss steel	A	u	Bra	SS	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
ľ	No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
ſ	13035				0									0	0					

					VC131011	001
					Lead angle shape	
	L ↓ mm	→ + + + + + + + + + + + + + + + + + + +	mm	+ + mm	<b>→</b> mm	13035 Ident. No.
UNF 4 in	48	2.4	40	3.5	2.7	050
UNF 6 in	40	2.95	45	4	3	070
UNF 8 in	36	3.5	45	4.5	3.4	080
UNF 10 in	32	4.1	50	6	4.9	090
UNF 12 in	28	4.6	50	6	4.9	100 •
UNF 1/4 in	28	5.5	50	6	4.9	110 •
UNF 5/16 in	24	6.9	56	6	4.9	120 •
UNF 3/8 in	24	8.5	63	7	5.5	130 •
UNF 7/16 in	20	9.9	63	8	6.2	140 •
UNF 1/2 in	20	11.5	63	9	7	150 •
UNF 9/16 in	18	12.9	70	11	9	160 •
UNF 5/8 in	18	14.5	70	12	9	170 •

Prod. Gr. 1KM

## ATORN® ORION® HSS hand tap (DIN 5157) For universal use up to 1000 N/mm²

G HSS S3xd	ISO 2
------------	-------

#### Application:

No. 13045 010–13046 140: For producing pipe threads by hand in through holes and blind holes, in steel, non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm² in single-part production.

No. 13046 710–13046 880: For manually tapping pipe threads in through holes and blind holes in the steel, NF metal and (cast) material groups up to a strength of 1000 N/mm² in single part production.

#### Execution:

• No. 13045 010–13046 140: Set containing taper tap (form D) and third tap (plug) (form C)

- No. 13046 710–13046 780: Taper tap with notch shape A with one ring
- No. 13046 820-13046 880: Third tap notch shape C without ring

#### Advantage:

- No. 13045: Long service life and process reliability through innovative cutting geometry and universal use for maximum application flexibility
- No. 13046 010–13046 140: Standard geometry with very good price/performance ratio
- No. 13046 710-13046 880: Standard geometry with a very good price-performance ratio

# int



No. 13045 010-13046 140, 13046 820-13046 880 Third tap, shape C



No. 13045 010-13046 780 Taper tap, shape D

														p.	755	p. 170	p. 62	p. 282	p. 283
Application	Ste	el (N/m	m ² )	Stainle	ss steel	A	lu	Bra	ISS	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13045				0							•		0	0					
13046010-140				0									0	0					
13046710-780				0									0	0					
13046810-880				0									0	0					

						ATO	<u>RN</u> °	ORI	<u>ON</u> °				
					Version		Set		Set	Ta	aper tap	TI	hird tap
				Le	ad angle shape		D/C		D/C		D		С
	<mark>↓</mark> mm	→ + + 	<b>T</b> mm	→ mm	→ → mm	1304! Ident.		1304 Ident.		1304 Ident.		1304 Ident.	
G 1/8 in	28	8.8	63	7	5.5	010	•	010	•	710	•	-	-
G 1/4 in	19	11.8	70	11	9	020	•	020	•	720	•	820	•
G 3/8 in	19	15.25	70	12	9	030	•	030	•	730	•	830	•
G 1/2 in	14	19	80	16	12	040	•	040	•	740	•	840	•

1



						ATO	<u>RN</u> *	<u>ORI</u>	<u>DN</u> *				
					Version		Set		Set	Ta	per tap	Tł	nird tap
				Le	ad angle shape		D/C		D/C		D		С
	T T T T T T T	* * 		+ mm	→→ mm	1304 Ident.		1304 Ident.		1304 Ident.		13040 Ident.	
G 5/8 in	14	21	80	18	14.5	-	-	050	•	750	•	850	•
G 3/4 in	14	24.5	90	20	16	060	•	060	•	760	•	860	•
G 7/8 in	14	28.25	90	22	18	-	-	070	•	-	-	-	-
G 1 in	11	30.75	100	22	20	-	-	080	•	780	•	880	•
G 1-1/4 in	11	39.25	125	32	24	-	-	100	•	-	-	-	-
G 1-1/2 in	11	45.25	140	36	29	-	-	120	•	-	-	-	-
G 2 in	11	57	160	45	35	-	-	140	•	-	-	-	-

1

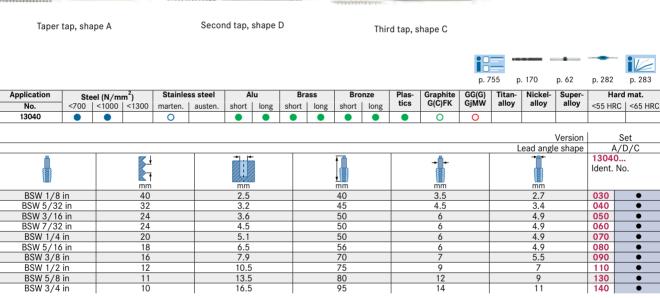
1

ORION = Prod. Gr. 1DA ATORN = Prod. Gr. 1KM

## **TORN® HSS hand tap set** (DIN 351) for universal use up to 1000 N/mm2



#### Application:


For producing UNC (unified coarse threads) by hand in through holes and blind holes, in steel, non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm² in single-part production.

#### Execution:

 Set containing taper tap (form A), second tap (form D) and third tap (plug) (form C)

#### Advantage:

Long service life and process reliability through innovative cutting geometry and universal use for maximum application flexibility



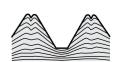
Prod. Gr. 1KM



## Female thread creation: Thread forming (thread tapping)

In contrast to tapping, where sections are cut out of the material, the process of thread forming does not involve cutting. The material is made to flow through the polygon shape of the thread former. The fibre pattern is not interrupted.

#### Advantages:


- Very high working speed and process reliability
- Very high surface quality
- One tool for through hole and blind hole
- No clamping problems
- Higher thread strength
- Tools are easier to use
- Long service life, less breakage
- Deep threads

#### **Disadvantages:**

- Higher torque
- Special pre-drilling diameter with tight tolerance
- Incomplete moulding of cores (claw)
- Minimum expansion of tool must be ensured
- Regrinding not possible
- Lubrication essential
- Where used in the food or medicine industries, there is a risk of germ build-up in the area of the moulding recess.









Ο Ο Ο

p. 283

Hard mat.

Set

-

.

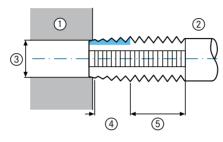
.

.

Ŷ



## Thread forming - the process


## Process:

In contrast to tapping, where sections are cut out of the material, thread forming is a non-cutting, pressure forming procedure.

- Advantages: No chip formation
- Up to 30% higher surface quality than with thread cutting
- Up to 40% higher processing speed than with thread cutting
- Threads in through holes and blind holes can be produced with the same tool
- Wide range of materials processable
- Cutting of thread eliminated
- Thread pitch and thread angle errors as with cut threads eliminated
- Shaped threads have higher strength owing to non-continuous cut

Requirements: For all shapeable materials with elongation >10 %.

unlike with screw tapping, in thread forming the thread is produced by deforming the material. the screw-shaped, polygonal, threaded part of the tool is "screwed in" to the pre-drilled workpiece. It is fed in evenly to match the target thread pitch. the thread profile penetrates the workpiece gradually via the initial cut, causing it to flow and deform plastically.





(1) workpiece (2) tool (3) pre-drill diameter ④ run-in ⑤ guide part

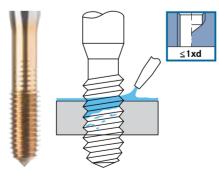
For more detailed information and explanations, refer to the technical manual.

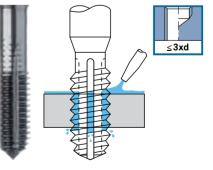


## Lubrication grooves on thread formers

#### Process:

In contrast to tapping, where sections are cut out of the material, thread forming is a non-cutting, pressure forming procedure.


#### Advantages:


228

- No chip formation
- Up to 30% higher surface quality than with thread cutting
- Up to 40% higher processing speed than with thread cutting
- Threads in through holes and blind holes can be produced with the same tool
- Wide range of materials processable
- Cutting of thread eliminated
- Thread pitch and thread angle errors as with cut threads eliminated
- Shaped threads have higher strength owing to non-continuous cut

Requirements: For all shapeable materials with elongation >10 %.

We distinguish between two different tool types when it comes to thread formers. There are thread formers with and without lubrication grooves. Lubrication grooves ensure uniform lubrication even in the lower section of deeper threads. Lubrication grooves are also necessary in horizontal machining. Thread formers with lubrication grooves can be used universally. Thread formers without lubrication grooves can produce thread depths of up to 1.5xD with an optimum service life.





Thread formers without lubrication grooves

Thread formers with lubrication grooves

For more detailed information and explanations, refer to the technical manual.



Source: Hahn+Kolb Werkzeuge GmbH Technical data subject to change Availability subject to country specific rules and regulations.



## Core hole drilling when thread forming

#### Process:

In contrast to tapping, where sections are cut out of the material, thread forming is a non-cutting, pressure forming procedure.

#### Advantages:

- No chip formation
- Up to 30% higher surface quality than with thread cutting
- Up to 40% higher processing speed than with thread cutting
- Threads in through holes and blind holes can be produced with the same tool
- Wide range of materials processable
- Cutting of thread eliminated
- Thread pitch and thread angle errors as with cut threads eliminated
- Shaped threads have higher strength owing to non-continuous cut

Requirements: For all shapeable materials with elongation >10 %.

It is also necessary to drill core holes when thread forming, in order to create a shaped thread. The core hole must have a defined diameter within a certain tolerance range. Countersinking is also essential. When thread forming, however, the core hole is significantly more accurate than when tapping.

#### Example:

Thread M10 x 1.5 is 9.30 mm. Tolerance = max. hole 9.38 mm - min. hole = 9.26 mm = 0.12 mm.

When tapping, the tolerance for the same thread is 0.3 mm.

It is important that the drilling is conducted with very accurate drills. The best results are achieved with solid carbide tools. The following graphics illustrate the relationship between the various core hole diameters and their impact on the formed thread.







### Pre-drill diameter too large:

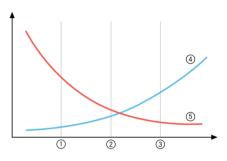
- Thread not fully formed
- Moulding recess too big
- Profile height too low

Optimal pre-drill diameter:

Pre-drill diameter too small:Thread over-formed

Thread fully formed

Ideal profile height


No moulding recess

Profile height too high

Small moulding recess

By optimising the pre-drill diameter, a significantly higher service life can be achieved, not only in series production generally, but also with materials which are difficult to machine such as stainless steel. This graphic illustrates the relationship: Ŷ

- ① Minimum dimension
- ② Nominal dimension
- ③ Maximum dimension
- ④ Service life⑤ Torque



For more detailed information and explanations, refer to the technical manual.





## Lubrication and cooling during thread forming

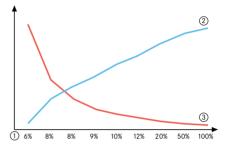
#### Process:

In contrast to tapping, where sections are cut out of the material, thread forming is a non-cutting, pressure forming procedure.

- Advantages: No chip formation
- Up to 30% higher surface quality than with thread cutting
- Up to 40% higher processing speed than with thread cutting
- Threads in through holes and blind holes can be produced with the same tool
- Wide range of materials processable
- Cutting of thread eliminated
- Thread pitch and thread angle errors as with cut threads eliminated
- Shaped threads have higher strength owing to non-continuous cut

Requirements: For all shapeable materials with elongation >10 %.

in thread forming, the main job of the coolant is lubrication. the more lubrication is used with the highest possible grease content, the longer the service life. we distinguish between the following coolants:


#### non water-soluble coolants

these are mineral oils with the best lubricating properties. they minimise friction and thus increase the service life.

#### water-soluble coolants

can be emulsified with water, the grease content of these coolants should be no lower than 6%, the ideal grease content is over 12%.

(1) coolant grease content (2) service life (3) friction



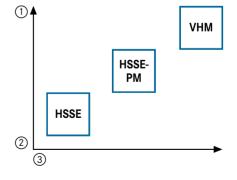
#### For more detailed information and explanations, refer to the technical manual.

## **Cutting materials in thread forming**

#### Process

230

In contrast to tapping, where sections are cut out of the material, thread forming is a non-cutting, pressure forming procedure.


#### Advantages:

- No chip formation
- Up to 30% higher surface quality than with thread cutting
- Up to 40% higher processing speed than with thread cutting
- Threads in through holes and blind holes can be produced with the same tool
- Wide range of materials processable
- Cutting of thread eliminated
- Thread pitch and thread angle errors as with cut threads eliminated
- Shaped threads have higher strength owing to non-continuous cut

Requirements: For all shapeable materials with elongation >10 %.

Selecting the correct cutting material in thread forming depends strongly on the machine conditions and the quantity to be manufactured. The cutting materials HSSE and HSSE-PM are used in the small to medium quantity range or with unstable machine conditions. In large-scale series production, it is more economical to use solid carbide thread formers.

① Stable ② Unstable ③ Service life/procurement costs



For more detailed information and explanations, refer to the technical manual.



## Clamping device recommendation for thread forming

	Length compensa- tion chuck	Synchronous tapping chuck	Collet chucks	Shrink-fit chucks	Hydro-expansion chucks	Surface chuck
		T	Ē			T
Length compensation range	9-15 mm	0.5-1 mm	0	0	0	0
Suitable for usage conditions	Unstable	Unstable-stable (synchronous)	Stable (synchronous)	Stable (synchronous)	Stable (synchronous)	Stable
Suitable for conventional machines	0	0	0			
Suitable for CNC machines	0		0	0	0	0
Suitable for HSSE/HSSE PM thread formers	0	0	0	0	0	0
Suitable for solid carbide thread formers		0	0	0	0	0

= very well suited

O = suitable

- $\bigcirc$  = limited suitability
- Coatings and surface treatments for thread forming

### Process

In contrast to tapping, where sections are cut out of the material, thread forming is a non-cutting, pressure forming procedure.

- Advantages:
- No chip formation
- Up to 30% higher surface quality than with thread cutting
- Up to 40% higher processing speed than with thread cutting
- Threads in through holes and blind holes can be produced with the same tool
- · Wide range of materials processable
- Cutting of thread eliminated
- Thread pitch and thread angle errors as with cut threads eliminated
- Shaped threads have higher strength owing to non-continuous cut

Requirements: For all shapeable materials with elongation >10 %.

#### Titanium nitride

This universal coating is suitable for softer steels and non-ferrous metals. It is only of limited suitability for high-strength steel and stainless steels.

- Vickers hardness: 2200–2300 HV
- Friction coefficient: 0.5
- Temperature resistance: 500-600°C
- Colour: Gold

#### Titanium aluminium nitride


The titanium aluminium nitride coating is suitable for steels and for alloyed heat-treated steels, tool steels, high-speed steels, stainless

steels, titanium, hardened steels and nickel-based materials

- Vickers hardness: 3200 HV
- Friction coefficient of steel: 0.2
- Temperature resistance: <800°C</li>
- Colour: Blue-grey (anthracite)
- Lubrication: Oil/emulsion



TiAIN



Its high level of hardness makes titanium carbon nitride coating very well suited to all steels as well as stainless steels, titanium and cast materials above GGG50.

- Vickers hardness: 3000 HV
- Friction coefficient of steel: 0.2
- Temperature resistance: 400°C
- Colour: Blue grey
- (anthracite) lubrication: Oil/emulsion

#### Aluminium chrome nitride

The aluminium chrome nitride coating achieves a very long service life due to its wear resistance, oxidation resistance and high-temperature hardness. This coating is only suitable for steel materials in combination with oil as a coolant.

- Vickers hardness: 3200 HV
- Friction coefficient of steel: 0.35
- Temperature resistance: <1100°C</li>
- Colour: Grey blue
- Lubrication: Oil



AICrN







Ŷ

#### CARBO

The CARBO coating is an extremely hard layer and was developed for all non-ferrous metals such as copper, brass and aluminium. Built-up edges are significantly reduced by the high level of hardness and low friction coefficient.

- Vickers hardness: 6000 HV
- Friction coefficient: 0.1
- Temperature resistance: 700°C
- Colour: Black
- Lubrication: Oil/emulsion
- For more detailed information and explanations, refer to the technical manual.



www.iconridge.com





### thread formers without lubrication grooves for thread depths of up to 1-1.5xD

Toler-E 1000 1300 Cutting ance of Coolant 700 ø Surface Μ Ν page material screw supply N/ N/ N/ mm² mm² taps ISO 2 mm 13394009-100 M1-M20 HSSE External 0 TiN 234 (6H) ISO 3 13394620-700 M2-M12 HSSE TiN External 0 234 (6G)

#### thread formers with lubrication grooves for thread depths of up to 3xD

≤3xd							•	Contraction of the		Contractor of	-
	ø	Cutting material	Surface	Toler- ance of screw taps	Coolant supply	P 700 N/ mm ²	P 1000 N/ mm ²	P 1300 N/ mm ²	м	N	page
13392210-300	M1-M30	HSSE	TiCN	ISO 2X (6HX)	External	0	•	•		0	235
13390110-300	M1-M20	HSSE-PM	TiCN	ISO 2X (6HX)	External	•	•	•	•	0	234
13394130-200	M3-M16	HSSE	TiN	ISO 2X (6HX)	External	•	•	•	•	0	235-236
13394530-600	M3-M16	HSSE	AICrN	ISO 2X (6HX)	External	•	•	•	•	0	236-237
13394330-400	M3-M16	HSSE	TiN	ISO 3X (6GX)	External	•	•	•	•	0	235-236
13396350-374	M8-M24	HSSE	TiCN	ISO 2X (6HX)	External	0	•	•		0	239
13396100-134	MF6-MF24	HSSE	TiN	ISO 2 (6H)	External	•	•	•	•	0	 240
13396200-210	G 1/16-G 3/4 inch	HSSE	TiN		External	•	•	•	•	0	 240

......

## thread formers with lubrication grooves with internal cooling for thread depths of up to 3xD





	Ø	Cutting material	Surface	Toler- ance of screw taps	Coolant supply	P 700 N/ mm ²	P 1000 N/ mm ²	P 1300 N/ mm ²	м	N	page
13390350-500	M5-M20	HSSE-PM	TiCN	ISO 2X (6HX)	Internal radial	•	•		•	0	237-238
13393350-400	M5-M20	HSSE-PM	TiCN	ISO 2 (6H)	Internal radial	•	•	•	•	0	238
13398650-700	M5-M20	HSSE-PM	TiAIN	ISO 2X (6HX)	Internal radial	•	•	•	•	0	-
13399530-600	M3-M20	HSSE-PM	TiN	ISO 2X (6HX)	Internal axial	•	•	•	•	0	238-239

## Machine thread former HSSE-TiN type Uni for universal use up to 1300 N/mm2



Application:


For producing metric threads in through holes and blind holes on CNC and conventional machines in the steel, stainless steel and NF metal material groups up to a strength of 1300 N/mm² with > 10% material expansion.

#### Execution:

 Without lubrication grooves, structural dimensions according to: DIN 371 = reinforced shank (up to M10), DIN 376 = protruding shank (from M12)

#### Advantage:

- Innovative mould geometry ensures very high dimensional accuracy and process reliability
- Ident. No. 120–201, 720: High-quality, torsion-resistant HSSE cutting material and surface finish for very high service life requirements







Application	Ste	el (N/m	m ² )	Stainle	ss steel	A	u	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMŴ	alloy	alloy	alloy	<55 HRC	<65 HRC
13394009-100	30	25	10	10	7	26	38	20	30	18	25								
13394120-201	30	25	10	10	7	26	38	20	30	18	25								(
13394620-700	30	25	10	10	7	26	38	20	30	18	25								
13394720	30	25	10	10	7	26	38	20	30	18	25								

						Cutting material	HSSE		HSSE
						Surface	TiN		TiN
-					Toler	ance of screw taps	ISO 2 (6H)	ISC	) 3 (6G)
						Lead angle shape	C		C
					Application	type/machine type	CNC   Conventional		CNC   ventional
						Coolant supply	External	E	kternal
	L T mm	→ · · · · · · · · · · · · · · · · · · ·	<b>T</b> mm	→ + mm	mm	DIN	13394 Ident. No.	13394 Ident.	
M1	0.25	0.9	40	2.5	2.1	Similar to 371	009	-	-
M1.2	0.25	1.1	40	2.5	2.1	Similar to 371	012 •	-	-
M1.4	0.3	1.28	40	2.5	2.1	Similar to 371	014 •	-	-
M1.6	0.35	1.46	40	2.5	2.1	Similar to 371	016	-	-
M1.7	0.35	1.55	40	2.5	2.1	Similar to 371	017 •	-	-
M1.8	0.35	1.66	40	2.5	2.1	Similar to 371	018	-	-
M2	0.4	1.8	45	2.8	2.1	Similar to 371	020	620	•
M2.5	0.45	2.3	50	2.8	2.1	Similar to 371	025 •	625	•
M3	0.5	2.8	56	3.5	2.7	Similar to 371	030	630	•
M3.5	0.6	3.25	56	4	3	Similar to 371	035 •	635	•
M4	0.7	3.7	63	4.5	3.4	Similar to 371	040 •	640	•
M5	0.8	4.65	70	6	4.9	Similar to 371	050 •	650	•
M6	1	5.55	80	6	4.9	Similar to 371	060 •	660	•
M8	1.25	7.4	90	8	6.2	Similar to 371	080	680	•
M10	1.5	9.3	100	10	8	Similar to 371	100 •	700	•
M12	1.75	11.2	110	9	7	Similar to 376	120 •	720	•
M14	2	13.1	110	11	9	Similar to 376	141 •	-	-
M16	2	15.1	110	12	9	Similar to 376	161 •	-	-
M20	2.5	18.9	140	16	12	Similar to 376	201 •	-	-

Prod. Gr. 1KE

## ATORN® Machine For use up

Advantage:

requirements



Application:

For producing metric threads on CNC and conventional machines in blind holes in the steel, stainless steel and NF metal material groups up to a strength of 1300 N/mm² with > 10% material expansion.

#### Execution:

with oil grooves, h6 shank

e thread former HSSE-PM type UNI MAX H6	
p to 1300 N/mm²	

H6 shank for shrinking applications

Innovative mould geometry ensures very high

dimensional accuracy and process reliability

• High-quality, torsion-resistant HSSE PM cutting material and surface finish for very high service life



		~~		i
p. 170	p. 231	p. 22	p. 757	p. 284

Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titar			per-	Ha	ard mat.
No.	<700	<1000		marten.	austen.	short	long	short	long	short	long	tics	G(Ć)FK	GjMW	alloy	y allo	y al	lloy	<55 HR	C   <65 HF
13390110-300	30	25	10	10	7	26	38	20	30	18	25									
													Cu	tting mat	terial		SE-PM		HS	SSE-PM
															face		ïCN			TiCN
													Tolerance	of screw	taps	ISO .	X (4H)	X)	ISO	2X (6HX)
														l angle sl			С			С
													C	oolant su	pply	Ex	ternal			xternal
<u> </u>		<b>∑</b> ∔			<b>⊢</b>	Ŧ	ĥ		→ <b>□</b> -	-				DIN		13390			13390	
							n in									Ident. N	lo.		Ident.	No.
		<b>₹</b>		mm		<u>*</u>	nm		mm			mm								
M1		0.25		0.9			10		2.5			2.1	Sir	nilar to 3	271	110	•		-	-
M1.2		0.25		1.1			10		2.5		-	2.1		nilar to 3		112			-	
M1.2		0.3		1.25	5		10		2.5			2.1		nilar to 3		114	•		-	-
M1.6		0.35		1.45			10		2.5		-	2.1		nilar to 3		-	-	_	116	•
M1.7		0.35		1.55			10		2.5			2.1		nilar to 3		-	-		117	•
M1.8		0.35		1.65			10		2.5			2.1		nilar to 3		-	-		118	•
M2		0.4		1.85	5	4	15		2.8			2.1	Sir	nilar to 3	371	-	-		121	•
M2.5		0.45		2.30			50		2.8			2.1	Sir	nilar to 3	371	-	-		125	•
M3		0.5		2.80	)	Ę	56		3.5			2.7	Sir	nilar to 3	371	-	-		130	•
M4		0.7		3.70	)	(	53		4.5			3.4	Sir	nilar to 3	371	-	-		140	•
M5		0.8		4.65	5	7	70		6			4.9	Sir	nilar to 3	371	-	-		150	•
M6		1		5.55	5	8	30		6			4.9	Sir	nilar to 3	371	-	-		160	•
M8		1.25		7.40	)		90		8			6.2	Sir	nilar to 3	371	-	-		180	•
M10		1.5		9.30	)	1	00		10			8.0	Sir	nilar to 3	371	-	-		200	•
M12		1.75		11.2			10		9			7.0		376		-	-		220	•
M14		2		13.1	0		10		11			9.0		376		-	-		240	•
M16		2		15.1	0		10		12			9.0		376		-	-		260	•
M20		2.5		18.9	0	1	40		16			12.0		376		-	-		300	•

Prod. Gr. 1KE





p. 231

p. 22

p. 757

p. 170

p. 284



#### Application: For producing metric threads on CNC machines or conventional machines in through holes and blind holes in the steel, stainless steel and non-ferrous metals material groups up to a strength of 1500 $N/mm^2$ with > 10% material expansion.

#### Execution:

For universal use in series production, up to 1500 N/mm²

ATORN[®] Machine thread former HSSE TiCN type Uni Max

 With lubrication grooves, structural dimensions according to: DIN 371 = reinforced shank (up to M10), DIN 376 = protruding shank (from M12)



- Innovative shape geometry optimised for machining high-strength materials
- · High-quality, torsion-resistant HSSE cutting mate-
- rial and surface finish ensure a long service life

Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	iss	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13392210-300	28	12	10			30	40	30	40	25	35	30							
13392320-500	28	12	10			30	40	30	40	25	35	30							

						Cutting material	
						Surface	TiCN
					To	lerance of screw taps	ISO 2X (6HX)
						Lead angle shape	C
					Applicatio	n type/machine type	CNC   Conventional
						Coolant supply	External
		mm	mm	+ +		DIN	13392 Ident. No.
M1	0.25	0.9	40	2.5	2.1	371	210 •
M1.2	0.25	1.1	40	2.5	2.1	371	212 •
M1.4	0.3	1.27	40	2.5	2.1	371	214 •
M1.6	0.35	1.45	40	2.5	2.1	371	216 •
M2	0.4	1.85	45	2.8	2.1	371	220 •
M2.5	0.45	2.33	50	2.8	2.1	371	225 •
M3	0.5	2.8	56	3.5	2.7	371	230
M4	0.7	3.7	63	4.5	3.4	371	240 •
M5	0.8	4.65	70	6	4.9	371	250 •
M6	1	5.55	80	6	4.9	371	260 •
M8	1.25	7.4	90	8	6.2	371	280 •
M10	1.5	9.3	100	10	8	371	300 •
M12	1.75	11.2	110	9	7	376	320 •
M14	2	13	110	11	9	376	340 •
M16	2	15	110	12	9	376	360 •
M18	2.5	16.8	125	14	11	376	380 •
M20	2.5	18.8	140	16	12	376	400 •
M22	2.5	20.8	140	18	14.5	376	420 •
M24	3	22.5	160	18	14.5	376	440 •
M27	3	25.5	160	20	16	376	470 •
M30	3.5	28.2	180	22	18	376	500 •

Prod. Gr. 1KE

## ATORN

## Machine thread former HSSE-TiN type Uni

For universal use up to 1300 N/mm²



#### Application:

For producing metric threads on CNC machines or conventional machines in through holes and blind holes in the steel, stainless steel and non-ferrous metals material groups up to a strength of 1300 **N/mm²** with > 10% material expansion.

#### Execution:

 With lubrication grooves, structural dimensions according to: DIN 371 = reinforced shank (up to M10), DIN 376 = protruding shank (from M12)

#### Advantage:

- Innovative mould geometry ensures very high dimensional accuracy and process reliability.
- High-quality, torsion-resistant HSSE cutting material and surface finish for very high service life requirements.





A	pplication	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	iss	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	l mat.
	No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13	394130-200	30	25	10	10	7	26	38	20	30	18	25								
13	394212-216	30	25	10	10	7	26	38	20	30	18	25								
13	394330-400	30	25	10	10	7	26	38	20	30	18	25								
13	394412-416	30	25	10	10	7	26	38	20	30	18	25								





						Cutting material	HSSE	HSSE
						Surface	TiN	TiN
					Tolera	ance of screw taps	ISO 2X (6HX)	ISO 3X (6GX)
						Lead angle shape	C	C
					Application t	ype/machine type	CNC	CNC
					Conventional	Conventional		
						Coolant supply	External	External
<b>A</b>		*		_ <b>_</b>	+++	DIN	13394	13394
	T						Ident. No.	Ident. No.
	mm	mm	mm	mm	mm	0	100	
M3	0.5	2.8	56	3.5	2.7	Similar to 371	130 •	330 •
M4	0.7	3.7	63	4.5	3.4	Similar to 371	140 •	340 •
M5	0.8	4.65	70	6	4.9	Similar to 371	150 •	350 •
M6	1	5.55	80	6	4.9	Similar to 371	160	360
M8	1.25	7.4	90	8	6.2	Similar to 371	180 •	380 •
M10	1.5	9.3	100	10	8	Similar to 371	200	400 •
M12	1.75	11.2	110	9	7	Similar to 376	212 •	412 •
M16	2	15	110	12	9	Similar to 376	216	416 •

### **ORION**[®] Machine thread former HSSE-TiN type Uni For universal use up to 1300 N/mm²



#### Application:

For producing metric threads on CNC machines or conventional machines in through holes and blind holes in the **steel**, **stainless steel and non-ferrous metals material groups up to a strength of 1300 N/mm²** with > 10% material expansion.

#### Execution:

 With lubrication grooves, structural dimensions according to: DIN 371 = reinforced shank (up to M10), DIN 376 = protruding shank (from M12)

#### Advantage:

- Innovative mould geometry ensures very high dimensional accuracy and process reliability
- High-quality, torsion-resistant HSSE cutting material and surface finish for very high service life requirements



Application	Ste	el (N/m	n²)	Stainles	ss steel	A	lu	Bra	ISS	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13392730-820	WS-P	WS-P	WS-P	WS-P	WS-M	WS-N	WS-N	WS-N	WS-N	WS-N	WS-N	WS-N	WS-N	WS-K	WS-S	WS-S	WS-S	WS-H	WS-H
																Cutting		Це	

				Cutting material HSSE					
							Surface		TiN
						To	plerance of screw taps	ISO 2	X (6HX)
_							Lead angle shape		C
_							Coolant supply	Ext	ternal
		₩ T mm	→ , , , , , , , , , , , , , , , , , , ,	T mm	+∎+ mm	mm	DIN	13392. Ident. N	
	M3	0.5	2.8	56	3.5	2.7	Similar to 371	730	•
	M4	0.7	3.7	63	4.5	3.4	Similar to 371	740	•
	M5	0.8	4.65	70	6	4.9	Similar to 371	750	•
	M6	1	5.55	80	6	4.9	Similar to 371	760	•
	M8	1.25	7.4	90	8	6.2	Similar to 371	780	•
	M10	1.5	9.3	100	10	8	Similar to 371	800	•
	M12	1.75	11.2	110	9	7	Similar to 376	820	•

Prod. Gr. 1DB



Machine thread former HSSE-ALCRN lubrication grooves for universal use up to 1300 N/mm² with oil lubrication



#### Application:

236

For producing metric threads on CNC machines or conventional machines in through holes and blind holes with oil lubrication in the steel, stainless steel and non-ferrous metals material groups up to a strength of 1300 N/mm² with > 10% material expansion.

#### Execution:

 With lubrication grooves, structural dimensions according to: DIN 371 = reinforced shank (up to M10), DIN 376 = protruding shank (from M12)

## Advantage:

- Innovative mould geometry ensures very high dimensional accuracy and process reliability.
- High-quality, torsion-resistant HSSE cutting material and surface finish for very high service life requirements.

	Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	iss	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
	No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
·	13394530-600	30	25	10	10	7	26	38	20	30	18	25								
	13394612-616	30	25	10	10	7	26	38	20	30	18	25								

www.iconridge.com



p. 170

p. 231



p. 757

p. 284

p. 22

HSSE

TIOOL	Outting matchai													
AICrN	Surface													
ISO 2X (6H)	erance of screw taps	To												
C	Lead angle shape													
CNC   Convention	n type/machine type	Applicatio												
	Coolant supply													
13394 Ident. No.	DIN		+ +	<b>T</b> mm	→ + + +	<b>↓</b> ↑ mm								
530 •	Similar to 371	2.7	3.5	56	2.8	0.5	M3							
540 •	Similar to 371	3.4	4.5	63	3.7	0.7	M4							
550 •	Similar to 371	4.9	6	70	4.65	0.8	M5							
560 •	Similar to 371	4.9	6	80	5.55	1	M6							
580 •	Similar to 371	6.2	8	90	7.4	1.25	M8							
600 •	Similar to 371	8	10	100	9.3	1.5	M10							
612 •	Similar to 376	7	9	110	11.2	1.75	M12							
616 •	Similar to 376	9	12	110	15	2	M16							

Prod. Gr. 1KE

## ATORN[®] HSSE-PM TiN synchronous machine thread former For universal use up to 1300 N/mm²

Application:

For manufacturing metric threads in through holes and blind holes on CNC and conventional machines in the steel, stainless steel and NF metal material groups up to a strength of 1300 N/mm² with > 10% material expansion.

#### Execution:

 With lubrication grooves, structural dimensions according to: DIN 371 = reinforced shank (up to M10), DIN 376 = protruding shank (from M12)

#### Advantage:

- Innovative mould geometry ensures very high
- dimensional accuracy and process reliability.
- Short guide component reduces friction.

Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	iss	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13393130-200	30	25	10	10	7	26	38	20	30	18	25								
13393220-260	30	25	10	10	7	26	38	20	30	18	25								

					o								
					Cutting material	HSSE-PM							
						TiN							
				То		ISO 2 (6H)							
Lead angle shape													
T mm	++ mm	<b>T</b>	-→ mm		DIN	13393 Ident. No.							
0.5	2.8	56	3.5	2.7	Similar to 371	130 •							
0.7	3.7	63	4.5	3.4	Similar to 371	140 •							
0.8	4.65	70	6	4.9	Similar to 371	150 •							
1	5.55	80	6	4.9	Similar to 371	160 •							
1.25	7.4	90	8	6.2	Similar to 371	180							
1.5	9.3	100	10	8	Similar to 371	200 •							
1.75	11.2	110	9	7	Similar to 376	220 •							
2	13.1	110	14	11	Similar to 376	240 •							
2	15	110	12	9	Similar to 376	260 •							
	0.5 0.7 0.8 1 1.25 1.5 1.75 2	Imm         mm           0.5         2.8           0.7         3.7           0.8         4.65           1         5.55           1.25         7.4           1.5         9.3           1.75         11.2           2         13.1	i         i         i           mm         mm         mm           0.5         2.8         56           0.7         3.7         63           0.8         4.65         70           1         5.55         80           1.25         7.4         90           1.5         9.3         100           1.75         11.2         110           2         13.1         110	i         i         i         i           mm         mm         mm         mm         mm           0.5         2.8         56         3.5           0.7         3.7         63         4.5           0.8         4.65         70         6           1         5.55         80         6           1.25         7.4         90         8           1.5         9.3         100         10           1.75         11.2         110         9           2         13.1         110         14	Application           Image: state	Surface           Surface           Tolerance of screw taps           Lead angle shape           Application type/machine type           Coolant supply           Image         Image         Image         DIN           Image         Image <thimage< th="">         Image         <thimage< t<="" td=""></thimage<></thimage<>							

Prod. Gr. 1KE

## **ATORN**[®] Machine thread former HSSE-PM TiCN IC radial type Uni Max H6

#### For universal use up to 1300 N/mm²





For producing metric threads on CNC and conventional machines in blind holes in the steel, stainless steel and NF metal material groups up to a strength of 1300 N/mm² with > 10% material expansion.

#### Execution:

• with oil grooves and internal cooling h6 shank

### Advantage:

- H6 shank for shrinking applications
- Innovative mould geometry ensures very high dimensional accuracy and process reliability
- High-quality, torsion-resistant HSSE PM cutting
- material and surface finish for very high service life requirements





A	Application		el (N/m	m²)	Stainle	ss steel	A	u	Bra	ISS	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
	No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13	390350-500	45	30	20	18	12	40	50	35	45	27	32								







p. 757

p. 284

p. 22

p. 170

p. 231

Prod. Gr. 1KE

## **ATORN**[®] Machine thread former HSSE-PM TiALN IC radial, type Uni For universal use up to 1300 N/mm²



#### Application:

For producing metric threads on CNC and conventional machines in blind holes in the steel, stainless steel and NF metal material groups up to a strength of 1300 N/mm² with > 10% material expansion.

#### Execution:

 With lubrication grooves and internal cooling, structural dimensions according to: DIN 371 = reinforced shank (up to M10), DIN 376 = protruding shank (from M12)

#### Advantage:

- Innovative mould geometry ensures very high dimensional accuracy and process reliability
- High-quality, torsion-resistant HSSE PM cutting material and surface finish for very high service life requirements
- Cutting edge finish for very high service life requirements

Application	Ste	el (N/m	m ² )	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13393350-400	45	30	20	18	12	40	50	35	45	27	32								
13393420-500	45	30	20	18	12	40	50	35	45	27	32								

Cutting mat														
						Surface	HSSE-F TiCN							
					То	lerance of screw taps	ISO 2 (0	6H)						
						Lead angle shape	C							
	Application type/machine type													
	Coolant supply													
	↓ ↑ mm	→ ↓ ↓ ↓ mm	T mm	+ ↓ mm	<b>→</b> mm	DIN	13393 Ident. No.							
M5	0.8	4.65	70	6	4.9	Similar to 371	350	•						
M6	1	5.55	80	6	4.9	Similar to 371	360	•						
M8	1.25	7.4	90	8	6.2	Similar to 371	380	•						
M10	1.5	9.3	100	10	8	Similar to 371	400	•						
M12	1.75	11.2	110	9	7	Similar to 376	420	•						
M16	2	15	110	12	9	Similar to 376	460	•						
M18	2.5	16.9	125	14	11	Similar to 376	480	•						
M20	2.5	18.9	140	16	12	Similar to 376	500	•						

Prod. Gr. 1KE

## Machine thread former, extra long, HSSE-PM TiN type Uni For universal use up to 1300 N/mm²



#### Application:

For manufacturing deeply recessed fine metric threads in through holes and blind holes on CNC and conventional machines in the steel, stainless steel and non-ferrous metal material groups up to a strength of 1300 N/mm² with > 10% material expansion in single part and series production.

#### Execution:

238

 Extra-long machine thread former with lubrication grooves

Advantage:
------------

- Innovative mould geometry ensures very high dimensional accuracy and process reliability.
- Very easy access to deeply recessed threads.
- Ident. No. 530-600:
  - High-quality, torsion-resistant HSSE PM cutting material and surface finish for very high service life requirements.
  - Cutting edge finish for very high service life requirements.

	Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
Ì	No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
	13399530-600	45	30	20	18	12	40	50	35	45	27	32								
- [	13399620-700	45	30	20	18	12	40	50	35	45	27	32								



p. 284

p. 231

p. 22

p. 757

p. 170



					Inread		a for	mers w
						Cutting material	н	SSE-PM
						Surface		TiN
					To	erance of screw taps	ISO	2X (6HX)
						Lead angle shape		С
					Applicatio	n type/machine type		CNC   ventional
						Coolant supply	Inte	rnal axial
	↓ ↑ mm	+ + + mm	mm	+++ mm	mm	DIN	13399 Ident.	
M3	0.5	2.8	112	2.2	-	Similar to 371   2174	530	•
M4	0.7	3.7	112	2.8	2.1	Similar to 371   2174	540	•
M5	0.8	4.65	125	3.5	2.7	Similar to 371   2174	550	•
M6	1	5.55	125	4.5	3.7	Similar to 371   2174	560	•
M8	1.25	7.4	140	6.0	4.9	Similar to 371   2174	580	•
M10	1.5	9.3	160	7	5.5	Similar to 371   2174	600	•
M12	1.75	11.2	180	9	7	Similar to 376   2174	620	•
M16	2	15.1	220	12	9	Similar to 376   2174	660	•
M20	2.5	18.9	280	16	12	Similar to 376   2174	700	•

Prod. Gr. 1KE

# ATORN® Machine thread former HSSE TiCN type Uni Max (DIN 374)

For universal use in series production, up to 1500 N/mm²



#### Application:

For producing metric threads on CNC machines or conventional machines in through holes and blind holes in the steel, stainless steel and non-ferrous metals material groups up to a strength of 1500 N/mm² with > 10% material expansion.

#### Execution:

 With lubrication grooves, structural dimensions according to: DIN 371 = reinforced shank (up to M10), DIN 376 = protruding shank (from M12)



- Advantage:
- Innovative shape geometry optimised for
- machining high-strength materials
- High-quality, torsion-resistant HSSE cutting mate-
- rial and surface finish ensure a long service life

Application	Ste	el (N/m	m ² )	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Ha	rd mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Č)FK	GjMW	alloy	alloy	alloy	<55 HR0	C   <65 HRC
13396350-374	28	12	10			30	40	30	40	25	35	30							
																Cutting r	naterial	F	ISSE
																	Surface	1	TICN
																ice of scr		ISO 2	2X (6HX)
															L	ead angl	e shape		С
														Applic	ation typ	be/machi	ne type		NC   rentional
																Coolan	t supply		ternal
<u> </u>			<u> </u>					<b>₹</b>			→Ů←		-	<b>*</b>	DIN			13396	
														8				Ident. N	lo.
			T nm		mm			<b>I</b> mm			mm			nm					
MF8			1		7.55			90			8			5.2		374		350	
MF10			1		9.55			90			10			8	-	374		352	
MF10		1	.25		9.45			100			10			8		374		354	
MF12		1.	1		11.55			100			9			7	-	374		356	•
MF12		1	.25		11.45			100			9			7		374		358	•
MF12			.5		11.3			100			9			, 7		374		360	•
MF14			.25		13.4			100			11			9		374		362	•
MF14			.5		13.3			100			11			9		374		364	•
MF16			.5		15.3			100			12			9		374		366	•
MF18			.5		17.3			110			14			, 11		374		368	•
MF20			.5		19.3			125			16			12		374		370	•
MF22		1	.5		21.3			125			18		1.	4.5		374		372	•
MF24		1	.5		23.3			140			18		1.	4.5		374		374	•

Prod. Gr. 1KF





239



## Thread tools \ Thread former MF

## ATORN® Machine thread former HSSE-TiN type Uni (DIN 374) For universal use up to 1300 N/mm²

requirements



For producing metric threads in through holes and blind holes on CNC and conventional machines in the steel, stainless steel and up to a strength of 1300 expansion.

#### Advantage:

	of 1300 N/mm ² with >	> 10% material	Technical dat DIN: 374	a:				p. 17	'0 p	o. 231	p. 22	p. 757	p. 284
	uld geometry ensures occuracy and process re	, 0											
Application	Steel (N/mm ² )	Stainless steel	Alu	Brass	Bronze	Plas-	Graphite		Titan-	Nickel-	Super-	Hard	mat.

High-quality, torsion-resistant HSSE cutting

material and surface finish for very high service life

												tics	G(C)FK	GjMW	alloy	alloy	alloy		
No.	<700		<1300	marten.	austen.	short	long	short	long	short	long	ucs	G(C)FK	Gjivivv	alloy	alloy	alloy	<55 HR0	C <65 HR
13396100-134	30	25	10	10	7	26	38	20	30	18	25								
																Cutting I	material Surface		ISSE TiN
															Toleran	ice of scr			2 (6H)
																ead angl			C (011)
														Applic		pe/mach		C	NC   entional
																Coolan	t supply	Ex	ternal
			T mm			+ + + + mm				<b>I</b>					mm		13396 Ident. No.		
MF6			0.75			5.65				80			4.5			3.4		100	•
MF8			0.75	5		7.65				90			6			4.9		102	•
MF8			1			7.55				90			6			4.9		104	•
MF10			1			9.55				100			7			5.5		106	•
MF10			1.25	5		9.4				100			7			5.5		108	•
MF12			1			11.55	; ;			100			9			7		110	•
MF12			1.25			11.4				100			9			7		112	•
MF12			1.5			11.3				100			9			7		114	•
MF14			1			13.55	5			100			11			9		116	•
MF14			1.5			13.3				100			11			9		118	•
MF16			1			15.55	; ;			100			12			9		120	•
MF16			1.5			15.3				100			12			9		122	•
MF18			1			17.55				110			14			11		124	•
MF18			1.5			17.3				110			14			11		126	•
MF20			1			19.55				125			16			12		128	•
MF20			1.5			19.3				125			16			12		130	•
MF22			1.5			21.3				125			18			14.5		132	•
MF24			1.5			23.3				140			18			14.5		134	•

Prod. Gr. 1KF

#### HSSE TiN machine thread former (R) for universal use up to 1300 N/mm2

G ≤3xd	HSSE	CNC/conv.	TiN	т. С (2-3)
--------	------	-----------	-----	---------------

#### Application:

For producing metric threads in through holes and blind holes on CNC and conventional machines in the steel, stainless steel and NF metal material groups up to a strength of 1300 N/mm² with > 10% material expansion.

Source: Hahn+Kolb Werkzeuge GmbH

Availability subject to country specific rules and regulations.

Technical data subject to change.

#### Advantage:

- Innovative mould geometry ensures very high dimensional accuracy and process reliability High-quality, torsion-resistant HSSE cutting
- material and surface finish for very high service life requirements

Application	Ste	el (N/m	m ² )	Stainle	ss steel	A	u	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Ha	rd mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Č)FK	GjMW	alloy	alloy	alloy	<55 HR0	C <65 HRC
13396200-210	30	25	10	10	7	26	38	20	30	18	25								
																Cutting I	material Surface		ISSE TiN
															L	ead angl	e shape		С
														Applica	ation typ	be/mach	ine type		NC   entional
																Coolan	t supply	Ex	ternal
						→ ↓ ↓ mm							→ mm				13396 Ident. No.		
G1/16			28			7.3				90			6			4.9		200	•
G1/8			28			9.3				90			7			5.5		202	•
G1/4			19			12.5				100			11			9		204	•
G3/8			19			16				100			12			9		206	•
G1/2			14			20				125			16			12		208	•
G3/4			14			25.5				140			20			16		210	•

Prod. Gr. 1KF





Statement of Statements	_	
ALL IN		and the second se

p. 170	p. 231	p. 22	p. 757	p. 284



www.iconridge.com





# Female thread creation: Milling cutter

The development of computer-controlled machines has made the thread milling procedure another option for creating female threads. The thread is produced by the helical diagonal immersion of a rotating tool. In the process, the axial movement of the tool in one revolution produces the pitch. For this procedure, a CNC machine with at least three axes is required (XYZ).

#### Advantages, tool cost minimisation:

- right-hand and left-hand thread can be manufactured with a tool
- thread milling cutters cover different threads with the same pitch
- for partial thread profiles, a wide range of threads can be produced with a cutting insert

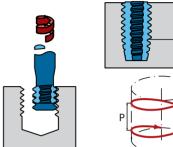
#### Advantages, process reliability:

- Extremely high process reliability with very expensive components
- Reliable process solution for problem materials with poor chip breaking and difficult chip formation
- · First choice with thin-walled workpieces or unstable clamping operations
- High thread quality
- Thread can be made right to the base of a blind hole
- Radius compensation programming enables thread tolerance to be adjusted easily



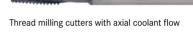
# Internal cooling during thread milling

Internal cooling is of particular importance when it comes to thread milling. The short chips must be rinsed out of the working area by the coolant medium. Otherwise, the chips produced could damage the surface of the thread or even cause cavities on the tool.


We make a fundamental distinction between thread milling cutters with axial coolant flow, used for blind holes, and modified variants with radial coolant flow, which are ideal for through holes.

#### **Disadvantages:**

- machine requirements (XYZ axes)
- machining times generally longer in series production
- limited experience of the user in
- thread milling




Ŷ











Thread milling cutters with radial coolant flow

# Clamping device recommendation for thread milling

	Collet chucks	Shrink-fit chucks	Hydro-expansion chucks	Surface chuck	Power chucks
	書			Ū	
Suitable for pitches up to 1.5 mm	0	0	0	0	
Suitable for pitches above 1.5 mm			0		
Vibration-damping	0	0	0	0	0
Surface quality	0	0	0	0	

= very well suited

Suitable

 $\bigcirc$  = limited suitability







# Types of thread milling cutter

## We distinguish between the following types of thread milling cutter:

#### Multi-range thread milling cutter without collar recess

The simple construction of the multi-range thread milling cutter makes it a cost-effective tool for milling female threads. With this type of cutter, two to three thread sizes can be produced at the same pitch above the specified nominal dimensions. Please note the relationship between milling diameter and thread size.

#### Multi-range thread milling cutter with collar recess



The multi-range thread milling cutter with collar recess is suitable for universal application. The collar recess enables very deep threads to be milled. With this type of cutter, all thread sizes can be produced at the same pitch above a nominal dimension.

# Process steps for thread milling cutter with collar recess:

- Tool moves to initial position, centred above drill hole
   Start of thread milling with descending loop
- ③ Milling of tread with subsequent ascending loop
- ④ Start of second thread milling program with descending loop
- (5) Milling of thread with subsequent ascending loop
- (6) Movement to initial position and end of machining procedure





#### The thread milling cutter with countersinking step is characterised by the combination of countersinking and thread milling. With this type of cutter, two to three thread sizes can be produced at the same pitch above the specified nominal dimensions.

#### Process steps:

- Tool moves to start position centred on hole
   90° bevel countersink
- Begins thread milling with descending loop
- ④ Thread milling with subsequent ascending loop
- 5 Moves to start position and ends machining





Micro-thread milling cutter



Micro thread milling cutters allow threads to be produced reliably from M1 up to a thread depth of 5xD. Here, we differentiate between two tool geometries: A universal geometry covering all material groups up to 1500 N/mm² and a hard machining geometry, developed for hardened materials up to 63 HRC. With hard machining, the thread milling cutter is used in anti-clockwise rotation M04 to achieve the optimum service life.

#### Process steps:

Tool moves to start position centred on hole
 90° arc in
 Thread milling
 90° arc out
 Final position







The advantages of thread milling are particularly apparent with larger threads. Due to the enormous cost of the solid carbide cutting material over the diameter range of 20 mm, supports made of steel or solid carbide and fitted with a solid carbide cutting insert can be used. With high projections or deep threads, a support made from solid carbide be used to ensure sufficient rigidity. If the correct cutting insert has been selected, male threads can also be created. The cutting inserts are all in a full profile design and enable the production of high-precision thread.

# Thread milling system with front milling cutter insert

The development of the thread milling system with front milling cutter insert has enabled the production of medium to large thread through a reliable process. Here, two support designs are also available in steel and solid carbide. In terms of cutting inserts, both partial and full-profile plates are available. Partial profile plates allow threads to be created with different pitches, and full-profile plates allow precise threads with one pitch.

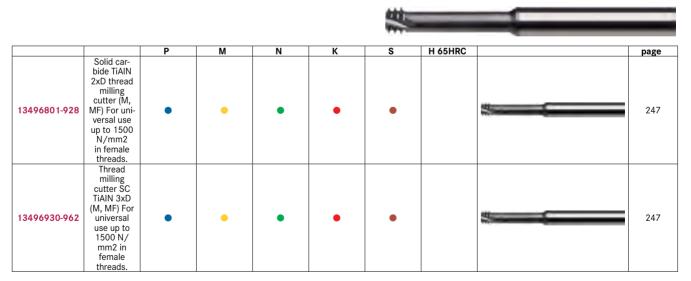




multi-range thread milling cutter for female thread milling

IK М Ν P к S page Multi-range thread milling cutter, solid carbide TiAIN (M, MF) without 13496192-217 internal cooling for universal 245 External use up to 1500 N/ mm2 in female threads Multi-range thread milling cutter, solid carbide TIAIN (M, MF) with 13496560-612 axial internal 246 Internal cooling For universal use up to 1500 N/ mm2 in female




threads.

multi-range thread milling cutter with collar recess for female thread milling





# micro-thread milling cutter type Uni for female thread milling





# micro-thread milling cutter type hard

for female thread milling





		Р	М	N	K	S	H 65HRC	page
13496970-981	Thread milling cutter SC TiAIN 2xD (M, MF) For hard ma- chining up to 63 HRC in female threads.						•	248
13496990-998	Thread milling cutter SC TiAIN 3xD (M, MF) For hard ma- chining up to 63 HRC in female threads						•	248

ALL CONTRACTOR OF THE OWNER



# multi-range thread milling cutter with countersink for female thread milling

						The second	CODE:	
		Р	М	N	К	S	H 65HRC	page
13496003-016	Multi-range thread milling cutter with 45° chamfer, solid carbide For universal use up to 1500 N/ mm2, in fe- male thread 1.5xD	•	•	•	•	•		249
13496031-162	Multi-range thread milling cutter with 45° chamfer, solid carbide For universal use up to 1500 N/ mm2, in fe- male thread 2.0xD	•	•	•	•	•		250
13496230-360	Multi-range thread milling cutter with 45° chamfer, solid carbide For universal use up to 1500 N/ mm2, in fe- male thread 2.5xD	•	•	•	•	•		250-251



244

single-tooth thread milling cutters for miniature thread milling





(2)

3

4

(5)

Ŷ



# ATORN solid carbide multi-range thread milling cutter for female threads

**Application:** For variable and exact thread milling of female threads with constant pitch. Due to the collar recess between the threaded portion and shank, a depth offset is possible in order to produce a deeper thread.

#### Advantages:

- Reduced tool costs owing to high variability in thread diameter and one tool for right-hand and left-hand threads
- Considerable thread depths achievable
- Very high wear resistance and cutting speeds owing to micro-fine grain structure

Note: Ensure tool is clamped firmly!

# Process steps for thread milling cutter with collar recess:

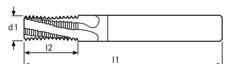
- 1 Tool moves to initial position, centred above drill hole
- ③ Start of thread milling with descending loop
- ③ Milling of tread with subsequent ascending loop
- ④ Start of second thread milling program with descending loop
- (5) Milling of thread with subsequent ascending loop
- ⑥ Movement to initial position and end of machining procedure

# **ATORN**[®] Multi-range thread milling cutter SC TIAIN M/MF (60°) without IC

## for universal use up to 1500 N/mm2 in female threads

VHM TIAIN
-----------

## Application:


For producing **metric** right-hand and left-hand threads on CNC machines in through holes and blind holes in the steel, stainless steel, non-ferrous metals, cast iron and special alloy material groups up to a strength of 1500 N/mm².

#### p to a otton

- Execution:
- Precision-ground thread milling cutter

# Advantage:

- Innovative cutting geometry for very high dimensional accuracy, process reliability and chip removal.
- High-performance coating and cemented carbide ensure long service life



p. 241

p. 22

p. 284

Application	Ste	eel (N/mr	n ² )	Stainles	s steel	A	u	Bra			Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Har	d mat.	
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Ċ)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13496192-217	100	90	80	80	60	200	200	160	16	140	140	180	120	70					
d1 (mm)	Pitcl	h (mm)	me	table for etric fine eads from	metric	ible for thread		L1 (mm)	)	12 (m	וm)	Shaft	Ø (mm)	Numb cutting (PC	edges		teel (mm)	13496. Ident. N	
2.2	(	0.5		MF4	4 M3			58		5.	3		6	3		0.	03	192	•
3.8		0.5		MF5				58		10			6	3		0.	04	193	•
3.1		0.7		MF5	1	И4		58		7.4			6	3			04	194	•
4.5	0	).75		MF6		-		58		10	.1		6	3		0.	04	195	•
3.6		0.8		MF6		M5		58		9.		6		3			04	196	•
4		1		MF7		M6		58		10.			6	3			04	197	•
4		1		MF7	1	M6		58		14.			6	3			04	198	•
6		1		MF9		-		58		12			6	3			06	199	•
8		1		MF10		-		64		16.			8	4			07	200	•
5		.25		MF10		/18		58		14.			6	3			04	201	•
5		.25		MF10		/18		58		19.		6		3			04	202	•
7		1.5		MF12		110		64		17.3			8	3			06	203	•
7		1.5		MF12	N	110		76		24			8	3			06	204	•
10		1.5		MF14		-		73		21			10	4			08	205	•
16		1.5		MF20		-		105		33			16	6			12	206	•
8		.75		MF14		112		64		20			8	3			07	207	•
8	1	.75		MF14	-	112		76		28			8	3			07	208	•
10		2		MF17		116		73		27			10	3			08	209	•
10		2		MF17	N	116		105		39			10	3			08	210	•
12		2		MF18		-		84		27			12	4			09	211	•
20		2		MF26		-		105		4			20	6			15	212	•
14		2.5		MF22		120		84		33			14	4		0.11		213	•
14	:	2.5		MF22	M20			105		48			14	4		0.		214	•
16		3		MF25	M24			105		40		16		3			12	215	•
16		3		MF25	M24			120		58			16	3			12	216	•
20		3		MF28	N	127		105		43	.5		20	4		0.	15	217	•

Prod. Gr. 132

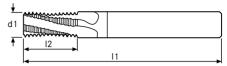








# Application:


For producing **metric** right-hand and left-hand threads on CNC machines in through holes and blind holes in the steel, stainless steel, non-ferrous metals, cast iron and special alloy material groups up to a strength of 1500 N/mm².

# Execution:

Precision-ground thread milling cutter

#### Advantage:

 Innovative cutting geometry for very high dimensional accuracy, process reliability and chip removal.



	~~~	

																	p. 241	p. 22	p. 284
Application	Ste	el (N/m	m^2)	Stainles	s steel	A	lu	Br	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hai	d mat.
No.	<700	<1000		marten.	austen.	short	long	short	long	short	long	tics	G(Č)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13496560-612	120	110	90	100	80	220	240	200	200	180	180	220	150	90	50	40	40		
d1 (mm)		n (mm)	me thre	table for tric fine ads from	metric	ble for thread		L1 (mm)	l2 (m	,	Shaft	:Ø (mm)	Numb cutting (PC	edges CS)	fz s 1000 () (mm)	13496 Ident. N	
3.8).5		MF5		-		58		10.			6	3		0.		560	•
3.1	-).7		MF4		VI4		58		7.			6	3		0.		562	•
4.5		.75		MF6		-		58		10.			6	3		0.		564	•
3.8	().8		MF6		VI5		58		9.			6	3		0.		566	•
4.6		1		MF7		V16		58		10.	.5		6	3		0.	03	568	•
4.6		1		MF7		V16		58		14			6	3		0.		570	•
6		1		MF9		-		58		12.			6	3		0.		572	•
8		1		MF10		-		64		16			8	4		0.		574	•
10		1		MF12		-		73		24			10	4		0.		576	•
6		.25		VIF10		V18		58		14			6	3		0.		578	•
6		.25		MF10		V18		58		19.			6	6		0.0		580	•
7.8		1.5		MF12		110		64		17			8	3		0.	06	582	•
7.8		1.5		MF12	N	110		76		24			8	3		0.0		584	•
10		1.5	1	MF14		-		73		21	.8		10	4	ł	0.	07	586	•
12		1.5	1	MF16		-		84		26	.3		12	4	ł	0.0	08	588	•
16		1.5		4F20		-		105		33.			16	6		0.		590	0
9	1	.75		MF12	N	112		73		20.	.1		10	3		0.	06	592	•
9	1	.75	1	MF12	N	112		73		28	.8		10	3		0.0	06	594	•
10		2		MF15		114		73		27			10	3	3	0.	06	596	•
11.8		2		MF17	N	116		84		27	7		12	4	ļ	0.0	07	598	•
11.8		2	1	MF17	N	116		105		39)		12	4	ļ	0.	07	600	•
20		2		MF26		-		105		4			20	e	6	0.0	08	602	0
15		2.5		MF22	N	120		105		33.	8		16	5		0.0	07	604	0
15	1	2.5	1	MF22	N	120		105		48	8		16	5	5	0.0	07	606	•
18		3		MF25	N	124		105		40	5		20	4	ł _	0.0	08	608	•
18		3	1	MF25	N	124		120		58	5		20	4	ļ.	0.0	08	610	0
20		3	1	MF27	N	127		105		43	.5		20	4	ŀ	0.0	08	612	0

Prod. Gr. 132

246

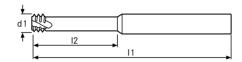
ATORN solid carbide thread milling cutter

for smaller boreholes with straight shank from M1x0.25 to 3xD.

advantages:

- extremely low cutting pressure produces excellent surface quality
- universal applications

TiAIN


up to a strength of 1500 N/mm².

- multilayer coating for very long service life
- thread milling up to blind holes
- one tool for right-hand and left-hand threads

process steps:
(1) tool moves to start position centred on hole
(2) 90° arc in
(3) thread milling
(4) 90° arc out
(5) final position

Ŷ

Execution:

VHM

Application:

Thread milling cutters with short thread section

For producing metric right-hand and left-hand

threads on CNC machines in through holes and

blind holes in the steel, stainless steel, non-ferrous

metals, cast iron and special alloy material groups

							p. 241	p. 22	p. 284
d1 (mm)	Pitch (mm)	Suitable for metric threads from	l1 (mm)	I2 (mm)	Shaft Ø (mm)	Number of cutting edges (PCS)	fz steel 1000 (mm)	13496 Ident. N	
0.72	0.25	M1	39	2.5	3	3	0.01	902	•
1.55	0.4	M2	58	4.5	6	3	0.03	904	•
1.65	0.45	M2.2	58	5	6	3	0.03	906	0
1.95	0.45	M2.5	58	5.5	6	3	0.03	908	•
2.35	0.5	M3	58	6.5	6	3	0.03	910	•
2.75	0.6	M3.5	58	7.5	6	3	0.05	912	•
3.1	0.7	M4	58	9	6	3	0.05	914	•
3.8	0.8	M5	58	12.5	6	3	0.07	916	•
4.65	1	M6	58	14	6	3	0.07	918	•
5.95	1.25	M8	58	18	6	3	0.09	920	•
7.8	1.5	M10	64	23	8	3	0.12	922	•
9	1.75	M12	73	26	10	3	0.14	924	•
11.8	2	M16	84	35	12	4	0.16	926	•
15	2.5	M20	105	43	16	5	0.18	928	•

Innovative cutting geometry and high-quality

Tapping of very small threads from M1 x 0.2

cemented carbide ensure very high degree of

dimensional accuracy, process reliability and chip

Solid carbide TiAIN 2xD thread milling cutter (M, MF)

for universal use up to 1500 N/mm2 in female threads

Advantage:

removal

possible

Prod. Gr. 132

ATORN[®] Thread milling cutter SC TiAIN 3xD (M, MF) for universal use up to 1500 N/mm2 in female threads

Stainlass st

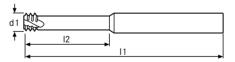
Application:

For producing metric right-hand and left-hand threads on CNC machines in through holes and blind holes in the steel, stainless steel, non-ferrous metals, cast iron and special alloy material groups up to a strength of 1500 N/mm².

Execution:

Application

Thread milling cutters with short thread section


2.

Advantage:

A 1.

- Innovative cutting geometry and high-quality cemented carbide ensure very high degree of dimensional accuracy, process reliability and chip removal
- Tapping of very small threads from M1 x 0.2 possible

Plas- Granhite GG(G) Titan- Nickel Super-

		i
p. 241	p. 22	p. 284

Application	Ste	el (N/m	m*)	Stainle	ss steel	A	iu	Brass		Bro	nze	Plas-	Graphite	GG(G)	litan-	NICKEI-	Super-	Har	i mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Č)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13496930-962	90	70	60	70	60	140	140	135	135	120	120	135	120	50	30	25	25		
d1 (mm)	P	itch (mr	n)	Suitable metric th from	reads	11 ((mm)		12 (m	m)	Sh	aft Ø (m		Number utting ed (PCS)		fz steel 1 (mn		13496. Ident. N	
15		0.3		M1.4	4		39		4			3		3		0.0	1	930	0
1.2		0.35		M1.0	5	;	39		4.8	3		3		3		0.0	1	932	•
1.53		0.4		M2		;	39		6			3		3		0.0	3	934	•
1.95		0.45		M2.	5	:	58		7.5	5		6		3		0.0	3	936	•
2.37		0.5		M3		:	58		9.5	5		6		3		0.0	4	938	•
2.37		0.5		M3		1	05		9.5	5		6		3		0.0	4	940	•
2.75		0.6		M3.	5	:	58		10.	5		6		3		0.0	5	944	•
3.1		0.7		M4		:	58		12.	5		6		3		0.0	5	946	•
3.1		0.7		M4		1	05		12.	5		6		3		0.0	5	948	•
3.8		0.8		M5		:	58		16			6		3		0.0	5	950	•
3.8		0.8		M5		1	05		16			6		3		0.0	5	952	•
4.65		1		M6			58		20			6		3		0.0	6	954	•
4.65		1		M6		1	05		20)		6		3		0.0	6	956	•
6		1.25		M8		;	58		24			6		3		0.0	7	958	•

Prod. Gr. 132

Application:

Execution:

strength of 63HRC.

ATORN® Thread milling cutter SC TIAIN 2xD (M, MF) For hard machining up to 63 HRC in female threads

For producing metric right-hand and left-hand

threads on CNC machines in through holes and blind

holes in the hardened steel material group up to a

Thread milling cutters with short thread section

Advantage:

- Innovative cutting geometry and coating technology ensure very high dimensional accuracy, process reliability and chip removal.
- Tapping of very small threads from M2 x 0.4 possible.

Notes:

The tool must be used in an anti-clockwise direction!

¥			
d1			
₹ Ţ	12		
		11	

																		p. 241	p. 284
Application	Ste	el (N/m	m²)	Stainle	ss steel	Alu		Bra	ISS	Bro	ıze	Plas-	Graphit		Titan-		Super-	Ha	rd mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Č)FK	GjMW	alloy	alloy	alloy	<55 HR0	C <65 HRC
13496970-981																		50	40
d1 (mm)	P	Pitch (mr	n)	Suitable metric th from	reads	11 (mm)		l2 (m	m)	Sha	aft Ø (m		Number cutting ed (PCS)		fz steel 1 (mm		13496 Ident. N	
1.53		0.4		M2		Ę	58		4.5	;		6		3		0.0	1	970	•
1.65		0.45		M2.2	2	Ę	58	5		6			3		0.0	1	971	0	
1.95		0.45		M2.	5	Ę	58		5.5	;		6		3		0.0	1	972	•
2.37		0.5		M3		Ę	58		6.5	;		6		3		0.0	1	973	•
2.75		0.6		M3.	5	Ę	58		7.5	;		6		3		0.0	2	974	0
3.1		0.7		M4		Ę	58		9			6		3		0.0	2	975	•
3.8		0.8		M5		Ę	58		12.	5		6		3		0.0	2	976	•
4.65		1		M6		Ę	58		14			6		3		0.0	2	977	•
6		1.25		M8		Ę	58		18			6		3		0.0	3	978	•
7.8		1.5		M10)	6	54		23			8		3		0.0	3	979	•
9		1.75		M12	2	7	73		26			10		3		0.0	3	980	•
11.8		2		M16)	8	34		35			12		4		0.04	4	981	•

Prod. Gr. 132

Solid carbide TiAIN 3xD thread milling cutter (M, MF) ΔΤΟ For hard machining up to 63 HRC in female threads

```
VHM
        TiAIN
```

Application:

For producing metric right-hand and left-hand threads on CNC machines in through holes and blind holes in the hardened steel material group up to a strength of 63HRC.

Execution:

Thread milling cutters with short thread section

Advantage:

- Innovative cutting geometry and coating technology ensure very high degree of dimensional accuracy, process reliability and chip removal
- Thread milling cutting of very small threads from M1.4 x 0.3 possible

12

Notes: The tool must be used in an anti-clockwise direction!

d1 (mm)	Pitch (mm)	Suitable for metric threads from	l1 (mm)	l2 (mm)	Shaft Ø (mm)	Number of cutting edges (PCS)	fz steel 1000 (mm)	13496 Ident.	
1.05	0.3	M1.4	39	4	3	3	0.01	990	0
1.2	0.35	M1.6	39	4.8	3	3	0.01	991	0
1.53	0.4	M2	39	6	3	3	0.02	992	•
1.95	0.45	M2.5	58	7.5	6	3	0.02	993	0
2.37	0.5	M3	58	9.5	6	3	0.02	994	•
3.1	0.7	M4	58	12.5	6	3	0.03	995	•
3.8	0.8	M5	58	16	6	3	0.03	996	•
4.65	1	M6	58	20	6	3	0.04	997	•
6	1.25	M8	58	24	6	3	0.04	998	•

Prod. Gr. 132

248

Source: Hahn+Kolb Werkzeuge GmbH Technical data subject to change. Availability subject to country specific rules and regulations.

ATORN solid carbide thread milling cutter for female threads with 45° countersink

Application: For thread milling and countersinking in one step.

Advantages:: low power requirement and short processing time thanks to high cutting speeds and 2 processes (countersinking and thread cutting) using one tool, very good surface quality, precise thread depth possible down to near the base, 1 tool for right-handed and left-handed threads, for blind holes and through holes.

Process steps for thread milling cutter with countersinking step:

- 1 Tool moves to start position centred on hole
- 2 90° bevel countersink
- ③ Begins thread milling with descending loop
- ④ Thread milling with subsequent ascending loop
- (5) Moves to start position and ends machining

Ŷ

High-quality cutting material and cutting edge treatment for very high service

• Low tool costs thanks to high variability in the thread diameter, just one tool

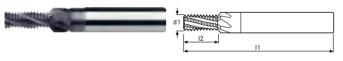
· Significantly optimised process times, as bore and countersink are produced in

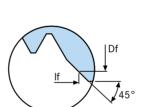
required for right-hand thread and left-hand thread

ATORN® Solid carbide multi-range thread milling cutter with 45° countersink

For universal use up to 1500 N/mm² in female threads 1.5xD

Application:

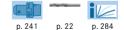

For producing metric right-hand threads and left-hand threads with countersink on CNC machines in blind holes and through holes, in steel, stainless steel, non-ferrous metals, cast iron and special alloys material groups up to a strength of 1500 N/mm² in single-part production and series production.


Execution:

 Precision-ground thread milling cutter with chamfer for maximum requirements in terms of process reliability and service life

Advantage:

Innovative cutting geometry and coating technology ensure very high degree of dimensional accuracy, process reliability and chip removal



Suitable for thread type: M | M-L

life requirements

one step

Technical data:

Application	Ste	el (N/m	m ²)	Stainle	ss steel	A	u	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Har	d mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	iong		G(Č)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13496003-016	120	90	70	50	40	250	250	220	220	200	200	180	160	100	40	30	30		
Nominal Ø (mm)	Pitcl	h (mm)	I	l (mm)	12 (mm)		lf (mm)		Df (m	וm)	Shaft	Ø (mm)	Numb cutting (PC	edges	fz s 1000 (13496. Ident. N	
3	(0.5		48	5	.25		5.7		3.4	4		6	3		0.0	02	003	0
4	(0.7		48	7	.35		7.9		4.5	5		6	3		0.0	03	004	0
5	(0.8		54	9	.15		9.9		5.5	5		6	3		0.0	03	005	0
6		1		62	10).45		11.3		6.0	5		8	3		0.0	04	006	0
8	1	.25		74	1	3.1		14.1		9			10	3		0.0	05	008	0
10		1.5		80	1	7.2		18.4		11			12	4		0.0	06	010	0
12	1	.75		90	20).05		21.5		13.	5		14	4		0.0	07	012	0
16		2		102	26	.95		28.6		17.	5		18	4		0.	.1	016	•

Prod. Gr. 132

Source: Hahn+Kolb Werkzeuge GmbH

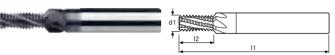
Availability subject to country specific rules and regulations.

Technical data subject to change.

ATORN[®] Solid carbide multi-range thread milling cutter with 45° countersink

For universal use up to 1500 N/mm² in female threads 2.0xD

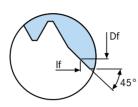
Application:


For producing metric right-hand threads and left-hand threads with countersink on CNC machines in blind holes and through holes, in steel, stainless steel, non-ferrous metals, cast iron and special alloys material groups up to a strength of 1500 N/mm² in single-part production and series production.

Execution:

 Precision-ground thread milling cutter with chamfer for maximum requirements in terms of process reliability and service life

Advantage


 Innovative cutting geometry and coating technology ensure very high degree of dimensional accuracy, process reliability and chip removal

- High-quality cutting material and cutting edge treatment for very high service life requirements
- Low tool costs thanks to high variability in the thread diameter, just one tool required for right-hand thread and left-hand thread
- Significantly optimised process times, as bore and countersink are produced in one step

Technical data:

Suitable for thread type: M | M-L

p. 241	p. 22	p. 284

																	5. 241	p. 22	p. 204
Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ISS	Bron	ze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Ha	rd mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HR0	C <65 HRC
13496031-162	120	90	70	50	40	250	250	220	220	200	200	180	160	100	40	30	30		
Nominal Ø (mm)	Pitch	ו (mm)	11	(mm)	12 (mm)		lf (mm)		Df (m	n)	Shaft	Ø (mm)	Numb cutting (PC	edges	fz st 1000 (13496 Ident. N	
3	(0.5		48	6	.73		7.2		3.2			6	3		0.0)2	031	•
4	().7		48	8	.73		9.3		4.5			6	3		0.0)3	041	•
5	(0.8		54	10).77		11.5		5.5			6	3		0.0)3	051	0
6		1		62	13	3.47		14.3		6.6			8	3		0.0)4	066	•
8	1	.25		74	18	3.08		19.1		9			10	3		0.0)5	082	•
10	-	1.5		80	2	1.7		22.9		11			12	4		0.0)6	110	•
12	1	.75		90	25	5.32		26.7		13.5	5		14	4		0.0)7	112	0
16		2		102	34	.93		36.6		17.5	;		18	4		0.	1	162	0

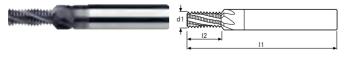
Prod. Gr. 132

Solid carbide multi-range thread milling cutter with 45° countersink

COUNTERSINK For universal use up to 1500 N/mm² in female threads 2.5xD

Application:

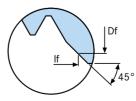
For producing metric right-hand threads and left-hand threads with countersink on CNC machines in blind holes and through holes, in steel, stainless steel, non-ferrous metals, cast iron and special alloys material groups up to a strength of 1500 N/mm² in single-part production and series production.


Execution:

 Precision-ground thread milling cutter with chamfer for maximum requirements in terms of process reliability and service life

Advantage:

250


 Innovative cutting geometry and coating technology ensure very high degree of dimensional accuracy, process reliability and chip removal

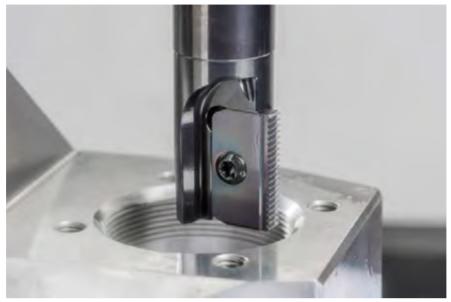
- High-quality cutting material and cutting edge treatment for very high service life requirements
- Low tool costs thanks to high variability in the thread diameter, just one tool required for right-hand thread and left-hand thread
- Significantly optimised process times, as bore and countersink are produced in one step

Technical data:

Suitable for thread type: M | M-L

Ŷ

								p. 241	p. 22	p. 284
Nominal Ø (mm)	Pitch (mm)	l1 (mm)	l2 (mm)	lf (mm)	Df (mm)	Shaft Ø (mm)	Number of cutting edges	fz steel 1000 (mm)	13490 Ident.	
()							(PCS)		100110	
4	0.7	48	10.85	11.4	4.5	6	3	0.03	240	•
5	0.8	54	13.15	13.9	5.5	6	3	0.03	250	•
6	1	62	16.45	17.3	6.6	8	3	0.04	260	•
8	1.25	74	21.85	22.8	9	10	3	0.05	280	•
10	1.5	80	26.2	27.4	11	12	4	0.06	300	•
12	1.75	90	32.3	33.7	13.5	14	4	0.07	320	•
16	2	102	42.95	44.6	17.5	18	4	0.1	360	0


Prod. Gr. 132

thread milling system with indexable insert for universal use

- Multi-cutter attachments ensure high production rates and long service life
- Innovative coating technology and cemented carbide mixtures for high service life and wide-ranging machining applications up to a hardness of 62 HRC
- Very high surface quality of thread
- Deep threads can be reliably produced

• innovative coating technology and cemented carbide mixtures for high service life and wide-ranging machining applications up to a hardness of 62 HRC

very high surface quality of thread

deep threads can be reliably produced

Steel holder for single-edge thread milling cutter For using thread milling cutter plates

Application:

Execution:

For using ground thread milling cutter inserts no. 13397.

Burnished steel tool holder with one insert seat

Advantage:

- High process reliability and dimensional accuracy due to precise insert seating
- High-quality carrier material for very high service life requirements

p. 241

p. 253

p. 284

Suitable for index- able insert size	Cutting edge length (mm)	d1 (mm)	Suitable for min. Ø (mm)	Shaft Ø (mm)	l1 (mm)	l2 (mm)	13397 Ident. N	
12	12	9.5	12.2	20	85	14	005	•
12	12	9.9	12.8	20	85	16	012	0
14	14	12	15.5	20	75	20	015	•
14	14	14.5	18.7	20	85	25	022	•
14	14	17	21.9	20	85	30	025	•
21	21	18	23.2	20	85	30	032	•
21	21	21	27.1	20	94	40	035	•
21	21	25	32.3	20	125	-	042	•
30	30	29	37.4	25	110	50	045	•
30	30	31	40	25	150	-	052	•
30	30	38	49	32	150	-	055	0
40	40	48	61.9	40	153	78	060	0

Prod. Gr. 132

ATOR

Steel holder for double-edge thread milling cutter For using thread milling cutter plates

Application:

For using ground thread milling cutter inserts no. 13397.

Execution:

Burnished steel tool holder with two insert seats

Advantage:

- High process reliability and dimensional accuracy due to precise insert seating
- · High-quality carrier material for very high service life requirements
- High machining speed due to two-tip geometry

Source: Hahn+Kolb Werkzeuge GmbH Technical data subject to change.

Availability subject to country specific rules and regulations.

Suitable for insert size	rindexable	14	21	30	40
Cutting edg	ge length (mm)	14	21	30	40
d1 (mm)		20	30	40	50
Suitable for	r min. Ø (mm)	26	39	52	65
Shaft Ø (mr	m)	20	25	32	40
l1 (mm)		93	108	130	153
l2 (mm)		41	52	70	78
13397	ldent. No.	090	095	100	105
13397	ident. No.	0	0	0	0

Prod. Gr. 132

ATORN® Solid carbide holder for single-edge thread milling cutter

For using thread milling cutter plates

Application:

For using ground thread milling cutter inserts no. 13397.

Execution:

Solid carbide steel tool holder with one insert seat

Ad	lva	nta	age	:
----	-----	-----	-----	---

- High process reliability and dimensional accuracy due to precise insert seating
- High quality solid carbide carrier material for very high requirements in terms of service life and low vibration

5		_
lp		
•	1	

p. 253

p. 241

p. 284

Ŷ

Suitable for indexable	Cutting edge length	d1 (mm)	Suitable for min. Ø	Shaft Ø (mm)	l1 (mm)	1339	7
insert size	(mm)	· · ·	(mm)			Ident.	No.
12	12	9.9	12.8	8	125	065	0
14	14	13.2	17.0	10	150	070	0
14	14	15.2	19.7	12	175	075	0
21	21	21	27.1	16	200	080	0
30	30	27	35	20	270	085	0

Prod. Gr. 132

ATORN[®] Indexable inserts for thread milling cutter For universal use up to 1300 N/mm²

Application:

For producing metric right-hand and left-hand threads on CNC machines, in steel, stainless steel, non-ferrous metals, cast iron and special alloys material groups up to a strength of 1500 N/mm² in single-part production and series production.

Execution:

- Ident. No. 200–268: Indexable insert, solid profile 60° female, both sides precision-ground (indexable insert size 12 = one side only)
- Ident. No. 310-368: Indexable insert, solid profile, 60° male
- Ident. No. 406–456: Indexable insert, solid profile 55° male and female, both sides precision-ground (indexable insert size 12 = one side only)

Advantage:

- Innovative cutting geometry ensures very high dimensional accuracy, process reliability and chip removal
- High-quality cutting material and cutting edge treatment for very high service life requirements
- Low tool costs thanks to high variability in the thread diameter, just one tool required for righthand thread and left-hand thread

																		•	•
Application	Ste	el (N/m	m ²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13397200-268	140	130	100	120	100	240	240	220	220	200	200	220		90	60	50	50		
13397310-368	140	130	100	120	100	240	240	220	220	200	200	220		90	60	50	50		
13397406-456	140	130	100	120	100	240	240	220	220	200	200	220		90	60	50	50		

		hining type		nside		utside		e Outside					nside		Jutside		Outside
		hread type		profile 60°		profile 60°		profile 55°							profile 60°		profile 55°
Size of	Pitch	Number	1339		1339		1339		Size of	Pitch	Thread type Solid profi Intread type Solid profi 0 of thread starts per inch - 250 5 - 254 - 5 - 254 - 5 - 254 - 5 - 260 - 264 - 5 - 266 - 268 - 264 - 260 - 264 - 20 - 19 - 16 - 14 - 20 - 14 - 16 - 14 - 14 - 14 - 14 - 11 -			1339		1339	
index-	(mm)	of thread	Ident.	No.	Ident.	No.	Ident.	No.	index-	(mm)	of thread	Ident.	No.	Ident.	No.	Ident.	No.
able		starts per							able								
insert		inch							insert		inch						
12	0.5	-	200	0	-	-	-	-	30	5	-	250	•	-	-	-	-
12	0.75	-	202	•	-	-	-	-	40	1.5	-		0	352	0	-	-
12	1	-	204	•	-	-		-	40	2	-	254	0	354	0	-	-
12	1.25	-	206	•	-	-	-	-	40	3.5	-	258	0	-	-	-	-
14	0.5	-	208	•	-	-	-	-	40	4	-	260	0	360	0	-	-
14	0.75	-	210	•	310	0	-	-	40	4.5	-	262	0	-	-	-	-
14	1	-	212	•	312	0	-	-	40	5	-	264	0	364	0	-	-
14	1.25	-	214	•	314	0	-	-	40	5.5	-	266	0	-	-	-	-
14	1.5	-	216	•	316	0	-	-	40	6	-	268	0	368	0	-	-
14	1.75	-	218	•	318	0	-	-	40	3	-	-	-	356	0	-	-
14	2	-	220	•	320	0	-	-	12	-	19	-	-	-	-	406	0
14	2.5	-	222	•	322	0	-	-	14	-	24	-	-	-	-	412	0
21	1	-	224	•	324	0	-	-	14	-	20	-	-	-	-	414	0
21	1.5	-	226	•	326	0	-	-	14	-	19	-	-	-	-	416	0
21	1.75	-	228	0		-	-	-	14	-	16	-	-	-	-	418	0
21	2	-	230	•	330	0	-	-	14	-	14	-	-	-	-	420	0
21	2.5	-	232	0	332	0	-	-	21	-	20	-	-	-	-	424	0
21	3	-	234	•	334	0	-	-	21	-	19	-	-	-	-	426	0
21	3.5	-	236	•	-	-	-	-	21	-		-	-	-	-	428	0
30	1.5	-	238	•	338	0	-	-	21	-	14	-	-	-	-	430	0
30	2	-	240	•	340	0	-	-	21	-	11	-	-	-	-	432	0
30	3	-	242	0	342	0	-	-	30	-	16	-	-	-	-	438	0
30	3.5	-	244	0	344	0	-	-	30	-	14	-	-	-	-	440	0
30	4	-	246	•	346	0	-	-	30	-	11	-	-		-	442	0
30	4.5	-	248	•	-	-	-	-	40	-	11	-	-	-	-	454	0

Prod. Gr. 132

40

Thread milling system with front insert For universal use

- multi-cutter attachments ensure high production rates and long service life
- innovative coating technology and cemented carbide mixtures for high service life and wide-ranging machining applications up to a hardness of 62 HRC
- very high surface quality of thread
- deep threads can be reliably produced

ATORN[®] Steel holder for thread milling cutter

For front-face cutting attachment

Application:

For using ground thread milling cutter inserts no. 13397.

Execution:

Burnished steel tool holder

Advantage:

life requirements

Technical data:

High process reliability and dimensional accuracy due to precise insert seating
High-quality carrier material for very high service

Tool holding device: HB parallel shank

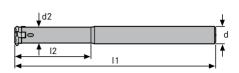
						p. 241	p. 22	p. 284
Suitable for index-	Holder type	l2 (mm)	l1 (mm)	d2 (mm)	d (mm)	Suitable for screw	13397	7
able inserts type							Ident.	No.
A10	A1	19	70	7.3	12	S5	500	•
A10	A2	19	90	7.3	16	S5	502	•
A12	A3	25	70	9	12	S10	504	•
A12	A4	25	90	9	16	S10	506	•
A12	A5	35	100	9	16	S10	508	•
A18	A6	48	100	13.8	16	S16	510	•
A18	A7	32	100	13.8	20	S16	512	•
A18	A8	48	110	13.8	20	S16	514	•
A18	A9	74	140	13.8	20	S16	516	•
A25	A10	45	115	17.5	25	S27	518	•
A25	A11	80	150	17.5	25	S27	520	•

Prod. Gr. 1FD

ATORN® Solid carbide holder for thread milling cutter For front-face cutting attachment

Application: For using ground thread milling cutter inserts no. 13397.

- Execution:
- Solid carbide steel tool holder with one insert seat


Advantage:

- High process reliability and dimensional accuracy
- due to precise insert seating

 High quality solid carbide carrier material for very high requirements in terms of service life and low vibration

Technical data:

Tool holding device: HA parallel shank

						p. 241	p. 22	p. 284
Suitable for index-	Holder type	I2 (mm)	l1 (mm)	d2 (mm)	d (mm)	Suitable for screw	13397	·
able inserts type							Ident.	No.
A10	A12	35	125	7.3	8	S5	522	•
A10	A13	-	125	8	8	S5	524	•
A12	A14	-	150	10	10	S10	526	•
A18	A15	-	170	12	12	S16	528	•
A25	A16	-	205	16	16	S27	530	•
A25	A17	85	250	17.5	20	S27	532	•

Prod. Gr. 1FD

I[®] Cutting insert, multi-flute cutter, 60° partial profile

For universal use up to 1500 N/mm² in male and female threads

Application:

For producing metric right-hand and left-hand threads on CNC machines, in steel, stainless steel, non-ferrous metals, cast iron and special alloy material groups up to a strength of 1500 N/mm².

Execution:

Multiple-edge cutter in sub-profile design

threads on CNC machines, in steel, stainless steel,

rial groups up to a strength of 1500 $\dot{N}/mm^2.$

non-ferrous metals, cast iron and special alloy mate-

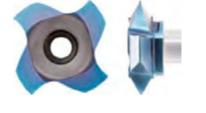
Three-flute cutter in sub-profile design (indexable

Steel (N/mm²) <700 | <1000 | <1300

80

inserts type A25 in four-flute cutter design)

100

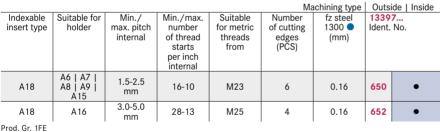

Suitable for

holder

A1 | A2

A12 | A13

- Advantage:
- Innovative cutting geometry ensures very high dimensional accuracy, process reliability and chip removal
- High-quality cutting material and cutting edge finish for very high service life requirements
- · Low tool costs thanks to high variability in the thread diameter, just one tool required for righthand thread and left-hand thread



p. 241

p. 254

p. 284

•

	FIDU. GI. IFE																			
ſ	Application	Ste	el (N/mi	n²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
	No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
[13397650-652	100	80	60	80	60	120	180	100	160	80	140	140		60	30	30	30	60	

ATORN® Cutting insert, triple cutter, 60° partial profile For universal use up to 1500 N/mm² in male and female threads

Stainless

0.4-0.8 mm

marten.

80

Application: For producing metric right-hand and left-hand

Execution:

Application

No

13397550-568

Indexable

insert type

A10

Advantage:

internal

56-28

- Innovative cutting geometry ensures very high dimensional accuracy, process reliability and chip removal
- High-quality cutting material and cutting edge finish for very high service life requirements
- Low tool costs thanks to high variability in the thread diameter, just one tool required for righthand thread and left-hand thread

. externa

64-32

0 10

													p. 241	p. 254	p. 284
nles	ss steel		Alu	E	Brass		Bronze	Plas		GG(G)	Titan-	Nickel-	Super-	Hard	mat.
n.	austen.	short	long	shor	rt long	sho	rt lor	ig tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
	60	120	180	100	0 160	80) 14	0 14	0	60	30	30	30	60	
	Min./ nax. pitch external	n thi	lin./ma umber c read sta per inch	of rts 1	Min./m number thread st per inc	of arts		ng edge (mm)	Suitable for metric threads fror	me	table for etric fine eads from	130	steel 00 ● nm)	13397 Ident. No	

M11

MF12

60

Min./max.

pitch internal

0.5-0.8 mm

10

Thread tools \ Thread milling cutter with cutting inserts

Indexable insert type	Suitable for holder	Min./max. pitch internal	Min./ max. pitch external	Min./max. number of thread starts per inch internal	Min./max. number of thread starts per inch external	Cutting edge Ø (mm)	Suitable for metric threads from	Suitable for metric fine threads from	fz steel 1300 ● (mm)	1339 Ident.	
A10	A1 A2 A12	1-2 mm	0.8-1.75 mm	28-13	32-15	10	M12	MF14	0.10	552	•
A12	A3 A4 A5 A14	0.5-0.8 mm	0.4-0.8 mm	56-28	64-32	12	M13	MF14	0.12	554	•
A12	A3 A4 A5 A14	1-2 mm	0.8-1.75 mm	28-13	32-15	12	M14	MF16	0.12	556	•
A18	A6 A7 A8 A9 A15	0.5-0.8 mm	0.4-0.8 mm	56-28	64-32	18	M19	MF19	0.16	558	•
A18	A6 A7 A8 A9 A15	1-1.75 mm	0.8-1.5 mm	28-14	32-16	18	M20	MF21	0.16	560	•
A18	A6 A7 A8 A9 A15	2-3 mm	1.75-2.5 mm	13-8	15-10	18	M21	MF23	0.16	562	•
A25	A10 A11 A16 A17	1.5-2.5 mm	1-2 mm	16-10	28-13	25	M28	MF30	0.18	564	•
A25	A10 A11 A16 A17	3-5 mm	2.5-4.5 mm	8-5	10-6	25	M30	MF34	0.18	566	•
A25	A10 A11 A16 A17	5-6 mm	4.5-5 mm	5-4	6-5	25	M34	MF35	0.18	568	•

Prod. Gr. 1FE

ATORN[®] Cutting insert, multi-flute cutter, 55° partial profile For universal use up to 1500 N/mm² in male and female threads

Application:

For producing imperial right-hand and left-hand threads on CNC machines, in steel, stainless steel, non-ferrous metals, cast iron and special alloy material groups up to a strength of 1500 N/mm².

Execution:

- Multiple-edge cutter in sub-profile design
- Advantage:
- Innovative cutting geometry ensures very high dimensional accuracy, process reliability and chip removal
- High-quality cutting material and cutting edge finish for very high service life requirements
- Low tool costs thanks to high variability in the thread diameter, just one tool required for righthand thread and left-hand thread

Indexable insert type	Suitable for holder	Max. number of thread starts per inch	Suitable for min. Ø (mm)	Number of cutting edges (PCS)	fz steel 1300 ● (mm)	1339 Ident.	
A18	A6 A7 A8 A9 A16	14	23	6	0.16	654	•
A18	A16	8	24	4	0.16	656	•
Prod. Gr. 1FE							

	TOU. GI. II L																			
ĺ	Application	Ste	el (N/m	n²)	Stainle	ss steel	A	lu	Bra	iss	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
[No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Ċ)FK	GjMŴ	alloy	alloy	alloy	<55 HRC	<65 HRC
ſ	13397654-656	100	80	60	80	60	120	180	100	160	80	140	140		60	30	30	30	60	

ATORN[®] Cutting insert, triple cutter, 55° partial profile For universal use up to 1500 N/mm² in male and female threads

Application:

For producing metric right-hand and left-hand threads on CNC machines, in steel, stainless steel, non-ferrous metals, cast iron and special alloy material groups up to a strength of 1500 N/mm².

Execution:

 Three-flute cutter in sub-profile design (indexable inserts type A25 in four-flute cutter design)

Advantage:

- Innovative cutting geometry ensures very high dimensional accuracy, process reliability and chip removal
- High-quality cutting material and cutting edge finish for very high service life requirements
 Low tool costs thanks to high variability in the
- Low tool costs tranks to high variability in the thread diameter, just one tool required for righthand thread and left-hand thread

		i
p. 241	p. 254	p. 284

Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Br	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Har	d mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13397570-578	100	80	60	80	60	120	180	100	160	80	140	140		60	30	30	30	60	
Indexable inse	rt type	Sui	table for	r holder		max. ni d starts			Cutting	edge Ø	(mm)	Suit	able for m (mm)	in. Ø	fz stee	el 1300 ((mm)	13397. Ident. N	
A10	A10 A1 A2 A12 19-						1			10			13			0.10		570	•
A12		A3	A4 A	5 A14		28-19	7			12			14			0.12		572	•
A12		l A	43 A4	A5		14-1	1			12.2			16			0.12		574	•
A18		A6	A7 A7 A			14-8				18			23			0.16		576	•
A25		A10	A11 A	A16 A17	'	7-5				25			31			0.18		578	•

Prod. Gr. 1FE

ATORN[®] Cutting insert, multi-flute cutter, 60° full profile for universal use up to 1500 N/mm2

Application:

For producing metric right-hand and left-hand threads on CNC machines, in steel, stainless steel, non-ferrous metals, cast iron and special alloy material groups up to a strength of 1500 N/mm².

Execution:

Multiple-edge cutter in full-profile design

Advantage:

- Innovative cutting geometry ensures very high dimensional accuracy, process reliability and chip removal
- High-quality cutting material and cutting edge finish for very high service life requirements
- Precise thread milling of profiles

p. 241

p. 254

p. 284

Application	Ste	el (N/mi	n ²)	Stainle	ss steel	A	u	Bra	ass	Bro	nze	Plas-	Graphite		Titan-	Nickel-	Super-	Har	d mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13397658-674	100	80	60	80	60	120	180	100	160	80	140	140		60	30	30	30	60	
Indexable insert type		ble for Ider	Pite	ch (mm)	metric	ble for threads om	s m	uitable f etric fir eads fro	ne	Numb cutting (PC	edges		nber of n (PCS)	Cutting (m			teel (mm)	13397. Ident. N	
A18		7 A8 A15		1		-		MF18		8			5	16	.3	0.	14	658	•
A18		7 A8 A15		1.5		-		MF20		8			3	17	.5	0.	16	660	•
A18		7 A8 A15		2		-		MF22		6			2	18	.6	0.	16	662	•
A18		7 A8 A15		2.5	N	122		MF22		6			2	17	.8	0.	16	664	•
A18		7 A8 A15		3	M24	M27		MF24		6			1	18	.9	0.	16	666	•
A18		7 A8 A15		3.5	M30	M33		MF26		6			1	2	D	0.:	20	668	•
A18		7 A8 A15		4	M36	M39		MF27		6			1	2	0	0.:	20	670	•
A18		7 A8 A15		4.5	M42	M45		MF28		5			1	2	0	0.:	20	672	•
A18	A	15		5	M48	M52		MF29		4			1	2	0	0.1	20	674	•

Prod. Gr. 1FE

ATORN[®] Cutting insert, triple cutter, 60° full profile for universal use up to 1500 N/mm2

Application: For producing metric right-hand and left-hand

Execution:

threads on CNC machines, in steel, stainless steel,


 Three-flute cutter in full profile design (indexable inserts type A25 in four-flute cutter design)

rial groups up to a strength of 1500 N/mm².

non-ferrous metals, cast iron and special alloy mate-

Advantage:

- Innovative cutting geometry ensures very high dimensional accuracy, process reliability and chip removal
- High-quality cutting material and cutting edge finish for very high service life requirements
- Precise thread milling of profiles

p. 241

Mial

	' i/
p. 254	p. 284

Application	St	eel (N/m	m ²)	Stainle	ss steel	A	lu	Br	ass	Bro	nze	Plas-	Graphite		Titan-		Super-	Ha	d mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Ċ)FK	GjMW	alloy	alloy	alloy	<55 HR0	C <65 HRC
13397580-630	100	80	60	80	60	120	180	100	160	80	140	140		60	30	30	30	60	
Indexable inser type	t S	Suitable holder		Pitch (r	nm)	metric	ible for thread		Suitabl metric threads	fine	Num	ber of t (PCS)	eeth Cu	utting ed; (mm)		fz steel 1 (mn		13397 Ident. N	
A10	A	1 A2 A13		0.5			-		MF	10		6		9		0.1	0	580	•
A10	A	1 A2 A13		1.0			-		MF	12		3		10		0.1	0	582	•
A10	A	1 A2 A13		1.5			-		MF	13		2		10		0.1	0	584	•
A10	A	1 A2 A13		1.75	5	N	112		MF	13		1		9.6		0.1	0	586	•
A10	A	1 A2	A12	2.0		N	114		MF	14		1		10		0.1	0	588	•
A12	A	3 A4 A14		0.5			-		MF	13		6		12		0.1	2	590	•
A12	A	3 A4 A14		0.75	5		-		MF	13		4		12		0.1	2	592	•
A12	A	3 A4 A14		1.0			-		MF	14		3		12		0.1	2	594	•
A12	A	3 A4 A14		1.5			-		MF	15		2		12		0.1	2	596	•
A12	A	3 A4 A14		2.0		N	116		MF	16		1		12.4		0.1	2	598	•
A12	A	3 A4	A5	2.5		M18	M20		MF	17		1		12		0.1	2	600	•
A12		3 A4		3.0			-		MF	17		1		12.4		0.1	6	602	•
A18		6 A7 1 A9 A1		0.5			-		MF	19		9		17.8		0.1	6	604	•

Ŷ

Thread tools \ Thread milling cutter with cutting inserts

Indexable insert type	Suitable for holder	Pitch (mm)	Suitable for metric threads from	Suitable for metric fine threads from	Number of teeth (PCS)	Cutting edge Ø (mm)	fz steel 1300 (mm)	1339 Ident.	
A18	A6 A7 A8 A9 A15	0.75	-	MF19	6	17.8	0.16	606	•
A18	A6 A7 A8 A9 A15 1.0		-	MF20	5	17.8	0.16	608	•
A18	A6 A7 A8 A9 A15	1.5	-	MF20	3	17.8	0.16	610	•
A18	A6 A7 A8 A9 A15	2.0	-	MF21	2	17.8	0.16	612	•
A18	A6 A7 A8 A9 A15	2.5	M22	MF22	2	17.8	0.16	614	•
A18	A6 A7 A8 A9 A15	3.0	M24 M27	MF23	1	17.8	0.16	616	•
A18	A6 A7 A8 A9 A15	3.5	M30 M33	MF24	1	17.8	0.16	618	•
A25	A10 A11 A16 A17	3.0	M32 M33	MF30	2	25	0.18	620	•
A25	A10 A11 A16 A17	4.0	M36 M39	MF32	1	25	0.18	622	•
A25	A10 A11 A16 A17	4.5	M45	MF33	1	25	0.18	624	•
A25	A10 A11 A16 A17	5.0	M48 M52	MF34	1	25	0.18	626	•
A25	A10 A11 A16 A17	5.5	M60	MF35	1	25	0.18	628	٠
A25	A10 A11 A16 A17	6.0	M64 M68	MF36	1	25	0.18	630	•

Prod. Gr. 1FE

Cutting insert, triple cutter, 55° full profile ATORI for universal use up to 1500 N/mm²

Application:

Advantage:

For producing metric right-hand and left-hand threads on CNC machines, in steel, stainless steel, non-ferrous metals, cast iron and special alloy material groups up to a strength of 1500 N/mm².

Execution:

Triple-edge cutter in full-profile design

- Innovative cutting geometry ensures very high dimensional accuracy, process reliability and chip removal
- High-quality cutting material and cutting edge finish for very high service life requirements
- Precise thread milling of profiles

p. 241	p. 254	p. 284

Indexable insert type	Suitable for holder	Number of thread starts per inch	Suitable from thread size	Number of teeth (PCS)	Cutting edge Ø (mm)	fz steel 1300 ● (mm)	1339 Ident.	
A10	A1 A2 A12 A13	19	G 1/4 inch	2	10	0.10	632	•
A12	A3 A4 A5 A14	19	G 3/8 inch	2	12	0.12	634	•
A18	A6 A7 A8 A9 A15	14	G 7/8 inch	2	17.8	0.16	636	•
A18	A6 A7 A8 A9 A16	11	G 1 inch	2	17.8	0.16	638	•
Prod. Gr. 1FE		•						

Application Stainless steel Alu Plas-tics Graphite G(C)FK GG(G) GjMW Titan-alloy Nickel-alloy Super alloy Hard mat. Steel (N/mm²) Brass Bronze <700 | <1000 | <1300 <55 HRC | <65 HRC No marten. austen. short | long short | long short long 13397632-638 80 120 180 100 160 80 140 100 60 80 140 30 30

© Cutting insert, triple cutter, full profile, trapezoidal thread ΤΠ for universal use up to 1500 N/mm²

Application:

For producing metric right-hand and left-hand threads on CNC machines, in steel, stainless steel, non-ferrous metals, cast iron and special alloy material groups up to a strength of 1500 N/mm^2 .

Execution:

Application

No.

13397640-648

258

 Three-flute cutter in full profile design (indexable inserts type A25 in four-flute cutter design)

> Steel (N/mm²) <700 <1000 <1300

> > 80

60

100

Advantage:

Alu

short long

120 180 100

- Innovative cutting geometry ensures very high dimensional accuracy, process reliability and chip removal
- High-quality cutting material and cutting edge finish for very high service life requirements
- Precise thread milling of profiles

Br

short

									p. 241	p. 254	p. 284	
rass		Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard mat.		
	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC	
	160	80	140	140		60	30	30	30	60		
r	min.	Num	nber of	teeth	Cutting	g edge Ø	fz	steel 13	00 🔵	13397		

Indexable insert type	Suitable for holder	Pitch (mm)	Suitable for min. Ø (mm)	Number of teeth (PCS)	Cutting edge Ø (mm)	fz steel 1300 (mm)	13393 Ident.	
A10	A1 A2 A12	2	16	1	10	0.10	640	•
A18	A6 A7 A8 A9 A15	3	24	1	17.8	0.16	642	•
A18	A15	4	26	1	17.8	0.16	644	•
A18	A15	5	28	1	17.8	0.16	646	•

Availability subject to country specific rules and regulations.

Stainless steel

marten. austen.

Indexable insert type	Suitable for holder	Pitch (mm)	Suitable for min. Ø (mm)	Number of teeth (PCS)	Cutting edge Ø (mm)	fz steel 1300 (mm)	13392 Ident.	
A25	A10 A11 A16 A17	6	36	1	25	0.18	648	•

Prod. Gr. 1FE

ATORN® HSS hand tap set in box (DIN 352)

for use in high-tensile steel up to 1300 N/mm²

Application:

Ident. No. 010: For producing metric threads by hand in through holes and blind holes, in steel, non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm².

Ident. No. 012–016: For producing metric threads by hand in through holes and blind holes, in the high-strength steel material group up to a strength of 1300 N/mm².

Execution:

 Ident. No. 010: Hand tap set, HSS, comprising taper tap with one ring (Type A), second tap with two rings (Type D) and third tap (plug) (Type C) for M3, M4, M5, M6, M8, M10, M12

• Ident. No. 012: Hand tap set, HSSE, comprising taper tap with one ring (Type A), second tap with

two rings (Type D) and third tap (plug) (Type C) for M3, M4, M5, M6, M8, M10, M12 $\,$

 Ident. No. 016: Hand tap set, HSSE-PM, comprising taper tap with one ring (Type A), second tap with two rings (Type D) and third tap (plug) (Type C) for M3, M4, M5, M6, M8, M10, M12

Advantage:

- Innovative cutting geometry ensures very high dimensional accuracy, process reliability and chip removal
- Robust metal box protects the tool from damage and contamination
- Ident. No. 010: Universal use for maximum application flexibility
- Ident. No. 012–016: Specialised use with optimised chip geometry for use in hardened steel

Cutting ma	terial	HSS	HSSE	HSSE-PM	
		3 hand taps	3 hand taps	3 hand taps	
		for each size	for each size	for each size	
		(taper tap/	(taper tap/	(taper tap/	
Compositio	on of cot	second tap/	second tap/	second tap/	
Compositio	n or set	third tap	third tap third tap		
		(plug)) M3/	(plug)) M3/	(plug)) M3/	
		M4/M5/M6/	M4/M5/M6/	M4/M5/M6/	
		M8/M10/M12	M8/M10/M12	M8/M10/M12	
Colour ring	system	Steels	Steels	Steels	
13395 Ident. No		010	012	016	
		•	•	•	
Prod. Gr. 1KB					

Prod. Gr. 1KB																			
Application Steel (N/mm ²)		Stainless steel		Alu		Brass		Bronze		Plas-	Graphite	GG(G) GiMW	Titan-	Nickel-	Super-	- Hard mat.			
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GIMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13395010																			
13395012														•					
13395016																			

Robust metal box made from high-quality steel

ATORN[®] Box for hand tap set

Application: For storing N Execution:

Empty steel metal box for hand taps

For storing M3 to M12 hand taps.

Compositio	on of set	Can hold 3 hand taps for each size (taper tap/ second tap/ third tap (plug) M3/ M4/M5/M6/ M8/M10/M12	
13395	Ident. No.	020	

Prod. Gr. 1KB

<u>Orion</u>

HSS hand tap set in box (DIN 352) For universal use up to 1000 N/mm²

Application:

For producing metric threads by hand in through holes and blind holes, in steel, non-ferrous metals and (cast iron) material groups up to a strength of **1000 N/mm²**.

Execution:

 Ident. No. 010: Hand tap set, HSS, comprising taper tap with one ring (Type A), second tap with two rings (Type D) and third tap (plug) (Type C) for M3, M4, M5, M6, M8, M10, M12 $\,$

 Ident. No. 020: Hand tap set, HSS, comprising taper tap with one ring (Type A), second tap with two rings (Type D) and third tap (plug) (Type C) for M3, M4, M5, M6, M8, M10, M12 and core drills

Advantage:

Advantage:

 Standard geometry with very good price/performance ratio

A COLOR
the second second

ICON RIDGE

Cutting mat	erial	HSS	HSS				
Compositio		3 hand taps for each size (taper tap/ second tap/third tap (plug)) M3/M4/ M5/M6/M8/M10/M12	3 hand taps for each size (taper tap/second tap/third tap (plug)) M3/M4/M5/M6/M8/M10/M12, 1 of each core drill with diameter 2.5/3.3/4.2/5.0/6.8/8.5/10.2	-			
Colour ring	system	Steels	Steels				
10006	lelanak Na	010	020				
13396	Ident. No.	•	•	1			
Prod. Gr. 1DC							
Applicatio	n Steel (N	(mm ²) Stainless steel Alu	Brass Bronze Plas-	Graphite GG(G)	Titan- Nickel-	Super-	Hard mat.

Application		Steel (N/mm ²)		Stainless steel		Alu		Brass		Bronze		Plas-	Graphite G(C)FK	GG(G) GiMW	litan-	Nickel-		Hard mat.		
ſ	No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GJMW	alloy	alloy	alloy	<55 HRC	<65 HRC
ſ	13396010																			
Γ	13396020																			

ORION[®] Thread-cutting tools sets

For universal use up to 1000 N/mm²

M MF G HSS

Application:

Ident. No. 312-900: for producing metric (M) male and female threads by hand in blind holes and through holes, in steel, non-ferrous metals and (cast-iron) material groups up to a strength of 1000 N/mm².

Ident. No. 902: for producing fine male and female metric threads (MF) by hand in blind holes and through holes, in steel, non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm².

Ident. No. 904: for producing male and female pipe (G) threads by hand in blind holes and through holes, in steel, non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm².

Execution:

- Ident. No. 312: Hand tap sets, HSS, comprising taper tap with one ring (Type A), second tap with two rings (Type D) and third tap (plug) (Type C) and die with tap wrench and thread gauge
- Ident. No. 520-900: Hand tap sets, HSS, comprising taper tap with one ring (Type A), second tap with two rings (Type D) and third tap (plug) (Type C) and die with tap wrench, die holder and thread gauge
- Ident. No. 902-904: Hand tap sets, HSS, comprising taper tap with one ring (Type A) and third tap (plug) (Type C) and die with tap wrench, die holder and thread gauge

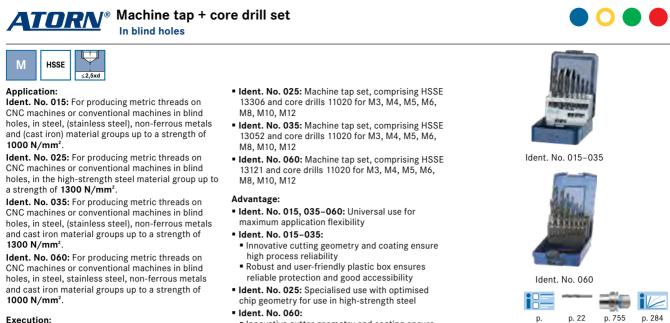
Advantage:

Standard geometry with very good price/performance ratio

Ident. No. 312-520, 904

Ident. No. 900

Ident. No. 902


																			p. 284
Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite		Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Č)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13399312																			
13399520																			
13399900																			
13399902									•										
13399904																			
													2 hand ta	ps for ea	ich				

Cor	mpositio	n of set	3 hand taps for each size (taper tap/second tap/third tap (plug)) and 1 die for each size M3/M4/M5/M6/M8/ M10/M12	3 hand taps for each size (taper tap/second tap/third tap (plug)) and 1 die for each size M5/M6/M8/M10/ M12/M14/M16/M18/ M20	3 hand taps for each size (taper tap/second tap/third tap (plug)) and 1 die for each size M3/M4/M5/M6/M8/ M10/M12/M14/M16/ M18/M20/M22/M24	2 hald taps for each size (taper tap and third tap (plug)) and 1 die for each size M3x0.35/ M4x0.35/M5x0.5/ M6x0.75/M8x1/ M10x1.25/M12x1.25/ M18x1.5/M10x1.5/ M18x1.5/M20x1.5/ M18x1.5/M24x1.5	2 hand taps for each size (taper tap and third tap (plug)) and 1 die for each thread size 1/8"/1/4"/3/8"/1/2"/3/4"/1"
1.2	13399 Ident.	Ident. No.	312	520	900	902	904
13.	399	ident. No.	•	•	•	•	•

Prod. Gr. 1DC

Execution:

- Ident. No. 015: Machine tap set, comprising HSSE 13281 and core drills 11020 for M3, M4, M5, M6, M8, M10, M12
- Ident. No. 060: Innovative cutter geometry and coating ensure high process reliability
- Robust metal box protects the tool from damage and contamination

Compositior	n of set	1 of each HSSE 13281 machine tap M3/M4/M5/M6/M8/ M10/M12, 1 of each core drill no. 11020 with diameter 2.5/3.3/4.2/5.0/6.8/8.5/10.2	1 of each HSSE 13306 machine tap M3/M4/M5/M6/M8/ M10/M12, 1 of each core drill no. 11020 with diameter 2.5/3.3/4.2/5.0/6.8/8.5/10.2	1 of each HSSE 13052 machine tap M3/M4/M5/M6/M8/ M10/M12, 1 of each core drill no. 11020 with diameter 2.5/3.3/4.2/5.0/6.8/8.5/10.2	1 of each HSSE 13125 machine tap M3/M4/M5/M6/M8/ M10/M12, 1 of each core drill no. 11020 with diameter 2.5/3.3/4.2/5.0/6.8/8.5/10.2
Cutting mat	erial	HSSE	HSSE	HSSE	HSSE
Colour ring :	system	Steels	Steels	UNI	UNI
13400	Ident, No.	015	025	035	060
13400		•	•	•	•
Prod Gr 1KB					

Prod Gr 1KB

	IOU. OI. IND																			
	Application	Ste	el (N/m	n²)	Stainless steel		Alu		Brass		Bronze		Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-		mat.
	No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
Г	13400015	16	11		9		18	18	15	18	15	15	13		16					
Γ	13400025	15	10	9																
	13400035	17	11	10	9	11	19	19	17	19	17	17	15	16	18					

ATORN® Machine tap set In through holes and blind holes

Application:

No. 13400: For manufacturing metric threads in through and blind holes on CNC or conventional machines in the steel, stainless steel, NF metals and cast material groups up to a strength of 1000 N/mm².

No. 13401 015: For producing metric threads on CNC machines or conventional machines in blind holes and through holes, in steel, (stainless steel), non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm²

No. 13401 045: For producing metric threads on CNC machines or conventional machines in through holes, in steel, (stainless steel), non-ferrous metals and cast iron material groups up to a strength of 1300 N/mm².

No. 13401 080: For manufacturing fine metric threads in through and blind holes on CNC or conventional machines in the steel, stainless steel, NF metals and cast material groups up to a strength of 1000 N/mm².

Execution:

• No. 13400: Machine tap set consisting of HSSE 13121 + 13125

No. 13400

No. 13401 015-13401 045

• No. 13401 015: Machine tap set, comprising HSSE 13113 + 13117 + 13281 for M3, M4, M5, M6, M8, M10, M12

Thread tools \ Thread-cutting sets

р. 170.174

- No. 13401 045: Machine tap set, comprising HSSE-TiN 13246 + 13052 for M3, M4, M5, M6, M8, M10, M12
- No. 13401 080: machine tap set, comprising HSSE 13121 + 13125 for M3, M4, M5, M6, M8, M10, M12

Advantage:

- Universal use for maximum application flexibility
- Robust metal box protects the tool from damage and contamination
- No. 13400 100, 13401 080: Innovative cutter geometry and coating ensure high process reliability
- No. 13401 015-13401 045: Innovative cutting geometry and coating ensure high process reliability

No. 13401 080

Steel (N/mm²)

<700 | <1000 | <1300

10

14

				Ì		~~~			
					р.	p. 22	p. 755	p. 284	
				17	0,174				
Bronze	Plas-	Graphite	GG(G)	Titan-	Nickel-		Hard	l mat.	
short long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC	

13401045	17	11	10	9	11	19	19	17	19	17	17	15	16	18					
Composition of set	Composition of set					n machi 5/M6/I througi blind hc	M8/M1 holes	0/	M4/	M5/M6 or thro	chine ta 5/M8/1 ugh hol holes		1312 M4/	each HS 5 machi M5/M6, for throu blind l	ne tap N /M8/M gh hole	ИЗ/ 10/	5 of each HSSE 13121 + 13125 machine tap M3/ M4/M5/M6/M8/M10/ M12 for through hole and blind hole		
Cutting material						HSSE				HS	SSE			HSS	SE			HSSE	
Colour ring system	ı					Steel	S			U	NI		UNI UNI						
13401						015					45			08	0				
13401	3401 Ident. N					•					•			-					
13400 Ident. No				nt. No.		-					-			100 ●					

18

15 15 13

Brass

short | long | short | long

18 15

Prod. Gr. 1KB

Application

No

13401015

Machine tap + core drill set ATORN In through holes and blind holes

Stainless steel

marten. austen

8

Alu

18

Application:

Ident. No. 025: For producing metric threads on CNC machines or conventional machines in blind holes and through holes, in steel, (stainless steel), non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm².

Ident. No. 035: For producing metric threads on CNC machines or conventional machines in blind holes and through holes, in the high-strength steel material group up to a strength of 1300 N/mm².

Ident. No. 060: For manufacturing metric threads in through and blind holes on CNC or conventional machines in the steel, stainless steel, NF metals and cast material groups up to a strength of 1000 N/ mm².

Execution:

Ident. No. 025: Machine tap set, comprising HSSE 13113 + 13117 + 13281 and core drill no. 11020 for M3, M4, M5, M6, M8, M10, M12

Ident. No. 035: Machine tap set, comprising HSSE 13130 + 13306 and core drill no. 11029 for M3, M4, M5, M6, M8, M10, M12 • Ident. No. 060: Machine tap set consisting of

HSSE 13121 + 13125 and core drill 11020 for M3, M4, M5, M6, M8, M10, M12

Advantage:

- Robust metal box protects the tool from damage and contamination
- Ident. No. 025, 060: Universal use for maximum application flexibility
- Ident. No. 025-035: Innovative cutting geometry and coating ensure high process reliability
- Ident. No. 035: Specialised use with optimised chip geometry for use in high-strength steel
- Ident. No. 060: Innovative cutter geometry and coating ensure high process reliability

Ident No 060

р. 170.174

n 22

p. 755	p. 284

1 of each HSSE 13113 + 13117 + 1 of each HSSE 13130 + 13306 machine tap M3/M4/M5/M6/M8/M10/M12 1 of each HSSE 13121 + 13125 machine tap M3/M4/M5/M6/M8/M10/M12 13281 machine tap M3/M4/M5/ M6/M8/M10/M12 for through for through holes and blind holes, 1 of each core drill no. 11029 with diameter for through holes and blind holes, 1 of each core drill no. 11020 with diameter Composition of set holes and blind holes, 1 of each core drill no. 11020 with diameter 2.5/3.3/4.2/5.0/6.8/8.5/10.2 2.5/3.3/4.2/5.0/6.8/8.5/10.2 2.5/3.3/4.2/5.0/6.8/8.5/10.2 HSSE Cutting material HSSE HSSE Colour ring system Steels High-strength steels UNI 035 060 025 13401.. Ident. No. . . -Prod. Gr. 1KB

	Application	Steel (N/mm ²)		Steer (N/IIIII)		Stainless steel		Alu		Brass		Bronze		Graphite G(C)FK	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
	No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
Г	13401025	14	10		8		18	18	15	18	15	15	13		16					
	13401035	15	10	9																

ATORN[®] Machine tap set, empty For screw taps and core drills

Application:

For storing M3 to M12 machine taps and core drills.

Advantage:

 Robust metal box protects the tool from damage and contamination

 Empty steel metal box for screw taps and core drills

Composition of set		1 of each machine tap M3/M4/M5/M6/ M8/M10/M12 for through holes and blind holes, 1 of each core drill with diameter 2.5/3.3/4.2/5.0/6.8/8.5/10.2
13401	Ident, No.	050
13401	Ident. No.	•

Prod. Gr. 1KB

262

Application:

Ident. No. 015: For producing metric threads on CNC machines or conventional machines in through holes, in steel, (stainless steel), non-ferrous metals and (cast iron) material groups up to a strength of 1000 N/mm².

Ident. No. 035: For producing metric threads on CNC machines or conventional machines in blind holes and through holes, in the high-strength steel material group up to a strength of **1300 N/mm**².

Ident. No. 045: For producing metric threads on CNC machines or conventional machines in through holes, in steel, (stainless steel), non-ferrous metals and cast iron material groups up to a strength of 1300 N/mm².

Ident. No. 060: For producing metric threads on CNC machines or conventional machines in through holes, in steel, stainless steel, non-ferrous metals and cast iron material groups up to a strength of 1000 N/mm².

Execution:

 Ident. No. 015: Machine tap set, comprising HSSE 13113 + 13117 and core drill no. 11020 for M3, M4, M5, M6, M8, M10, M12

- Ident. No. 035: Machine tap set, comprising HSSE 13130 and core drill no. 11029 for M3, M4, M5, M6, M8, M10, M12 for the highest requirements in terms of process reliability and service life
- Ident. No. 045: Machine tap set, comprising HSSE-TiN 13246 and core drill no. 11020, for M3, M4, M5, M6, M8, M10, M12
- Ident. No. 060: Machine tap set comprising HSSE 13121 and core drills 11020 for M3, M4, M5, M6, M8, M10, M12

Advantage:

- Ident. No. 015, 045–060: Universal use for maximum application flexibility
- Ident. No. 015-045:
- Innovative cutting geometry and coating ensure high process reliability
- Robust and user-friendly plastic box ensures reliable protection and good accessibility
- Ident. No. 035: Specialised use with optimised chip geometry for use in high-strength steel
- Ident. No. 060:
- Innovative cutter geometry and coating ensure high process reliability
- Robust metal box protects the tool from damage and contamination

		and	contamination									
Composition o	of set	1 of each HSSE 13113 + 13117 machine tap M3/M4/M5/M6/ M8/M10/M12, 1 of each core drill no. 11020 with diameter 2.5/3.3/4.2/5.0/6.8/8.5/10.2	1 of each HSSE 13130 machine tap M3/M4/M5/M6/M8/ M10/M12, 1 of each core drill no. 11029 with diameter 2.5/3.3/4.2/5.0/6.8/8.5/10.2	1 of each HSSE-TiN 13246 machine tap M3/M4/M5/M6/ M8/M10/M12, 1 of each core drill no. 11020 with diameter 2.5/3.3/4.2/5.0/6.8/8.5/10.2	1 of each HSSE 13121 machine tap M3/M4/M5/M6/M8/ M10/M12, 1 of each core drill no. 11020 with diameter 2.5/3.3/4.2/5.0/6.8/8.5/10.2							
Cutting mater	ial	HSSE	HSSE	HSSE-PM	HSSE							
Colour ring sy	stem	Steels	Steels	UNI	UNI							
13402	Ident, No.	015	035	045	060							
13402	ident. No.	•	•	•	•							
Prod. Gr. 1KB		Prod. Gr. 1KB										

1100.	01. 110																			
Ap	pplication	Ste	el (N/m	m²)	Stainle	ss steel	Alu		Brass		Bro	Bronze		Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	
	No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
1	3402015	14	10		8		18	18	15	18	15	15	13		16					
1	3402035	15	10	9																
1	3402045	18	13	10	10	10	19	19	17	19	17	17	15		18					

ATORN[®] Machine tap set

For universal use up to 1000 N/mm² in through holes

Application:

Ident. No. 025-045: For producing metric threads on CNC machines or conventional machines or cutting by hand in **through holes**, in steel, (stainless steel), non-ferrous metals and cast iron material groups up to a strength of 1000 N/mm².

Ident. No. 090: For producing metric threads in through holes on CNC machines or conventional machines in the steel, stainless steel, non-ferrous metals and cast iron material groups up to a strength of 1000 N/mm².

Execution:

 Ident. No. 025: Machine tap set, short, comprising HSSE 13063 for M3, M4, M5, M6, M8, M10, M12

Ident. No.

- Ident. No. 045: Machine tap set, short, comprising HSSE 13063 and core drill no. 11020 for M3, M4, M5, M6, M8, M10, M12
- Ident. No. 090: machine tap set, comprising HSSE 13121 for M3, M4, M5, M6, M8, M10, M12

Advantage:

1 of each machine tap M3/M4/

M5/M6/M8/M10/M12, 1 of

each core drill with diameter

2.5/3.3/4.2/5.0/6.8/8.5/10.2

HSSE

Steels

045

- Universal use for maximum application flexibility
- Robust metal box protects the tool from damage and contamination
- Ident. No. 025: Innovative cutting geometry ensures high process reliability
- Ident. No. 045–090: Innovative cutter geometry and coating ensure high process reliability

Ident. No. 025-045

Ident. No. 090

13403... Prod. Gr. 1KB

Composition of set

Cutting material

Colour ring system

F	Prod. Gr. 1KB																			
ſ	Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
Ī	No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
ſ	13403025	15	10		9		18	18	15	18	15	15	13		16					
ſ	13403045	15	10		9		18	18	15	18	15	15	13		16					

1 of each machine tap

M3/M4/M5/M6/

M8/M10/M12

HSSE

Steels

025

1 of each HSSE 13121 machine tap

M3/M4/M5/M6/

M8/M10/M12 for

through hole HSSE

UNI

090

Ident. No. 015-045

Ident. No. 060

р. 170.174 p. 22

p. 755

Ο Ο Ο

p. 284

HSS ≤1xd

Application:

For producing metric threads for portable use on cordless drill screwdrivers in through holes, in steel, non-ferrous metals and (cast iron) material groups up to a strength of 700 N/mm² in single-part production.

Execution:

 Precision-ground, right-hand and short machine tap set with 1/4" hexagon drive, HSS for M3, M4,

Number of pieces in assortment/set (PCS)

13407... Prod. Gr. 105

Composition of set

																			p. 22	p. 284
Application		Ste	el (N/mi	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No) .	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13407	7550																			

M6, M8, M10 and M12 for high requirements in

Standard geometry with very good price/perfor-

terms of process reliability and service life

M5, M6, M8, M10, M12 and magnetic steel tool

Standard geometry with very good price/perfor-

reliability and service life

Advantage:

mance ratio

holder for high requirements in terms of process

DRION® Core drill bit set

For universal use up to 700 N/mm²

Application:

For producing core holes for portable use on cordless drill screwdrivers, in steel, non-ferrous metals and (cast iron) material groups up to a strength of 700 N/mm² in single-part production.

Execution:

· Precision-ground, right-hand and short core drill set with 1/4" hexagon drive, HSS for M3, M4, M5,

DRION[®] Combination thread bit

For universal use up to 700 N/mm²

Application:

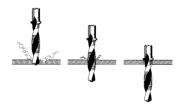
264

13407690

For producing metric threads (drill, thread, deburr and clean thread in one operation!) for portable use on cordless drill screwdrivers and hand drills in clockwise rotation and anti-clockwise rotation in steel, non-ferrous metals and (cast iron) material groups up to a strength of 700 N/mm² up to 1xD thread depth in single-part production.

Execution:

Advantage:


mance ratio

Precision-ground, right-hand screw tap with drill step and 1/4" hexagon drive

Advantage:

- Standard geometry with very good price/performance ratio
- · High productivity, since drilling, thread de-burring and thread cleaning are achieved in one operation Robust metal box protects the tool from damage
- and contamination

Tap drilling - thread cutting - deburring

																				p. 201
Applica	ation	Steel (N/mm ²)		n²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.).	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
1340703	30-100																			

p. 284

Source: Hahn+Kolb Werkzeuge GmbH Technical data subject to change.

Thread tools \ Thread-cutting sets

Thread type x nominal Ø	Pitch (mm)	Length (mm)	Core hole Ø (mm)		Recommended rotation speed in aluminium (U/ min(rpm))		
M3	0.5	36	2.5	1600	1900	030	•
M4	0.7	39	3.3	1200	1500	040	•
M5	0.8	41	4.2	950	1200	050	•
M6	1	44	5.0	800	950	060	•
M8	1.25	50	6.8	600	700	080	•
M10	1.5	59	8.5	450	550	100	•

Prod Gr 1DB

Combination thread bit set T)R(0)

For universal use up to 700 N/mm²

Application:

For producing metric threads (drill, thread, deburr and clean thread in one operation!) for portable use on cordless drill screwdrivers and hand drills in clockwise rotation and anti-clockwise rotation in steel, non-ferrous metals and (cast iron) material groups up to a strength of 700 N/mm² up to 1xD thread depth in single-part production.

Execution:

13407...

Prod. Gr. 1DB

Composition of set

 Precision-ground, right-hand screw tap set with drill step and 1/4" hexagon drive, HSS for M3, M4, M5, M6, M8, M10 for high requirements in terms of process reliability and service life

Advantage:

Ident, No.

- Standard geometry with very good price/performance ratio
- High productivity, since drilling, thread de-burring and thread cleaning are achieved in one operation Robust metal box protects the tool from damage

1 of each combi screw tap bit M3/M4/M5/

M6/M8/M10 200

- and contamination

Tap drilling - thread cutting - deburring

																			p. 284
Application	Steel (N/mm ²)		n ²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13407200																			

WALTON screw tap extractor

Application:

No. 13510-13512: For extracting broken screw taps. When the retaining ring is displaced, the fingers are introduced into the screw tap flutes and secured with the guide bushing. The broken screw tap is loosened and screwed out by the tap wrench. No. 13514: Extractor for screw taps with 3 flutes. No. 13516: Extractor for screw taps with 4 flutes.

Execution:

- No. 13510: Extractor with 3 steel flutes and spring steel fingers
- No. 13512: Extractor with 4 steel flutes and spring steel fingers
- No. 13514–13516: Spare spring-steel finger

Advantage:

No. 13510–13512: User-friendly and rational removal of screw taps saves time and money

	and the second se
-	
No. 13510	

No. 13512

Suitable for thread (imperial)	13510	1	3512		13514	4	1351	6
	Ident. No.	Id	lent. I	No.	Ident.	No.	Ident.	No.
G 1/8 inch	030	•	-	-	030	•	-	-
G 5/32 inch	040	• 0)40	•	040	•	040	•
G 3/16 inch	050	• 0)50	•	050	•	050	•
G 1/4 inch	060	• 0)60	•	060	•	060	•
G 5/16 inch	080	• 0	080	•	080	•	080	•
G 3/8 inch	100	• 1	00	•	100	•	100	•
G 1/2 inch	120	• 1	20	•	120	•	120	•
G 5/8 inch	160	• 1	60	•	160	•	-	-
	G 5/32 inch G 3/16 inch G 1/4 inch G 5/16 inch G 3/8 inch G 1/2 inch	G 1/8 inch 030 G 5/32 inch 040 G 3/16 inch 050 G 1/4 inch 060 G 5/16 inch 080 G 3/8 inch 100 G 1/2 inch 120	G 1/8 inch 030 ● G 5/32 inch 040 ● 0 G 3/16 inch 050 ● 0 G 1/4 inch 060 ● 0 G 5/16 inch 080 ● 0 G 3/8 inch 100 ● 1 G 1/2 inch 120 ● 1	G 1/8 inch 030 - G 5/32 inch 040 040 G 3/16 inch 050 050 G 1/4 inch 060 060 G 5/16 inch 080 080 G 3/8 inch 100 100 G 1/2 inch 120 120	G 1/8 inch 030 - - G 5/32 inch 040 040 • G 3/16 inch 050 050 • G 1/4 inch 060 060 • G 5/16 inch 080 080 • G 3/8 inch 100 • 100 G 1/2 inch 120 • 120	G 1/8 inch 030 - - 030 G 5/32 inch 040 040 040 040 G 3/16 inch 050 050 050 050 G 1/4 inch 060 060 060 060 G 5/16 inch 080 080 080 080 G 3/8 inch 100 100 100 100 G 1/2 inch 120 120 120 120	G 1/8 inch 030 - - 030 • G 5/32 inch 040 040 040 040 • 040 G 3/16 inch 050 050 050 • 050 • 050 • 060 060 060 060 <t< td=""><td>G 1/8 inch 030 - - 030 - - 030 - - 030 - - 030 - - 030 - - 030 • - - 030 • - - 030 • - - 030 • - - 030 • - - 030 • - - 030 • - - 030 • - - 030 • - 040 040 040 040 040 040 040 040 040 040 040 040 040 040 040 040 040 040 040 050 050 050 050 050 050 050 050 050 050 050 050 060 060 060 060 060 060 060 060 060 060 060 060 060 060 080 080 080 080 080 080 080 080 080 080 080</td></t<>	G 1/8 inch 030 - - 030 - - 030 - - 030 - - 030 - - 030 - - 030 • - - 030 • - - 030 • - - 030 • - - 030 • - - 030 • - - 030 • - - 030 • - - 030 • - 040 040 040 040 040 040 040 040 040 040 040 040 040 040 040 040 040 040 040 050 050 050 050 050 050 050 050 050 050 050 050 060 060 060 060 060 060 060 060 060 060 060 060 060 060 080 080 080 080 080 080 080 080 080 080 080

Prod. Gr. 139

WALTON screw tap extractor sets

Application:

For extracting broken screw taps. Sliding the holder ring pushes the fingers into the screw tap grooves where they are held in place by the guide bush. The broken screw tap is then loosened and removed by unscrewing using a tap wrench.

Execution:

• No. 13518 010: Extractor with 3 steel grooves and spring steel fingers, 6 pieces (consisting of 13510)

> Source: Hahn+Kolb Werkzeuge GmbH Technical data subject to change.

Availability subject to country specific rules and regulations.

- No. 13518 020: Extractor with 3 steel grooves and spring steel fingers, 10 pieces (consisting of 13510)
- No. 13520 010: Extractor with 4 steel grooves and spring steel fingers, 6 pieces (consisting of 13512)
- No. 13520 020: Extractor with 3 steel grooves and spring steel fingers, 10 pieces (consisting of 13512)

Advantage:

 User-friendly and efficient removal of broken taps saves time and money

ICON

DGF

Composition of set	Number of pieces in assortment/ set (PCS)	1351 Ident.		1352 Ident.	
1 extractor for each of the screw tap sizes M4/M5/M6/M8/M10/ M12	6	010	•	010	•
1 extractor for each of the screw tap sizes M3/M4/M5/M6/M8/ M10/M12/M14/M16/M20	10	020	•	020	•

M Prod. Gr. 139

R ATOR

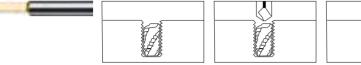
Drill extractor for machine tap For use in hardened steels to 63HRC

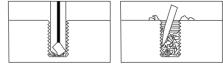
νнм

Application:

For drilling out broken-off screw taps (HSS, HSSE, HSSE PM) up to a hardness of 65 HRC using bench-type or column-type drills, wet or dry machining at a rotation speed of 1000-2000 rpm in hand-feed or for wet machining on CNC machines at a rotation speed of 1400-2400 rpm and a feed rate of 0.03-0.06 per revolution. The drill bit has a service life of 3 to 5 screw taps.

Execution:


Solid carbide-TiN drill bit, with three cutting edges


Advantage:

User-friendly and efficient removal of screw taps saves time and money.

Innovative cutting geometry ensures high process reliability and a long service life.

(DIN 374)

Application	oteer (IV)	el (N/m	m ²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-		Super-	Har	d mat.
No.	<700			long	short	long	tics	G(Ć)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC					
13521																			
Suitable for so	Suitable for screw thread			utting edge Ø (mm) Chip flute leng							L	ength (I	mm)		Shaf	t Ø (mm)		13521. Ident. N	
M3				2.5				10				38				3		030	•
M4	ŀ		3.3					14				46				4		040	•
M5	5			4.2				19				50				5		050	•
M6)			5				23				50				6		060	•
M8	3			6.8				23				60				7		080	•
M1	0			8.5				25				80				9		100	•
M12				10.2				35				80				11		120	•

Prod. Gr. 139

ATORN[®] Drill extractor for machine tap set (DIN 374) For use in hardened steels to 63HRC

Application:

For drilling out broken-off M3, M4, M5, M6, M8, M10 and M12 screw taps (HSS, HSSE, HSSE-PM) up to a hardness of 65 HRC using bench-type or column-type drills in wet or dry machining at a rotation speed of 1000-2000 rpm with hand-feed or for wet machining on CNC machines at a rotation speed of 1400-2400 rpm with a feed rate of 0.03-0.06 per revolution. The drill bit has a service life of 3 to 5 screw taps.

Execution:

Precision-ground drill bit for screw taps, solid carbide-TiN, with three cutting edges for M3, M4, M5, M6, M8, M10 and M12 for extremely high

12521	Ident No	300
13521	Ident. No.	•

Prod. Gr. 139

266

requirements for process reliability and service life.

Advantage:

- User-friendly and efficient removal of screw taps saves time and money.
- Innovative cutting geometry ensures high process reliability and a long service life.
- Sturdy plastic tool box protects the tools from dirt and damage.

Technical data:

Suitable for screw thread: M3 | M4 | M5 | M6 | M8 | M10 | M12

overview: threading dies

	Ø	P 700	P 1000	P 1300	М	N	К	S		page
13410	M1-M36	•				0			3	268
13412	M3 L-M24 L	•				0			S	268
13418	M2-M24		•	•	•			•		270
13421	M3-M20	•				0			\odot	269
13440	MF2-MF63	•				0			3	271-272
13442	MF8 L-MF24 L	•				0				271-272
13446	MF5-MF30		•	•	•			•		272
13450	UNC Nr.2-UNC 1 inch	•				0			()	275
13460	UNF Nr.4-UNF 3/4 inch	•				0			3	275
13466	NPT 1/8-NPT 3/4 inch	•				0			35	274
13470	BSW 1/8-BSW 5/8 inch	•				0			3	274
13480	G 1/8-G 2 inch	•				0			()	273
13484	G 1/8-G 1 inch		•	•	•			•	3	273-274
13487	G 1/8-G 1 1/4 inch	•				0			(PC)	273

Source: Hahn+Kolb Werkzeuge GmbH Technical data subject to change. Availability subject to country specific rules and regulations.

Ŷ

Thread tools $\ Overview$: threading dies

	Ø	P 700	P 1000	P 1300	М	N	К	S		page
13491	PG 7-PG 29	•								-
13434	M3-M30	•				0			\bigcirc	270

ATORN[®] **HSS threading die** (EN standard 22568) For universal use up to 700 N/mm²

Application:

No. 13410: For tapping metric male threads in the steel and NF metal material groups up to a strength of 700 N/mm².

No. 13412: For producing left-hand metric male threads in the steel and non-ferrous metals material groups up to a strength of 700 N/mm².

Execution:

- No. 13410: Right-handed die, M1 to M1.4 = tol. 6h, M1.6 to M36 = tol. 6g with spiral point (from M3), pre-slotted, 1.75-threaded chamfer
- No. 13412: Left-handed die M3 to M24 = tol. 6g with spiral point, pre-slotted, 1.75-threaded chamfer

Advantage:

- Universal use for maximum flexibility
- Micro-cutting edge treatment and special lapping process for high process reliability and a long service life

No. 13412

																		p. 283	p. 277
Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13410																			
13412																			

		Cuttin	g direction		ght-hand cutting	Left-ł	nand cutting			Cuttin	g direction		ght-hand cutting	Left-h	and cutting
Thread	Pitch	Outer Ø	Height	1341	0	1341	2	Thread	Pitch	Outer Ø	Height	1341	0	13412	2
type x	(mm)	(mm)	(mm)	Ident.	No.	Ident.	No.	type x	(mm)	(mm)	(mm)	Ident.	No.	Ident.	No.
nominal								nominal							
Ø								Ø							
M1	0.25	16	5	010	•	-	-	M7	1	25	9	070	•		-
M1.2	0.25	16	5	012	•	-	-	M8	1.25	25	9	080	•	080	•
M1.4	0.3	16	5	014	•	-	-	M9	1.25	25	9	090	•	-	-
M1.6	0.35	16	5	016	•	-	-	M10	1.5	30	11	100	•	100	•
M1.7	0.35	16	5	017	•	-	-	M11	1.5	30	11	110	•	-	-
M1.8	0.35	16	5	018	•	-	-	M12	1.75	38	14	120	•	120	•
M2	0.4	16	5	020	•	-	-	M14	2	38	14	140	•	140	•
M2.2	0.45	16	5	022	•	-	-	M16	2	45	18	160	•	160	•
M2.3	0.4	16	5	023	•	-	-	M18	2.5	45	18	180	•		-
M2.5	0.45	16	5	025	•	-	-	M20	2.5	45	18	200	•	200	•
M2.6	0.45	16	5	026	•	-	-	M22	2.5	55	22	220	•	-	-
M3	0.5	20	5	030	•	030	•	M24	3	55	22	240	•	240	•
M3.5	0.6	20	5	035	•	-	-	M27	3	65	25	270	•	-	-
M4	0.7	20	5	040	•	040	•	M30	3.5	65	25	300	•	-	-
M4.5	0.75	20	7	045	•	-	-	M33	3.5	65	25	330	•	-	-
M5	0.8	20	7	050	•	050	•	M36	4	65	25	360	•	-	-
M6	1	20	7	060	•	060	•								

Prod. Gr. 1KI

For tapping metric male threads in the steel and NF

metal material groups up to a strength of 700 N/

Application:

mm².

Execution:

Right-handed die, M1 to M1.4 = tol. 6h, M1.6 to M36 = tol. 6g with spiral point (from M3), pre-slotted, 1.75-threaded chamfer

Advantage:

Standard geometry with a very good price-performance ratio

																			p. 283	p. 277
ſ	Application	Ste	el (N/mi	m²)	Stainle	ss steel	A	u	Bra	ISS	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
Ī	No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
[13417																			

Thread type x

nominal Ø

M12

M14

M16

M18

M20

M22 M24

M27

M30

Pitch (mm)

1.75

2.5

2.5

3 3.5

		C	utting direction		ght-hand cutting	
Thread type x nominal Ø	Pitch (mm)	Outer Ø (mm)	Height (mm)	1341 Ident.		
M2	0.4	16	5	020	•	
M2.5	0.45	16	5	025	•	
M3	0.5	20	5	030	•	
M4	0.7	20	5	040	•	
M5	0.8	20	7	050	•	
M6	1	20	7	060	•	
M7	1	25	9	070	•	
M8	1.25	25	9	080	•	
M10	1.5	30	11	100	•	

Prod. Gr. 1DC

Thread-cutting die HSSE (EN standard 22568) DRION for universal use up to 1300 N/mm2

Application:

For tapping metric male threads in the steel, stainless steel, NF metal and special alloy material groups up to a strength of 1300 N/mm².

Execution:

Right-handed thread-cutting die, tol. 6g,

pre-slotted and 2.0 threaded chamfer

Advantage:

Standard geometry with a very good price-performance ratio

																			p. 283	p. 277
	Application	Ste	el (N/mi	m ²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
	No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
Γ	13421																			
_																				

		C	Cutting direction		ght-hand cutting			C	Cutting direction		ght-hand cutting
Thread type x	Pitch (mm)	Outer Ø (mm)	Height (mm)	1342	1	Thread type x	Pitch (mm)	Outer Ø (mm)	Height (mm)	1342	1
nominal Ø				Ident.	No.	nominal Ø			- · ·	Ident.	No.
M3	0.5	20	5	030	•	M10	1.5	30	11	100	•
M4	0.7	20	5	040	•	M12	1.75	38	14	120	•
M5	0.8	20	7	050	•	M14	2	38	14	140	•
M6	1	20	7	060	•	M16	2	45	18	160	•
M8	1.25	25	9	080	•	M20	2.5	45	18	200	•

Prod. Gr. 1DC

RION[®] **HSS thread-cutting die set** (EN standard 22568) for universal use up to 700 N/mm2

Application:

Prod. Gr. 1DC

For tapping metric male threads in the steel and NF metal material groups up to a strength of 700 N/ mm².

Execution:

 Right-handed die set consisting of 13417 for M3, M4, M5, M6, M8, M10 and M12, tol. 6g with spiral point, pre-slotted, 1.75-threaded chamfer

Advantage:

Standard geometry with an excellent price-performance ratio

Min./max. thread-cutting area, metric		3-12 mm
Number of pieces in assortment/set (PCS)		7
12417	Ident No	500
13417	Ident. No.	•

Cutting direction

Height (mm)

14

14

18

18

18

22 22

25 25

Outer Ø (mm)

38

38

15

45

45

55 55

65

65

13417.

120

140

160

180

200

220

240

270

300

Ident. No.

Right-hand

cutting

Source: Hahn+Kolb Werkzeuge GmbH
Technical data subject to change.
Availability subject to country specific rules and regulations.

Thread-cutting die HSSE (EN standard 22568) ATORA

for universal use up to 1300 N/mm2

Advantage:

service life

For tapping metric male threads in the steel, stainless steel, NF metal and special alloy material groups up to a strength of 1300 N/mm².

Execution:

Application:

Right-handed die, tol. 6g with spiral point (from M2) and nitrided, pre-slotted, 2.0-threaded

 Specialised insert with optimised chipping geometry for use in materials that are difficult to machine Micro-cutting edge treatment and special lapping

process for high process reliability and a long

Cutting direction

Height (mm)

11

14

14

18

18

18

Outer Ø (mm)

25

30

38

38

45

45

45

5 6

50 mm

60 mm

	Chaimer																			
																			p. 283	p. 277
[Application	Ste	el (N/m	m²)	Stainle	ss steel	A	u	Bra	ISS	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
ĺ	No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjŴŴ	alloy	alloy	alloy	<55 HRC	<65 HRC
ſ	13418					•														

Thread type x

nominal Ø

M8

M10

M12

M14

M16

M18

M20

M24

Pitch (mm)

1.25

1.75

2.5

2.5

		C	utting direction		ght-hand cutting
Thread type x nominal Ø	Pitch (mm)	Outer Ø (mm)	Height (mm)	1341 Ident.	
M2	0.4	16	3.5	020	•
M2.5	0.45	16	5	025	•
M2.6	0.45	16	5	026	0
M3	0.5	20	5	030	•
M3.5	0.6	20	5	035	•
M4	0.7	20	5	040	•
M5	0.8	20	7	050	•
M6	1	20	7	060	•

21 mm

27 mm

for universal use up to 700 N/mm2

Prod. Gr. 1KI

In Hexagonal thread-cutting die HSS (DIN 382) ATORN

Application:

For retapping and repairing damaged metric male threads in the steel and NF metal material groups up to a strength of 700 N/mm².

Execution:

Right-handed hexagonal die with tol. 6g

1.25

Advantage:

- Hexagonal design for tapping difficult to reach threads
- Micro-cutting edge treatment and special lapping process for high process reliability and a long service life

Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Har	d mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjŴŴ	alloy	alloy	alloy	<55 HRC	<65 HRC
13434																			
Thread type x	Pitch	(mm)	Width	across	Height (mm)	13434	h		Threa	d type :	x Pi	tch (mm)	Width	across	Heigh	t (mm)	13434.	
nominal Ø			fl	ats			Ident.	No.		non	ninal Ø			fl	ats	-		Ident. N	0.
M3	0	.5	18	mm	5		030	0		Ν	M12		1.75	36	mm	1	4	120	•
M4	0	.7	18	mm	5		040	•		M	И14		2	36	mm	1	4	140	•
M5	0	.8	18	mm	7		050	•		N	И16		2	41	mm	1	8	160	•
M6		1	18	mm	7		060	•		N	M20		2.5	41	mm	1	8	200	•

M24

M30

M10 Prod. Gr. 1K

M8

TORN® Thread-cutting die set, hexagonal, HSS (DIN 382) for universal use up to 700 N/mm2

240

300

Right-hand

cutting

13418..

Ident. No

080

100

120

140

160

180

200 240

Application:

For retapping and repairing damaged metric male threads in the steel and NF metal material groups up to a strength of 700 N/mm².

Execution:

270

 Right-handed die set, hexagonal, for M3, M4, M5, M6, M8, M10 and M12, tol. 6g

Advantage:

080

100

- Innovative cutting geometry for high process reliability
- Micro-cutting edge treatment and special lapping process for high process reliability and a long service life
- Hexagonal design for tapping difficult to reach threads
- Sturdy metal case protects the tool from dirt and damage

22

Source: Hahn+Kolb Werkzeuge GmbH Technical data subject to change. Availability subject to country specific rules and regulations.

Ŷ

Min./max. threa				CS)					3-	12 mm 7									
13434					lden	t. No.				500 ●									
Prod. Gr. 1KI																			
Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13434500																			

ATORN[®] **DRION**[®] **HSS threading die** (EN standard 22568) For universal use up to 700 N/mm²

MF HSS DIN 13 6g

Application:

No. 13440: For tapping fine metric male threads in the steel and NF metal material groups up to a strength of 700 $N/mm^2.$

No. 13442–13445: For cutting fine metric threads externally in the material groups of steel and non-ferrous metals up to a strength of 700 N/mm².

Execution:

- No. 13440: Right-handed die, MF2 = tol. 6h, MF2.6 to MF50 = tol. 6g, MF63 = tol. 8g with spiral point, pre-slotted, 1.75-threaded chamfer
- No. 13442: left die, tol. 6 g with spiral point, pre-slotted and 1.75 pitch
- No. 13445: right die, tol. 6 g with spiral point, pre-slotted and 1.75 pitch

No. 13440

No. 13442

Advantage:

- No. 13440:
 - Universal use for maximum flexibility
- Micro-cutting edge treatment and special lapping process for high process reliability and a long service life
- No. 13442:
 - universal use for maximum flexibility during application
- micro cut edge treatment and special lapping method for excellent process reliability and long service life
- No. 13445: standard geometry with excellent price/performance ratio

No. 13445

																		- Ç	
																		p. 283	p. 277
Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G) GjMW	Titan-	Nickel-	Super-	Hard	l mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(Ċ)FK	GJMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13440																			
13442																			
13445																			

				ATOR	<u>?N</u> °	ORIO	N.″	ATOR	<u>7/</u> *
			Cutting direction		nt-hand utting		nt-hand Itting	Left-ha	and cutting
Thread type x nominal Ø	Pitch (mm)	Outer Ø (mm)	Height (mm)	13440 Ident. N		13445 Ident. N		13442 Ident. I	
MF2	0.25	16	5	020	•	-	-	-	-
MF2.6	0.35	16	5	026	0	-	-	-	-
MF3	0.35	20	5	030	•	030	•	-	-
MF4	0.35	20	5	040	•	-	-	-	-
MF4	0.5	20	5	045	•	045	•	-	-
MF5	0.5	20	5	050	•	050	•	-	-
MF6	0.5	20	5	060	•	060	•	-	-
MF6	0.75	20	7	065	•	065	•	-	-
MF7	0.75	25	9	070	•	-	-	-	-
MF8	0.5	25	9	080	•	080	•	-	-
MF8	0.75	25	9	083	•	083	•	083	•
MF8	1	25	9	086	•	086	•	086	•
MF9	1	25	9	090	•	-	-	-	-
MF10	0.75	30	11	100	•		-		-
MF10	1	30	11	103	•	103	•	103	•
MF10	1.25	30	11	106	•	106	•	-	-
MF11	1	30	11	110	•	-	-	-	-
MF12	1	38	10	120	•	120	•	120	•
MF12	1.25	38	10	123	•	123	•	-	-
MF12	1.5	38	10	126	•	126	•	126	•
MF12	1	38	10	140	•	140	•	-	-
MF14	1.25	38	10	143	•	143	•	-	-
MF14	1.5	38	10	146	•	146	•	146	•
MF15	1	38	10	150		-	-		-
MF10	1	45	14	160	•	160	•	-	-
MF10 MF16	1.5	45	14	165	•	165	•	165	•
MF18	1	45	14	180		180		-	-
MF18	1.5	45	14	183	•	183	•	183	•
MF20	1	45	14	200		200			-
MF20	1.5	45	14	203	•	203	•	203	•
MF20	2	45	14	206	•	206	•	-	-
MF22	1	55	14	220		-	-	-	-
MF22	1.5	55	16	223	•	223	•	-	-
MF22	2	55	16	226		-	-	-	-
MF24	1	55	16	240		-		_	

				ATO	<u>RN</u> *	ORI	<u>DN</u> "	ATO	<u>RN</u> *
			Cutting direction	c	sht-hand sutting	Ċ	ght-hand cutting		and cutting
Thread type x nominal Ø	Pitch (mm)	Outer Ø (mm)	Height (mm)	13440 Ident.		1344 Ident.		1344 Ident.	
MEDA	2	EE	14		INO.		INO.		
MF24	2	55 55	16	246	•	246	•	-	-
MF25	1.5		16	250	•	255		-	-
MF26	1.5	55	16	260	•	-	-	-	-
MF27	2	65	18	275	•	275	•	-	-
MF27	1.5	65	18	-	-	270	•	-	-
MF28	1.5	65	18	280	•	-	-	-	-
MF30	1.5	65	18	303	•	303	•		-
MF30	2	65	18	306	•	306	•	-	-
MF32	1.5	65	18	320	•	320	•	-	-
MF33	1.5	65	18	330	•		-	-	-
MF33	2	65	18	335	•		-	-	-
MF34	1.5	65	18	340	•	-	-	-	-
MF35	1.5	65	18	350	•	-	-	-	-
MF36	1.5	65	18	360	•	-	-	-	-
MF36	2	65	18	363	•	-	-	-	-
MF36	3	65	25	366	•	-	-	-	-
MF40	1.5	75	20	400	•	405	•	-	-
MF42	1.5	75	20	420	•	-	-	-	-
MF42	2	75	20	423	•	-	-	-	-
MF45	1.5	90	22	450	•	-	-	-	-
MF48	1.5	90	22	480	•	-	-	-	-
MF50	1.5	90	22	500	•	505	•	-	-
MF63	1.5	105	22	630	0	-	-	-	-

ORION = Prod. Gr. 1DC

ATORN[®] ORION[®] HSS threading die (EN standard 22568) For universal use and stainless steel

· =

Application:

For cutting fine metric threads externally in the material groups of steel, stainless steel, non-ferrous metals and special alloys up to a strength of 1300 N/mm².

Execution:

 right die. tol. 6 g with spiral point, nitrided, pre-slotted and 2.0 pitch

Advantage:

- No. 13446:
 - specialised application with optimised cutting geometry for use in difficult-to-machine materials
- micro cut edge treatment and special lapping method for excellent process reliability and long service life
- No. 13447: standard geometry with excellent price/performance ratio

No. 13446

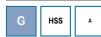
No. 13447

																			p. 283	p. 277
Γ	Application	Ste	el (N/m	m²)	Stainle	ss steel	Α	lu	Bra	ISS	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
	No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
Γ	13446					•														
	13447					•														

				ATO	<u>RN</u> *	ORI	<u>ON</u> *					ATO	<u>'RN</u> *	ORI	<u>DN</u> *
		Cuttin	g direction		ght-hand cutting		ght-hand cutting			Cuttin	g direction		ght-hand cutting		ght-hand cutting
Thread	Pitch	Outer Ø	Height	1344	6	1344	7	Thread	Pitch	Outer Ø	Height	1344	6	1344	7
type x nominal	(mm)	(mm)	(mm)	Ident.	No.	Ident.	No.	type x nominal	(mm)	(mm)	(mm)	Ident.	No.	Ident.	No.
Ø								Ø							
MF5	0.5	20	5	050	•		-	MF14	1.5	38	10	146	•	146	•
MF6	0.75	20	7	065	•	-	-	MF16	1.5	45	14	165	•	165	•
MF8	0.75	25	9	083	•	-	-	MF18	1.5	45	14	183	•	183	•
MF8	1	25	9	086	•	086	•	MF20	1.5	45	14	203	•	203	•
MF10	1	30	11	103	•	103	•	MF22	1.5	55	16	223	•	-	-
MF12	1	38	10	120	•	120	•	MF24	1.5	55	16	243	•	-	-
MF12	1.5	38	10	126	•	126	•	MF30	1.5	65	18	303	•	-	-

ORION = Prod. Gr. 1DC ATORN[®] = Prod. Gr. 1KJ

272


Ŷ

Ŷ

ATORN® ORION® HSS threading die (EN standard 24231)

For universal use up to 700 N/mm²

Application:

For cutting G (pipe) threads externally in the material groups of steel and non-ferrous metals up to a strength of 700 N/mm².

Execution:

- right die. tol. A with spiral point and 1.75 pitch
- Advantage:
- No. 13480:
 - universal use for maximum flexibility during application
- micro cut edge treatment and special lapping method for excellent process reliability and long service life
- No. 13487: standard geometry with excellent price/performance ratio

No. 13487

																		p. 283	p. 277
Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13480																			
13487																			

				ATO	<u>RN</u> °	ORI	<u>ON</u> °					ATO	<u>RN</u> °	ORI	<u>ON</u> °
		Cuttin	g direction		ght-hand cutting		ght-hand cutting			Cuttin	g direction		ght-hand cutting		ght-hand cutting
Thread type x	Number of thread	Outer Ø (mm)	Height (mm)	1348 Ident.		1348 Ident.		Thread type x	Number of thread	Outer Ø (mm)	Height (mm)	1348 Ident.		1348 Ident.	
nominal Ø in inches	starts per inch	()	()	luona		laonti		nominal Ø in inches	starts per inch	()	()				
G 1/8 in	28	30	11	010	•	010	•	G 1 in	11	65	18	080	•	080	•
G 1/4 in	19	38	10	020	•	020	•	G 7/8 in	14	65	18	-	-	070	•
G 3/8 in	19	45	14	030	•	030	•	G 1-1/4	11	75	20	_		100	
G 1/2 in	14	45	14	040	•	040	•	in	11	/5	20			100	
G 3/4 in	14	55	16	060	•	060	•	G 1-1/2	11	90	22	120	•	-	_
G 5/8 in	14	55	16	-	-	050	•	in							
								G 2 in	11	105	22	140	•		-

ORION = Prod. Gr. 1DC

ATORN® ORION® HSS threading die (EN standard 24231) For use in steel up to 1300 N/mm², stainless steel and

special alloys

Application:

No. 13484: For cutting G (pipe) threads externally in the material groups of steel, stainless steel, non-ferrous metals and special alloys up to a strength of 1300 N/mm².

No. 13488: For tapping male (pipe) threads in the steel, stainless steel, NF metal and special alloy material groups up to a strength of 1300 N/mm².

Execution:

- No. 13484: right die. tol. A with spiral point, nitrided, pre-slotted and 2.0 pitch
- No. 13488: Right-handed die, tol. A with spiral point, pre-slotted, 2.0-threaded chamfer

Advantage:

- No. 13484: specialised application with optimised cutting geometry for use in difficult-to-machine materials
- micro cut edge treatment and special lapping method for excellent process reliability and long service life
- No. 13488: Standard geometry with a very good price-performance ratio

No. 13484

No. 13488

	-
p. 283	p. 277

Application	Ste	el (N/m	m²)	Stainle	ss steel	A	lu	Bra	iss	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13484					•														
13488					•														

				ATORN*	O RION [®]
			Cutting direction	Right-hand cutting	Right-hand cutting
Thread type x nominal Ø in	Number of thread starts per	Outer Ø (mm)	Height (mm)	13484	13488
inches	inch			Ident. No.	Ident. No.
G 1/8 in	28	30	11	010	010
G 1/4 in	19	38	10	020 •	020 •
G 3/8 in	19	45	14	030 •	030 •
G 1/2 in	14	45	14	040 •	040
G 3/4 in	14	55	16	060 •	060 •
G 1 in	11	65	18	080	080

ORION = Prod. Gr. 1DC ATORN[®] = Prod. Gr. 1KJ

TORN[®] Thread-cutting die HSS (EN standard 22568) for universal use up to 700 N/mm2

Application:

For cutting BSW (British Whitworth) threads externally in the material groups of steel and non-ferrous metals up to a strength of 700 N/mm².

Execution:

• right die with spiral point and 1.75 pitch

Advantage:

- universal use for maximum flexibility during application
- micro cut edge treatment and special lapping method for excellent process reliability and long service life

p. 283 p. 277

D:

Application	Ste	el (N/m	m²)	Stainles	ss steel	AI	u	Bra	iss	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13470																			

			Cutting direction	RIE	ght-hand cutting
Thread type x nominal Ø in inches	Number of thread starts per inch	Outer Ø (mm)	Height (mm)	1347	
				Ident.	No.
BSW 1/8 in	40	20	5	030	•
BSW 5/32 in	32	20	7	040	0
BSW 7/32 in	24	20	7	060	0
BSW 1/4 in	20	20	7	070	•
BSW 5/16 in	18	25	9	080	•
BSW 3/8 in	16	30	11	090	•
BSW 1/2 in	12	38	14	110	•
BSW 5/8 in	11	45	18	130	•

Prod. Gr. 1KJ

TIP: Thread-cutting die HSS (EN standard 24230) for universal use up to 700 N/mm2

Application:

For cutting tapered 1: 16 NPT (National Pipe Taper) threads externally in the material groups of steel and non-ferrous metals up to a strength of 700 N/mm².

Execution:

• right die with spiral point and 1.75 pitch

Advantage:

- universal use for maximum flexibility during application
- micro cut edge treatment and special lapping method for excellent process reliability and long service life

No.		
12466	No. <	tics G(Č)FK GjMW alloy alloy alloy <55 HRC <65 HRC
	13466	

			Cutting direction	Rig	ght-hand cutting
Thread type x nominal Ø in inches	Number of thread starts per inch	Outer Ø (mm)	Height (mm)	1346 Ident.	6
NPT 1/8 in	27	30	11	010	•
NPT 1/4 in	18	38	14	020	•
NPT 3/8 in	18	45	14	030	•
NPT 1/2 in	14	45	18	040	•
NPT 3/4 in	14	55	22	050	•

Prod. Gr. 1KJ

For cutting UNC (Unified Coarse) threads externally

in the material groups of steel and non-ferrous

• right die. tol. 2A with spiral point and 1.75 pitch

metals up to a strength of 700 N/mm².

Application:

Execution:

Advantage:

- universal use for maximum flexibility during application
- micro cut edge treatment and special lapping method for excellent process reliability and long service life

Ŷ

																		p. 283	p. 277
Application	Ste	el (N/mi	n²)	Stainle	ss steel	A	lu	Bra	ISS	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
13450																			

		C	utting direction		ght-hand cutting			C	Cutting direction		ght-hand cutting
Thread type x	Number of	Outer Ø (mm)	Height (mm)	1345	0	Thread type x	Number of	Outer Ø (mm)	Height (mm)	1345	0
nominal Ø in	thread starts		- · ·	Ident.	No.	nominal Ø in	thread starts		- · ·	Ident.	No.
inches	per inch					inches	per inch				
UNC 2 in	56	16	5	020	•	UNC 3/8 in	16	30	11	120	•
UNC 4 in	40	16	5	040	•	UNC 7/16 in	14	30	11	130	•
UNC 6 in	32	20	7	060	•	UNC 1/2 in	13	38	14	140	•
UNC 8 in	32	20	7	070	•	UNC 9/16 in	12	38	14	150	•
UNC 10 in	24	20	7	080	•	UNC 5/8 in	11	45	18	160	•
UNC 1/4 in	20	20	7	100	•	UNC 3/4 in	10	45	18	170	•
UNC 5/16 in	18	25	9	110	•	UNC 1 in	8	55	22	190	•

Prod. Gr. 1KJ

ATORN® HSS thread-cutting die (EN standard 22568) for universal use up to 700 N/mm2

UNF HSS 2A

Application:

For cutting UNF (Unified Fine) threads externally in the material groups of steel and non-ferrous metals up to a strength of 700 N/mm².

Execution:

• right die. tol. 2A with spiral point and 1.75 pitch

Advantage:

- universal use for maximum flexibility during application
- micro cut edge treatment and special lapping method for excellent process reliability and long service life

p. 283 p. 277

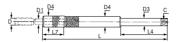
ſ	Application	Ste	el (N/m	m²)	Stainle	ss steel	A	u	Bra	ass	Bro	nze	Plas-	Graphite	GG(G)	Titan-	Nickel-	Super-	Hard	mat.
[No.	<700	<1000	<1300	marten.	austen.	short	long	short	long	short	long	tics	G(C)FK	GjMW	alloy	alloy	alloy	<55 HRC	<65 HRC
ſ	13460																			

		C	utting direction		ght-hand cutting			C	Cutting direction		ght-hand cutting
Thread type x	Number of	Outer Ø (mm)	Height (mm)	1346	0	Thread type x	Number of	Outer Ø (mm)	Height (mm)	1346	0
nominal Ø in	thread starts			Ident.	No.	nominal Ø in	thread starts		- · ·	Ident.	No.
inches	per inch					inches	per inch				
UNF 4 in	48	16	5	050	0	UNF 5/16 in	24	25	9	120	•
UNF 6 in	40	20	5	070	•	UNF 3/8 in	24	30	11	130	•
UNF 8 in	36	20	7	080	•	UNF 7/16 in	20	30	11	140	•
UNF 10 in	32	20	7	090	•	UNF 1/2 in	20	38	10	150	•
UNF 12 in	28	20	7	100	•	UNF 9/16 in	18	38	10	160	•
UNF 1/4 in	28	20	7	110	•	UNF 5/8 in	18	45	14	170	•
						UNF 3/4 in	16	45	14	180	•

Prod. Gr. 1KJ

DRION[®] Machine tap extension

For using machine taps


Application:

For extending machine taps in conjunction with deep and difficult to reach threads on CNC and conventional machines, in tapping chucks or quick-change chucks in single part production.

Execution:

· Steel tool holder with collet chuck and clamping nut; steel shank of the extension pursuant to DIN for high requirements for process reliability and service life

Excellent value for money

User-friendly handling with short changeover times

Very flexible and fast solution as there is no need to procure special machine

Advantage:

taps

Suitable for DIN 371 screw tap	Suitable for DIN 374/376 screw tap	Suitable for screw tap square socket size (mm)	C (mm)	L7 (mm)	D1 (mm)	D4 (mm)	D3 (mm)	L (mm)	L4 (mm)	13533 Ident. No.
M2-M2.6	M4	2.1	4.9	22	2.8	6.1	6	130	60	001
M2-M2.6	M4	2.1	4.9	22	2.8	6.1	6	230	70	011 •
M3	M4.5-M5	2.7	4.9	23	3.5	7.5	6	130	60	002 •
M3	M4.5-M5	2.7	4.9	23	3.5	7.5	6	230	70	020 •
M4	M6	3.4	4.9	23	4.5	8.4	6	130	60	003 •
M4	M6	3.4	4.9	23	4.5	8.4	6	230	70	030
M4.5-M6	M8	4.9	5.5	26	6	12.1	7	130	60	004 •
M4.5-M6	M8	4.9	5.5	26	6	12.1	7	230	70	040 •
M7	M9-M10	5.5	5.5	26	7	12.1	7	130	60	005 •
M7	M9-M10	5.5	5.5	26	7	12.1	7	230	70	050 •
M8	M11	6.2	6.2	30	8	13	8	130	60	006
M8	M11	6.2	6.2	30	8	13	8	230	80	060 •
M9	M12	7	7	31	9	15	9	130	60	007 •
M9	M12	7	7	31	9	15	9	230	80	070 •
M10	-	8	8	33	10	15	10	130	60	• 800
M10	-	8	8	33	10	15	10	230	80	080
-	M14	9	9	36	11	18	11	130	90	009 •
-	M14	9	9	36	11	18	11	230	90	090 •
-	M16	9	9	36	12	18	12	130	90	010 •
-	M16	9	9	36	12	18	12	230	90	111 •
-	M18	11	11	46	14	22	14	200	90	021 O
-	M18	11	11	46	14	22	14	330	90	121 O
-	M20	12	12	46	16	22	16	200	90	022 •
-	M20	12	12	46	16	22	16	330	90	122 •
-	M20-M24	14.5	14.5	47	18	26	18	200	100	023 •
-	M20-M24	14.5	14.5	47	18	26	18	330	100	123 O

User-friendly handling with short changeover times

Prod. Gr. 139

N[®] Tool extension)RIO

For screw taps with straight shanks and square drives

Application:

For extending machine taps for use with threads that are deep and difficult to reach.

Execution:

Precision-ground steel tool holder, hardened and tempered with square drive pursuant to DIN 10

Technical data:

Advantage:

Shank style: Reduced shank

Excellent value for money

Inner square size (mm)	Length (mm)	Size of square (mm)	13532 Ident. No.
2.1	60	2.1	021 •
2.7	80	2.7	027 •
3	90	3	030
3.4	95	3.4	034 •
4.3	105	4.3	043 •
4.9	110	4.9	049 •
5.5	115	5.5	055 •
6.2	120	6.2	062 •
7	125	7	070 •

Prod. Gr. 139

276

13532... Inner square size Length (mm) Size of square (mm) Ident. No. (mm) 125 8 8 080 9 130 9 090 10 140 10 100 150 11 110 11 155 175 12 12 120 14.5 14.5 145 16.0 180 16 160 -18 200 18 180 20 220 220 20 200 22 22 220

Thread-cutting die holder

DIN EN 22568 including packing rings

Application:

For holding dies and for tapping male threads on conventional machines. The holder is pushed on to the arbour in the tailstock. The tool is applied straight when the tailstock spindle is set in motion and the thread can be cut.

Execution:

Burnished and knurled steel tool holder with a

packing ring (for fitting other die sizes)

Advantage:

- User-friendly handling on the machine
- Reliable positioning and precise thread cutting without ripping out thread pitches
- Quick changing of the holder on the machine
- No thread distortion

Suitable for mandrel size	Suitable for die size	Ring Ø x height	Die mount Ø (mm)	13535 Ident. No.
1	16 x 5 mm	-	12	010
1	20 x 7 mm 20 x 5 mm	20 x 5 mm	12	030
2	20 x 7 mm 20 x 5 mm	20 x 5 mm	20	040
2	25 x 9 mm	-	20	050
2	30 x 11 mm	-	20	060
2	38 x 14 mm 38 x 10 mm	38 x 10 mm	20	080
2	45 x 18 mm 45 x 14 mm	45 x 14 mm	20	100
3	45 x 18 mm 45 x 14 mm	45 x 14 mm	25	120
3	55 x 22 mm 55 x 16 mm	55 x 16 mm	25	140
3	65 x 18 mm 65 x 25 mm	65 x 18 mm	25	160

Prod. Gr. 139

Holder for screw taps

With square clamping chuck

holder is pushed on to the arbour in the tailstock.

dle is set in motion and the thread can be cut.

Steel tool holder, burnished and knurled, with

The tool is applied straight when the tailstock spin-

Application: For fitting screw taps on conventional machines. The

Execution:

Advantage:

- reliable positioning of the threading die and userfriendly handling
- precision thread cutting without stripping threads no thread distortion

Notes:

screw tap is only to be inserted and must not be tightened

> 3 3.4-14.5 mm 030

square chuck	tighter	ned!	cu unu
Suitable for mandrel size	1	2	
Suitable for min./max. square socket size	2.1-4.9 mm	2.7-9 mm	
	010	020	

010 020 13537... Ident. No.

Prod. Gr. 139

Arbour for thread-cutting dies and screw tap holders

Application:

Execution:

depth indication

For fitting screw taps and dies on conventional lathes with Morse taper.

precision-ground arbor, hardened, with scale for

Advantage:

 High-quality steel and exact grinding precision ensure accurate machining

Notes:

size 1 holder, delivered without a guide groove and may need to be held by hand in some instances

Size	Tap length (mm)	Morse taper size	Die mount Ø (mm)	13539 Ident. No.
1	60	MK 2	12	020
1	60	MK 3	12	040
2	90	MK 2	20	050 •
2	90	MK 3	20	060 •
2	90	MK 4	20	070
3	100	MK 3	25	080
3	100	MK 4	25	090 •

Prod. Gr. 139

Threading die and screw tap holder sets

Other features conform to no. 13535

Application:

Ident. No. 060-140: For holding dies for cutting male threads, tapping and cutting female threads on conventional machines. The holders are pushed on to the arbour in the tailstock. The tool is applied straight when the tailstock spindle is set in motion and the thread can be cut.

Ident. No. 170: For mounting dies for male thread cutting, screw tapping and female thread cutting on conventional machines. The holders are pushed onto the arbor in the tailstock. On approaching the tailstock sleeve, the tool is positioned straight and the thread can be cut.

Execution:

- Ident. No. 060-080: Comprising 1 steel tool holder, size 1, for 20 x 7 die; 1 adapter ring for 20 x 5 die; 1 size 1 holder for 16 x 5 die and each screw tap size; 1 size 1 arbour for either MT2 or MT3
- Ident. No. 100-140: Comprising 1 size 2 steel tool holder for 38 x 14 die; 1 adapter ring for 38

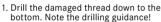
x 10 and 20 x 5 dies: 1 reducer for each die size 30 x 11/25 x 9/20 x 7; 1 size 2 arbour for either MT2, MT3 or MT4; ref. no. 120-140 also includes 1 additional size 2 holder for screw taps

• Ident. No. 170: Comprising 1 steel tool holder, size 3, for dies 45 x 18 and 55 x 22, 1 support ring for dies 45 x 14 and 55 x 16, 1 steel tool holder for screw taps, size 3, and arbor, size 3, with either Morse taper 3 or Morse taper 4

Advantage:

- Excellent value for money
- Ident. No. 060-140:
- Broad range of applications for high user flexibility
- User-friendly handling with short changeover times
- Ident. No. 170:
- · High user flexibility through broad range of
- applications User-friendly handling and short retooling times

Suitable for mandrel size	Suitable for min./max. male thread	Suitable for min./max. female	Morse taper size of mandrel	1354	1
	size	thread size		Ident.	No.
1	M1-M6	M1-M6	MK 2	060	•
1	M1-M6	M1-M6	MK 3	080	0
2	M3-M14	-	MK 3	100	•
2	M3-M14	M3-M16	MK 2	120	•
2	M3-M14	M3-M16	MK 3	130	٠
2	M3-M14	M3-M16	MK 4	140	•
3	M16-M24	M4-M24	MK 3	170	0


Prod. Gr. 139

thread repair for the production of pressure-tight and continuous duty thread

5. Continue to turn the tool until the screw-in resistance is noticeably reduced again. This is the only way to ensure that the bushing is pressed into the threads of the workpiece.

advantages:

- ATORN thread repair bushings are designed for continuous high loads as well as frequent screwing and unscrewing.
- pressure-sealed for water, oil, other liquids and gases.
- secured against unscrewing without adhesive.
- the collar makes additional fixing in the workpiece unnecessary.
- · also suitable for the food industry, available in stainless steel on request.
- · can be used in the following materials: aluminium, brass, steel and cast iron materials.

Thread repair

Design:

278

Thread inserts are formed into a helix from rhombic-profiled stainless steel wire. This results in wear-resistant, corrosion-resistant and heat-resistant threads with narrow tolerances.

Application: ideal for

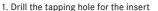
- Thread reinforcement in materials with low shear strength
- Repairing damaged and worn-out threads

Scrap recycling

Important: Thread insert at least 1/4 turn below the workpiece top surface and seated only in fully cut thread.

Installation

www.iconridge.com



Thread tools \ HELICOIL thread inserts

2. Cut the adapter thread

3. Screw in the thread insert

4. Break the threaded pin

HELICOIL® Plus Thread repair assortment box M5 to M12

For repairs or reinforcement of threads

Application:

For thread reinforcement in materials with low shear resistance, for repairing damaged and worn threads and for scrap recovery.

Execution:

 230-part set containing 20x M5/M6, 10x M8/ M10/M12, in 1xD/1.5xD/2.0xD and 5 x HSS twist drill, HSS screw tap, turning tool and pin breaker made from high-strength steel. Thread inserts made from rhombically profiled stainless steel wire formed in a helix

Advantage:

- Broad assortment covers a broad range of machining applications · High-quality and durable insert, user-friendly
- handling
- · Corrosion-resistant and heat-resistant, non-wearing, scrap recovery, even load distribution and tension distribution

Technical data:

Suitable for screw thread: M5-M12

13568... Ident. No.

Prod. Gr. 153

HELICOIL® Plus Thread repair set, metric

050

For repairs or reinforcement of threads

Application:

For thread reinforcement in materials with low shear resistance, for repairing damaged and worn threads and for scrap recovery.

Advantage:

 Corrosion-resistant and heat-resistant, non-wearing, scrap recovery, even load distribu-

- Execution:
- Repair set for thread size 20 x M4/M5/M6 or 10 x M8/M10/M12, in 1 x D/1.5 x D/2.0 x D and HSS twist drill, HSS screw tap, turning tool and pin breaker made from high-strength steel

-

- tion and tension distribution
- Broad assortment covers a broad range of machining applications
- · High-quality and durable insert, user-friendly handling

Suitable for screw thread	13561	1
	Ident.	No.
M4	004	•
M5	005	•
M6	006	•
M8	008	•
M10	010	•
M12	012	•
M16	016	•

Prod. Gr. 153

HELICOIL® Plus Taps made by BOLLHOF

For cutting threads in Helicoil inserts

Application:

Advantage:

removal

Very well suited for cutting Helicoil threads in Innovative cutting geometry ensures very high through holes and blind holes, in steel, non-ferrous metals and (cast iron) material groups, up to a strength of 1000 N/mm² in small batch numbers. High-quality cutting material and cutting edge

Execution:

Precision-ground, right-hand Helicoil screw tap

120000000000000000000000000000000000000	and the second state	 	_
No. of Concession, Name	And in case of the local division of the loc	_	

- treatment for very high service life requirements Cutting geometry optimised for Helicoil inserts
- with protruding shank

Suitable for screw thread	Helicoil pilot hole Ø (mm)	13563 Ident. No.	Suitable for screw thread	Helicoil pilot hole Ø (mm)	13563 Ident. No.	
M4	4.2	040 •	M6	6.3	060 •	
M5	5.2	050 •	M8	8.4	080	

dimensional accuracy, process reliability and chip

Source: Hahn+Kolb Werkzeuge GmbH

Technical data subject to change. Availability subject to country specific rules and regulations. www.iconridge.com

Thread tools \ HELICOIL thread inserts

Suitable for screw thread	Helicoil pilot hole Ø (mm)	13563 Ident. No.		Suitable for screw threa		Helicoil pilot hole Ø (mm)		13563 Ident. No.	
M10	10.5	100	•		M10 x 1	10.2	101	•	
M12	12.5	120	•		M12 x 1.25	12.25	121	•	
M16	16.5	160	•		M14 x 1.25	14.25	141	•	
M20	20.75	201	•						

· High-quality burnished steel ensures a high level of

Prod. Gr. 153

HELICOIL® Plus Installation mandrel

For screwing in Helicoil inserts

Application:

For screwing in Helicoil threads.

Execution:

Installation mandrel made from high-quality steel

wear protection

• Screw-in geometry optimised for Helicoil

13562.. Ident. N

040

050

060

080

100

101

Advantage:

Irel made from high-quality steel
Suitable for screw thread **13562...**

lo.	Suitable for screw thread	13562 Ident. No.			
•	M12	120	•		
•	M12 x 1.25	121	•		
•	M14 x 1.25	141	•		
•	M16	160	•		
•	M20	200	•		

Prod. Gr. 153

HELICOIL[®] Plus Tang break-off tool

M4

M5

M6

M8

M10

M10 x 1

For breaking off pin on Helicoil

Execution:

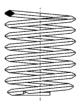
Tang break-off tool made from high-strength steel

Suitable for screw thread	13561 Ident. No.		Suitable for screw thread	13561. Ident. N	
M4	040	•	M10	100	•
M5-M6	055	•	M12	120	•
M8	080	•			

Prod. Gr. 153

HELICOL® Plus Metric thread inserts

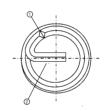
For repairs or reinforcement of threads


Application:

For thread reinforcement in materials with low shear resistance, for repairing damaged and worn threads and for scrap recovery.

Execution:

Made from corrosion-proof and rhombically profiled chrome-nickel steel wire


Suitable for	Helicoil thread	Min. core hole	Effective	13562
screw thread	depth	depth (mm)	thread length	Ident. No.
			(mm)	
M4	1xD	7.8	3.3	220 •
M4	1.5xD	9.8	5.3	221 •
M4	2xD	11.8	7.3	222 •
M5	1xD	9.2	4.2	230 •
M5	1.5xD	11.7	6.7	231 •
M5	2xD	14.2	9.2	232 •
M6	1xD	11.1	5	240 •
M6	1.5xD	14.1	8	241 •
M6	2xD	17.1	11	242 •
M8	1xD	14.2	6.8	250 •
M8	1.5xD	18.2	10.8	251 •
M8	2xD	22.2	14.4	252 •

Prod. Gr. 153

280

Advantage:

- High-quality and durable insert, user-friendly handling
- Corrosion-resistant and heat-resistant, non-wearing, scrap recovery, even load distribution and tension distribution

① Notch, ② Threaded pin

Wire cross section

Suitable for	Helicoil thread	Min. core hole	Effective	13562		
screw thread	depth	depth (mm)	thread length	Ident.	No.	
			(mm)			
M10	1xD	17.3	8.5	260	•	
M10	1.5xD	22.3	13.5	261	•	
M10	2xD	27.3	18.5	262	•	
M12	1xD	20.3	10.3	270	•	
M12	1.5xD	26.3	16.3	271	•	
M12	2xD	32.3	22.3	272	•	
M16	1xD	25.3	14	280	•	
M16	1.5xD	33.3	22	281	•	
M16	2xD	41.3	30	282	•	
M20	1xD	31.2	17.5	290	•	
M20	1.5xD	41.2	37.5	291	•	

HELICOL® Plus Thread inserts for spark plug threads

For repair of spark plug threads

M12 x 1.25

Advantage:

M12 x 1.25

- High-quality and durable insert, user-friendly handling
- Corrosion-resistant and heat-resistant, non-wearing, scrap recovery, even load distribution and tension distribution

M14 x 1.25

16.4

113

Advantage:

and hour

Execution:
 Made from corrosion-proof and rhombically profiled chrome-nickel steel wire

For repairing spark plug threads.

Suitable for screw thread

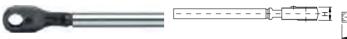
Effective thread length (mm) 10 12 18 13562... Ident. No. 110 111 112

M10 x 1

Prod. Gr. 153

Application:

hilp Ratchet, single arm


For holding screw taps and hand reamers

Application:

For thread cutting or reaming during assembly in hard-to-reach areas, right-hand and left-hand.

Execution:

 Ratchet tools with control lever on the head, made from steel for high stability requirements

Highly compact, robust design

Standard design with very good price/performance ratio

Thread cutting and reaming even in hard-to-reach areas

User-friendly handling and short retooling times

Ratchet size	Suitable for min./max. square socket size	B (mm)	H (mm)	HA (mm)	Max. torque (Nm)	13553 Ident. No.
00	2-8 mm	20	8	115	40	003 •
0	3.4-11 mm	29	11	155	100	005 •
1	4.9-14.5 mm	37	17	175	130	010
2	10-18 mm	45	22	220	180	020 •
3	14-22 mm	56	28	300	400	030
4	18-30 mm	70	34	380	500	040 •
5	25-46 mm	100	38	550	800	050 •

Prod. Gr. 136

hilv Ratchet, single arm

For holding screw taps and hand reamers

Application:

For thread cutting or reaming during assembly in hard-to-reach areas, right-hand and left-hand.

Execution:

 Ratchet tool with integrated switchover in handle, made from high-quality hardened steel for maximum stability requirements

Advantage:

- High-quality design for high service life requirement
- User-friendly handling and short retooling times
- Form-locking of switching direction (right, left, neutral) to prevent uncontrolled changing of the switching direction
- Extremely robust design with hardened components

Ratchet size	Suitable for min./max.	B (mm)	H (mm)	HA (mm)	Max. torque (Nm)	13553
	square socket size					Ident. No.
0	3.4-11 mm	29	11	165	100	105 0
1	4.9-14.5 mm	37	17	200	130	110 0
2	10-18 mm	45	22	240	180	120 •
3	14-22 mm	56	28	300	400	130 0
4	18-30 mm	70	34	380	500	140 0

) **±**

Prod. Gr. 136

🔜 Square insert

For ratchet tools, single arm

Application:

For use in ratchet tool no. 13553.

Execution:

Square insert made from high-quality steel

- Advantage:
- High-quality steel with very good wear
- characteristics
- User-friendly handling and short retooling times

281

Suitable for ratchet size	Square socket size (mm)	Outer Ø (mm)	Number of teeth (PCS)	1355 Ident.		Suitable for ratchet size	Square socket size (mm)	Outer Ø (mm)	Number of teeth (PCS)	1355 Ident.	
00	2.1	16	16	294	0	1	10	29	18	369	•
00	2.7	16	16	300	•	1	11	29	18	372	•
00	3	16	16	303	0	1	12	29	18	375	•
00	3.4	16	16	306	•	1	13	29	18	378	•
00	4	16	16	313	0	1	14	29	18	381	•
00	4.9	16	16	321	•	2	10	36	18	387	•
00	5.5	16	16	327	•	2	11	36	18	390	•
00	6.2	16	16	330	•	2	12	36	18	393	•
00	7	16	16	336	•	2	13	36	18	396	•
00	8	16	16	339	•	2	14	36	18	399	•
0	3.4	22	16	243	•	2	14.5	36	18	402	•
0	4.9	22	16	261	•	2	16	36	18	408	•
0	5.5	22	16	267	•	2	17	36	18	411	•
0	6.2	22	16	273	•	3	14	45	18	417	•
0	7	22	16	279	•	3	16	45	18	426	0
0	8	22	16	282	•	3	17	45	18	429	•
0	9	22	16	285	•	3	18	45	18	432	•
0	10	22	16	288	•	3	19	45	18	435	•
0	11	22	16	291	•	3	20	45	18	438	•
1	4.9	29	18	342	•	3	22	45	18	444	•
1	5.5	29	18	348	•	4	20	60	18	453	0
1	6.2	29	18	354	•	4	22	60	18	456	•
1	7	29	18	360	•	4	24	60	18	459	•
1	8	29	18	363	•	5	36	85	18	495	•
1	9	29	18	366	•						

Prod. Gr. 136

Universal ratchet tool set biz

In metal case

Application:

For thread cutting and reaming in hard-to-reach areas during assembly and repair work.

Execution:

Square insert made from high-quality steel

Advantage:

 High-quality steel with very good wear characteristics

Composition of set		1 universal ratchet tool, size 00, 1 screwdriver and ratchet tool inserts with square 2.1/2.7/3/3.4/4.9/5.5/6.2/7/8	1 each of universal ratchet tool, size 0, 1 screwdriver and ratchet tool inserts with square 3.4/4.9/5.5/6.2/7/8/9/11
13557	ldent. No.	410	420
13337	ident. No.	•	•

Prod. Gr. 136

Fixed ball-type tap wrench IRION For holding screw taps and reamers

Steel tool holder with screw-off arm and 4 square

Application: For mounting screw taps and reamers with square.

Execution:

holes to DIN 10

Advantage:

- High-quality steel with very good wear characteristics and chromium-plated extensions for high corrosion resistance
- User-friendly handling and short retooling times
- Excellent value for money

Tap wrench size	Square size	Min./max. thread-cutting area, metric	Min./max. thread-cutting area, imperial	Length (mm)	13545 Ident. No.
0	2.1 mm/2.7 mm/3 mm/3.4 mm	1-4 mm	1/16-5/32 in	170	005 •
1	3 mm/3.4 mm/4.3 mm/4.9 mm	3.5-8 mm	5/32-5/16 in	195	010
2	3.4 mm/4.3 mm/4.9 mm/5.5 mm	4-10 mm	5/32-3/8 in	240	020 •
3	4.9 mm/5.5 mm/6.2 mm/7 mm	5-12 mm	3/16-1/2 in	290	030 •
4	5.5 mm/6.2 mm/7 mm/9 mm	10-16 mm	3/8-5/8 in	220	040 •

Prod. Gr. 109

ORION[®] Adjustable tap wrench, round version for holding screw taps and reamers

Application: For mounting very small screw taps and reamers with square.

Advantage:

- Ergonomic design for delicate, precise operations
- Hardened clamping jaws ensure low wear
- Highly compact, robust design

Plastic tool holders with hardened steel jaws

Suitable for square socket size (mm)		2.4
Min./max. thread-cutting area, metric	1-2.6 mm	
Min./max. thread-cutting area, imperial	1/16-3/32 in	
13547	Ident, No.	010
13047	ident. No.	•

Prod. Gr. 139

282

Execution:

Availability subject to country specific rules and regulations.

ICO

User-friendly handling and short retooling times

DRION[®] Adjustable tap wrench For holding screw taps and reamers, with removable handle

Application:

For mounting screw taps and reamers with square.

Execution:

• No. 13549: Housing, size 0-5 made from die-cast zinc, steel jaws ground and hardened with screw-off and galvanised arm with knurling for moderate requirements


No. 13551: Housing, size 1-2, made from forged steel, size 3-7/8, welded solid steel design, steel jaws ground and hardened, screw-off and galvanised arm with knurling for very high requirements

Advantage:

User-friendly handling and short retooling times

■ No. 13549:

- Die-cast zinc ensures excellent value for money
- Highly compact, robust design
- No. 13551:
- Safe work even using high forces
 Knurling ensures safe work, even with severe contamination

Ŷ

Tap wrench size	Suitable for min./max.	Min./max. reamer	Min./max. thread-cut-	Length (mm)	1354	9	1355	1
	square socket size	cutting range	ting area, metric	- · ·	Ident.	No.	Ident.	No.
0	2-5 mm	3-6 mm	1-8 mm	125	005	•		-
1	2-6 mm	3-7 mm	1-10 mm	180	010	•	010	•
1 1/2	2-8 mm	3-9 mm	1-12 mm	200	015	•	-	-
2	4-9 mm	5-9 mm	4-12 mm	280	020	•	020	•
3	4.9-12 mm	7-15 mm	5-20 mm	375	030	•	030	•
4	5.5-16 mm	7-21 mm	9-27 mm	480	040	•	040	•
5	7-20 mm	9-26 mm	12-33 mm	700	050	•	050	•
6	9-25 mm	16-30 mm	20-42 mm	960	-	-	060	•
7 8	16-44 mm	20-50 mm	27-86 mm	1200	-	-	070	•

Prod. Gr. 109

DRION[®] Thread-cutting die holder with manual clamp For holding thread-cutting dies

Application:

Advantage:

contamination

For mounting closed and/or slotted dies to DIN EN 22568 and DIN EN 24231.

Execution:

 Housing, size 0-12, made from die-cast zinc, size 13-17, made from steel and from size 7 with screw-off arm

and a second s
Jser-friendly handling and short retooling times
Courling ensures safe work, even with severe

Die holder size	Min./max. thread-cutting	Suitable for die size	Min./max. thread-cutting	Length (mm)	13559
	area, metric		area, metric fine		Ident. No.
0	1-2.6 mm	16 x 5 mm	-	160	005 •
1	27-36 mm	20 x 5 mm	3-4 mm	180	010
2	4.5-6 mm	20 x 7 mm	4.5-6 mm	180	020
3	7-9 mm	25 x 9 mm	7-9 mm	210	030
4	10-11 mm	30 x 11 mm	10-11 mm	270	040
5	-	38 x 10 mm	12-15 mm	310	050 •
6	10-14 mm	38 x 14 mm	-	310	060 •
7	-	45 x 14 mm	16-20 mm	440	070 •
8	10-23 mm	45 x 18 mm	-	440	080
9	-	55 x 16 mm	22-25 mm	490	090
10	22-24 mm	55 x 22 mm	-	490	100 •
11	-	65 x 18 mm	26-36 mm	630	110
12	27-36 mm	65 x 25 mm	-	630	120
13	-	75 x 20 mm	38-42 mm	900	130
14	39-42 mm	75 x 30 mm	-	900	140
15	-	90 x 22 mm	45-52 mm	920	150 •
16	45-52 mm	90 x 36 mm	-	920	160 •
17	-	105 x 22 mm	55-62 mm	1100	170 •

Prod. Gr. 109

core hole diameter for thread cutting and thread milling standard metric ISO thread DIN 13

nominal dia.	pitch P	core hole (drill) Ø DIN 336	core dia. female thread 6H*		
	mm	mm	min. mm	max. mm	
M 1	0,25	0,75	0,729	0,785	
M 1.1	0,25	0,85	0,829	0,885	
M 1.2	0,25	0,95	0,929	0,985	
M 1.4	0,30	1,10	1,075	1,142	
M 1.6	0,35	1,25	1,221	1,321	
M 1.8	0,35	1,45	1,421	1,521	
M 2	0,40	1,60	1,567	1,679	
M 2.2	0,45	1,75	1,713	1,838	
M 2.5	0,45	2,05	2,013	2,138	
M 3	0,50	2,50	2,459	2,599	
M 3.5	0,60	2,90	2,850	3,010	
M 4	0,70	3,30	3,242	3,422	
M 4.5	0,75	3,70	3,688	3,878	
M 5	0,80	4,20	4,134	4,334	
M 6	1,00	5,00	4,917	5,153	
M 7	1,00	6,00	5,917	6,153	
M 8	1,25	6,80	6,647	6,912	
M 9	1,25	7,80	7,647	7,912	
M 10	1,50	8,50	8,376	8,676	

nominal dia.	pitch P	core hole (drill) Ø DIN 336	core dia. female thread	
	mm	mm	min. mm	max. mm
M 11	1,50	9,50	9,376	9,676
M 12	1,75	10,20	10,106	10,441
M 14	2,00	12,00	11,835	12,210
M 16	2,00	14,00	13,835	14,210
M 18	2,50	15,50	15,294 15,74	
M 20	2,50	17,50	17,294	17,744
M 22	2,50	19,50	19,294	19,744
M 24	3,00	21,00	20,752	21,252
M 27	3,00	24,00	23,752	24,252
M 30	3,50	26,50	26,211	26,771
M 33	3,50	29,50	29,211	29,771
M 36	4,00	32,00	31,670	32,270
M 39	4,00	35,00	34,670	35,270
M 42	4,50	37,50	37,129	37,799
M 45	4,50	40,50	40,129	40,799
M 48	5,00	43,00	42,587	43,297
M 52	5,00	47,00	46,587	47,297
M 56	5,50	50,50	50,046	50,796

* M 1.1 to M 1.4 core dia. female thread 5H

core hole diameter for thread cutting and thread milling metric ISO fine thread DIN 13

nominal dia. x pitch P	core hole (drill) Ø DIN 336	core dia. fem	ale thread 6H	nominal dia. x pitch P	core hole (drill) Ø DIN 336	core dia. fem	ale thread 6H	
mm	mm	min. mm	max. mm	mm	mm	min. mm	max. mm	
M 2.5 x 0.35	2,15	2,121	2,221	M 18 x 1.00	17,00	16,917	17,153	
M 3.0 x 0.35	2,65	2,621	2,721	M 18 x 1.50	16,50	16,376	16,676	
M 3.5 x 0.35	3,15	3,121	3,221	M 20 x 1.00	19,00	18,917	19,153	
M 4.0 x 0.50	3,50	3,459	3,599	M 20 x 1.50	18,50	18,376	18,676	
M 4.5 x 0.50	4,00	3,959	4,099	M 20 x 2.00	18,00	17,835	18,210	
M 5.0 x 0.50	4,50	4,459	4,599	M 22 x 1.00	21,00	20,917	21,153	
M 5.5 x 0.50	5,00	4,959	5,099	M 22 x 1.50	20,50	20,376	20,676	
M 6.0 x 0.75	5,20	5,188	5,378	M 22 x 2.00	20,00	19,835	20,210	
M 7.0 x 0.75	6,20	6,188	6,378	M 24 x 1.00	23,00	22,917	23,153	
M 8.0 x 0.50	7,50	7,459	7,599	M 24 x 1.50	22,50	22,376	22,676	
M 8.0 x 0.75	7,20	7,188	7,378	M 24 x 2.00	22,00	21,835	22,210	
M 8.0 x 1.00	7,00	6,917	7,153	M 25 x 1.00	24,00	23,917	24,153	
M 9.0 x 0.75	8,20	8,188	8,378	M 25 x 1.50	23,50	23,376	23,676	
M 9.0 x 1.00	8,00	7,917	8,153	M 25 x 2.00	23,00	22,835	23,210	
M 10 x 0.75	9,20	9,188	9,378	M 27 x 1.00	26,00	25,917	26,153	
M 10 x 1.00	9,00	8,917	9,153	M 27 x 1.50	25,50	25,376	25,676	
M 10 x 1.25	8,80	8,647	8,912	M 27 x 2.00	25,00	24,835	25,210	
M 11 x 0.75	10,20	10,188	10,378	M 28 x 1.00	27,00	26,917	27,153	
M 11 x 1.00	10,00	9,917	10,153	M 28 x 1.50	26,50	26,376	26,676	
M 12 x 1.00	11,00	10,917	11,153	M 28 x 2.00	26,00	25,835	26,210	
M 12 x 1.25	10,80	10,647	10,912	M 30 x 1.00	29,00	28,917	29,153	
M 12 x 1.50	10,50	10,376	10,676	M 30 x 1.50	28,50	28,376	28,676	
M 14 x 1.00	13,00	12,917	13,153	M 30 x 2.00	28,00	27,835	28,210	
M 14 x 1.25	12,80	12,647	12,912	M 30 x 3.00	27,00	26,752	27,252	
M 14 x 1.50	12,50	12,376	12,676	M 32 x 1.50	30,50	30,376	30,676	
M 15 x 1.00	14,00	13,917	14,153	M 32 x 2.00	30,00	29,835	30,210	
M 15 x 1.50	13,50	13,376	13,676	M 33 x 1.50	31,50	31,376	31,676	
M 16 x 1.00	15,00	14,917	15,153	M 33 x 2.00	31,00	30,835	31,210	
M 16 x 1.25	14,80	14,647	14,912	M 33 x 3.00	30,00	29,752	30,252	
M 16 x 1.50	14,50	14,376	14,676	M 35 x 1.50	33,50	33,376	33,676	
M 17 x 1.00	16,00	15,917	16,153	M 36 x 1.50	34,50	34,376	34,676	
M 17 x 1.50	15,50	15,376	15,676	L				

core hole diameter for thread cutting and thread milling UNC thread ASME B1.1

nominal dia.	gear	core hole (drill) Ø DIN 336	core dia. fem	ale thread 2B	nominal dia.	gear	core hole (drill) Ø DIN 336	core dia. fem	ale thread 2B
	per inch	mm	min. mm	max. mm		per inch	mm	min. mm	max. mm
No.	1-64	1,55	1,425	1,580	1/:	2-13	10,80	10,592	11,024
No. :	2-56	1,85	1,694	1,872	9/1	6-12	12,20	11,989	12,446
No. 3	3-48	2,10	1,941	2,146	5/8	3-11	13,50	13,386	13,868
No. 4	4-40	2,35	2,157	2,385	3/4	4-10	16,50	16,307	16,840
No. :	5-40	2,65	2,487	2,698	7/	8-9	19,50	19,177	19,761
No. (6-32	2,85	2,642	2,896	1	-8	22,25	21,971	22,606
No. 8	8-32	3,50	3,302	3,531	11	/8-7	25,00	24,638	25,349
No. 1	0-24	3,90	3,683	3,937	11	/4-7	28,00	27,813	28,524
No. 1	2-24	4,50	4,343	4,597	1 3	/8-6	30,75	30,353	31,115
1/4	-20	5,10	4,978	5,258	11	/2-6	34,00	33,528	34,290
5/1	6-18	6,60	6,401	6,731	1 3	/4-5	39,50	38,938	39,802
3/8	8-16	8,00	7,798	8,153	2-	4.5	45,00	44,679	45,593
7/1	6-14	9,40	9,144	9,550	1				

core hole diameter for thread cutting and thread milling MJ thread DIN ISO 5855

nominal dia. x pitch P	core hole (drill) dia.	core dia. female thread 5H*		
mm	mm	min. mm	max. mm	
MJ 3 x 0.50	2,60	2,513	2,653	
MJ 4 x 0.70	3,40	3,318	3,498	
MJ 5 x 0.80	4,30	4,221	4,421	
MJ 6 x 0.50	5,55	5,513	5,625	
MJ 6 x 0.75	5,35	5,269	5,419	
MJ 6 x 1.00	5,10	5,026	5,216	
MJ 8 x 0.50	7,55	7,513	7,625	
MJ 8 x 0.75	7,35	7,269	7,419	

nominal dia. x pitch P	core hole (drill) dia.	core dia. female thread 5H*		
mm	mm	min. mm	max. mm	
MJ 8 x 1.00	7,10	7,026	7,216	
MJ 8 x 1.25	6,90	6,782	6,994	
MJ 10 x 1.00	9,10	9,026	9,216	
MJ 10 x 1.25	8,90	8,782	8,994	
MJ 10 x 1.50	8,60	8,539	8,775	
MJ 12 x 1.75	10,40	10,295	10,560	
MJ 16 x 2.00	14,20	14,051 14,351		

* MJ 3 x 0.50 to MJ 5 x 0.80 core dia. female thread 6H

core hole diameter for thread cutting and thread milling UNJC thread ISO 3161

nominal dia.	gear	core hole (drill) dia.	core dia. fema	ale thread 3B
	per inch	mm	min. mm	max. mm
No.	6-32	2,85	2,733	2,939
No.	8-32	3,55	3,393	3,599
No. 1	0-24	4,00	3,795	4,064
No. 1	No. 12-24 4,60		4,455	4,704
No. 1/4-20		5,30	5,113	5,387
5/1	5/16-18 6.75		6,563	6,833

nominal dia.	gear	core hole (drill) dia.	core dia. female thread 3B		
	per inch	mm	min. mm	max. mm	
3/8	-16 8,20		7,978	8,255	
7/1	6-14	9,60	9,346	9,639	
1/2	-13	11,00	10,798	11,095	
9/16-12		12,40	12,228	12,482	
5/8	-11	13,80	13,627	13,904	

core hole diameter for thread cutting and thread milling UNJF thread ISO 3161

nominal dia.	gear	core hole (drill) dia.	core dia. fema	ale thread 3B
	per inch	mm	min. mm	max. mm
No.	6-40	3,00	2,888	3,053
No.	8-36	3,60	3,480	3,663
No. 1	0-32	4,20	4,054	4,255
No. 1	2-28	4,75	4,602	4,816
No. 1/4-28		5,60	5,466	5,662
5/1	6-24	7,00	6,906	7,109

nominal dia.	gear	core hole (drill) dia.	core dia. female thread 3B			
	per inch	mm	min. mm	max. mm		
3/8	3/8-24 8,60		8,494	8,679		
7/1	6-20	10,00	9,876	10,084		
1/2	2-20	11,60	11,463	11,661		
9/16-18		13,00	12,913	13,122		
5/8	8-18	14,60	14,501	14,702		

core hole diameter for thread cutting and thread milling UNF thread ASME B1.1

nominal dia.	gear	core hole (drill) Ø DIN 336	core dia. fema	ale thread 2B
	per inch	mm	min. mm	max. mm
No.	No. 1-72 1,55		1,473	1,610
No.	2-64	1,85	1,755	1,910
No.	3-56	2,15	2,024	2,197
No.	4-48	2,40	2,271	2,459
No. 5-44		2,70	2,550	2,741
No.	6-40	2,95	2,819	3,023

nominal dia.	gear	core hole (drill) Ø DIN 336	core dia. female thread 2B			
	per inch	mm	min. mm	max. mm		
7/1	6-20	9,90	9,728	10,033		
1/2	2-20	11,50	11,328	11,608		
9/1	6-18	12,90	12,751	13,081		
5/8	3-18	14,50	14,351	14,681		
3/4-16		17,50	17,323	17,678		
7/8	3-14	20,40	20,269	20,650		

Thread tools $\$ Core hole tables, thread cutting, thread forming, thread milling

nominal dia.	gear	core hole (drill) Ø DIN 336	core dia. fem	male thread 2B		ninal lia.	gear	core hole (drill) Ø DIN 336	core dia. fem	ale thread 2B
	per inch	mm	min. mm	max. mm		per inch		mm	min. mm	max. mm
No.	8-36	3,50	3,404	3,607		1-12		23,25	23,114	23,571
No. 1	0-32	4,10	3,962	4,166		1 1/8	8-12	26,50	26,289	26,746
No. 1	2-28	4,60	4,496	4,724		1 1/4	4-12	29,50	29,464	29,921
1/4	-28	5,50	5,359	5,588		1 3/8	8-12	32,75	32,639	33,096
5/1	6-24	6,90	6,782	7,036		1 1/2-12		36,00	35,814	36,271
3/8	-24	8,50	8,382	8,636	1					

core hole diameter for thread cutting and thread milling BSW (Whitworth) thread BS84

nominal dia.	gear	core hole (drill) dia.	core dia. fei	nale thread		nominal dia.	gear	core hole (drill) dia.	core dia. fei	nale thread
	per inch	mm	min. mm	max. mm			per inch	mm	min. mm	max. mm
W 1/16	60	1,20	1,045	1,230]	W 5/8	11	13,50	12,918	13,558
W 3/32	48	1,80	1,704	1,912	1	W 3/4	10	16,25	15,797	16,483
W 1/8	40	2,50	2,362	2,591	1	W 7/8	9	19,25	18,611	19,353
W 5/32	32	3,20	2,952	3,214	1	W 1	8	22,00	21,334	22,147
W 3/16	24	3,60	3,407	3,745	1	W 1 1/8	7	24,50	23,928	24,832
W 7/32	24	4,50	4,201	4,539	1	W 1 1/4	7	27,75	27,103	28,007
W 1/4	20	5,10	4,724	5,156	1	W 1 3/8	6	30,50	29,504	30,528
W 5/16	18	6,50	6,130	6,590	1	W 1 1/2	6	33,50	32,679	33,703
W 3/8	16	7,90	7,492	7,987	1	W 1 5/8	5	35,50	34,769	35,963
W 7/16	14	9,20	8,789	9,330	1	W 1 3/4	5	39,00	37,944	39,138
W 1/2	12	10,50	9,989	10,591	1	W 2	4,5	44,50	43,571	44,877
W 9/16	12	12,00	11,577	12,179	1					

core hole diameter for thread cutting and thread milling (Whitworth) pipe thread (in accordance with DIN ISO 228-1)

nominal dia.	gear	core hole (drill) Ø DIN 336	core dia. female thread	
	per inch	mm	min. mm	max. mm
G 1/16	28	6,80	6,561	6,843
G 1/8	28	8,80	8,566	8,848
G 1/4	19	11,80	11,445	11,890
G 3/8	19	15,25	14,950	15,395
G 1/2	14	19,00	18,631	19,172
G 5/8	14	21,00	20,587	21,128
G 3/4	14	24,50	24,117	24,658

nominal dia.	gear	core hole (drill) Ø DIN 336	core dia. female thread		
	per inch	mm	min. mm	max. mm	
G 7/8	14	28,25	27,877	28,418	
G 1	11	30,75	30,291	30,931	
G 1 1/8	11	35,50	34,939	35,579	
G 1 1/4	11	39,50	38,952	39,592	
G 1 1/2	11	45,25	44,845	45,485	
G 1 3/4	11	51,00	50,788	51,428	
G 2	11	57,00	56,656	57,296	

core hole diameter for thread cutting and thread milling steel-armoured pipe thread according to DIN 40430

nominal dia.	gear	core hole (drill) dia.	core dia. female thread		nominal dia.	gear	core hole (drill) dia.	core dia. fer	nale thread
	per inch	mm	min. mm	max. mm		per inch	mm	min. mm	max. mm
Pg 7	20	11,40	11,280	11,430	Pg 21	16	26,90	26,780	27,030
Pg 9	18	14,00	13,860	14,010	Pg 29	16	35,50	35,480	35,730
Pg 11	18	17,30	17,260	17,410	Pg 36	16	45,50	45,480	45,730
Pg 13.5	18	19,00	19,060	19,210	Pg 42	16	52,50	52,480	52,730
Pg 16	18	21,30	21,160	21,310	Pg 48	16	57,80	57,780	58,030

core hole diameter for thread cutting and thread milling EG thread metr./metr. fine (EG M 14 x 1.25) for thread inserts DIN 8140

nominal dia.	pitch P	core hole (drill) dia.	core dia. female thread			nominal dia.	pitch P	core hole (drill) dia.	core dia. fer	nale thread
	mm	mm	min. mm	max. mm			mm	mm	min. mm	max. mm
EG M 4	0,70	4,20	4,152	4,292		EG M 10	1,50	10,50	10,324	10,560
EG M 5	0,80	5,25	5,174	5,334		EG M 12	1,75	12,50	12,379	12,644
EG M 6	1,00	6,30	6,217	6,407	1 [EG M 14	1,25	14,40	14,271	14,483
EG M 8	1,25	8,40	8,271	8,483		EG M 16	2,00	16,50	16,433	16,733

286

core hole diameter for thread cutting and thread milling EG UNC (UNC-STI) thread for threaded wire inserts ASME B18.29.1

nominal dia.	gear	core hole (drill) dia.	core dia. female thread		
	per inch	mm	min. mm	max. mm	
EG no. 6-32		3,80	3,678	3,879	
EG no. 8-32		4,40	4,338	4,524	
EG no.	10-24	5,20	5,055	5,283	
EG no.	12-24	5,80	5,715	5,944	
EG 1/4-20		EG 1/4-20 6,70		6,868	
EG 5/16-18		8,40	8,242	8,489	

nominal dia.	gear	core hole (drill) dia.	core dia. female thread		
	per inch	mm	min. mm	max. mm	
EG 3,	/8-16	10,00	9,868	10,127	
EG 7/	16-14	11,60	11,506	11,783	
EG 1,	/2-13	13,30	13,122	13,393	
EG 9/16-12		14,90	14,747	15,032	
EG 5/8-11		16,50	16,375	16,673	

core hole diameter for thread cutting and thread milling EG UNF (UNF-STI) thread for thread wire inserts ASME B18.29.1

nominal dia.	gear	core hole (drill) dia.	core dia. female thread	
per inch		mm	min. mm	max. mm
EG no. 6-40		3,70	3,644	3,818
EG no. 8-36		4,40	4,321	4,498
EG no.	10-32	5,10	4,999	5,184
EG no. 12-28		5,70	5,682	5,809
EG 1/4-28		EG 1/4-28 6,60		6,721
EG 5/16-24		8,25	8,166	8,352

nominal dia.	gear	core hole (drill) dia.	core dia. fer	nale thread	
	per inch	mm	min. mm	max. mm	
EG 3/8-24		9,80	9,754	9,931	
EG 7/16-20		11,50	11,389	11,585	
EG 1,	/2-20	13,10	12,974	13,172	
EG 9/16-18		14,70	14,592	14,798	
EG 5/8-18		16,25	16,180	16,386	
				-	

core hole diameter for thread cutting and thread milling NPT ANSI B 2.1 Americ. tapered pipe thread, taper 1:16

nominal dia.	gear per inch	core hole dia. cylindr. (A) d ₁	core hole dia. conical (B) D ₁	incision depth ET mm	drilling depth BT min. mm		nominal dia.	gear per inch	core hole dia. cylindr. (A) d ₁	core hole dia. conical (B) D ₁	incision depth ET mm	drilling depth BT min. mm
1/1	6-27	6,15	6,39	9,29	10,7	1	1-1	1.5	29,00	29,69	22,29	25,6
1/8	3-27	8,40	8,74	9,32	10,8	1	1 1/4	4-11.5	37,70	38,45	22,80	26,1
1/4	4-18	11,10	11,36	13,52	15,6	1	1 1/2	2-11.5	43,70	44,52	22,80	26,1
3/8	3-18	14,30	14,80	13,83	16,0	1	2-1	1.5	55,60	56,56	23,20	26,5
1/2	2-14	17,90	18,32	18,07	20,8	1	2 1	/2-8	66,30	67,62	31,75	36,3
3/4	4-14	23,30	23,67	18,55	21,3		3	-8	82,30	83,52	33,74	38,5

recommended drill diameter for thread forming metric ISO thread DIN 13

nominal dia.	pitch P	drilling dia.	drillin	g dia.	core dia thread		nominal dia.	pitch P	drilling dia.	drillin	g dia.	core dia thread	
	mm	mm	min. mm	max. mm	min. mm	max. mm		mm	mm	min. mm	max. mm	min. mm	max. mm
M 1	0,25	0,90	0,89	0,92	0,729	0,819	M 9	1,25	8,40	8,36	8,47	7,647	7,982
M 1.2	0,25	1,10	1,09	1,12	0,929	1,019	M 10	1,50	9,30	9,26	9,38	8,376	8,751
M 1.4	0,30	1,28	1,27	1,30	1,075	1,181	M 11	1,50	10,30	10,26	10,38	9,376	9,751
M 1.6	0,35	1,46	1,45	1,48	1,221	1,346	M 12	1,75	11,20	11,15	11,29	10,106	10,531
M 1.7	0,35	1,56	1,55	1,58	1,321	1,446	M 14	2,00	13,10	13,05	13,20	11,835	12,310
M 1.8	0,35	1,66	1,65	1,68	1,421	1,546	M 16	2,00	15,10	15,05	15,20	13,835	14,310
M 2	0,40	1,85	1,84	1,88	1,567	1,679	M 18	2,50	16,90	16,83	17,02	15,294	15,854
M 2.2	0,45	2,00	2,01	2,05	1,713	1,838	M 20	2,50	18,90	18,83	19,02	17,294	17,854
M 2.5	0,45	2,30	2,28	2,32	2,013	2,138	M 22	2,50	20,90	20,83	21,02	19,294	19,854
M 3	0,50	2,80	2,78	2,85	2,459	2,639	M 24	3,00	22,70	22,62	22,80	20,752	21,382
M 3.5	0,60	3,25	3,23	3,30	2,850	3,050	M 27	3,00	25,70	25,62	25,80	23,752	24,382
M 4	0,70	3,70	3,68	3,76	3,242	3,466	M 30	3,50	28,50	28,40	28,60	26,211	26,921
M 4.5	0,75	4,20					M 33	3,50	31,50	31,40	31,60	29,211	29,921
M 5	0,80	4,65	4,62	4,71	4,134	4,384	M 36	4,00	34,30	34,17	34,40	31,670	32,420
M 6	1,00	5,55	5,52	5,62	4,917	5,217	M 39	4,00	37,30	37,17	37,40	34,670	35,420
M 7	1,00	6,55	6,52	6,62	5,917	6,217	M 42	4,50	40,10	39,95	40,20	37,129	37,979
M 8	1,25	7,40	7,36	7,47	6,647	6,982							

* M 2 to M 2.5 core dia. female thread 6H

recommended drill diameter for thread forming metric ISO fine thread DIN 13

nominal dia. x pitch P	drilling dia.	drillin	g dia.	core dia thread	
mm	mm	min. mm	max. mm	min. mm	max. mm
M 2.5 x 0.35	2,35	2,35	2,38	2,121	2,221
M 3 x 0.35	2,85	2,85	2,88	2,621	2,721
M 4 x 0.35	3,85	3,85	3,88	3,621	3,721
M 4 x 0.50	3,80	3,78 3,83		3,459	3,639

nominal dia.	drilling dia.	drillin	g dia.	core dia threa	
	mm	min. mm	max. mm	min. mm	max. mm
M 14 x 1.50	13,30	13,26	13,38	12,376	12,751
M 15 x 1.00	14,55	14,52	14,62	13,917	14,217
M 15 x 1.50	14,30	14,26	14,38	13,376	13,751
M 16 x 1.00	15,55	15,52	15,62	14,917	15,217

Ŷ

Source: Hahn+Kolb Werkzeuge GmbH Technical data subject to change. Availability subject to country specific rules and regulations.

287

Thread tools $\$ Core hole tables, thread cutting, thread forming, thread milling

nominal dia. x pitch P	drilling dia.	drillin	g dia.	core dia. female thread 7H*		
mm	mm	min. mm	max. mm	min. mm	max. mm	
M 5 x 0.50	4,80	4,78	4,83	4,459	4,639	
M 5.5 x 0.50	5,30	5,28	5,33	4,959	5,139	
M 6 x 0.75	5,65	5,62	5,70	5,188	5,424	
M 7 x 0.75	6,65	6,62	6,70	6,188	6,424	
M 8 x 0.75	7,65	7,62	7,70	7,188	7,424	
M 8 x 1.00	7,55	7,52	7,62	6,917	7,217	
M 9 x 0.75	8,65	8,62	8,70	8,188	8,424	
M 9 x 1.00	8,55	8,52	8,62	7,917	8,217	
M 10 x 0.75	9,65	9,62	9,70	9,188	9,424	
M 10 x 1.00	9,55	9,52	9,62	8,917	9,217	
M 10 x 1.25	9,40	9,36	9,47	8,647	8,982	
M 11 x 0.75	10,65	10,62	10,70	10,188	10,424	
M 11 x 1.00	10,55	10,52	10,62	9,917	10,217	
M 12 x 1.00	11,55	11,52	11,62	10,917	11,217	
M 12 x 1.25	11,40	11,36	11,47	10,647	10,982	
M 12 x 1.50	11,30	11,26	11,38	10,376	10,751	
M 14 x 1.00	13,55	13,52	13,62	12,917	13,217	
M 14 x 1.25	13,40	13,36	13,47	12,647	12,982	

nominal dia.	drilling dia.	drillin	g dia.	core dia. female thread 7H*		
	mm	min. mm	max. mm	min. mm	max. mm	
M 16 x 1.50	15,30	15,26	15,38	14,376	14,751	
M 17 x 1.00	16,55	16,52	16,62	15,917	16,217	
M 17 x 1.50	16,30	16,26	16,38	15,376	15,751	
M 18 x 1.00	17,55	17,52	17,62	16,917	17,217	
M 18 x 1.50	17,30	17,26	17,38	16,376	16,751	
M 18 x 2.00	17,10	17,05	17,20	15,835	16,310	
M 20 x 1.00	19,55	19,52	19,62	18,917	19,217	
M 20 x 1.50	19,30	19,26	19,38	18,376	19,751	
M 24 x 1.00	23,55	23,52	23,62	22,917	23,217	
M 24 x 1.50	23,30	23,26	23,38	22,376	22,751	
M 24 x 2.00	23,10	23,05	23,20	21,835	22,310	
M 27 x 1.50	26,30	26,26	26,38	25,376	25,751	
M 30 x 1.50	29,30	29,26	29,38	28,376	28,751	
M 33 x 1.50	32,30	32,26	32,38	31,376	31,751	
M 36 x 1.50	35,30	35,26	35,38	34,376	34,751	
M 39 x 1.50	38,30	38,26	38,38	37,376	37,751	
M 42 x 1.50	41,30	41,26	41,38	42,376	42,751	

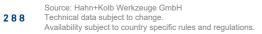
* M 2.5 x 0.35 to M 4 x 0.35 core dia. female thread 6H

recommended drill diameter for thread forming UNC thread ASME B1.1

nominal dia.	gear	drilling dia.	drillin	g dia.	core dia threa			nominal dia.	gear	drilling dia.	drillin	g dia.	core dia thread	
	per inch	mm	min. mm	max. mm	min. mm	max. mm			per inch	mm	min. mm	max. mm	min. mm	max. mm
No.	1-64	1,68	1,67	1,70	1,425	1,580		5/1	6-18	7,30	7,26	7,37	6,401	6,731
No. 1	2-56	1,98	1,97	2,01	1,694	1,872		3/8	3-16	8,80	8,77	8,88	7,798	8,153
No. 3	3-48	2,28	2,27	2,32	1,941	2,146		7/1	6-14	10,30	10,27	10,37	9,144	9,550
No. 4	4-40	2,55	2,54	2,59	2,157	2,385		1/2	2-13	11,80	11,77	11,88	10,592	11,024
No.	5-40	2,90	2,89	2,94	2,487	2,698		9/1	6-12	13,30	13,28	13,39	11,989	12,446
No.	6-32	3,15	3,14	3,19	2,642	2,896		5/8	3-11	14,80	14,78	14,90	13,386	13,868
No.	8-32	3,80	3,78	3,82	3,302	3,531		3/4	I-10	17,90	17,85	17,97	16,307	16,840
No. 1	0-24	4,35	4,33	4,39	3,683	3,937		7/	8-9	21,00	20,95	21,10	19,177	19,761
No. 1	2-24	5,00	4,97	5,03	4,343	4,597		1	-8	24,00	23,95	24,12	21,971	22,606
1/4	-20	5,75	5,72	5,80	4,978	5,258	1	<u>.</u>				•		

recommended drill diameter for thread forming UNF thread ASME B1.1

nominal dia.	gear	drilling dia.	drillin	g dia.	core dia. female thread 2B		
	per inch	mm	min. mm	max. mm	min. mm	max. mm	
No.	1-72	1,68	1,67	1,70	1,425	1,580	
No. 2-64		1,98	1,97	2,01	1,694	1,872	
No. 3-56		2,28	2,27	2,32	1,941	2,146	
No. 4-48		2,55	2,54	2,59	2,157	2,385	
No. 5-44		2,90	2,89	2,94	2,487	2,698	
No. 6-40		3,15	3,14	3,19	2,642	2,896	
No. 8-36		3,80	3,78	3,82	3,302	3,531	
No. 10-32		4,35	4,33	4,39	3,683	3,937	
No. 12-28		5,00	4,97	5,03	4,343	4,597	
1/4	4-28	5,75	5,72	5,80	4,978	5,258	


nominal dia.	gear	drilling dia.	drillin	g dia.	core dia. female thread 7H*		
	per inch	mm	min. max. mm mm		min. mm	max. mm	
5/1	6-24	7,30	7,26	7,37	6,401	6,731	
3/8	3-24	8,80	8,77	8,88	7,798	8,153	
7/1	7/16-20		10,27	10,37	9,144	9,550	
1/2	1/2-20		11,77	11,88	10,592	11,024	
9/16-18		13,30	13,28	13,39	11,989	12,446	
5/8	3-18	14,80	14,78	14,90	13,386	13,868	
3/4-16		17,90	17,85	17,97	16,307	16,840	
7/8-14		21,00	20,95	21,10	19,177	19,761	
1-	12	24,00	23,95	24,12	21,971	22,606	

recommended drill diameter for thread forming (Whitworth) pipe thread G DIN EN ISO 228-1

nominal dia.	gear	drilling dia.	drillin	g dia.	core dia. threa	
	per inch	mm	min. mm			max. mm
G 1/16	28	7,30	7,28	7,35	6,561	6,843
G 1/8	28	9,30	9,28	9,35	8,566	8,848
G 1/4	19	12,50	12,48	12,55	11,445	11,890
G 3/8	19	16,00	15,98	16,05	14,950	15,395
G 1/2	14	20,00	19,98	20,12	18,631	19,172

nominal dia.	gear	drilling dia.	drillin	g dia.	core dia. fema thread 7H*		
	per inch	mm	min. max. mm mm		min. mm	max. mm	
G 5/8	14	22,00	21,98	22,12	20,587	21,128	
G 3/4	14	25,50	25,48	25,62	24,117	24,658	
G 7/8	14	29,25	29,23	29,37	27,877	28,418	
G 1	11	32,00	31,98	32,15	30,291	30,931	
G 11/4	11	40,75	40,70	40,85	38,952	39,592	

