

High Performance Techniques for Microsoft SQL Server Volume 5

Editor-in-chief:
Aaron Bertrand

Authors:

Aaron Bertrand
Dan Holmes
Erin Stellato
Glenn Berry
Jason Hall

John Martin
Jonathan Kehayias

Justin Randall
Kevin Kline

Lorie Edwards
Melissa Connors

Paul Randal
Paul White
Tim Radney

eBook Lead:

Michael Kuras

Copyright © 2016 SQL Sentry LLC
All Rights Reserved

Foreword
Welcome to the 5th edition of our eBook, a hand-picked collection of articles from our performance-
oriented web site about SQL Server, SQLPerformance.com. As the Editor-in-Chief of the site, I am
continuously proud of the content we produce and am confident that there are solutions to benefit
everyone – from novices to experts, and from mom-and-pop shops to Fortune 100 companies. You will
find advice about everything from high-level hardware and server configuration, to explanations about
the query optimizer (complete with debugger output), and everything in between. For this edition, we
are also presenting a handful of articles from our team blog, blogs.sqlsentry.com, where members of
our team have published helpful posts involving SQL Server.

Once again, there are many people deserving of accolades. Michael Kuras spends a vast amount of time
and effort putting the book together. Randy Seeds has helped out with another creative cover. Our
tremendous authors, of course, write the content that keeps the SQL Server community coming back for
more. And last, but certainly not least, our valued readers - thank you for keeping us on our toes and for
inspiring us to press on.

Aaron Bertrand

Table of Contents
Foreword

Table of Contents

Monitoring

T-SQL Tuesday #67 : New Backup and Restore Extended Events

The Importance of Maintenance on MSDB

Proactive SQL Server Health Checks, Part 4 : ERRORLOG

Monitoring Availability Group Replica Synchronization

Proactive SQL Server Health Checks, Part 5 : Wait Statistics

Capture Execution Plan Warnings using Extended Events

Monitoring for Suspect Pages

Nothing Is Free, Including Buffer Space

Wait Statistics

Knee-Jerk Wait Statistics : CXPACKET

More on CXPACKET Waits: Skewed Parallelism

Knee-Jerk Wait Statistics : PAGELATCH

System Configuration

Analyzing I/O Performance for SQL Server

Using Microsoft DiskSpd to Test Your Storage Subsystem

Introduction to Storage Spaces Direct for SQL Server

Network Load Testing Using iPerf

T-SQL Tuesday #68 : Just Say No to Defaults

T-SQL Tuesday #68 : The "Smoking Man" of SQL Server Defaults

T-SQL Tuesday #68 : Default Settings for SQL Server Agent

What I mess up whenever I install SQL Server on a new VM

T-SQL and Execution Plans

FORMAT() is nice and all, but…

Calculating the Median with a Dynamic Cursor

Locking and Performance

Improving the Row Numbering Median Solution

Improving the Top / Top Descending Median Solution

Hash Joins on Nullable Columns

More showplan improvements? Yes, please!

Optimizing Update Queries

Another Reason to Use NOEXPAND hints in Enterprise Edition

SQL Server 2016

SQL Server 2016 : Performance Impact of Always Encrypted

Always Encrypted Performance : A Follow-Up

SQL Server 2016 – Introduction to Stretch Database

Service Broker Enhancements in SQL Server 2016

SQL Server 2016 : Availability Group Enhancements

SQL Server 2016 : sys.dm_exec_function_stats

SQL Server 2016 : In-Memory OLTP Enhancements

Statistics and Table Structure

Please help improve SQL Server statistics!

Custom Built Statistics

Partitioning on a Budget

T-SQL Tuesday #72 : Models Gone Wild!

Applying Data Compression to the SQL Sentry Database : Part 5 (Follow-up)

Index

Monitoring
T-SQL Tuesday #67 : New Backup and Restore Extended Events
By Aaron Bertrand

For last month's T-SQL Tuesday, I wrote about some undocumented trace flags that help you babysit
long-running backup and restore operations. This month, Jes Borland's topic is Extended Events, and I
thought I would show new capabilities in SQL Server 2016 that largely make these trace flags obsolete.

If you're playing with CTP2 (you can download it here), you may notice a new
category backup_restore and new event backup_restore_progress_trace:

Discovering a new event in CTP2's New Session dialog

Here's a quick and dirty XE session for capturing the data for this event (I've added comments for
filtering to only backup or only restore operations; by default, both are included):

CREATE EVENT SESSION [Backup progress] ON SERVER
ADD EVENT sqlserver.backup_restore_progress_trace
(
 ACTION(package0.event_sequence)

 -- to only capture backup operations:
 --WHERE [operation_type] = 0

 -- to only capture restore operations:
 --WHERE [operation_type] = 1
)
ADD TARGET package0.event_file
(
 SET filename = N'C:\temp\BackupProgress.xel'
); -- default options are probably ok
GO

ALTER EVENT SESSION [Backup progress] ON SERVER STATE = START;
GO

Now, let's say I run the following operations – create a database, put a bit of data back it up, drop it, and
restore it:

http://sqlperformance.com/2015/06/extended-events/t-sql-tuesday-67-backup-restore?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/06/extended-events/t-sql-tuesday-67-backup-restore?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://blogs.sqlsentry.com/aaronbertrand/t-sql-tuesday-66-babysitting-a-slow-backup-or-restore/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://blogs.sqlsentry.com/aaronbertrand/t-sql-tuesday-66-babysitting-a-slow-backup-or-restore/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://blogs.lessthandot.com/index.php/uncategorized/youre-invited-to-t-sql-tuesday-67-extended-events/
https://www.microsoft.com/en-us/evalcenter/evaluate-sql-server-2016
http://cdn.sqlperformance.com/wp-content/uploads/2015/06/tue-xe1.png

USE [master];
GO
CREATE DATABASE floob;
GO
SELECT s1.* INTO floob.dbo.what
 FROM sys.all_objects AS s1
 CROSS JOIN sys.all_objects;
GO
BACKUP DATABASE floob TO DISK = 'c:\temp\floob.bak'
 WITH INIT, COMPRESSION, STATS = 30;
GO
DROP DATABASE floob;
GO
RESTORE DATABASE floob FROM DISK = 'c:\temp\floob.bak'
 WITH REPLACE, RECOVERY;

Now, we can query the data from the event target file:

;WITH x AS
(
 SELECT ts,op,db,msg,es
 FROM
 (
 SELECT
 ts = x.value(N'(event/@timestamp)[1]', N'datetime2'),
 op = x.value(N'(event/data[@name="operation_type"]/text)[1]', N'nvarchar(32)'),
 db = x.value(N'(event/data[@name="database_name"])[1]', N'nvarchar(128)'),
 msg = x.value(N'(event/data[@name="trace_message"])[1]', N'nvarchar(max)'),
 es = x.value(N'(event/action[@name="event_sequence"])[1]', N'int')
 FROM
 (
 SELECT x = CONVERT(XML, event_data)
 FROM sys.fn_xe_file_target_read_file
 (N'c:\temp\Backup--Progress*.xel', NULL, NULL, NULL)
) AS y
) AS x
 WHERE op = N'Backup' -- N'Restore'
 AND db = N'floob'
 AND ts > CONVERT(DATE, SYSUTCDATETIME())
)
SELECT /* x.db, x.op, x.ts, */
 [Message] = x.msg,
 Duration = COALESCE(DATEDIFF(MILLISECOND, x.ts,
 LEAD(x.ts, 1) OVER(ORDER BY es)),0)
FROM x
ORDER BY es;

For a backup, trace flag 3226 does not suppress any of the output captured by Extended Events. I've left
out output columns, due to the filters, for brevity:

Message
Duration

(Milliseconds)

BACKUP DATABASE started 0

Opening the database with S lock 0

Acquiring bulk-op lock on the database 0

Synchronizing with other operations on the database is complete 19

Opening the backup media set 7

The backup media set is open 0

Preparing the media set for writing 0

The media set is ready for backup 0

Effective options: Checksum=0, Compression=1, Encryption=0, BufferCount=7,

MaxTransferSize=1024 KB
0

Clearing differential bitmaps 4

Differential bitmaps are cleared 0

Writing a checkpoint 6

Checkpoint is complete (elapsed = 6 ms) 0

Start LSN: 101:111920:43, SERepl LSN: 0:0:0 0

Scanning allocation bitmaps 4

Scanning allocation bitmaps is complete 0

Calculating expected size of total data 0

FID=1, ExpectedExtents=10047, IsDifferentialMapAccurate=0 0

TotalSize=658440192 bytes 0

Estimated total size = 658460672 bytes (data size = 658440192 bytes, log size = 20480 bytes) 0

Work estimation is complete 0

Last LSN: 101:111960:1 0

Writing the leading metadata 0

BackupStream(0): Writing leading metadata to the device c:\temp\floob.bak 1

Calculating expected size of total data 0

FID=1, ExpectedExtents=10047, IsDifferentialMapAccurate=0 0

TotalSize=658440192 bytes 1

Copying data files 2

Number of data file readers = 1 0

Reading the data file D:\SQL Server\MSSQL13.SQL16\DATA\floob.mdf 0

BackupStream(0): Writing MSDA of size 10048 extents 391

30 percent (198180864/658460672 bytes) processed 554

60 percent (395313152/658460672 bytes) processed 576

90 percent (593494016/658460672 bytes) processed 184

Completed reading the data file D:\SQL Server\MSSQL13.SQL16\DATA\floob.mdf 2

BackupStream(0): Padding MSDA with 65536 bytes 0

BackupStream(0): Total MSDA size = 10048 extents 0

InitialExpectedSize=658440192 bytes, FinalSize=658440192 bytes, ExcessMode=0 0

Last LSN: 101:111960:1 0

Copying data files is complete 0

Copying transaction log 0

MediaFamily(0): FID=2, VLFID=101, DataStreamSize=65536 bytes 4

Copying transaction log is complete 0

Writing the trailing metadata 0

BackupStream(0): Writing trailing metadata to the device c:\temp\floob.bak 0

Writing the end of backup set 30

Writing history records 12

Writing history records is complete (elapsed = 11 ms) 0

BACKUP DATABASE finished 0

Event data for a backup operation

For a restore, you will see these rows:

Message
Duration

(Milliseconds)

RESTORE DATABASE started 0

Opening the backup set 3

Processing the leading metadata 0

Planning begins 23

Effective options: Checksum=0, Compression=1, Encryption=0, BufferCount=6,

MaxTransferSize=1024 KB
0

Planning is complete 0

Beginning OFFLINE restore 0

Attached database as DB_ID=5 1

Preparing containers 534

Containers are ready 1097

Restoring the backup set 0

Estimated total size to transfer = 658460672 bytes 0

Transferring data 1

BackupStream(0): Processing MSDA of size 10048 extents 3282

BackupStream(0): Completed MSDA 0

Waiting for log zeroing to complete 3

Log zeroing is complete 0

BackupStream(0): Processing MSTL (FID=2, VLFID=101, size=65536 bytes) 1024

Data transfer is complete 14

Backup set is restored 45

Offline roll-forward begins 1

Processing 68 VLF headers 69

Processing VLF headers is complete 11

First LSN: 101:111920:43, Last LSN: 101:111960:1 0

Stop LSN: 101:111960:1 4

Offline roll-forward is complete 17

Database fixup is complete 2

Transitioning database to ONLINE 2

Restarting database for ONLINE 87

PostRestoreContainerFixups begins 5

PostRestoreContainerFixups is complete 2

PostRestoreReplicationFixup begins 107

PostRestoreReplicationFixup is complete 2

Database is restarted 9

Resuming any halted Fulltext crawls 6

Writing history records 13

Writing history records is complete (elapsed = 13 ms) 2

MSDB maintenance is complete 2

RESTORE DATABASE finished 0

Event data for a restore operation

If you're troubleshooting a slow backup or restore operation, you could easily filter on the duration, so
that you only see events that took longer than n milliseconds, for example. The only thing I don't see in
this output is any way to tell if instant file initialization was in effect during the restore – you still may
need trace flag 3004, as described in my post for last month's T-SQL Tuesday.

Don't forget to stop the session (but feel free to keep the session definition on the server, so you can
use it again):

ALTER EVENT SESSION [Backup progress] ON SERVER STATE = STOP;

I did not perform any performance tests or impact analysis, but in general, I would say that – like the
trace flags – this isn't something you'd want running all the time, but only when troubleshooting a
specific operation. It's a bit easier to set up this session and query the data, IMHO, than to turn on the
trace flags and parse all of the output from SQL Server's error log.

http://www.sqlskills.com/blogs/kimberly/post/instant-initialization-what-why-and-how.aspx
http://blogs.sqlsentry.com/aaronbertrand/t-sql-tuesday-66-babysitting-a-slow-backup-or-restore/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

The Importance of Maintenance on MSDB
By Tim Radney

MSDB is a system database used by SQL Server. MSDB stores all sorts of data, such as backup and
restore history, SQL Agent job history, log shipping monitor history, SSIS packages, Database Engine
Tuning Advisor data, and Service Broker queue data. Just like user databases, msdb needs regular
maintenance, including index optimizations and, more importantly, regular purging.

Backup and Restore History

By default, there is no method to purge or delete backup and restore history from msdb. It is kept
forever until you set up a manual or automated process to delete the data. By not purging this data,
msdb will continue to grow, which means reading and writing to those tables can become slower and
impact the speed of your backup jobs.

Most third party tools and reputable maintenance solutions include processes for clearing out backup
and restore history to prevent this from becoming an issue. An easy way to know if you are purging
backup history or not is to query msdb directly:

SELECT CONVERT(CHAR(100), SERVERPROPERTY('Servername')) AS Server,
 msdb.dbo.backupset.database_name,
 msdb.dbo.backupset.backup_finish_date,
 CASE msdb..backupset.type
 WHEN 'D' THEN 'Database'
 WHEN 'L' THEN 'Log'
 END AS backup_type
FROM msdb.dbo.backupmediafamily
INNER JOIN msdb.dbo.backupset ON msdb.dbo.backupmediafamily.media_set_id =
msdb.dbo.backupset.media_set_id
ORDER BY msdb.dbo.backupset.backup_finish_date;

If you have backup or restore history dating back more than 90 days, then you should investigate if there
is a regulatory requirement that mandates that you must keep the historical information about those
backups for a specific period. If there isn’t a requirement, then you should consider purging data older
than a certain time period. Backup history isn’t needed in order to restore your databases, and we
recommend purging it on a regular basis to keep msdb at a reasonable size. Keeping 90 days or less is
the range I typically recommend to clients.

To setup a process to purge the backup and restore history, create a job that executes
the sp_delete_backuphistory stored procedure in msdb and pass it a date parameter. The stored
procedure will delete all backup and restore history older than the date you provide. You can also create
a Database Maintenance Plan and use the Clean Up History task.

Database Engine Tuning Advisor

The Database Engine Tuning Advisor, also known as DTA, is a tool that developers and Database
Administrators can use to help tune a database. DTA leverages the msdb database to store tuning
history and other supporting objects.

http://sqlperformance.com/2015/07/sql-maintenance/msdb?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/07/sql-maintenance/msdb?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
https://msdn.microsoft.com/en-us/library/ms188328.aspx
https://technet.microsoft.com/en-us/library/ms173494.aspx

I routinely find remnants of DTA in msdb on clients’ production servers. When I find these tables, I query
them directly to determine if DTA is still being used. Luckily, I have yet to find a client actively running
DTA against production, as it can significantly impact performance. Once I confirm and communicate
with the client, I drop the DTA tables from msdb. In some cases this frees up multiple gigabytes of space.
As a precaution, I also take the time to explain the performance impact that running DTA against
production can cause and encourage my clients that any future use should be done on a development
server.

SQL Server Agent

On occasion, I will find a client who inadvertently unchecked the box to limit the size of the job history
log. This is an easy mistake to make if you have a busy server and the log keeps rolling over so quickly
that you don’t have any useful job history to reference when troubleshooting SQL Server Agent jobs. A
better approach is to increase the maximum job history log size (in rows) to a much higher value rather
than leave it to grow unrestricted.

In the cases where clients had unrestricted job growth, the sysjobhistory table had grown excessively
large and needed to be purged. The best way to purge the history is to usesp_purge_jobhistory and pass
in a date parameter. The stored procedure will delete all job history older than the date you provide. If
you must keep a minimum number of days of SQL Server Agent history, limiting the job history log based
on rows isn’t effective. Instead, do not limit the size of the job history log and also schedule a job that
will run sp_purge_jobhistory and pass in a date parameter for the minimum number of days of job
history that you need. It is common to use a value of 14 or 30 days.

Service Broker

Recently I encountered an issue with a client where msdb had grown to 14GB in size. After an attempt
to update the instance to a current service pack, the upgrade failed applying the scripts to msdb and
caused msdb to grow exponentially again. After some research we discovered Service Broker was
enabled for event notifications but it was not properly configured. For over a year event notifications
were being queued, but were not being routed.

In checking the sys.transmission_queue I found that the service broker in the target database was
unavailable, and service broker was administratively disabled. I then checked to see what event
notifications were setup by querying sys.server_events_notifications and found only one entry: capture
all error log events. I then queried sys.transmissions_queue to see how many events were in the queue
and found several million records there.

After discussing this with the client and explaining the findings, we agreed that the best course of action
was to drop the event notification and clear the current queue by creating a new broker. To do this I
executed ALTER DATABASE msdb SET NEW_BROKER. This was done after hours and after a good full
backup of msdb.

After clearing the transmission_queue and removing the event I was able to reduce msdb from 14GB to
300MB. Prior to correcting this issue, the msdb database had the highest disk latency on the instance
and the client was experiencing regular deadlocks. After implementing this change, as well as other
optimizations, the client’s user experience greatly improved.

https://msdn.microsoft.com/en-us/library/ms175044.aspx

Log Shipping

Early in my DBA career I inherited a consolidation server that had a few hundred databases that were
Log Shipped to a secondary server in another datacenter. This server had been up and running for
several years and was shipping the logs every 15 minutes. Not only did this instance suffer from not
purging the backup history, it also was not properly clearing the Log Shipping monitor history. Once I
purged the backup history and checked the size of msdb it was still showing more used space than it
should. I ran a script to show me the total size of each table and found that
thelog_shipping_monitor_history_detail table was very large. In this case I was able to
run sp_cleanup_log_shipping_history to purge the history and get msdb back to normal size.

Indexing

Optimizing indexes in msdb is just as important as your user databases. Many times I have found clients
who are optimizing user databases but not the system databases. Since the msdb database is heavily
used by SQL Server Agent, Log Shipping, Service Broker, SSIS, backup and restore, and other processes,
the indexes can get highly fragmented. Ensure that your index optimization jobs also include your
system databases, or at least msdb. I’ve seen index optimizations free up several gigabytes of space
from highly fragmented indexes within msdb.

Summary

Neglecting msdb can negatively impact the performance of your environment. It’s crucial to monitor the
size of msdb, as well as the processes that use it, to ensure that it performs optimally. Backup and
restore history is the most common reason for the msdb database to bloat, however Database Engine
Tuning Advisor, SQL Server Agent history, service broker, log shipping and lack of index maintenance can
all contribute to excessive growth of msdb and impact the performance of the database.

https://msdn.microsoft.com/en-us/library/ms187374.aspx

Proactive SQL Server Health Checks, Part 4 : ERRORLOG
By Erin Stellato

There is so much you can say about history and importance. History of a country, of civilization, of each
of us. I love quotes and like this one from Teddy Roosevelt (cool guy):

“The more you know about the past, the better prepared you are for the future.”

Why am I waxing poetic (or trying to) about history in a blog about SQL Server? Because history in SQL
Server is important, too. When a performance issue exists in SQL Server, it’s ideal to troubleshoot the
issue live, but in some cases, historical information can provide a smoking gun, or at least a starting
point. A great source of historical information in SQL Server is the ERRORLOG. I mentioned in my original
post, Performance Issues: The First Encounter, that the ERRORLOG used to be an afterthought for me.
No more. During client audits we always capture the ERRORLOGs, and while we are notified for any
high-severity alerts (which are written to the log), it’s not unheard of to find other interesting
information in the log. We prepare for the future by using the historical info in the logs; the information
can help us fix a problem, or potential problem, before it becomes catastrophic.

Viewing the ERRORLOG

First off, we’ll review some options for viewing the ERROLOG. If I’m connected to an instance, I’ll usually
navigate to it through SSMS (Management | SQL Server Logs, right-click on a log, and select View SQL
Server Log). From this window I can just scroll through the log, or use the Filter or Search options to
narrow down the result set. I can also view multiple files by selecting them in the left-hand pane.

If I’m looking at data captured in one of our health audits, I’ll just open the log files in a text editor and
review them (I do have the option of going into the viewer and loading them are as well). The log files
exist in the log folder (default location: C:\Program Files\Microsoft SQL
Server\MSSQL12.SQL2014\MSSQL\Log) if I ever wanted to look at them on the server. Many of you
might prefer to view and/or search the log using the undocumented procedure sp_readerrorlog or
extended stored procedure xp_readerrorlog.

And finally, if you’re all into PowerShell, that’s an also an option for reading the log that way (see this
post: Use PowerShell to Parse SQL Server 2012 Error Logs). The method is up to you – use what you
know and what works for you – it’s the content that really matters. And remember that there are times
where you will need to simply read through the log to understand the order of events, and there are
other times where you might search to find a specific error or piece of information.

What’s in the ERRORLOG?

So what information can we find in the ERRORLOG, besides errors? I’ve listed many of the items I’ve
found most useful below. Note that this isn’t an exhaustive list (and I’m sure many of you will have
suggestions of what could be added – feel free to post a comment and I can update this!), but again, this
is what I’m looking for first when I’m proactively looking at an instance.

• Whether the server is physical or virtual (look for the System Manufacturer entry)

• Trace flags enabled at startup

o Within the entry for the Registry startup parameters, if you scroll all the way to the
right, you’ll see if any trace flags are enabled:

http://sqlperformance.com/2015/07/system-configuration/proactive-sql-server-health-checks-4?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/07/system-configuration/proactive-sql-server-health-checks-4?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2014/01/system-configuration/performance-issues-the-first-encounter?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://blogs.technet.com/b/heyscriptingguy/archive/2012/10/22/use-powershell-to-parse-sql-server-2012-error-logs.aspx

Trace Flags enabled at startup

• Trace flags enabled or disabled after the instance has started

o If users (or an application) enable or disable a trace flag using DBCC TRACEON or DBCC
TRACEOFF, an entry appears in the log

• Number of cores and sockets detected by SQL Server

o I always like to verify that SQL Server sees all the hardware available – and if not, that’s
a red flag to investigate further. For a good example, see Jonathan’s post, Performance
Problems with SQL Server 0212 Enterprise Edition Under CAL Licensing, and Glenn’s
post, Balancing Your Available SQL Server Core Licenses Evenly Across NUMA Nodes,
which also includes some handy TSQL to query the log.

o Note that the text for this entry varies between SQL Server versions.

• Amount of memory detected by SQL Server

o Again, I want to verify that SQL Server sees all the memory that’s available to it.

• Confirmation that Locked Pages in Memory (LPIM) is enabled

o While this option is enabled via the Windows Security Policy, you can confirm that it’s
enabled by looking for “Using locked pages in the memory managed” message in the
log.

o Note that if you have Trace Flag 834 in use, then the message won’t say locked pages, it
will say that large pages are being used for the buffer pool.

• Version of CLR in use

• Success or failure of Service Principal Name (SPN) registration

• How long it takes for a database to come online

o The log records when the database starts up, and when it’s online – I check to see if any
database takes an excessive amount of time to come up.

• Status of Service Broker and Database Mirroring endpoints – important if you’re using either
feature

• Confirmation that Instant File Initialization (IFI) is enabled*

o By default this information is not logged, but if you enable Trace Flag 3004 (and 3605 to
force the output to the log), when you create or grow a data file, you will see messages
in the log to indicate whether IFI is in use or not.

• Status of SQL Traces

o When you start or stop a SQL Trace, it gets logged, and I look to see if any traces beyond
the default trace exist (either temporarily or long term). If you’re running a third-party
monitoring tool, such as SQL Sentry’s Performance Advisor, you might see an active
trace that’s always running, but only capturing specific events, or you might see a trace
start, run for a short duration, then stop. I’m not concerned about one or two extra

http://sqlperformance.com/2012/11/system-configuration/2012-cal-problems?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2012/11/system-configuration/2012-cal-problems?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://www.sqlskills.com/blogs/glenn/balancing-your-available-sql-server-core-licenses-evenly-across-numa-nodes/
http://cdn.sqlperformance.com/wp-content/uploads/2015/07/reg-start.png

traces, unless they’re capturing a lot of events, but I definitely pay attention when
multiple traces are running.

• The last time CHECKDB was completed

o This message is often misunderstood by people – when the instance starts up, it reads
the boot page for each database and notes when CHECKDB last ran successfully. Most
people don’t read the entire message:

Date that DBCC CHECKDB last completed successfully

The date for CHECKDB completion is November 11, 2012, but the ERRORLOG date is July 7, 2015. It’s
important to understand that SQL Server does not run CHECKDB against databases at startup, it checks
the dbcclastknowngood value on the boot page (to see when that gets updated, check out my
post, What Checks Update dbcclastknowngood. Also, if DBCC CHECKDB has never been run against a
database, then no entry will show up for the database here.

• CHECKDB completion

o When CHECKDB is run against a database, the output is recorded in the log.

• Changes to instance settings

o If you change an instance-level settings (e.g. max server memory, cost threshold for
parallelism) using sp_configure or through the UI (note that it doesn’t log who changed
it).

• Changes to database settings

o Did someone enable AUTO_SHRINK? Change the RECOVERY option to SIMPLE and then
back to FULL? You’ll find it here.

• Changes to database status

o If someone takes a database OFFLINE (or brings it ONLINE), this gets logged.

• Deadlock information*

o If you need to capture deadlock information, don’t want to run a trace, and you’re
running SQL Server 2005 through 2008R2, use trace flag 1222 to write deadlock
information to the log in XML format. For those of you using SQL Server 2000 and
below, you can trace flag 1204 (this trace flag is also available in SQL Server 2005+, but it
outputs minimal information). If you’re running SQL Server 2012 or higher, this is not
needed, as the system_health event session captures this information (and it’s there in
2008 and 20082 too, but you have to pull it from the ring_buffer versus the event_file
target).

• FlushCache Messages

o If the cache is being flushed by SQL Server because the checkpoint process exceeds the
recovery interval for the database, you’ll see a set of FlushCache messages in the log
(see this postby Bob Dorr for more information). Don’t confuse these messages with the
ones that show up when you run DBCC FREEPROCCACHE or DBCC FREESYSTEMCACHE:

http://www.sqlskills.com/blogs/erin/what-checks-update-dbcclastknowngood/
http://blogs.msdn.com/b/psssql/archive/2012/06/01/how-it-works-when-is-the-flushcache-message-added-to-sql-server-error-log.aspx
http://cdn.sqlperformance.com/wp-content/uploads/2015/07/es-chdb.png

Message after running DBCC FREEPROCCACHE or DBCC FREESYSTEMCACHE

• AppDomain unload messages

o The log also notes when AppDomains are created, and you’ll only see either if you’re
using CLR. If I see AppDomain unload messages because of memory pressure, it’s
something to investigate further.

There is other information in the log that’s useful, such as authentication mode in use, whether or not
the Dedicated Admin Connection (DAC) is enabled, etc. but I can also get that from sys.configurations
and I check those with the instance baselines I discussed earlier (Proactive SQL Server Health Checks,
Part 3: Instance and Database Settings).

What’s not in the ERROLOG, that you might expect?

This is a short list, for now, as I’m guessing some of you might have found other things you thought
would be in the log but were not…

• Adding or removing database files or filegroups

• Starting or stopping of Extended Events Sessions

o However, if you deploy a server level DDL Trigger or Event Notification, you can log this
information. See Jonathan’s post, Logging Extended Events changes to the ERRORLOG,
for more detail.

• Running DBCC DROPCLEANBUFFERS does show up in the ERRORLOG

Managing the Log

Remember that by default, SQL Server only keeps the most recent six (6) log files (in addition to the
current file), and the log file rolls over every time the SQL Server restarts. As a result, you can sometimes
have extremely large log files which take a while to open and are a pain to dig through. On the flip side,
if you run into a case where the instance gets restarted a couple times, you might lose important
information. It’s recommended to increase the number of retained files to a higher value (e.g. 30), and
create an Agent job to roll over the file once a week using sp_cycle_errorlog.

In addition to managing the files, you can affect what information is written to the log. One of the most
common entries that creates clutter in the ERRORLOG is the successful backup entry:

Backup completed successfully

If you have an instance with numerous databases and transaction log backups are taken with any
regularity (e.g. every 15 minutes), you’ll see the log quickly fill up with messages, which makes finding a
true problem harder. Luckily, you can use trace flag 3226 to disable successful backup messages (errors
will still show up in the log, and all entries will still exist in msdb).

Another set of messages that clutter the log are successful login messages. This is an option you
configure for the instance on the Security tab:

http://sqlperformance.com/2015/02/system-configuration/proactive-sql-server-health-checks-3?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/02/system-configuration/proactive-sql-server-health-checks-3?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
https://www.sqlskills.com/blogs/jonathan/logging-extended-events-changes/
https://technet.microsoft.com/en-us/library/ms177285%28v=sql.120%29.aspx
https://msdn.microsoft.com/en-us/library/ms182512.aspx
https://msdn.microsoft.com/en-us/library/ms188396.aspx
https://msdn.microsoft.com/en-us/library/ms175850.aspx
http://cdn.sqlperformance.com/wp-content/uploads/2015/07/4_dbccfreeproccache.jpg
http://cdn.sqlperformance.com/wp-content/uploads/2015/07/1_backup-info.jpg

Security option to log successful and/or failed logins

If you log successful logins, or failed and successful logins, you can have very large log files, even if you
rollover the files daily (it will depend on how many users connect). I recommend capturing failed logins
only. For businesses that have a requirement to log successful logins, consider using the Audit feature,
added in SQL Server 2008. Side note: If you change the Login auditing setting, it will not take effect until
you restart the instance.

Don't underestimate the ERRORLOG

As you can see, there is some great information in the ERRORLOG for you to use not just when you're
troubleshooting performance or investigating errors, but also when you're proactively monitoring an
instance. You can find information in the log that's not found anywhere else; make sure you're checking
it on regular basis and not leaving it as an afterthought.

See the other parts in this series:

• Part 1 : Disk Space

• Part 2 : Maintenance

• Part 3 : Instance and Database Settings

https://msdn.microsoft.com/en-us/library/cc280386.aspx
http://sqlperformance.com/2014/12/io-subsystem/proactive-sql-server-health-checks-1?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2014/12/sql-maintenance/proactive-sql-server-health-checks-2?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/02/system-configuration/proactive-sql-server-health-checks-3?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2015/07/2_security.jpg

Monitoring Availability Group Replica Synchronization
By Johnathan Kehayias

If you are deploying SQL Server Availability Groups, one of the important aspects of a successful
deployment is monitoring the synchronization of the secondary replica databases with the primary
replica. There are multiple ways to monitor replica synchronization in an Availability Group, and this
post will show each of them and explain their benefits and drawbacks,

One of the easiest ways to monitor the status of an Availability Group, each of the replica servers, and
the availability databases, is through the built-in dashboard in Management Studio. However, the
default layout of the dashboard doesn't provide a lot of details, and will need to be customized to show
additional information about the replica servers as well as the availability databases. Additional columns
can be added to the layout through the Add/Remove Columns link on the dashboard, or through the
right-click context menu on any of the existing column headers, as shown below:

Customizing the AG Dashboard in SSMS

http://sqlperformance.com/2015/08/monitoring/availability-group-replica-sync?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/08/monitoring/availability-group-replica-sync?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2015/08/AG-Dashboard.png

For the availability databases, monitoring the Log Send Queue Size (KB), Log Send Rate (KB/sec),
Estimated Data Loss (time), Estimated Recovery Time (seconds), and Synchronization Performance
(seconds) will give you a better understanding of how data is flowing to the replicas and the overall
health of the availability databases. For example, in the screenshot below, I've modified the VM network
configuration for SQL03 so that it has higher latency and lower throughput, which is affecting the
synchronization of the databases:

Here we can see that there is nearly six minutes of potential data loss for SQL03, and 505 MB of unsent
log that is being sent at a rate of 7 MB/sec to the secondary (which, in this case, is an asynchronous
secondary). Whereas SQL02 is currently caught up and has no data loss as a synchronous secondary in
the configuration.

An alternative to the Availability Group Dashboard is direct querying of the DMVs, which is where the
dashboard pulls its information from as a source. The following query shows the current status and
synchronization metrics for each database in an availability group:

SELECT
 ar.replica_server_name,

http://cdn.sqlperformance.com/wp-content/uploads/2015/08/AG-Dashboard-Customized.png

 adc.database_name,
 ag.name AS ag_name,
 drs.is_local,
 drs.is_primary_replica,
 drs.synchronization_state_desc,
 drs.is_commit_participant,
 drs.synchronization_health_desc,
 drs.recovery_lsn,
 drs.truncation_lsn,
 drs.last_sent_lsn,
 drs.last_sent_time,
 drs.last_received_lsn,
 drs.last_received_time,
 drs.last_hardened_lsn,
 drs.last_hardened_time,
 drs.last_redone_lsn,
 drs.last_redone_time,
 drs.log_send_queue_size,
 drs.log_send_rate,
 drs.redo_queue_size,
 drs.redo_rate,
 drs.filestream_send_rate,
 drs.end_of_log_lsn,
 drs.last_commit_lsn,
 drs.last_commit_time
FROM sys.dm_hadr_database_replica_states AS drs
INNER JOIN sys.availability_databases_cluster AS adc
 ON drs.group_id = adc.group_id AND
 drs.group_database_id = adc.group_database_id
INNER JOIN sys.availability_groups AS ag
 ON ag.group_id = drs.group_id
INNER JOIN sys.availability_replicas AS ar
 ON drs.group_id = ar.group_id AND
 drs.replica_id = ar.replica_id
ORDER BY
 ag.name,
 ar.replica_server_name,
 adc.database_name;

By querying the DMVs directly on the primary replica, it is easy to get up to date information without
waiting for the refresh period of the dashboard in Management Studio. This has been useful a few times
while consulting with clients that had a link failure between data centers, or where the connectivity was
down for maintenance for a duration of time, and the secondary replicas are in the process of catching
up once the connection was restored.

The final native tool for monitoring Availability Group synchronization is Performance Monitor, using the
SQLServer:Database Replica performance object. The table below shows the relevant performance

counters and their descriptions from Books Online (https://msdn.microsoft.com/en-
us/library/ff878356(v=sql.110).aspx):

One of the challenges and limitations of using Performance Monitor to monitor the environment is
that the object is valid only on the instance of SQL Server that hosts a secondary replica. This means that
you have to add the counters from each secondary replica into Performance Monitor get a full view of
what is happening with all of the secondary databases, where both the AG Dashboard in Management
Studio, and the DMV query against the primary replica, provide information about all of the secondary
databases in a single location.

As an alternative to the built-in features for monitoring Availability Group synchronization, you can also
leverage third party tools like SQL Sentry Performance Advisor, which includes monitoring of Availability
Groups as a standard feature. You can read more about this feature in this blog post from Greg
Gonzalez that first introduced the feature in version 7.5 of the product.

Performacnce Advisor AG Dashboard

https://msdn.microsoft.com/en-us/library/ff878356(v=sql.110).aspx)
https://msdn.microsoft.com/en-us/library/ff878356(v=sql.110).aspx)
http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://blogs.sqlsentry.com/greggonzalez/sql-sentry-v7-5-a-better-alwayson/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://blogs.sqlsentry.com/greggonzalez/sql-sentry-v7-5-a-better-alwayson/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2015/08/PA-AG-Dashboard.png

The Replicas tab in Performance Advisor allows each of the secondary replica servers to be expanded to
show the databases and their current synchronization data easily. The WSFC Node/Group Matrix default
layout at the top of the dashboard also gives health information about the primary replica's send queue
status, the secondary replica's redo queue status, and the flow of data between each of the replica
servers. In this example, we can see that the log send queue on the primary is currently sending a large
amount of data from SQL01 to SQL03, based on the width of the line between the servers, after the
connectivity issues between SQL01 and SQL03 were corrected in the environment. The chart on the
right shows the rate at which data is being transferred from SQL01, along with the current size of the
Log Send Queue, since that is the replica selected on the left hand side. Clicking on one of the other
replica servers in the WSFC Node/Group Matrix layout will also change the chart to match that specific
replica's performance metrics on the right hand side.

There are many ways to monitor the performance of data synchronization between replica servers in an
Availability Group in SQL Server. The built-in Availability Group Dashboard in Management Studio
contains a wealth of information that is easy to access once you know how to customize the layout to
show the most important information on the dashboard. It is also possible to use the DMVs directly
from the primary replica server to monitor the performance of data synchronization using Transact-SQL,
and third party tools like Performance Advisor include monitoring of the data synchronization as
well. While Performance Monitor can provide this same information, the fact that the performance
counters are only available from the secondary replica server makes it a little more work to get a full
view of the entire environment.

http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

Proactive SQL Server Health Checks, Part 5 : Wait Statistics
By Erin Stellato

The SQLskills team loves wait statistics. If you look through posts on this blog (see Paul’s posts on Knee-
Jerk Wait Statistics) and on the SQLskills site, you’ll see posts from all of us discussing the value of wait
stats, what we look for, and why a particular wait is an issue. Paul writes about this the most, but all of
us typically start with wait statistics when troubleshooting a performance issue. What does that mean in
terms of being proactive?

In order to get a complete picture of what wait statistics mean during a performance issue, you must
know what your normal waits are. That means proactively capturing this information and using that
baseline as a reference. If you do not have this data, then when a performance issue occurs, you won’t
know if PAGELATCH waits are typical in your environment (quite possible) or if you suddenly have an
issue related to tempdb due to some new code that was added.

The Wait Statistics Data

I’ve previously published a script I use to capture wait statistics, and it’s a script I’ve been using for a
long time for clients. However, I’ve recently made changes to my script and slightly tweaked my
method. Let me explain why…

The fundamental premise behind wait statistics is that SQL Server is tracking every time a thread has to
wait for “something.” Waiting to read a page from disk? PAGEIOLATCH_XX wait. Waiting to be granted a
lock so you make a modification to data? LCX_M_XXX wait. Waiting for a memory grant so a query can
execute? RESOURCE_SEMAPHORE wait. All these waits are tracked in the sys.dm_os_wait_stats DMV,
and the data just accrues over time… it’s a cumulative representative of the waits.

For example, I have a SQL Server 2014 instance in one of my VMs that’s been up and since about 9:30
this morning:

SELECT [sqlserver_start_time] FROM [sys].[dm_os_sys_info];

SQL Server start time

Now if I look to see what my wait statistics look like (remember, cumulative until now) using Paul’s
script, I see that TRACEWRITE is my current “standard” wait:

Current aggregate waits

Ok, now let’s introduce five minutes of tempdb contention, and see how that affects my overall wait
statistics. I have a script that Jonathan has used previously to create tempdb contention, and I’ve set it
up so that it will run for 5 minutes:

http://sqlperformance.com/2015/10/sql-performance/proactive-sql-server-health-checks-5?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/10/sql-performance/proactive-sql-server-health-checks-5?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/?s=knee-jerk&utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/?s=knee-jerk&utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2015/09/0_starttime.jpg
http://cdn.sqlperformance.com/wp-content/uploads/2015/09/1_initialwaitstats.jpg

USE AdventureWorks2012;
GO

SET NOCOUNT ON;
GO

DECLARE @CurrentTime SMALLDATETIME = SYSDATETIME(), @EndTime SMALLDATETIME = DATEADD(MINUTE,
5, SYSDATETIME());
WHILE @CurrentTime < @EndTime
BEGIN
 IF OBJECT_ID('tempdb..#temp') IS NOT NULL
 BEGIN
 DROP TABLE #temp;
 END

 CREATE TABLE #temp
 (
 ProductID INT PRIMARY KEY,
 OrderQty INT,
 TotalDiscount MONEY,
 LineTotal MONEY,
 Filler NCHAR(500) DEFAULT(N'') NOT NULL
);

 INSERT INTO #temp(ProductID, OrderQty, TotalDiscount, LineTotal)
 SELECT
 sod.ProductID,
 SUM(sod.OrderQty),
 SUM(sod.LineTotal),
 SUM(sod.OrderQty + sod.UnitPriceDiscount)
 FROM Sales.SalesOrderDetail AS sod
 GROUP BY ProductID;

 DECLARE
 @ProductNumber NVARCHAR(25),
 @Name NVARCHAR(50),
 @TotalQty INT,
 @SalesTotal MONEY,
 @TotalDiscount MONEY;

 SELECT
 @ProductNumber = p.ProductNumber,
 @Name = p.Name,
 @TotalQty = t1.OrderQty,
 @SalesTotal = t1.LineTotal,
 @TotalDiscount = t1.TotalDiscount
 FROM Production.Product AS p
 JOIN #temp AS t1 ON p.ProductID = t1.ProductID;

 SET @CurrentTime = SYSDATETIME()

END

I used a command prompt to start up 10 sessions that ran this script, and concurrently ran a script that
captured my overall wait statistics, a snapshot of the waits over a 5 minute time period, and then the
overall wait statistics again. First, a little secret, since we ignore benign waits all the time, it can be
useful to stuff them in a table so that you can reference an object instead of constantly having to hard-
code a list of exclusion strings in a query. So:

USE SQLskills_WaitStats;
GO

CREATE TABLE dbo.WaitsToIgnore(WaitType SYSNAME PRIMARY KEY);

INSERT dbo.WaitsToIgnore(WaitType) VALUES(N'BROKER_EVENTHANDLER'),
 (N'BROKER_RECEIVE_WAITFOR'), (N'BROKER_TASK_STOP'), (N'BROKER_TO_FLUSH'),
 (N'BROKER_TRANSMITTER'), (N'CHECKPOINT_QUEUE'), (N'CHKPT'),
 (N'CLR_AUTO_EVENT'), (N'CLR_MANUAL_EVENT'), (N'CLR_SEMAPHORE'),
 (N'DBMIRROR_DBM_EVENT'), (N'DBMIRROR_EVENTS_QUEUE'),
 (N'DBMIRROR_WORKER_QUEUE'), (N'DBMIRRORING_CMD'), (N'DIRTY_PAGE_POLL'),
 (N'DISPATCHER_QUEUE_SEMAPHORE'), (N'EXECSYNC'), (N'FSAGENT'),
 (N'FT_IFTS_SCHEDULER_IDLE_WAIT'), (N'FT_IFTSHC_MUTEX'), (N'HADR_CLUSAPI_CALL'),
 (N'HADR_FILESTREAM_IOMGR_IOCOMPLETIO(N'), (N'HADR_LOGCAPTURE_WAIT'),
 (N'HADR_NOTIFICATION_DEQUEUE'), (N'HADR_TIMER_TASK'), (N'HADR_WORK_QUEUE'),
 (N'KSOURCE_WAKEUP'), (N'LAZYWRITER_SLEEP'), (N'LOGMGR_QUEUE'),
 (N'ONDEMAND_TASK_QUEUE'), (N'PWAIT_ALL_COMPONENTS_INITIALIZED'),
 (N'QDS_PERSIST_TASK_MAIN_LOOP_SLEEP'),
 (N'QDS_CLEANUP_STALE_QUERIES_TASK_MAIN_LOOP_SLEEP'),
 (N'REQUEST_FOR_DEADLOCK_SEARCH'), (N'RESOURCE_QUEUE'), (N'SERVER_IDLE_CHECK'),
 (N'SLEEP_BPOOL_FLUSH'), (N'SLEEP_DBSTARTUP'), (N'SLEEP_DCOMSTARTUP'),
 (N'SLEEP_MASTERDBREADY'), (N'SLEEP_MASTERMDREADY'), (N'SLEEP_MASTERUPGRADED'),
 (N'SLEEP_MSDBSTARTUP'), (N'SLEEP_SYSTEMTASK'), (N'SLEEP_TASK'),
 (N'SLEEP_TEMPDBSTARTUP'), (N'SNI_HTTP_ACCEPT'), (N'SP_SERVER_DIAGNOSTICS_SLEEP'),
 (N'SQLTRACE_BUFFER_FLUSH'), (N'SQLTRACE_INCREMENTAL_FLUSH_SLEEP'),
 (N'SQLTRACE_WAIT_ENTRIES'), (N'WAIT_FOR_RESULTS'), (N'WAITFOR'),
 (N'WAITFOR_TASKSHUTDOW(N'), (N'WAIT_XTP_HOST_WAIT'),
 (N'WAIT_XTP_OFFLINE_CKPT_NEW_LOG'), (N'WAIT_XTP_CKPT_CLOSE'),
 (N'XE_DISPATCHER_JOI(N'), (N'XE_DISPATCHER_WAIT'), (N'XE_TIMER_EVENT');

Now we're ready to capture our waits:

/* Capture the instance start time

(in this case, time since waits have been accumulating) */

SELECT [sqlserver_start_time] FROM [sys].[dm_os_sys_info];
GO

/* Get the current time */

SELECT SYSDATETIME() AS [Before Test 1];

/* Get aggregate waits until now */

WITH [Waits] AS
(
 SELECT
 [wait_type],
 [wait_time_ms] / 1000.0 AS [WaitS],
 ([wait_time_ms] - [signal_wait_time_ms]) / 1000.0 AS [ResourceS],
 [signal_wait_time_ms] / 1000.0 AS [SignalS],
 [waiting_tasks_count] AS [WaitCount],
 100.0 * [wait_time_ms] / SUM ([wait_time_ms]) OVER() AS [Percentage],
 ROW_NUMBER() OVER(ORDER BY [wait_time_ms] DESC) AS [RowNum]
 FROM sys.dm_os_wait_stats
 WHERE [wait_type] NOT IN (SELECT WaitType FROM SQLskills_Waits.WaitsToIgnore)
 AND [waiting_tasks_count] > 0
)
SELECT
 MAX ([W1].[wait_type]) AS [WaitType],
 CAST (MAX ([W1].[WaitS]) AS DECIMAL (16,2)) AS [Wait_S],
 CAST (MAX ([W1].[ResourceS]) AS DECIMAL (16,2)) AS [Resource_S],
 CAST (MAX ([W1].[SignalS]) AS DECIMAL (16,2)) AS [Signal_S],
 MAX ([W1].[WaitCount]) AS [WaitCount],
 CAST (MAX ([W1].[Percentage]) AS DECIMAL (5,2)) AS [Percentage],
 CAST ((MAX ([W1].[WaitS]) / MAX ([W1].[WaitCount])) AS DECIMAL (16,4)) AS [AvgWait_S],
 CAST ((MAX ([W1].[ResourceS]) / MAX ([W1].[WaitCount])) AS DECIMAL (16,4)) AS [AvgRes_S],
 CAST ((MAX ([W1].[SignalS]) / MAX ([W1].[WaitCount])) AS DECIMAL (16,4)) AS [AvgSig_S]
FROM [Waits] AS [W1]
INNER JOIN [Waits] AS [W2]
ON [W2].[RowNum] <= [W1].[RowNum]
GROUP BY [W1].[RowNum]
HAVING SUM ([W2].[Percentage]) - MAX ([W1].[Percentage]) < 95; -- percentage threshold
GO

/* Get the current time */

SELECT SYSDATETIME() AS [Before Test 2];

/* Capture a snapshot of waits over a 5 minute period */

IF EXISTS (SELECT * FROM [tempdb].[sys].[objects] WHERE [name] = N'##SQLskillsStats1')
 DROP TABLE [##SQLskillsStats1];

IF EXISTS (SELECT * FROM [tempdb].[sys].[objects] WHERE [name] = N'##SQLskillsStats2')
 DROP TABLE [##SQLskillsStats2];
GO

SELECT [wait_type], [waiting_tasks_count], [wait_time_ms],
 [max_wait_time_ms], [signal_wait_time_ms]
INTO ##SQLskillsStats1
FROM sys.dm_os_wait_stats;
GO

WAITFOR DELAY '00:05:00';
GO

SELECT [wait_type], [waiting_tasks_count], [wait_time_ms],
 [max_wait_time_ms], [signal_wait_time_ms]
INTO ##SQLskillsStats2
FROM sys.dm_os_wait_stats;
GO

WITH [DiffWaits] AS
(
 SELECT -- Waits that weren't in the first snapshot
 [ts2].[wait_type],
 [ts2].[wait_time_ms],
 [ts2].[signal_wait_time_ms],
 [ts2].[waiting_tasks_count]
 FROM [##SQLskillsStats2] AS [ts2]
 LEFT OUTER JOIN [##SQLskillsStats1] AS [ts1]
 ON [ts2].[wait_type] = [ts1].[wait_type]
 WHERE [ts1].[wait_type] IS NULL
 AND [ts2].[wait_time_ms] > 0
 UNION
 SELECT -- Diff of waits in both snapshots
 [ts2].[wait_type],
 [ts2].[wait_time_ms] - [ts1].[wait_time_ms] AS [wait_time_ms],
 [ts2].[signal_wait_time_ms] - [ts1].[signal_wait_time_ms] AS [signal_wait_time_ms],
 [ts2].[waiting_tasks_count] - [ts1].[waiting_tasks_count] AS [waiting_tasks_count]
 FROM [##SQLskillsStats2] AS [ts2]
 LEFT OUTER JOIN [##SQLskillsStats1] AS [ts1]
 ON [ts2].[wait_type] = [ts1].[wait_type]
 WHERE [ts1].[wait_type] IS NOT NULL
 AND [ts2].[waiting_tasks_count] - [ts1].[waiting_tasks_count] > 0
 AND [ts2].[wait_time_ms] - [ts1].[wait_time_ms] > 0
),
[Waits] AS
(
 SELECT
 [wait_type],
 [wait_time_ms] / 1000.0 AS [WaitS],
 ([wait_time_ms] - [signal_wait_time_ms]) / 1000.0 AS [ResourceS],
 [signal_wait_time_ms] / 1000.0 AS [SignalS],
 [waiting_tasks_count] AS [WaitCount],
 100.0 * [wait_time_ms] / SUM ([wait_time_ms]) OVER() AS [Percentage],
 ROW_NUMBER() OVER(ORDER BY [wait_time_ms] DESC) AS [RowNum]

 FROM [DiffWaits]
 WHERE [wait_type] NOT IN (SELECT WaitType FROM SQLskills_WaitStats.dbo.WaitsToIgnore)
)
SELECT
 [W1].[wait_type] AS [WaitType],
 CAST ([W1].[WaitS] AS DECIMAL (16, 2)) AS [Wait_S],
 CAST ([W1].[ResourceS] AS DECIMAL (16, 2)) AS [Resource_S],
 CAST ([W1].[SignalS] AS DECIMAL (16, 2)) AS [Signal_S],
 [W1].[WaitCount] AS [WaitCount],
 CAST ([W1].[Percentage] AS DECIMAL (5, 2)) AS [Percentage],
 CAST (([W1].[WaitS] / [W1].[WaitCount]) AS DECIMAL (16, 4)) AS [AvgWait_S],
 CAST (([W1].[ResourceS] / [W1].[WaitCount]) AS DECIMAL (16, 4)) AS [AvgRes_S],
 CAST (([W1].[SignalS] / [W1].[WaitCount]) AS DECIMAL (16, 4)) AS [AvgSig_S]
FROM [Waits] AS [W1]
INNER JOIN [Waits] AS [W2]
ON [W2].[RowNum] <= [W1].[RowNum]
GROUP BY [W1].[RowNum], [W1].[wait_type], [W1].[WaitS],
 [W1].[ResourceS], [W1].[SignalS], [W1].[WaitCount], [W1].[Percentage]
HAVING SUM ([W2].[Percentage]) - [W1].[Percentage] < 95; -- percentage threshold
GO

-- Cleanup

IF EXISTS (SELECT * FROM [tempdb].[sys].[objects] WHERE [name] = N'##SQLskillsStats1')
 DROP TABLE [##SQLskillsStats1];

IF EXISTS (SELECT * FROM [tempdb].[sys].[objects] WHERE [name] = N'##SQLskillsStats2')
 DROP TABLE [##SQLskillsStats2];
GO

/* Get the current time */

SELECT SYSDATETIME() AS [After Test 1];

/* Get aggregate waits again */

WITH [Waits] AS
(
 SELECT
 [wait_type],
 [wait_time_ms] / 1000.0 AS [WaitS],
 ([wait_time_ms] - [signal_wait_time_ms]) / 1000.0 AS [ResourceS],
 [signal_wait_time_ms] / 1000.0 AS [SignalS],
 [waiting_tasks_count] AS [WaitCount],
 100.0 * [wait_time_ms] / SUM ([wait_time_ms]) OVER() AS [Percentage],
 ROW_NUMBER() OVER(ORDER BY [wait_time_ms] DESC) AS [RowNum]
 FROM sys.dm_os_wait_stats
 WHERE [wait_type] NOT IN (SELECT WaitType FROM SQLskills_WaitStats.dbo.WaitsToIgnore)
 AND [waiting_tasks_count] > 0
)

SELECT
 MAX ([W1].[wait_type]) AS [WaitType],
 CAST (MAX ([W1].[WaitS]) AS DECIMAL (16,2)) AS [Wait_S],
 CAST (MAX ([W1].[ResourceS]) AS DECIMAL (16,2)) AS [Resource_S],
 CAST (MAX ([W1].[SignalS]) AS DECIMAL (16,2)) AS [Signal_S],
 MAX ([W1].[WaitCount]) AS [WaitCount],
 CAST (MAX ([W1].[Percentage]) AS DECIMAL (5,2)) AS [Percentage],
 CAST ((MAX ([W1].[WaitS]) / MAX ([W1].[WaitCount])) AS DECIMAL (16,4)) AS [AvgWait_S],
 CAST ((MAX ([W1].[ResourceS]) / MAX ([W1].[WaitCount])) AS DECIMAL (16,4)) AS [AvgRes_S],
 CAST ((MAX ([W1].[SignalS]) / MAX ([W1].[WaitCount])) AS DECIMAL (16,4)) AS [AvgSig_S]
FROM [Waits] AS [W1]
INNER JOIN [Waits] AS [W2]
ON [W2].[RowNum] <= [W1].[RowNum]
GROUP BY [W1].[RowNum]
HAVING SUM ([W2].[Percentage]) - MAX ([W1].[Percentage]) < 95; -- percentage threshold
GO

/* Get the current time */

SELECT SYSDATETIME() AS [After Test 2];

If we look at the output, we can see that while the 10 instances of the script to create tempdb
contention were running, SOS_SCHEDULER_YIELD was our most prevalent wait type, and we also had
PAGELATCH_XX waits, as expected:

Waits Summary Before, During, and After Testing

If we look at the average waits AFTER the test completed, we again see TRACEWRITE as the highest wait,
and we do see SOS_SCHEDULER_YIELD as a wait. Depending on what else is running in the environment,

http://cdn.sqlperformance.com/wp-content/uploads/2015/09/2_SSMS-Output.jpg

this wait may or may not persist in our top waits for long, and it may or may not bubble up as a wait
type to investigate.

Proactively Capturing Wait Statistics

By default, wait statistics are cumulative. Yes, you can clear them at any time using DBCC SQLPERF, but I
find that most people do not do that on a regular basis, they just let them accumulate. And this is fine,
but understand how that affects your data. If you only restart your instance when you patch it, or when
there’s an issue (which hopefully happens infrequently), then that data could be accumulating for
months. The more data you have, the harder it is to see small variations… things that could be
performance problems. Even when you have a “big issue” that’s affecting your entire server for several
minutes, as we did here with tempdb, it may not create enough of a change in your data to get detected
in the cumulated data. Rather, you need to snapshot the data (capture it, wait a few minutes, capture it
again, and then diff the data) to see what’s really going on right now.

As such, if you just snapshot wait statistics every few hours, then the data you’ve collected just shows
the continued aggregation over time. You can diff those snapshots to get an understanding of
performance between the snapshots, but I can tell you from having to write this code against a large
data set, it’s a pain (but I’m not a dev, so maybe it’s easy-peasy for you).

My traditional method of capturing wait statistics was to just snapshot sys.dm_os_wait_stats every few
hours using Paul’s original script:

USE [BaselineData];
GO

IF NOT EXISTS (SELECT * FROM [sys].[tables] WHERE [name] = N'SQLskills_WaitStats_OldMethod')
BEGIN
 CREATE TABLE [dbo].[SQLskills_WaitStats_OldMethod]
 (
 [RowNum] [bigint] IDENTITY(1,1) NOT NULL,
 [CaptureDate] [datetime] NULL,
 [WaitType] [nvarchar](120) NULL,
 [Wait_S] [decimal](14, 2) NULL,
 [Resource_S] [decimal](14, 2) NULL,
 [Signal_S] [decimal](14, 2) NULL,
 [WaitCount] [bigint] NULL,
 [Percentage] [decimal](4, 2) NULL,
 [AvgWait_S] [decimal](14, 4) NULL,
 [AvgRes_S] [decimal](14, 4) NULL,
 [AvgSig_S] [decimal](14, 4) NULL
);

 CREATE CLUSTERED INDEX [CI_SQLskills_WaitStats_OldMethod]
 ON [dbo].[SQLskills_WaitStats_OldMethod] ([CaptureDate],[RowNum]);
END
GO

/* Query to use in scheduled job */

USE [BaselineData];
GO

INSERT INTO [dbo].[SQLskills_WaitStats_OldMethod]
(
 [CaptureDate] ,
 [WaitType] ,
 [Wait_S] ,
 [Resource_S] ,
 [Signal_S] ,
 [WaitCount] ,
 [Percentage] ,
 [AvgWait_S] ,
 [AvgRes_S] ,
 [AvgSig_S]
)
EXEC ('WITH [Waits] AS (SELECT
 [wait_type],
 [wait_time_ms] / 1000.0 AS [WaitS],
 ([wait_time_ms] - [signal_wait_time_ms]) / 1000.0 AS [ResourceS],
 [signal_wait_time_ms] / 1000.0 AS [SignalS],
 [waiting_tasks_count] AS [WaitCount],
 100.0 * [wait_time_ms] / SUM ([wait_time_ms]) OVER() AS [Percentage],
 ROW_NUMBER() OVER(ORDER BY [wait_time_ms] DESC) AS [RowNum]
 FROM sys.dm_os_wait_stats
 WHERE [wait_type] NOT IN (SELECT WaitType FROM SQLskills_WaitStats.dbo.WaitsToIgnore)
)
 SELECT
 GETDATE(),
 [W1].[wait_type] AS [WaitType],
 CAST ([W1].[WaitS] AS DECIMAL(14, 2)) AS [Wait_S],
 CAST ([W1].[ResourceS] AS DECIMAL(14, 2)) AS [Resource_S],
 CAST ([W1].[SignalS] AS DECIMAL(14, 2)) AS [Signal_S],
 [W1].[WaitCount] AS [WaitCount],
 CAST ([W1].[Percentage] AS DECIMAL(4, 2)) AS [Percentage],
 CAST (([W1].[WaitS] / [W1].[WaitCount]) AS DECIMAL (14, 4)) AS [AvgWait_S],
 CAST (([W1].[ResourceS] / [W1].[WaitCount]) AS DECIMAL (14, 4)) AS [AvgRes_S],
 CAST (([W1].[SignalS] / [W1].[WaitCount]) AS DECIMAL (14, 4)) AS [AvgSig_S]
 FROM [Waits] AS [W1]
 INNER JOIN [Waits] AS [W2]
 ON [W2].[RowNum] <= [W1].[RowNum]
 GROUP BY [W1].[RowNum], [W1].[wait_type], [W1].[WaitS], [W1].[ResourceS],
 [W1].[SignalS], [W1].[WaitCount], [W1].[Percentage]
 HAVING SUM ([W2].[Percentage]) - [W1].[Percentage] < 95;'
);

I would then go through and look at the top wait for each snapshot, for example:

SELECT [w].[CaptureDate] ,
 [w].[WaitType] ,
 [w].[Percentage] ,
 [w].[Wait_S] ,
 [w].[WaitCount] ,
 [w].[AvgWait_S]
FROM [dbo].[SQLskills_WaitStats_OldMethod] w
JOIN
(
 SELECT MIN([RowNum]) AS [RowNumber] , [CaptureDate]
 FROM [dbo].[SQLskills_WaitStats_OldMethod]
 WHERE [CaptureDate] IS NOT NULL
 AND [CaptureDate] > GETDATE() - 60
 GROUP BY [CaptureDate]
) m ON [w].[RowNum] = [m].[RowNumber]
ORDER BY [w].[CaptureDate];

My new, alternate method is to diff a couple snapshots of wait statistics (with a two to three minutes
between snapshots) every hour or so. This information then tells me exactly what the system was
waiting on at that time:

USE [BaselineData];
GO

IF NOT EXISTS (SELECT * FROM [sys].[tables] WHERE [name] = N'SQLskills_WaitStats')
BEGIN
 CREATE TABLE [dbo].[SQLskills_WaitStats]
 (
 [RowNum] [bigint] IDENTITY(1,1) NOT NULL,
 [CaptureDate] [datetime] NOT NULL DEFAULT (sysdatetime()),
 [WaitType] [nvarchar](60) NOT NULL,
 [Wait_S] [decimal](16, 2) NULL,
 [Resource_S] [decimal](16, 2) NULL,
 [Signal_S] [decimal](16, 2) NULL,
 [WaitCount] [bigint] NULL,
 [Percentage] [decimal](5, 2) NULL,
 [AvgWait_S] [decimal](16, 4) NULL,
 [AvgRes_S] [decimal](16, 4) NULL,
 [AvgSig_S] [decimal](16, 4) NULL
) ON [PRIMARY];

 CREATE CLUSTERED INDEX [CI_SQLskills_WaitStats]
 ON [dbo].[SQLskills_WaitStats] ([CaptureDate],[RowNum]);
END

/* Query to use in scheduled job */

USE [BaselineData];

GO

IF EXISTS (SELECT * FROM [tempdb].[sys].[objects] WHERE [name] = N'##SQLskillsStats1')
 DROP TABLE [##SQLskillsStats1];

IF EXISTS (SELECT * FROM [tempdb].[sys].[objects] WHERE [name] = N'##SQLskillsStats2')
 DROP TABLE [##SQLskillsStats2];
GO

/* Capture wait stats */

SELECT [wait_type], [waiting_tasks_count], [wait_time_ms],
 [max_wait_time_ms], [signal_wait_time_ms]
INTO ##SQLskillsStats1
FROM sys.dm_os_wait_stats;
GO

/* Wait some amount of time */

WAITFOR DELAY '00:02:00';
GO

/* Capture wait stats again */

SELECT [wait_type], [waiting_tasks_count], [wait_time_ms],
 [max_wait_time_ms], [signal_wait_time_ms]
INTO ##SQLskillsStats2
FROM sys.dm_os_wait_stats;
GO

/* Diff the waits */

WITH [DiffWaits] AS
(
 SELECT -- Waits that weren't in the first snapshot
 [ts2].[wait_type],
 [ts2].[wait_time_ms],
 [ts2].[signal_wait_time_ms],
 [ts2].[waiting_tasks_count]
 FROM [##SQLskillsStats2] AS [ts2]
 LEFT OUTER JOIN [##SQLskillsStats1] AS [ts1]
 ON [ts2].[wait_type] = [ts1].[wait_type]
 WHERE [ts1].[wait_type] IS NULL
 AND [ts2].[wait_time_ms] > 0
 UNION
 SELECT -- Diff of waits in both snapshots
 [ts2].[wait_type],
 [ts2].[wait_time_ms] - [ts1].[wait_time_ms] AS [wait_time_ms],
 [ts2].[signal_wait_time_ms] - [ts1].[signal_wait_time_ms] AS [signal_wait_time_ms],
 [ts2].[waiting_tasks_count] - [ts1].[waiting_tasks_count] AS [waiting_tasks_count]

 FROM [##SQLskillsStats2] AS [ts2]
 LEFT OUTER JOIN [##SQLskillsStats1] AS [ts1]
 ON [ts2].[wait_type] = [ts1].[wait_type]
 WHERE [ts1].[wait_type] IS NOT NULL
 AND [ts2].[waiting_tasks_count] - [ts1].[waiting_tasks_count] > 0
 AND [ts2].[wait_time_ms] - [ts1].[wait_time_ms] > 0
),
[Waits] AS
(
 SELECT
 [wait_type],
 [wait_time_ms] / 1000.0 AS [WaitS],
 ([wait_time_ms] - [signal_wait_time_ms]) / 1000.0 AS [ResourceS],
 [signal_wait_time_ms] / 1000.0 AS [SignalS],
 [waiting_tasks_count] AS [WaitCount],
 100.0 * [wait_time_ms] / SUM ([wait_time_ms]) OVER() AS [Percentage],
 ROW_NUMBER() OVER(ORDER BY [wait_time_ms] DESC) AS [RowNum]
 FROM [DiffWaits]
 WHERE [wait_type] NOT IN (SELECT WaitType FROM SQLskills_WaitStats.dbo.WaitsToIgnore)
)
INSERT INTO [BaselineData].[dbo].[SQLskills_WaitStats]
(
 [WaitType] ,
 [Wait_S] ,
 [Resource_S] ,
 [Signal_S] ,
 [WaitCount] ,
 [Percentage] ,
 [AvgWait_S] ,
 [AvgRes_S] ,
 [AvgSig_S]
)
SELECT
 [W1].[wait_type],
 CAST ([W1].[WaitS] AS DECIMAL (16, 2)) ,
 CAST ([W1].[ResourceS] AS DECIMAL (16, 2)) ,
 CAST ([W1].[SignalS] AS DECIMAL (16, 2)) ,
 [W1].[WaitCount] ,
 CAST ([W1].[Percentage] AS DECIMAL (5, 2)) ,
 CAST (([W1].[WaitS] / [W1].[WaitCount]) AS DECIMAL (16, 4)) ,
 CAST (([W1].[ResourceS] / [W1].[WaitCount]) AS DECIMAL (16, 4)) ,
 CAST (([W1].[SignalS] / [W1].[WaitCount]) AS DECIMAL (16, 4))
FROM [Waits] AS [W1]
INNER JOIN [Waits] AS [W2]
ON [W2].[RowNum] <= [W1].[RowNum]
GROUP BY [W1].[RowNum], [W1].[wait_type], [W1].[WaitS], [W1].[ResourceS],
 [W1].[SignalS], [W1].[WaitCount], [W1].[Percentage]
HAVING SUM ([W2].[Percentage]) - [W1].[Percentage] < 95; -- percentage threshold
GO

/* Clean up the temp tables */

IF EXISTS (SELECT * FROM [tempdb].[sys].[objects] WHERE [name] = N'##SQLskillsStats1')
 DROP TABLE [##SQLskillsStats1];

IF EXISTS (SELECT * FROM [tempdb].[sys].[objects] WHERE [name] = N'##SQLskillsStats2')
 DROP TABLE [##SQLskillsStats2];

Is my new method better? I think so, as it’s a better representation of what the waits look like right at
the time of capture, and it’s still sampling on a regular interval. For both methods, I usually look to see
what the highest wait was at the time of capture:

SELECT [w].[CaptureDate] ,

 [w].[WaitType] ,

 [w].[Percentage] ,

 [w].[Wait_S] ,

 [w].[WaitCount] ,

 [w].[AvgWait_S]

FROM [dbo].[SQLskills_WaitStats] w

JOIN

(

 SELECT MIN([RowNum]) AS [RowNumber], [CaptureDate]

 FROM [dbo].[SQLskills_WaitStats]

 WHERE [CaptureDate] > GETDATE() - 30

 GROUP BY [CaptureDate]

) m

ON [w].[RowNum] = [m].[RowNumber]

ORDER BY [w].[CaptureDate];

Results:

Top wait for each snapshot (sample output)

The drawback, which existed with my original script, is that it’s still just a snapshot. I can trend the
highest waits over time, but if there is an issue that occurs between snapshots, it’s not going to show up.
So what can you do?

You could increase the frequency of your captures. Perhaps instead of capturing wait statistics every
hour, you capture them every 15 minutes. Or maybe every 10. The more frequently you capture the
data, the better chance you have to trap a performance issue.

Your other option would be to use a third-party application, such as SQL Sentry Performance Advisor, to
monitor waits. Performance Advisor pulls the exact same information from the sys.dm_os_wait_stats
DMV. It queries sys.dm_os_wait_stats every 10 seconds with a very simple query:

SELECT * FROM sys.dm_os_wait_stats WHERE wait_time_ms > 0;

Behind the scenes, Performance Advisor then takes this data and adds it to its monitoring database.
When you see the data, benign waits are removed, and the deltas are calculated for you. In addition,
Performance Advisor has a fantastic display (looking at the dashboard is much nicer than the text output
above) and you can customize the collection if you want. If we look at Performance Advisor and look at
data from the entire day, I can easily see where I had an issue in the SQL Server Waits pane:

http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2015/09/3_waitstats_output.jpg

Performance Advisor Dashboard for the day

And I can then drill into that time period after 3PM to further investigate what happened:

http://cdn.sqlperformance.com/wp-content/uploads/2015/09/4_PA_all-day.jpg

Drill down in PA during performance issue

Monitoring on my own, unless I happened to snapshot wait statistics at that same time with a script, I'll
have missed capturing any data about that performance issue. Because Performance Advisor stores the
information for an extended period of time, if you have a blip in performance, you do have the wait stats
data (along with a lot of other information) available to help research the issue, and you also have
historical data so you understand what normal waits exist in your environment.

Summary

Whatever method you choose to monitor waits, it’s first important to understand how SQL Server stores
wait information, so that you understand the data you’re seeing if you capture it regularly. If you have to
roll your own scripts to capture waits, you’re limited in that you might not capture deviations as easily as
you could with third party software. But that’s ok – having some amount of baseline data so you can
start to understand what is “normal” is better than having nothing at all. As you build your repository
and start to become familiar with an environment, you can tailor your capture scripts as necessary to
solve any problems which may exist. If you do have the benefit of third party software, use that
information to its fullest, and make sure you understand how waits are being collected and stored.

http://cdn.sqlperformance.com/wp-content/uploads/2015/09/5_PAzoomed.jpg

Capture Execution Plan Warnings using Extended Events
By Erin Stellato

We’re teaching IEPTO2 in Dublin this week (and if Ireland is not on your list of places to see in this
lifetime, you must add it… it’s fantastic here) and today I finished up the Query Plan Analysis module.
One thing I cover is interesting things you can find in the query plan, for example:

• NoJoinPredicate (2005 and higher)

• ColumnsWithNoStatistics (2005 and higher)

• UnmatchedIndexes (2008 and higher)

• PlanAffectingConvert (2012 and higher)

These attributes are good to look for when you’re looking at a single plan, or set of plans, as you’re
tuning. But if you want to be a little more proactive, you can start to mine the plan cache and look for
them there. Of course, doing so requires writing some XQuery, since the plans are XML (for details about
the showplan schema, check out:http://schemas.microsoft.com/sqlserver/2004/07/showplan/). I don’t
love XML, though not for lack of trying, and when one of the attendees asked if you could capture
queries that had the NoJoinPredicate attribute through Extended Events, I thought, “What a great idea,
I'll have to check.”

Sure enough, there’s an Event for that. There’s an Event for all four of the ones I listed above:

• missing_join_predicate

• missing_column_statistics

• unmatched_filtered_indexes

• plan_affecting_convert

Nice. Setting these up in an Extended Events session is pretty straight-forward. In this case, I would
recommend using the event_file target, as you will probably start the event session and let it run for a
bit before you go back and review the output. I have included a few actions, with the hope that these
events aren’t fired that often, so we’re not adding too much overhead here. I included sql_text even
though it’s not an action that you should truly rely upon. Jonathan has discussed this before, but
sql_text is just giving you the inputbuffer, so you may not be getting the full story for the query. For that
reason, I also included plan_handle. The caveat there being that, depending on when you go look for the
plan, it may no longer be in the plan cache.

-- Remove event session if it exists
IF EXISTS (SELECT 1 FROM [sys].[server_event_sessions]
WHERE [name] = 'InterestingPlanEvents')
BEGIN
 DROP EVENT SESSION [InterestingPlanEvents] ON SERVER
END
GO

http://sqlperformance.com/2015/10/extended-events/capture-plan-warnings?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/10/extended-events/capture-plan-warnings?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://schemas.microsoft.com/sqlserver/2004/07/showplan/
https://www.sqlskills.com/blogs/jonathan/understanding-the-sql_text-action-in-extended-events/

-- Define event session
CREATE EVENT SESSION [InterestingPlanEvents]
ON SERVER
ADD EVENT sqlserver.missing_column_statistics
(
 ACTION(sqlserver.database_id,sqlserver.plan_handle,sqlserver.sql_text)
 WHERE ([package0].[equal_boolean]([sqlserver].[is_system],(0))
 AND [sqlserver].[database_id]>(4))
),
ADD EVENT sqlserver.missing_join_predicate
(
 ACTION(sqlserver.database_id,sqlserver.plan_handle,sqlserver.sql_text)
 WHERE ([sqlserver].[is_system]=(0) AND [sqlserver].[database_id]>(4))
),
ADD EVENT sqlserver.plan_affecting_convert
(
 ACTION(sqlserver.database_id,sqlserver.plan_handle,sqlserver.sql_text)
 WHERE ([package0].[equal_boolean]([sqlserver].[is_system],(0))
 AND [sqlserver].[database_id]>(4))
),
ADD EVENT sqlserver.unmatched_filtered_indexes
(
 ACTION(sqlserver.plan_handle,sqlserver.sql_text)
 WHERE ([package0].[equal_boolean]([sqlserver].[is_system],(0))
 AND [sqlserver].[database_id]>(4))
)
ADD TARGET package0.event_file
(
 SET filename=N'C:\temp\InterestingPlanEvents' /* change location if appropriate */
)
WITH (MAX_MEMORY=4096 KB,EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_LOSS,
MAX_DISPATCH_LATENCY=5 SECONDS,MAX_EVENT_SIZE=0 KB,MEMORY_PARTITION_MODE=NONE,
TRACK_CAUSALITY=ON,STARTUP_STATE=OFF)
GO

-- Start the event session
ALTER EVENT SESSION [InterestingPlanEvents] ON SERVER STATE=START;
GO

Once we have the event session up and running, we can generate these events with the sample code
below. Note that this code assumes a fresh install of AdventureWorks2014. If you don’t have one, you
may not see the missing_column_statistics event fire if you’re queried the [HireDate] column in
[HumanResources].[Employee].

-- These queries assume a FRESH restore of AdventureWorks2014
ALTER DATABASE [AdventureWorks2014] SET AUTO_CREATE_STATISTICS OFF;
GO

USE [AdventureWorks2014];
GO

CREATE INDEX [NCI_SalesOrderHeader] ON [Sales].[SalesOrderHeader] (
[PurchaseOrderNumber], [CustomerID], [TotalDue], [DueDate]
)
WHERE [SubTotal] > 10000.00;
GO

/*
No join predicate
NOTE: We clear procedure here because the event ONLY fires for the *initial* compilation
*/
DBCC FREEPROCCACHE; /* Not for production use */

SELECT [h].[SalesOrderID], [d].[SalesOrderDetailID], [h].[CustomerID]
FROM [Sales].[SalesOrderDetail] [d],
[Sales].[SalesOrderHeader] [h]
WHERE [d].[ProductID] = 897;
GO

-- Columns with no statistics
SELECT [BusinessEntityID], [NationalIDNumber], [JobTitle], [HireDate], [ModifiedDate]
FROM [HumanResources].[Employee]
WHERE [HireDate] >= '2013-01-01';
GO

-- Unmatched Index
DECLARE @Total MONEY = 10000.00;

SELECT [PurchaseOrderNumber], [CustomerID], [TotalDue], [DueDate]
FROM [Sales].[SalesOrderHeader]
WHERE [SubTotal] > @Total;
GO

-- Plan Affecting Convert
SELECT [BusinessEntityID], [NationalIDNumber], [JobTitle], [HireDate], [ModifiedDate]
FROM [HumanResources].[Employee]
WHERE [NationalIDNumber] = 345106466;
GO

ALTER EVENT SESSION [InterestingPlanEvents]
ON SERVER
STATE=STOP;
GO

DROP EVENT SESSION [InterestingPlanEvents]
ON SERVER;
GO

NOTE: AFTER you have finished pulling plans from cache, you can run the ALTER statement to enable the
auto create statistics option. Doing so at this point will clear the plan cache and you'll have to start all
over with your testing. (And also wait until you're done to drop the index.)

ALTER DATABASE [AdventureWorks2014] SET AUTO_CREATE_STATISTICS ON;
GO

DROP INDEX [NCI_SalesOrderHeader] ON [Sales].[SalesOrderHeader];
GO

Since I’ve stopped the event session, I’ll open the output file in SSMS to see what we captured:

Output from Extended Events

For our first query with a missing join predicate, we have one event that shows up, and I can see the text
for the query in the sql_text field. However, what I really want is to look at the plan too, so I can take the
plan_handle and check sys.dm_exec_query_plan:

SELECT query_plan FROM sys.dm_exec_query_plan
(0x06000700E2200333405DD12C000000000100);

And opening that in SQL Sentry Plan Explorer:

Missing Join Predicate

http://www.sqlsentry.com/products/plan-explorer/sql-server-query-view?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2015/10/1_XEOutput.jpg
http://cdn.sqlperformance.com/wp-content/uploads/2015/10/2_missingJoin.jpg

The plan has a visual indicator of the missing join predicate in the nested loop (the red X), and if I hover
over it I see the warning (and it’s in the XML for the plan). Excellent…I can now go talk to my developers
about rewriting this query.

The next event is for a missing column statistic. I completely forced this situation by turning
AUTO_CREATE_STATISTICS off for the AdventureWorks2014 database. I do not recommend this in any
way, shape, or form. This option is enabled by default and I recommend always leaving it enabled.
Turning it off is the easiest way to generate this event, however. I again have the query in the sql_text
field, but I’ll use the plan_handle again to pull the plan:

SELECT query_plan FROM sys.dm_exec_query_plan
(0x060007004448323810921C36000000000100);

Missing Statistic

And we again have a visual cue (the yellow triangle with the exclamation mark) to indicate that there’s
an issue with the plan, and again it’s in the XML. From here, I’d first check to see if
AUTO_CREATE_STATISTICS is disabled, and if not, I’d start running the query in Management Studio to
see if I can recreate the warning (and coerce the statistics to create).

Now, the remaining events are a bit more interesting.

You’ll notice that we have three unmatched_filtered_indexes events. I have yet to determine why, but
I’m working on it and will post in the comments if/when I get it sorted. For now, it’s enough that I have
the event, and within the event we can also see object information so I know the index in question:

NCI_SalesOrderHeader index referenced by missing index event

And I can again take the plan_handle to find the query plan:

Unmatched index

http://cdn.sqlperformance.com/wp-content/uploads/2015/10/2_missingstats.jpg
http://cdn.sqlperformance.com/wp-content/uploads/2015/10/2_unmatched-index.jpg
http://cdn.sqlperformance.com/wp-content/uploads/2015/10/3_unmatched-index.jpg

This time I see the warning in the SELECT operator, so I know there’s something I need to investigate
further. In this case, you do have options to get the optimizer to use the filtered index when you’re using
parameters, and I recommend going through Aaron’s post for more information on using filtered
indexes.

Lastly, we have nine events for plan_affecting_convert. What the heck? I’m still figuring out this one, but
I did use the Track Causality option for my event session (when testing) to confirm that all events are
part of the same task (they are). If you look at the expression element in the output, you see that it
changes slightly (as does compile_time), and this is surfaced when you look at the details of the warning
in SQL Sentry’s Plan Explorer (see second screen shot below). Within the event output, the expression
element does tell us what column is involved, which is a start but not nearly enough information, so
again we need to go get the plan:

SELECT query_plan FROM sys.dm_exec_query_plan
(0x0600070023747010E09E1C36000000000100);

Plan Affecting Convert

Conversion detail from the plan

http://sqlperformance.com/2013/04/t-sql-queries/filtered-indexes?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2015/10/4_planaffectingconvert.jpg
http://cdn.sqlperformance.com/wp-content/uploads/2015/10/5_planaffecting2.jpg

We again see our friend, the yellow triangle, in the SELECT operator, and within the XML we can find the
PlanAffectingConvert attribute. This attribute was added in the SQL Server 2012 showplan schema, so if
you’re running an earlier version, you won’t see this in the plan. Resolving this warning may require a bit
more work – you need to understand where you’re having a data type mismatch and why, and then
either start modifying code or the schema… both can be met with resistance. Jonathan has a post that
discusses implicit conversion in more detail, which is a good place to start if you haven't worked with
conversion issues previously.

Summary

The Extended Events library of events continues to grow, and one thing to consider when
troubleshooting in SQL Server is whether you can get the information you’re seeking in another way.
Perhaps because it’s easier (I sure prefer XE to XML!), or because it’s more efficient, or gives you more
detail. Whether you are proactively looking for query issues in your environment, or reacting to a
problem someone has reported but you’re having trouble finding it, extended events is a viable option
to consider, particularly as more new features are added to SQL Server.

http://sqlperformance.com/2013/04/t-sql-queries/implicit-conversion-costs?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2013/04/t-sql-queries/implicit-conversion-costs?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

Monitoring for Suspect Pages
By John Martin

Recently I have spoken with a number of people about the key things that they monitor when it comes
to SQL Server, with the key metrics CPU, Memory, and I/O mentioned. Some others set up alerts for
specific errors or severity of errors, however one thing that comes up very rarely is monitoring for
Suspect Pages in the dbo.suspect_pages table located in the MSDB database. It is my view that having a
mechanism in place to monitor and alert on this table is something that every DBA should be doing as
part of their standard monitoring and server health management.

DATABASE CORRUPTION

Avoiding and preventing database corruption is something that we all want, however the simple answer
is that you cannot prevent corruption. As a result, we need to look at identifying potential corruption as
early as possible, and then recover from it with as little impact as we can. The key to this is taking a
defense-in-depth approach. There are a number of key tasks that we ought to be doing to help catch
corruption, and these are:

• Ensure that user databases are using CHECKSUM page verification
• Perform DBCC CHECKDB on a regular basis as often as is feasible
• Use the CHECKSUM option when taking backups
• Monitor and alerts for 823, 824, & 825 errors
• Monitor the content of dbo.suspect_pages in MSDB

It is the last item in this list that we will be looking at in this post.

WHAT IS DBO.SUSPECT_PAGES?

dbo.suspect_pages is a table that resides in the MSDB database and is where SQL Server logs
information about corrupt database pages (limited to 1,000 rows) that it encounters, not just
when DBCC CHECKB is run but during normal querying of the database. So if you have a DML operation
that accesses a corrupt page, it will be logged here, this means that you have a chance of identifying a
corruption in your database outside of the normal DBCC CHECKDB routine.

A full explanation of dbo.suspect_pages can be found here, and even more details are available here.

MONITORING FOR CORRUPTION

When monitoring this table it is important to understand that there are a number of different status
values that will be set based on the type of corruption detected and whether it has been fixed or not. As
such a simple check for more than one record returned from the table is not going to be sufficient.

Status ID Status Description

1 823 or 824 Error that was not a bad Checksum or Torn Page

http://blogs.sqlsentry.com/johnmartin/monitoring-for-suspect-pages/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
https://msdn.microsoft.com/en-us/library/ms174425.aspx
https://msdn.microsoft.com/en-us/library/ms191301(v=sql.120).aspx

2 Bad Checksum

3 Torn Page

4 Restored

5 Repaired

7 Deallocated by DBCC

First and foremost we are interested in the first four status values, these indicate that the corruption is
present and has not yet been resolved and as such needs urgent attention. We want to identify these
pages and which database they are in, this is easy enough to do when we join out
to sys.databases and sys.master_files, as seen here:

SELECT d.name AS databaseName,

 mf.name AS logicalFileName,

 mf.physical_name AS physicalFileName,

 sp.page_id,

 case sp.event_type

 when 1 then N'823 or 824 error'

 when 2 then N'Bad Checksum'

 when 3 then N'Torn Page'

 when 4 then N'Restored'

 when 5 then N'Repaired'

 when 7 then N'Deallocated'

 end AS eventType,

 sp.error_count,

 sp.last_update_date

from msdb.dbo.suspect_pages as sp

join sys.databases as d ON sp.database_id = d.database_id

join sys.master_files as mf on sp.[file_id] = mf.[file_id]

 and d.database_id = mf.database_id;

The result of this query will give you a high level view of where you have potential corruption in your
databases, from here it is important to use tools such as DBCC CHECKDB and your backups to recover
from in line with your RPO and RTO.

Monitoring Tasks – Suspect Pages

When it comes to monitoring the dbo.suspect_pages table, we are most interested in identifying the
number of suspect pages that have been encountered and logged; when this value is greater than 0,

then we want to have some form of notification. Here we have a couple of options; if you have a
monitoring tool in place such as Performance Advisor, then writing a custom conditionto perform this
check is probably your best option. If not, then I would use a scheduled job to query the table, and then
notify from there via database mail or failing the job; it is my personal preference to have the job step to
send an e-mail if I am not using more standardized monitoring and alerting.

Monitoring Tasks – Fixed Pages

In addition to tracking the presence of suspect pages, it is also very important to track where you have
records that indicate suspect pages have been fixed in one form or another, especially so if you are using
Availability Groups or Database Mirroring in Enterprise Edition. The reason for this is that both of these
features have a capability known as Automatic Page Repair, which allows the suspect page to be
repaired by retrieving a good (not-yet-corrupted) copy of the page from the mirror/replica. As such,
monitoring for when you have fixed records is just as important, as you could have a potential
corruption issue that you would not otherwise know about.

If you have SQL Sentry software, a set of Custom Conditions can be downloaded here. There are three
conditions:

1. one to monitor current suspect pages;

2. one to watch for an increase in fixed pages; and,

3. one to alert when the table gets close to 1,000 rows.

(In a future post, I'll go into more detail about these conditions, and will post them to the Condition
Exchange.)

If you don't have SQL Sentry, a code sample for a SQL Agent job step can be found here. This code uses
Database Mail to send an e-mail with a short summary of the number of suspect and fixed pages in the
subject line and the results of the query as the e-mail body.

MANAGING DBO.SUSPECT_PAGES

As I mentioned earlier in this post, the dbo.suspect_pages table only has a capacity of 1,000 rows; as a
result, it is important to have a maintenance job in place to clear out entries that have been dealt with.
Microsoft has an article on MSDN here that gives some basic insight into this process, however the
general recommendation that is made around simply deleting rows where the event_type value is set to
4 / 5 / 7 does not really take into account the fact that Automatic Page Repair could be at work in the
background. So I would recommend that you not automate this clean-up but rather make it part of your
recovery process when dealing with suspect pages or fixed pages that have been identified as part of
your monitoring.

SUMMARY

Hopefully now you have a little bit more insight into another tool that you can use in the battle against
database corruption; this little table has the potential to give you insight into possible corruption issues
in your databases sooner rather than later if you are encountering issues during normal processing.
Unfortunately this will not highlight suspect pages that are not being regularly accessed; but, for the
minimal effort of putting some monitoring in place, it has the potential to add a lot of benefit.

http://www.sqlsentry.com/products/custom-conditions
https://msdn.microsoft.com/en-us/library/bb677167.aspx
http://blogs.sqlsentry.com/wp-content/uploads/johnmartin/media/SQLSentryCustomConditions-SuspectPages.zip
http://blogs.sqlsentry.com/aaronbertrand/condition-exchange/
http://blogs.sqlsentry.com/aaronbertrand/condition-exchange/
http://3e723i3p31pq1qxv94182h1atrq.wpengine.netdna-cdn.com/wp-content/uploads/media/SuspectPagesJobStep.zip
https://msdn.microsoft.com/en-us/library/ms191301.aspx

Nothing Is Free, Including Buffer Space
By Jason Hall

Let’s talk a bit about free space in buffer, what SQL Sentry Performance Advisor is showing you, and
what it means.

What I’m referring to is illustrated in following screenshot:

*Note: On the right side of this visualization, you can see an example of PLE being vastly different
between NUMA nodes. This type of imbalance is something to keep an eye out for when monitoring SQL
Server memory on modern systems.

On this server I’m showing 2.5GB worth of free space in the data buffer for node 0 (this server has 2
NUMA nodes).

I’ve seen some confusion over exactly what this is a few times, so I wanted to take a few minutes to
clarify it.

There’s a really great post by Paul Randal (b|t) in which he describes a performance problem involving
free space on pages in buffer. I’ve seen several people make the assumption that this is the
measurement being displayed on the SQL Server memory chart in SQL Sentry.

While SQL Sentry does provide this type of information, it is part of Fragmentation Manager. There you
can find a historical breakdown of index space usage including free and used space, both on disk and in
buffer.

To illustrate the difference, here are two charts from Fragmentation Manager:

This is buffer space at the server level including wasted space (Empty) and used space:

http://blogs.sqlsentry.com/jasonhall/nothing-is-free-including-buffer-space/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlsentry.com/products/performance-advisor/sql-server-performance?ad=blogs-emp-jh-pa
http://www.sqlskills.com/blogs/paul/performance-issues-from-wasted-buffer-pool-memory/
http://www.sqlskills.com/blogs/paul/
https://twitter.com/paulrandal
http://sqlsentry.com/products/fragmentation-manager/sql-server-index-analysis-and-defrag?ad=blogs-emp-jh-fm
http://sqlsentry.com/products/fragmentation-manager/sql-server-index-analysis-and-defrag?ad=blogs-emp-jh-fm
http://3e723i3p31pq1qxv94182h1atrq.wpengine.netdna-cdn.com/wp-content/uploads/media/image40.png

This is a specific index on the server that demonstrates some wasted space (Empty) in buffer:

*Note: The above visualizations are from a different time range than the dashboard visualization, but
from the same server. This illustrates how these values can change over time based on usage and/or
maintenance patterns for thee database.

As Paul mentions in his post, a query to get this information server-wide won’t always perform so well.
Since SQL Sentry provides near real-time performance measurements, the overhead placed on the
server by running that query often would not be in-line with our goal of keeping observer overhead to a
minimum.

http://3e723i3p31pq1qxv94182h1atrq.wpengine.netdna-cdn.com/wp-content/uploads/media/image41.png
http://3e723i3p31pq1qxv94182h1atrq.wpengine.netdna-cdn.com/wp-content/uploads/media/image42.png

The value in the memory chart is actually from a performance counter; which counter depends on which
SQL Server version is being monitored. In 2005, 2008, and 2008 R2, it is SQL Server: Buffer Node – Free
Pages multiplied by the 8kb page size and converted to MB. In 2012 and up, it is SQL Server: Memory
Node – Free Node Memory (KB) converted to MB.

These counters are a measurement of buffer pages that are not in use. They indicate buffer space that
SQL Server can use for other things. They do not indicate "wasted" space in your buffer. High values for
this measurement are not necessarily a problem at all. It just means that you’ve used that space in the
buffer at some point, but it is not currently in use. In fact, if this measurement were to be considered
part of a performance problem, it would likely be smaller rather than larger.

If you consistently have a very large amount of free space here, and you’re in a virtualized environment,
you may be able to reclaim some resources. But keep in mind: the space was used at some point, and
could easily be needed again.

I should note that this measurement by itself is not all that useful at all. It becomes far more interesting
when displayed along with other metrics like PLE, lazy write activity, and I/O Latency, which is why it
isn’t on the dashboard all alone.

So the next time you see this on your SQL Server Memory dashboard chart, remember that it’s not so
much wasted space on pages that you’re seeing, but free space measured in complete pages.

Wait Statistics
Knee-Jerk Wait Statistics : CXPACKET
By Paul Randal

In several of my posts over the last year I’ve used the theme of people seeing a particular wait type and
then reacting in a “knee-jerk” fashion to the wait being there. Typically this means following some poor
Internet advice and taking a drastic, inappropriate action or jumping to a conclusion about what the root
cause of the issue is and then wasting time and effort on a wild-goose chase.

One of the wait types where knee-jerk reactions are strongest, and where some of the poorest advice
exists, is the CXPACKET wait. It’s also the wait type that is most commonly the top wait on people’s
servers (according to my two big wait types surveys from 2010 and 2014 – see here for details), so I’m
going to cover it in this post.

What does the CXPACKET wait type mean?

The simplest explanation is that CXPACKET means you’ve got queries running in parallel and you will
always see CXPACKET waits for a parallel query. CXPACKET waits do NOT mean you have problematic
parallelism – you need to dig deeper to determine that.

As an example of a parallel operator, consider the Repartition Streams operator, which has the following
icon in graphical query plans:

And here’s a picture that shows what’s going on in terms of parallel threads for this operator, with
degree-of-parallelism (DOP) equal to 4:

http://sqlperformance.com/2015/06/sql-performance/knee-jerk-wait-statistics-cxpacket?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/06/sql-performance/knee-jerk-wait-statistics-cxpacket?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://www.sqlskills.com/blogs/paul/common-wait-stats-24-hours/
http://cdn.sqlperformance.com/wp-content/uploads/2015/06/image11.png

For DOP = 4, there will be four producer threads, pulling data from earlier in the query plan, the data
then goes back out to the rest of the query plan through four consumer threads.

You can see the various threads in a parallel operator that are waiting for a resource using
the sys.dm_os_waiting_tasks DMV, in the exec_context_id column (this post has my script for doing
this).

There is always a control thread for any parallel operator, which by historical accident is always thread
ID 0. The control thread always registers a CXPACKET wait, with the duration equal to the length of time
the operator takes to execute each time it is run by the plan.

The only time non-control threads will register CXPACKET waits is if they complete before the other
threads in the operator. This can happen if one of the threads gets stuck waiting for a resource for a long
time, so look to see what the wait type is of the thread not showing CXPACKET (using my script above)
and troubleshoot appropriately. This can also happen because of a skewed work distribution among the
threads, and I’ll go into more depth on that case in my next post here (it’s caused by out-of-date
statistics and other cardinality estimation problems).

Unexpected parallelism?

Given that CXPACKET simply means you’ve got parallelism happening, the first thing to look at is
whether you expect parallelism for the query that’s using it. My query will give you the query plan node
ID where the parallelism is happening (it pulls out the node ID from the XML query plan if the wait type
of the thread is CXPACKET) so look for that node ID and determine whether the parallelism makes sense.

One of the common cases of unexpected parallelism is when a table scan happens where you’re
expecting a smaller index seek or scan. You’ll either see this in the query plan or you’ll see lots of
PAGEIOLATCH_SH waits (discussed in detail here) along with the CXPACKET waits (a classic wait statistics
pattern to look out for). There are a variety of causes of unexpected table scans, including:

• Missing nonclustered index so a table scan is the only alternative

• Out-of-date statistics so the Query Optimizer thinks a table scan is the best data access method
to use

• An implicit conversion, because of a data type mismatch between a table column and a variable
or parameter, which means a nonclustered index cannot be used

• Arithmetic being performed on a table column instead of a variable or parameter, which means
a nonclustered index cannot be used

In all these cases, the solution is dictated by what you find the root cause to be.

But what if there’s no obvious root case and the query is just deemed expensive enough to warrant a
parallel plan?

Preventing parallelism

Among other things, the Query Optimizer decides to produce a parallel query plan if the serial plan has a
higher cost than the cost threshold for parallelism, an sp_configure setting for the instance. The cost

http://www.sqlskills.com/blogs/paul/updated-sys-dm_os_waiting_tasks-script/
http://sqlperformance.com/2014/06/io-subsystem/knee-jerk-waits-pageiolatch-sh?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

threshold for parallelism (or CTFP) is set to five by default, which means that a plan doesn’t have to be
very expensive to trigger the creation of a parallel plan.

One of the easiest ways to prevent unwanted parallelism is to increase the CTFP to a much higher
number, with the higher you set it, the less likely parallel plans will be created. Some people advocate
setting CTFP to somewhere between 25 and 50, but as with all tweakable settings, it’s best to test
various values and see what works best for your environment. If you’d like a bit more of a programmatic
method to help picking a good CTFP value, Jonathan wrote a blog post showing a query to analyze the
plan cache and produce a suggested value for CTFP. As examples, we have one client with CTFP set to
200, and another set to the maximum – 32767 – as a way of forcibly preventing any parallelism
whatsoever.

You might wonder why the second client had to use CTFP as a sledgehammer method for preventing
parallelism when you’d think they could simply set the server ‘max degree of parallelism’ (or MAXDOP)
to 1. Well, anyone with any permission level can specify a query MAXDOP hint and override the server
MAXDOP setting, but CTFP cannot be overridden.

And that’s another method of limiting parallelism – setting a MAXDOP hint on the query you don’t want
to go parallel.

You could also lower the server MAXDOP setting, but that’s a drastic solution as it can prevent
everything from using parallelism. It’s common nowadays for servers to have mixed workloads, for
instance with some OLTP queries and some reporting queries. If you lower the server MAXDOP, you’re
going to hobble the performance of the reporting queries.

A better solution when there’s a mixed workload would be to use CTFP as I described above or to utilize
Resource Governor (which is Enterprise-only I’m afraid). You can use Resource Governor to separate the
workloads into workload groups, and then set a MAX_DOP (the underscore isn’t a typo) for each
workload group. And the good thing about using Resource Governor is that the MAX_DOP cannot be
overridden by a MAXDOP query hint.

Summary

Don't fall into the trap of thinking that CXPACKET waits automatically mean you’ve got bad parallelism
happening, and certainly don’t follow some of the Internet advice I’ve seen of slamming the server by
setting MAXDOP to 1. Take the time to investigate why you’re seeing CXPACKET waits and whether it’s
something to be addressed or just an artifact of a workload that’s running correctly.

As far as general wait statistics are concerned, you can find more information about using them for
performance troubleshooting in:

• My SQLskills blog post series, starting with Wait statistics, or please tell me where it hurts

• My Pluralsight online training course SQL Server: Performance Troubleshooting Using Wait
Statistics

• SQL Sentry Performance Advisor

https://www.sqlskills.com/blogs/jonathan/tuning-cost-threshold-for-parallelism-from-the-plan-cache/
http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/
http://www.pluralsight.com/training/Courses/TableOfContents/sqlserver-waits
http://www.pluralsight.com/training/Courses/TableOfContents/sqlserver-waits
http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?ad=sqlperf-sk-pa&utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

More on CXPACKET Waits: Skewed Parallelism
By Paul Randal

In my previous post, I discussed CXPACKET waits and ways to prevent or limit parallelism. I also
explained how the control thread in a parallel operation always registers a CXPACKET wait, and that
sometimes non-control threads may also register CXPACKET waits. This can happen if one of the threads
is blocked waiting for a resource (so all the other threads finish before it and register CXPACKET waits
also), or if cardinality estimates are incorrect. In this post I’d like to explore the latter.

When cardinality estimates are incorrect, the parallel threads doing the query work are given uneven
amounts of work to do. The typical case is where one thread is given all the work, or way more work
than the other threads. This means that those threads that finish processing their rows (if they were
even given any) before the slowest thread register a CXPACKET from the moment they finish until the
slowest thread finishes. This problem can lead to a seeming explosion in CXPACKET waits occurring and
is commonly called skewed parallelism, because the distribution of work between the parallel threads is
skewed, not even.

Example of Skewed Parallelism

I’ll walk through a contrived example to show how to identify such cases.

First off, I’ll create a scenario where a table has wildly inaccurate statistics, by manually setting the
number of rows and pages in an UPDATE STATISTICS statement (don’t do this in production!):

USE [master];
GO

IF DB_ID (N'ExecutionMemory') IS NOT NULL
BEGIN
 ALTER DATABASE [ExecutionMemory] SET SINGLE_USER WITH ROLLBACK IMMEDIATE;
 DROP DATABASE [ExecutionMemory];
END
GO

CREATE DATABASE [ExecutionMemory];
GO
USE [ExecutionMemory];
GO

CREATE TABLE dbo.[Test] (
 [RowID] INT IDENTITY,
 [ParentID] INT,
 [CurrentValue] NVARCHAR (100),
 CONSTRAINT [PK_Test] PRIMARY KEY CLUSTERED ([RowID]));
GO

INSERT INTO dbo.[Test] ([ParentID], [CurrentValue])
SELECT
 CASE WHEN ([t1].[number] % 3 = 0)
 THEN [t1].[number] – [t1].[number] % 6

http://sqlperformance.com/2015/08/sql-performance/more-on-cxpacket-waits-skewed-parallelism?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/08/sql-performance/more-on-cxpacket-waits-skewed-parallelism?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/06/sql-performance/knee-jerk-wait-statistics-cxpacket?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

 ELSE [t1].[number] END,
 'Test' + CAST ([t1].[number] % 2 AS VARCHAR(11))
FROM [master].[dbo].[spt_values] AS [t1]
WHERE [t1].[type] = 'P';
GO

UPDATE STATISTICS dbo.[Test] ([PK_Test]) WITH ROWCOUNT = 10000000, PAGECOUNT = 1000000;
GO

So my table only has a few thousand rows in it, but I’ve faked it having 10 million rows.

Now I’ll create a contrived query to select the top 500 rows, which will go parallel as it thinks there are
millions of rows to scan.

USE [ExecutionMemory];
GO

SET NOCOUNT ON;
GO

DECLARE @CurrentValue NVARCHAR (100);

WHILE (1=1)
SELECT TOP (500)
 @CurrentValue = [CurrentValue]
FROM dbo.[Test]
ORDER BY NEWID() DESC;
GO

And set that running.

Viewing the CXPACKET Waits

Now I can look at the CXPACKET waits that are occurring using a simple script to look at
the sys.dm_os_waiting_tasks DMV:

SELECT
 [owt].[session_id],
 [owt].[exec_context_id],
 [owt].[wait_duration_ms],
 [owt].[wait_type],
 [owt].[blocking_session_id],
 [owt].[resource_description],
 [er].[database_id],
 [eqp].[query_plan]
FROM sys.dm_os_waiting_tasks [owt]
INNER JOIN sys.dm_exec_sessions [es] ON
 [owt].[session_id] = [es].[session_id]

INNER JOIN sys.dm_exec_requests [er] ON
 [es].[session_id] = [er].[session_id]
OUTER APPLY sys.dm_exec_sql_text ([er].[sql_handle]) [est]
OUTER APPLY sys.dm_exec_query_plan ([er].[plan_handle]) [eqp]
WHERE
 [es].[is_user_process] = 1
ORDER BY
 [owt].[session_id],
 [owt].[exec_context_id];

If I execute this a few times, eventually I see some results showing skewed parallelism (I stripped off the
query plan handle link and curtailed the resource description, for clarity, and notice I put in the code to
grab the SQL text if you want that too):

Results showing skewed parallelism in action

The control thread is the one with exec_context_id set to 0. The other parallel threads are those
with exec_context_id higher than 0, and they’re all showing CXPACKET waits apart from one (note
thatexec_context_id = 2 is missing from the list). You’ll notice that they all list their own session_id as
the one that’s blocking them, and that’s correct because all the threads are waiting for another thread
from their own session_id to complete. The database_id is the database in whose context the query is
being executed, not necessarily the database where the problem is, but it usually is unless the query is
using three-part naming to execute in a different database.

Viewing the Cardinality Estimation Problem

With the query_plan column in the query output (which I removed for clarity), you can click on it to
bring up the graphical plan and then right-click and select View with SQL Sentry Plan Explorer. This
shows as below:

http://www.sqlsentry.com/products/plan-explorer/sql-server-query-view?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

I can immediately see that there’s a cardinality estimate issue, as the Actual Rows for the Clustered
Index Scan is only 2,048, compared to 10,000,000 Est (Estimated) Rows.

If I scroll across, I can see the distribution of rows across the parallel threads that were used:

Lo and behold, only a single thread was doing any work during the parallel portion of the plan – the one
that didn’t show up in the sys.dm_os_waiting_tasks output above.
In this case, the fix is to update the statistics for the table.

In my contrived example that won’t work, as there haven’t been any modifications to the table, so I’ll re-
run the set up script, leaving out the UPDATE STATISTICS statement.
The query plan then becomes:

http://cdn.sqlperformance.com/wp-content/uploads/2015/08/Untitled1.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/08/Untitled2.jpg

Where there’s no cardinality problem and no parallelism either – problem solved!

Summary

If you see CXPACKET waits occurring, it’s easy to check for skewed parallelism, using the method
described above. All the cases I’ve seen have been due to cardinality estimation issues of one kind or
another, and often it’s simply a case of updating statistics.

As far as general wait statistics are concerned, you can find more information about using them for
performance troubleshooting in:

• My SQLskills blog post series, starting with Wait statistics, or please tell me where it hurts
• My Pluralsight online training course SQL Server: Performance Troubleshooting Using Wait

Statistics
• SQL Sentry Performance Advisor

http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/
http://www.pluralsight.com/training/Courses/TableOfContents/sqlserver-waits
http://www.pluralsight.com/training/Courses/TableOfContents/sqlserver-waits
http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?ad=sqlperf-sk-pa&utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2015/08/Untitled3.jpg

Knee-Jerk Wait Statistics : PAGELATCH
By Paul Randal

Over the last 18 months I’ve been focusing on knee-jerk reactions to wait statistics analysis and other
performance-tuning related topics, and in this post I’m going to continue that and discuss
thePAGELATCH_XX waits. The XX at the end of the wait means that there are multiple types
of PAGELATCH wait, and the most common examples are:

• PAGELATCH_SH – (SHare) waiting for access to a data file page in memory so that the page
contents can be read

• PAGELATCH_EX or PAGELATCH_UP – (EXclusive or UPdate) waiting for access to a data file page
in memory so that the page contents can be modified

When one of these wait types is the most prevalent on a server, the knee-jerk reaction is that the
problem is something to do with I/O (i.e. confusion with the PAGEIOLATCH_XX wait type, which Icovered
in a post back in 2014) and someone tries adding more memory or tweaking the I/O subsystem. Neither
of these reactions will have any effect at all, as the data file pages under contention are already in
memory in the buffer pool!

In all cases, you can see whether you have a problem with PAGELATCH_XX contention using
the sys.dm_os_waiting_tasks script on my blog or using a tool like Performance Advisor, as
demonstrated (for a different wait type) in this post.

So what’s the source of the contention? First I’ll explain the background behind these wait types, and
then I’ll discuss the two most common causes of PAGELATCH_XX contention.

Background: Latches

Before I go into some of the causes of PAGELATCH_XX waits, I want to explain why they even exist.

In any multi-threaded system, data structures that can be accessed and manipulated by multiple threads
need to be protected to prevent scenarios such as:

• Two threads updating a data structure concurrently, and some of the updates are lost

• A thread updating a data structure concurrently with another thread reading the data structure,
so the reading thread sees a mixture of old and new data

This is basic computer science, and SQL Server is no different, so all data structures inside SQL Server
need to have multi-threaded access control.

One of the mechanisms that SQL Server uses to do this is called a latch, where holding the latch in
exclusive mode prevents other threads from accessing the data structure, and holding the latch in share
mode prevents other threads from changing the data structure. SQL Server also uses spinlocks for some
data structures and I discussed these in this post back in 2014.

But why is a data file page in memory protected by a latch, you might wonder? Well, a data file page is
just a data structure, albeit a special purpose one, and so needs the same access controls as any other
data structure. So when one thread needs to modify a data file page it needs to acquire an exclusive or

http://sqlperformance.com/2015/10/sql-performance/knee-jerk-wait-statistics-pagelatch?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/10/sql-performance/knee-jerk-wait-statistics-pagelatch?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2014/06/io-subsystem/knee-jerk-waits-pageiolatch-sh?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2014/06/io-subsystem/knee-jerk-waits-pageiolatch-sh?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://www.sqlskills.com/blogs/paul/updated-sys-dm_os_waiting_tasks-script/
http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?ad=sqlperf-sk-pa&utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2014/06/io-subsystem/knee-jerk-waits-pageiolatch-sh?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2014/02/sql-performance/knee-jerk-waits-sos-scheduler-yield?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

update latch on the page, and if it can’t and needs to wait, the wait
type PAGELATCH_EXor PAGELATCH_UP results.

Classic tempdb Contention

PAGELATCH contention in tempdb is typically on allocation bitmaps and occurs with workloads with
many concurrent connections creating and dropping small temporary tables (which are stored in
tempdb).

When the first row is inserted into a temporary table, two pages must be allocated (a data page and an
IAM page, which tracks the data page). These pages need to be marked as allocated in a special
allocation page called a PFS page, and by default are allocated from special data extents that are tracked
by another allocation page called an SGAM page (details of these can be found in my old blog post here).
When the temporary table is dropped, these pages need to be deallocated again, necessitating more
changes to the PFS and SGAM pages.

If the temporary tables are small, and the cumulative size of all concurrently created temporary tables is
less than 64MB, then all these allocation bitmap changes are centered on the very first PFS and SGAM
pages in the tempdb data file (with page ID (1:1) and (1:3) respectively). Updating one of these
allocation pages requires latching the page, and only one thread at a time can be changing the page, so
all other threads have to wait – with wait type PAGELATCH_UP.

From SQL Server 2005 onwards, temporary tables can be cached when dropped, as long as they’re less
than 8MB in size (and in SQL Server 2014 aren’t created in a stored procedure that also has DDL
statements on the temporary table). This means that the next thread that executes the same query plan
can take the temporary table out of the cache and not have to deal with the initial allocations. This cuts
down on contention on the allocation bitmaps, but the temporary table cache isn’t very big, so
workloads with hundreds of concurrent temporary table creates/drops will still see lots of contention.

It’s trivial to prevent the contention on the SGAM pages in tempdb by enabling documented trace flag
1118 on the server, which I say should be enabled on all servers across the world, and is actually the
unchangeable default behavior in SQL Server 2016.

Preventing contention on the PFS pages in tempdb is a bit more difficult. Assuming that the temporary
tables are needed for performance, the trick is to have multiple data files for tempdb so that the
allocations are done round-robin among the files, the contention is split over multiple PFS pages, and so
the overall contention goes down. There is no right answer for how many data files you should have
unfortunately. You can read more about the generally accepted guidance on this in KB article
2154845 and in this blog post.

Insert Hotspot

In user databases, a common cause of high number of PAGELATCH_EX waits is an insert hotspot.

This can occur when a table has a clustered index with an int or bigint cluster key, and a row size that’s
small enough so that many tens or more table rows can fit on a data page at the leaf level of the
clustered index.

http://www.sqlskills.com/blogs/paul/inside-the-storage-engine-gam-sgam-pfs-and-other-allocation-maps/
https://support.microsoft.com/en-us/kb/2154845
https://support.microsoft.com/en-us/kb/2154845
http://www.sqlskills.com/blogs/paul/the-accidental-dba-day-27-of-30-troubleshooting-tempdb-contention/

For such a table, if the workload involves many tens or hundreds of concurrent threads inserting into the
table, many of the threads will generate rows with identity values (and hence cluster keys) that need to
be inserted onto the same leaf-level data page.

Now remember that making any change to a data file page in memory requires an exclusive latch, so
each of the threads trying to insert onto the same page must acquire the page’s latch exclusively. While
each thread is holding the exclusive latch, the other threads will be waiting for PAGELATCH_EX for that
page, essentially making the concurrent inserts into a hugely-bottlenecked synchronous process.

There are a few possible fixes for this problem:

• Use a more random key, and recognize that this will lead to index fragmentation so also make
use of an index fill factor to help prevent page splits

• Spread the inserts out in the table using some kind of artificial partitioning mechanism

• Use a longer table row size (this is obviously the least palatable option)

I’ve seen an insert hotspot like this crop up when someone’s tried to remove index fragmentation
problems by changing a random GUID cluster key to an int or bigint identity cluster key, but fail to test
the new table schema under production loads.

Summary

Just as with other wait types, understanding exactly what PAGELATCH_XX waits mean is key to
understanding how to troubleshoot them.

As far as general wait statistics are concerned, you can find more information about using them for
performance troubleshooting in:

• My SQLskills blog post series, starting with Wait statistics, or please tell me where it hurts

• My Pluralsight online training course SQL Server: Performance Troubleshooting Using Wait
Statistics

• SQL Sentry Performance Advisor

http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/
http://www.pluralsight.com/training/Courses/TableOfContents/sqlserver-waits
http://www.pluralsight.com/training/Courses/TableOfContents/sqlserver-waits
http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?ad=sqlperf-sk-pa&utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

System Configuration
Analyzing I/O Performance for SQL Server
By Glenn Berry

One of the most common performance bottlenecks that I see as a consultant is inadequate storage
subsystem performance. There are a number of reasons for poor storage performance, but measuring it
and understanding what needs to be measured and monitored is always a useful exercise.

There are actually three main metrics that are most important when it comes to measuring I/O
subsystem performance:

Latency

The first metric is latency, which is simply the time that it takes an I/O to complete. This is often called
response time or service time. The measurement starts when the operating system sends a request to
the drive (or the disk controller) and ends when the drive finishes processing the request. Reads are
complete when the operating system receives the data, while writes are complete when the drive
informs the operating system that it has received the data.

For writes, the data may still be in a DRAM cache on the drive or disk controller, depending on your
caching policy and hardware. Write-back caching is much faster than write-through caching, but it
requires a battery backup for the disk controller. For SQL Server usage, you want to make sure you are
using write-back caching rather than write-through caching if at all possible. You also want to make sure
your hardware disk cache is actually enabled, since some vendor disk management tools disable it by
default.

Input/Output Operations per Second (IOPS)

The second metric is Input/Output Operations per Second (IOPS). This metric is directly related to
latency. For example, a constant latency of 1ms means that a drive can process 1,000 IOs per second
with a queue depth of 1. As more IOs are added to the queue, latency will increase. One of the key
advantages of flash storage is that it can read/write to multiple NAND channels in parallel, along with
the fact that there are no electro-mechanical moving parts to slow disk access down. IOPS actually
equals queue depth divided by the latency, and IOPS by itself does not consider the transfer size for an
individual disk transfer. You can translate IOPS to MB/sec and MB/sec to latency as long as you know
the queue depth and transfer size.

Sequential Throughput

Sequential throughput is the rate that you can transfer data, typically measured in megabytes per
second (MB/sec) or gigabytes per second (GB/sec). Your sequential throughput metric in MB/sec equals
the IOPS times the transfer size. For example, 556 MB/sec equals 135,759 IOPS times a 4096 bytes
transfer size, while 135,759 IOPS times a 8192 bytes transfer size would be 1112 MB/sec of sequential
throughput. Despite its everyday importance to SQL Server, sequential disk throughput often gets short-
changed in enterprise storage, both by storage vendors and by storage administrators. It is also actually
fairly common to see the actual magnetic disks in a direct attached storage (DAS) enclosure or a storage
area network (SAN) device be so busy that they cannot deliver their full rated sequential throughput.

http://sqlperformance.com/2015/05/io-subsystem/analyzing-io-performance-for-sql-server
http://sqlperformance.com/2015/05/io-subsystem/analyzing-io-performance-for-sql-server

Sequential throughput is critical for many common database server activities, including full database
backups and restores, index creation and rebuilds, and large data warehouse-type sequential read scans
(when your data does not fit into the SQL Server buffer pool). One performance goal I like to shoot for
on new database server builds is to have at least 1GB/sec of sequential throughput for every single drive
letter or mount point. Having this level of performance (or better) makes your life so much easier as a
database professional. It makes so many of your common database chores so much faster, and it also
gives you the freedom to do more frequent index tuning when you can create an index on a large table
in seconds or minutes instead of hours.

SQL Server I/O Workload Metrics

When it comes to SQL Server and I/O performance, there are a number of things that you should
measure and monitor over time. You should know the read vs. write ratio for your workload for all of
your user database files and for tempdb. The ratios will be different for different SQL Server file types
and workloads. You can use my DMV Diagnostic Queries to determine this, and you can also use the Disk
Activity View in SQL Sentry Performance Advisor to easily get a more complete view of your disk activity,
from a high-level, overall picture, all the way down to individual files:

SQL Sentry Performance Advisor : Disk Activity

You should also measure the typical I/O rates for IOPS and sequential throughput. In Windows
Performance Monitor (PerfMon), reads/sec and writes/sec show IOPS, while disk read bytes/sec and
disk write bytes/sec represent sequential throughput. You should use PerfMon to measure average disk
sec/read and average disk sec/write, which is read and write latency at the disk level. Finally, you can
use my DMV Diagnostic Queries to measure the average file-level read and write latency for all of your
user database files as well as for tempdb.

Methods for Measuring I/O Performance

http://www.sqlskills.com/blogs/glenn/category/dmv-queries/
http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?ad=sqlperf-sk-pa%20-%20global-server-status-view&utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?ad=sqlperf-sk-pa%20-%20global-server-status-view&utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?ad=sqlperf-sk-pa#global-server-status-view

You can use the Disk section in Windows Resource Monitor to get a quick, real-time view of some key
disk metrics for all of your SQL Server database files. Going deeper, you can use PerfMon to measure
and monitor the critical performance counters that I have previously mentioned. Before you go into
production with a new database server, you should do some disk benchmark testing to determine what
kind of performance your I/O subsystem can actually deliver. This is actually not that difficult or time
consuming (if you use the right tools), but it often gets forgotten when a new database server is
provisioned and tested.

The first disk benchmark you should always run is CrystalDiskMark 4.0, which has recently been
rewritten to use the relatively new Microsoft DiskSpd disk benchmark program. The CDM 4.0 user-
interface lets you choose a wider range of test-file sizes and it also lets you choose the queue depth and
number of threads for the test runs. This lets you get a more server-like I/O workload and it also lets you
more properly stress newer NVMe flash-storage devices that can handle queue depths higher than 32.

CrystalDiskMark 4.03 Results with QD = 32 and threads = 1

http://crystalmark.info/software/CrystalDiskMark/index-e.html
http://crystalmark.info/software/CrystalDiskMark/manual-en/History.html
http://crystalmark.info/software/CrystalDiskMark/manual-en/History.html
https://github.com/microsoft/diskspd
http://www.nvmexpress.org/
http://cdn.sqlperformance.com/wp-content/uploads/2015/05/image.png

Figure 2: CrystalDiskMark 4.03 Results with QD = 32 and threads = 4

Unlike previous versions of CDM, the two most relevant rows for SQL Server usage are in the middle of
the results display. They are the 4K random reads and writes with a high queue depth (32 by default),
and the sequential reads and writes. After you do some storage benchmark tests with CrystalDiskMark
4.0, you should do some more exhaustive testing with Microsoft DiskSpd. In a future article, I will cover
how to use DiskSpd to do more complete testing for SQL Server.

https://gallery.technet.microsoft.com/DiskSpd-a-robust-storage-6cd2f223
http://cdn.sqlperformance.com/wp-content/uploads/2015/05/image1.png

Using Microsoft DiskSpd to Test Your Storage Subsystem
By Glenn Berry

Previously, I covered the basics of storage subsystem metrics and testing in my article Analyzing I/O
Subsystem Performance for SQL Server, including an introduction of CrystalDiskMark 4.0.
CrystalDiskMark was recently rewritten to use Microsoft DiskSpd for its testing, which makes it an even
more valuable tool for your initial storage subsystem testing efforts. DiskSpd provides the functionality
needed to generate a wide variety of disk request patterns, which can be very helpful in diagnosis and
analysis of I/O performance issues with a lot more flexibility than older benchmark tools like SQLIO. It is
extremely useful for synthetic storage subsystem testing when you want a greater level of control than
that available in CrystalDiskMark.

Now, we are going to dive a little deeper into how to actually use Microsoft DiskSpd to test your storage
subsystem without using CrystalDiskMark 4.0. In order to do this, you’ll need to download and unzip
DiskSpd. To make things easier, I always copy the desired diskspd.exe executable file from the
appropriate executable folder (amd64fre, armfre or x86fre) to a short, simple path likeC:\DiskSpd. In
most cases you will want the 64-bit version of DiskSpd from the amd64fre folder.

Once you have the diskspd.exe executable file available, you will need to open a command prompt with
administrative rights (by choosing “Run as Administrator”), and then navigate to the directory where
you copied the diskspd.exe file.

Here are some of the command line parameters that you will want to start out with:

Parameter Description

-b Block size of the I/O, specified as (K/M/G). For example –b8K means an 8KB block size, which
is relevant for SQL Server

-d Test duration in seconds. Tests of 30-60 seconds are usually long enough to get valid results

-o Outstanding I/Os (meaning queue depth) per target, per worker thread

-t Worker threads per test file target

-h Disable software caching at the operating system level and hardware write caching, which is
a good idea for testing SQL Server

-r Random or sequential flag. If –r is used random tests are done, otherwise sequential tests
are done

-w Write percentage. For example, –w25 means 25% writes, 75% reads

-Z Workload test write source buffer size, specified as (K/M/G). Used to supply random data for
writes, which is a good idea for SQL Server testing

-L Capture latency information during the test, which is a very good idea for testing SQL Server

-c Creates workload file(s) of the specified size, specified as (K/M/G)

Table 1: Basic command line parameters for DiskSpd

http://sqlperformance.com/2015/08/io-subsystem/diskspd-test-storage?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/08/io-subsystem/diskspd-test-storage?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/05/io-subsystem/analyzing-io-performance-for-sql-server?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/05/io-subsystem/analyzing-io-performance-for-sql-server?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://crystalmark.info/software/CrystalDiskMark/index-e.html
https://gallery.technet.microsoft.com/DiskSpd-a-robust-storage-6cd2f223
https://gallery.technet.microsoft.com/DiskSpd-a-robust-storage-6cd2f223

You will also want to specify the test file location and the file name for the results at the end of the line.
Here is an example command line:

diskspd –b8K –d30 –o4 –t8 –h –r –w25 –L –Z1G –c20G T:\iotest.dat > DiskSpeedResults.txt

This example command line will run a 30 second random I/O test using a 20GB test file located on the T:
drive, with a 25% write and 75% read ratio, with an 8K block size. It will use eight worker threads, each
with four outstanding I/Os and a write entropy value seed of 1GB. It will save the results of the test to a
text file called DiskSpeedResults.txt. This is a pretty good set of parameters for a SQL Server OLTP
workload.

Figure 1: Example command line for DiskSpd

Running the test starts with a default five second warm up time (before any measurements actually
start), and then the actual test will run for the specified duration in seconds with a default cool down
time of zero seconds. When the test finishes, DiskSpd will provide a description of the test and the
detailed results. By default this will be a simple text summary in a text file using the file name that you
specified, which will be in the same directory as the diskspd executable.

Here are what the results look like for this particular test run on my workstation.

http://cdn.sqlperformance.com/wp-content/uploads/2015/07/image7.png

Figure 2: Example DiskSpd test results

The first section of the results gives you the exact command line that was used for the test, then
specifies all of the input parameters that were used for the test run (which include the default values
that may not have been specified in the actual command line). Next, the test results are shown starting

http://cdn.sqlperformance.com/wp-content/uploads/2015/07/image8.png

with the actual test time, thread count, and logical processor count. The CPU section shows the CPU
utilization for each logical processor, including user and kernel time, for the test interval.

The more interesting part of the test results comes next. You get the total bytes, total I/Os, MB/second,
I/O per second (IOPS), and your average latency in milliseconds. These results are broken out for each
thread (four in our case), with separate sections in the results for Total IO, Read IO, and Write IO. The
results for each thread should be very similar in most cases. Rather than initially focusing on the
absolute values for each measurement, I like to compare the values when I run the same test on
different logical drives, (after changing the location of the test file in the command line), which lets you
compare the performance for each logical drive.

The last section of the test results is even more interesting. It shows a percentile analysis of the
distribution of the latency test results starting from the minimum value in milliseconds going up to the
maximum value in milliseconds, broken out for reads, writes, and total latency. The “nines” in the %-ile
column refer to the number of nines, where 3-nines means 99.9, 4-nines means 99.99, etc. The reason
why the values for the higher percentile rows are the same is because this test had a relatively low
number of total operations. If you want to accurately characterize the higher percentiles, you will have
to run a longer duration test that generates a higher number of separate I/O operations.

What you want to look for in these results is the point where the values make a large jump. For
example, in this test we can see that 99% of the reads had a latency of 1.832 milliseconds or less.

Figure 3: Latency results distribution

As you can see, running DiskSpd is actually pretty simple once you understand what the basic
parameters mean and how they are used. Not only can you run DiskSpd from an old-fashioned
command line, you can also run it using PowerShell. DiskSpd also gives you a lot more detailed
information than you get from SQLIO. The more complicated part of using DiskSpd is analyzing and
interpreting the results, which is something I will cover in a future article.

http://cdn.sqlperformance.com/wp-content/uploads/2015/07/image9.png

Introduction to Storage Spaces Direct for SQL Server
By Glenn Berry

Windows Server 2012 introduced a new feature called Scale-Out File Server (SOFS). Historically, SOFS
has mainly been used as a shared storage tier (as an alternative to a shared SAN) for Hyper-V
virtualization hosts, but this feature is also useful for SQL Server 2012 and newer, which can store both
system and user database files on SMB 3.0 file shares for both stand-alone and clustered instances of
SQL Server. SOFS is made up of a set of clustered file servers that make up a transparent failover file
server cluster. The database server connects to the SOFS using SMB 3.0 networking (which requires
Windows Server 2012 or newer on both the file servers and the database servers). You also need one or
more JBOD enclosures that each SOFS cluster node is connected to using SAS cables. Network adapters
with Remote Direct Memory Access (RDMA) capability using SMB Direct are required on both sides of
the connection. RDMA network adapters are available in three different types: Internet Wide Area
RDMA Protocol (iWARP), Infiniband, or RDMA over Converged Ethernet (RoCE).

Storage Spaces is used to aggregate the SAS disks of the JBOD enclosure(s). Virtual disks are created
from the aggregated SAS disks, providing resiliency against disk or enclosure failure, as well as enabling
SSD/HDD tiered storage and write-back caching. In Windows Server 2012 and 2012 R2, an HA storage
system using Storage Spaces requires all of the disks to be physically connected to all of the storage
nodes. To allow for the disks to be physically connected to all storage nodes, they need to be SAS disks
and they need to be installed in an external JBOD chassis with each storage node having physical
connectivity to the external JBOD chassis.

An example of this type of deployment is shown in Figure 1:

Figure 1: Windows Server 2012 and 2012 R2 Shared JBOD Scale-Out File Server

The two main weaknesses of SOFS is the cost and complexity of the SAS storage tier, and the fact that
only SAS HDDs and SSDs are supported (meaning no lower cost SATA HDDs or SSDs). You also cannot use
local internal drives or PCIe storage cards in the individual file server nodes with SOFS in Windows
Server 2012 R2.

Storage Spaces Direct

http://sqlperformance.com/2015/11/io-subsystem/storage-spaces-direct-for-sql-server?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
https://technet.microsoft.com/en-us/library/hh831349.aspx
http://blogs.technet.com/b/josebda/archive/2012/08/23/windows-server-2012-scale-out-file-server-for-sql-server-2012-step-by-step-installation.aspx
https://technet.microsoft.com/en-us/library/hh831795.aspx
https://technet.microsoft.com/en-us/library/jj134210.aspx
https://en.wikipedia.org/wiki/InfiniBand
https://en.wikipedia.org/wiki/RDMA_over_Converged_Ethernet
http://cdn.sqlperformance.com/wp-content/uploads/2015/11/image32.png

One of the more exciting new features in Windows Server 2016 is called Storage Spaces Direct (S2D),
which enables organizations to use multiple, clustered commodity file server nodes to build highly
available, scalable storage systems with local storage, using SATA, SAS, or PCIe NVMe devices. You can
use internal drives in each storage node, or direct-attached disk devices using “Just a Bunch of Disks”
(JBOD) where each JBOD is only connected to a single storage node. This eliminates the previous
requirement for a shared SAS fabric and its complexities (which was required with Windows Server 2012
R2 Storage Spaces and SOFS), and also enables using less expensive storage devices such as SATA disks.

In order to use S2D, you need at least four clustered file servers that each can have a mixture of internal
drives (SAS or SATA), PCIe flash storage cards, or direct-attached disk devices that will be pooled using
Storage Spaces. Up to 240 disks can be in a single pool, shared by up to 12 file servers. A Software
Storage Bus replaces the SAS layer of a shared SAS JBOD SOFS. This software storage bus uses SMB 3.1.1
networking with RDMA (SMB Direct) between the S2D cluster nodes for communications. The Storage
Spaces feature aggregates the local and DAS disks into a storage pool, where one or more virtual disks
are created from the pool. The virtual disks (LUNs) are formatted with Resilient File System (ReFS) and
then converted into cluster shared volumes (CSVs), which make them active across the entire file server
cluster.

The S2D stack is shown in Figure 2:

Figure 2: Storage Spaces Direct (S2D) stack (Image Credit: Microsoft)

The reason why this matters so much for SQL Server database professionals is that S2D will give you
another high performance deployment choice for your storage subsystem that will work with stand-
alone SQL Server instances, with traditional FCI instances (that require shared storage), and with
instances that are using AlwaysOn AG nodes.

If you have the proper network adapters (not your garden variety, embedded Broadcom Gigabit
Ethernet NICs) for both your clustered file servers and for your database servers, you will be able to take

https://technet.microsoft.com/en-us/library/dn765472.aspx
https://technet.microsoft.com/en-us/library/hh831724.aspx
http://cdn.sqlperformance.com/wp-content/uploads/2015/11/S2D-Stack.png

advantage of SMB Direct and RDMA so that the SMB network can deliver extremely high throughput,
with very low latency, and low CPU utilization by the network adapters, which enables the remote file
server to resemble local storage from a performance perspective. The new S2D feature will make it
easier and less expensive to deploy a Scale-Out File Server cluster that can deliver extremely high
performance for SQL Server usage. Not only will this work for bare-metal, non-virtualized SQL Server
instances, it will also be a good solution for virtualized SQL Server instances, where the virtualization
host can get much better I/O performance than from a typical SAN.

For example, if you have a 56Gb InfiniBand (FDR) host channel adapter (HCA) plugged into a PCIe 3.0 x8
slot of your database server (or virtualization host server) and your file servers, that will give you about
6.5GB/sec of sequential throughput for each connection. I have some more detailed information about
sequential throughput speeds and feeds here. Currently, you have to use PowerShell to deploy and
manage Storage Spaces Direct. This TechNet article has some good information and examples of how to
test S2D in Windows Server 2016 Technical Preview 3.

By the time Windows Server 2016 and SQL Server 2016 are GA, we will probably have the new 14nm
Intel Xeon E5-2600 v4 "Broadwell-EP" processor, that will have up to 22 physical cores per socketand
55MB of shared L3 cache, along with DDR4 2400 memory support. This new processor family will work
with existing server models, such as the Dell PowerEdge R730, since it is socket compatible with the
current 22nm "Haswell-EP" family processors. This will give you the best underlying server hardware
platform to take full advantage of S2D.

http://sqlperformance.com/2014/12/io-subsystem/sequential-throughput-speeds-and-feeds?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2014/12/io-subsystem/sequential-throughput-speeds-and-feeds?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
https://technet.microsoft.com/en-us/library/mt126109.aspx
http://www.tweaktown.com/news/48389/intels-new-xeon-e5-2600-v4-feature-44-threads-cpu-power/index.html
http://www.sqlskills.com/blogs/glenn/interesting-upcoming-intel-processors/

Network Load Testing Using iPerf
By Tim Radney

Being a database administrator can be very challenging at times when you have to troubleshoot
performance issues. The database server is just one component of the application ecosystem and it
routinely gets blamed as being the performance problem. SQL Server is one of those black boxes that
many don’t understand, much like the SAN and network. Production DBAs that monitor their servers can
quickly identify if SQL Server is performing outside of its normal baseline, however there are two major
areas that we have little visibility into: the SAN and the network. DBAs regularly have to work with other
engineers when it comes to troubleshooting performance issues that are not directly related to SQL
Server. We can easily track disk performance by monitoringsys.dm_io_virtual_file_stats, which I wrote
about in Monitoring Read/Write Latency; however, tracking network performance problems within SQL
Server isn’t as easy.

Poor network performance can be a silent killer for application performance and my personal
experience has shown this to be the case on many occasions. Often an application would start having
performance issues and the application engineer would say that the application server looks good and
starts to point their finger at the database. I would get a call to look at the database server and all
indications showed that the database server was in good health (and this is where monitoring for key
performance indicators and having a baseline helps!). Since the application and database teams were
saying everything was good, we would ask the network team to check things out. The network team
would look at a few things and give the all clear on their side as well. Each team troubleshooting and
reviewing their respective systems took time, meanwhile the application performance was still suffering.
The issue would then get escalated until all the teams would be asked to join a conference bridge to
troubleshoot together. Eventually someone would start a deeper network test and determine that we
either had a port saturation, routing, or some other complex networking issue. A few clicks or changing
something on their end would eventually resolve the application slowness.

The most significant networking issue that I have encountered with clients typically involves bandwidth
when performing backups. Many larger organizations are migrating to 10Gb networking for core
infrastructure, however when working with both physical and virtual networking, it is easy to
misconfigure a setting or port and have it drop to 1Gb. For regular application network traffic you may
not notice the degradation in performance, however as soon as you start trying to copy 100s of GB of
data for backups, that 1Gb will become saturated and your backup and restore jobs will suffer.

For DBAs it can be challenging to get others to look that deep into problems that they don’t think are
their issue because initial indicators don’t reveal the problem. Being able to arm yourself with data
before reaching out to other teams will help to get them involved. By using iPerf to do an initial
bandwidth test, you can quickly determine if you are getting the network speeds that you are supposed
to. For example, if you are utilizing 10Gb network between the application server and database server
and you run a test and are only getting 1Gb, then you know something is not quite right. If you can
document this finding, then you can with confidence ask your network engineers to look into a
bandwidth issue.

How do you get started using iPerf? First you need to download the tool from iPerf.fr. Since I am
working on Windows Server 2012, I’ve downloaded the Windows binaries onto my machine. Once you

http://sqlperformance.com/2015/12/monitoring/network-testing-iperf?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/12/monitoring/network-testing-iperf?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/03/io-subsystem/monitoring-read-write-latency?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
https://iperf.fr/

download and unzip the package, you will need to run the program from a command line. I downloaded
iPerf 3.0.11 which has been out for almost a year. Make sure to read the documentation of this utility.
Since this is a command line tool, there are dozens of options that you can use. In the example below I
will only be using a few of them, however depending on your situation, you may need to use other
options such as specifying the port or increasing the packet size. Please note that the option commands
are case sensitive.

To use iPerf, you have to use at least two servers to test the bandwidth. Once you have copied the
binaries to the two servers, you have to first start the iPerf listener on one of the servers. To do this I will
run the following command:

iperf3 -s

This command runs iPerf in server mode and will only allow one connection at a time.

On the second server you will need to launch iPerf using several client options. First we are going to
specify -c to specify client mode. We will also use -t to specify the time to run each test and -P to specify
the number of simultaneous connections to make. We want to specify multiple connections so that we
can put a proper strain on the network. For this test I am going to run the following command:

iperf3 -c (server name or ip address of the first server) -t 30 -P 10

The command above will start a 30 second transmission test with 10 simultaneous connections.

I ran this test on two virtual machines on my Dell M6800 so there wasn’t a physical network for these
VM’s to go through.

From server 2 connecting to server 1 I got 7.57 GBytes transferred with a bandwidth of 2.17 Gbits/sec.
Not bad for a couple of VMs on a laptop.

Network stats / iPerf output : Server 2 connecting to Server 1

http://cdn.sqlperformance.com/wp-content/uploads/2015/12/tr_ip1.jpeg

From server 1 connecting to server 2 I got 6.98 GBytes transferred with a bandwidth of 2.00 Gbits/sec.
As you can see there is a slight difference in the numbers but still relatively close. Had these numbers
been drastically different then I would need to investigate the cause.

Network stats / iPerf output : Server 1 connecting to Server 2

It is important to run these tests before going into production and to make a habit of regularly repeating
these tests on your production servers. You need to know what is normal, if you aren’t monitoring it,
then you can’t measure it. If you know that firmware updates are being performed on your servers, the
virtual host, or any core networking equipment, an iPerf test before and after the changes could quickly
alert you to identify any negative side effects.

It is also important to perform this test against any servers that interface directly with the database
server and any servers the database server directly interfaces with such as network backup devices.
IPerf works on both Windows and Linux making it easy to test between the two Operating Systems.

For DBAs, the network no longer has to be a black box that you don’t know anything about. Using iPerf
can alert you to any bandwidth issues with the network between your database server and any other
server. There is no reason to only rely on PING and TRACERT for limited network troubleshooting.
Download iPerf and start documenting your network bandwidth.

http://cdn.sqlperformance.com/wp-content/uploads/2015/12/tr_ip2.jpeg

T-SQL Tuesday #68 : Just Say No to Defaults
By Lori Edwards

This month’s T-SQL Tuesday is hosted by Andy Yun (b|t), and is on default settings in SQL Server. I have a
SQL Saturday session that covers set-up and configuration of SQL Server, so I do talk about default
values and why you may or may not want to change them. There are plenty to discuss, but I'm going to
cover three of them here.

The first one is the default directory for data, log and backup files. It's set during installation and I know
that the first several times I installed SQL Server, I just stuck with the defaults. They are the defaults, so
they must be right, right? I have a feeling most SQL Server defaults were set in the first version of SQL
Server and then never touched again. The default value for these is C:\Program Files\Microsoft SQL
Server\% instance id %\MSSQL\. I think that we can agree, for the most part, that we don't want to put
those files on the root drive – especially the system databases, since that's where they'll be created. If
you're not sure what your settings are, this StackOverflow post has a query to find out. Changing those
defaults can definitely help save your bacon.

Backup compression has been available in SQL Server since 2008 and it has been available in Standard
Editions since 20008R2. When I started as a DBA, we paid money to vendors to get that backup
compression. You don't have to do that any longer, but you do have to enable it because it is disabled by
default. Keep in mind, nothing is free. There can be a CPU impact when making use of backup
compression, so test and validate before you pushing it into production. But I know that you, dear
reader, always test and validate, so it goes without saying. You can enable backup compression via SSMS
by going to the Server->Properties->Database Settings and checking the backup compression box or by
running the following script:

EXEC sys.sp_configure N'backup compression default', 1;

RECONFIGURE WITH OVERRIDE;

GO

The last default setting is one that can cause so many performance issues and is also the setting that
makes me sad. Well, sad is probably too strong a word for a SQL Server setting. It should be something
that should be easy to reset the default value for, but it is not always so. I'm talking about the file
autogrowth setting. I'm sure that there was a time where growing a data file by 1MB and log file by 10%
was reasonable, but was also probably when setting the Cost Threshold for Parallelism to 5 made sense
(sorry, nerd humor). When I was an up and coming DBA, I was taught that you should change the default
settings in the Model database to something reasonable and when you created new databases, it would
use those values. Unfortunately, that's not always the case. If you create databases within SSMS and use
the GUI entirely, the new database will have the settings from Model. If, however, you click on the Script
button or (god forbid) just use the CREATE DATABASE syntax, it will revert to the original model
autogrowth values. Kenneth Fisher(b/t) wrote a blog post about it here. As mentioned in the post, there
was a Connect item on this, but it has been closed. So, this is one case where you need to explicitly
ensure that you're setting these values appropriately. It can be set within SSMS or by using the following
syntax:

http://blogs.sqlsentry.com/loriedwards/t-sql-tuesday-68-just-say-no-to-defaults/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
https://sqlbek.wordpress.com/2015/07/06/invitation-to-t-sql-tuesday-68-just-say-no-to-defaults/
https://sqlbek.wordpress.com/
https://twitter.com/sqlbek
http://stackoverflow.com/questions/1883071/how-do-i-find-the-data-directory-for-a-sql-server-instance
http://sqlstudies.com/
https://twitter.com/sqlstudent144
http://sqlstudies.com/2014/04/28/the-default-autogrowth-settings-do-not-come-from-the-model-database/

ALTER DATABASE NewDB

 MODIFY FILE

 (

 NAME = N'NewDBData',

 FILEGROWTH = <some reasonable value>

);

The other option, of course, is to edit the Create Database template, edit autogrowth settings there, and
remember to use that template.

There are plenty of settings within SQL Server. Even for those settings where the default value is
typically fine, you should understand what that setting does and when/why you might want to change it.
Take the time to read all of those posts for this T-SQL Tuesday. I'm sure that I will learn a few new
things. Thanks, Andy, for this great topic.

T-SQL Tuesday #68 : The "Smoking Man" of SQL Server Defaults
By Kevin Kline

This month's T-SQL Tuesday comes to us from Andy Yun (@SQLBek) and is themed, "Just Say No to
Defaults."

FLAWED DEFAULTS? IT DEPENDS

Going with the defaults is a big deal, and in most situations where performance matters, it is a BIG
MISTAKE. So much so, that I've listed it as one of the Top 10 DBA Mistakes since the very first time I
wrote and delivered that popular presentation ten years ago, with help from SQL Server MVPs like Mike
Walsh (t | b) and Colin Stasiuk (t | b).

WHY NOT CHANGE THE SQL SERVER DEFAULTS?

If these default settings are so problematic, then why doesn't Microsoft change them? There are a
couple reasons.

First, Microsoft has intentionally designed SQL Server to be easy to set up, install, get running, walk
away from, kill the server room lights, and ignore for years. Defaults of that sort might run afoul of those
settings which deliver the best performance, because achieving high performance is highly dependent
on the type of workload running on the instance. Basically, the defaults have a goal to meet the highest
common denominator for uptime while maintaining the lowest common denominator for performance.

Second, default settings don't really help sell more licenses. And licensing revenue is the driver for the
product teams' new development efforts. Consequently, once a default is established for a given
functionality, for example the 5 second broker activation wakeup task in Service Broker, it
is VERY unlikely to ever change. Even when dramatic improvements in the underpinning technology
make a default setting quite silly, there's very little incentive and quite a lot of risk for the Dev teams to
tinker with a default setting. In another example, the sp_configure settings governing the default
behavior for parallelism, MAXDOP, and Cost Threshold for Parallelism, were established at a time when
multi-core SMP processors were an extravagant rarity for many IT organizations. Today, 16+ cores are
not uncommon on a single silicon wafer. Those old fashioned settings were established for old fashioned
hardware, in turn introducing some problematic behavior on current generation hardware.

So what'cha get is what'cha got, when it comes to default settings.* (*Footnote: Not true in every
situation. As with all things technology, your mantra is "It depends"). Sometimes default settings do get
changed by Microsoft. But it always takes a well-constructed argument, empirical proof, and a large
amount of community support to move the needle – consider Aaron Bertrand's (b | t) plea for better
guidance about tempdb during setup (see this blog post and Connect #1380861).

THE SMOKING MAN PULLS INVISIBLE STRINGS. WHO IS SQL SERVER'S SMOKING MAN?

If you're of a certain age here in the USA, then you're likely to be intimately familiar with an intriguing
and villainous character, the nameless "Smoking Man" from the X-Files television show. This mysterious
character had as much power over the story arc as a puppet-master does their marionettes. And he
never, ever worried about getting cancer. (Freaky!)

http://blogs.sqlsentry.com/kevinkline/t-sql-tuesday-68-sql-server-defaults/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
https://sqlbek.wordpress.com/2015/07/06/invitation-to-t-sql-tuesday-68-just-say-no-to-defaults/
http://twitter.com/SQLBek
http://www.slideshare.net/kkline84/top-10-dba-mistakes-on-microsoft-sql-server-administration-mistakes
https://twitter.com/#!/mike_walsh
http://www.straightpathsql.com/blog/rss.xml
https://twitter.com/#!/ColinStasiuk
http://benchmarkitconsulting.com/feed/
http://blogs.sqlsentry.com/author/AaronBertrand
https://twitter.com/#!/AaronBertrand
http://blogs.sqlsentry.com/aaronbertrand/sql-server-2016-tempdb-fixes/
https://connect.microsoft.com/SQLServer/feedback/details/1380861/better-tempdb-guidance-during-setup
http://www.imdb.com/title/tt0106179/?ref_=fn_al_tt_1

In our case, the SQL Server Smoking Man isn't quite so sinister. In fact, the completely innocuous nature
of SQL Server's Smoking Man is part of the reason it can be so threatening when ignored.

I'm talking about the the SQL Server model database.

This (usually) tiny system database is tucked away under the "System Databases" folder in SSMS. If you
never open up and look at the system databases, it's possible you might go years without looking at
the model database. And yet, the model database is used as a template for all newly created databases,
including tempdb. Thus, every time a SQL Server is cycled, the settings of the model database are
interrogated and applied anew to tempdb. Any and every database configuration setting of model is
then likely to be repeated over and over again, pulling strings in your SQL Server instance possibly
without your knowledge.

Naturally, that also means when a CREATE DATABASE statement is issued for a new user database, the
first of the database is created by copying in the contents of the model database. The rest of the new
database is then filled with empty pages. If you modify the model database, all databases created
thereafter will inherit those changes, such as permissions, recovery model, database options (e.g.
Optimize for Adhoc Workloads), and added tables, functions, and stored procedures.

WHAT DEFAULTS SHOULD I CHANGE IN MODEL?

Remember that whole "It Depends" thing from earlier? Same here. It depends on what your aims are.
But I'll give you a few of the defaults which I usually change on model database in my important
instances of SQL Server:

• Initial and auto-grow database and log file sizes: This is one that's easy to get wrong if you get
to aggressive. But I believe that the current defaults are moronic. I usually change the initial file
size and the auto-grow sizes to 250mb for the database file and 50mb for the transaction log,
assuming I know absolutely nothing else about the needs of the system.

• Recovery model: Again, this is risky when applied blindly. But I often set this to 'simple' for
instances that are considered low-touch and/or low-importance. Otherwise, leave it at 'full' but
ensure that there is a database and transaction log backup preventative maintenance schedule
in place.

• Optimize for Ad Hoc Workloads: I enable this setting for all OLTP databases, unless I have
reason to do otherwise.

There are a handful of other settings that I might change and objects which I might add, for example a
NUMBERS table, to provide additional utility. But the circumstances under which I might alter those
settings or make those additions are much more variable and not ones I make as blanket choices.

I'm sure I've probably missed a beneficial consideration for the model database. What's your favorite tip
for maximizing the power, and minimizing the risk, of the model database?

https://msdn.microsoft.com/en-us/library/ms186388.aspx
http://sqlblog.com/blogs/adam_machanic/archive/2006/07/12/you-require-a-numbers-table.aspx
http://sqlblog.com/blogs/adam_machanic/archive/2006/07/12/you-require-a-numbers-table.aspx

T-SQL Tuesday #68 : Default Settings for SQL Server Agent
By Justin Randall

This month's T-SQL Tuesday topic, hosted by Andy Yun (b|t) is "Just Say No to Defaults". Thanks Andy for
hosting this month and picking a topic with so many possibilities!

Where to Begin?

There are a lot of default settings in SQL Server that I, along with most experienced DBAs, routinely
change via scripts I have stolen developed. Most are applied at the server level, such as:

• power management settings

• sp_configure 'show advanced options'

• max degree of parallelism

• cost threshold for parallelism

• backup compression default

• backup checksum default

• optimize for ad hoc workloads

• max server memory

• remote admin connections

• tempdb configuration

• instant file initialization

Others relate to configuration of individual databases:

• data and tlog file location

• autogrowth and maxsize settings

• page verification

• parameterization

… and many more!

SQL Server Agent

Today, however, I want to discuss a completely different SQL Server component – SQL Server Agent.
This critical component for most production SQL Server installations is disabled by default. Making it a
useful and trustworthy part of your SQL Server administration infrastructure is often a time-consuming,
unending process. There are no wizards for the inexperienced, accidental or occasional DBA, and the
official documentation, while reasonably thorough in explaining the essential parts and pieces, does not
provide a clear guide to exploiting SQL Server Agent's capabilities, never mind dealing with its
limitations.

http://blogs.sqlsentry.com/justinrandall/t-sql-tuesday-68-sql-server-agent/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
https://sqlbek.wordpress.com/2015/07/06/invitation-to-t-sql-tuesday-68-just-say-no-to-defaults/
https://sqlbek.wordpress.com/
https://twitter.com/sqlbek
https://msdn.microsoft.com/en-us/library/ms189237%28v=sql.120%29.aspx

With all that said, here is my list of SQL Server Agent properties, features, and related components that I
configure on a production SQL Server instance:

• Forward events to a different server: many years ago when I was managing a fairly large SQL
Server environment (and before the advent of SQL Sentry Event Manager) I enabled and
configured this option as a way to provide some level of centralized event management. I find
less of a need for it these days.

• Define idle CPU condition: essential if you want to schedule a job to run during idle CPU time.

• History:

Current job history log size – these settings (max job history log size (in rows) and max job history rows
per job) control the number of rows stored in msdb.dbo.sysjobhistory. The defaults are rarely an
appropriate balance between maintaining enough history for effective Agent job troubleshooting and
limiting the size of the msdb database.

Remove Agent History – specifies a cap on how long job history is retained. This option is disabled by
default. I usually enable this and set a retention period beyond when I normally need to research the
status of job executions.

These settings usually require tweaking based on the number of SQL Agent jobs and the frequency of
job execution. An environment with widely varying job schedules may require code that manages the
retention of job and job step history on a per-job basis.

• SQL Agent Alerts: Microsoft stopped including default ("demo") alerts as part of SQL Server
installations somewhere around SQL Server 2005. So if you want to leverage this powerful
feature, you need to create your own alerts, or download a script that will create a starter set
for you – such as the one provided by Glenn Berry here. To learn more, check out SQL Agent
Alerts and SQL Server Alerts: Soup to Nuts.

• Operator(s): Before you can use SQL Agent as an alert system to send notifications you have to
define one or more individuals or groups to receive them. Operators can receive notifications
from alerts and jobs. You can also define a fail-safe operator who will be notified under the
following conditions:

• SQL Server Agent cannot access the msdb system tables

• All pager notifications have failed

• The designated operator for an alert or job is off-duty, as defined in their pager
schedule)

• Database Mail is SQL Server's solution for sending e-mail messages from the database engine.
The default status for this feature is disabled. You can enable Database Mail from Management
Studio (right-click on Database Mail under the Management folder), or in a query window run:

EXEC sys.sp_configure 'Database Mail XPs', 1;

http://www.sqlsentry.com/products/event-manager/sql-server-job-schedule-alert-management?ad=blogs-emp-jr-em
https://msdn.microsoft.com/en-us/library/ms180982%28v=sql.120%29.aspx
http://www.sqlskills.com/blogs/glenn/creating-sql-server-agent-alerts-for-critical-errors/
http://sqlperformance.com/2015/02/sql-alert/sql-server-agent-alerts
http://sqlperformance.com/2015/02/sql-alert/sql-server-agent-alerts
https://www.simple-talk.com/sql/database-administration/sql-server-alerts-soup-to-nuts/
https://msdn.microsoft.com/en-us/library/ms189635%28v=sql.120%29.aspx

• Once Database Mail has been enabled and configured with an account and a profile, SQL Agent
can use it to send email notifications for SQL Agent alerts and SQL Agent jobs.

• SQL Agent Jobs are the means to execute scheduled tasks in SQL Server. I always create a job for
every SQL Server instance that cycles the SQL Server Error log and SQL Agent Error Log, and a
second job that performs cleanup operations on the Database Mail tables in msdb. These scripts
are attached here:

JR_TSQL2sday.zip

You might also be interested in Tim Radney's recent post, The Importance of Maintenance on MSDB, for
other areas to focus your automated cleanup routines.

Summary

SQL Server Agent is a powerful resource waiting to be used. It's up to us DBAs to tap into its potential.

https://msdn.microsoft.com/en-US/library/ms175100%28v=sql.120%29.aspx
https://msdn.microsoft.com/en-us/library/ms187880%28v=sql.120%29.aspx
http://3e723i3p31pq1qxv94182h1atrq.wpengine.netdna-cdn.com/wp-content/uploads/justinrandall/media/JR_TSQL2sday.zip
http://sqlperformance.com/2015/07/sql-maintenance/msdb

What I mess up whenever I install SQL Server on a new VM
By Aaron Bertrand

I travel, I present, I set up demos and repros, I solve customer issues, and I blog about a lot of different
scenarios. As you can imagine, I have a lot of VMs lying around on external SSDs, and many of them are
different versions/editions of operating systems, so I don't get a lot of use out of creating some kind of
master image. This means that whenever I want to set up a new scenario, I install Windows, then I install
SQL Server.

And I'm terrible at it.

Here is where I trip up during setup. Every time.

.NET FRAMEWORK 3.5

Without fail, I forget to enable the .NET Framework 3.5 feature, and I am plonked on the head as soon
as I get to the "Feature Rules" screen in setup. Note that this as many as 10 or 11 screens into setup,
depending on what options you've selected.

Thankfully, the fix doesn't require you to re-boot or to even cancel setup. Just go to Programs and
Features, Turn Windows features on or off, and check the box ".NET Framework 3.5 (includes .NET 2.0
and 3.0)." Windows will prompt you to go online to get the updates, and once it's done, you'll be able to
return to SQL Server setup and press the Re-Run button.

Still, I do hope this problem stops occurring – either by the Windows team just turning this feature on by
default, or the SQL Server team removing whatever dependencies they have on it.

http://blogs.sqlsentry.com/aaronbertrand/mess-up-setup/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

Andy Mallon (@AMtwo | blog) has an interesting workaround in the meantime – he created a
Powershell script that he uses which enables .NET, if necessary, then launches setup. He agreed to share
that script below.

COMPUTER NAME

On the Database Engine Configuration screen, you're asked to choose mixed auth vs. Windows auth
only, enter a password for the sa account, and add any administrators (I think most of us pick "Add
Current User" to start). Well, this is the point where I realize I let Windows pick a stupid name for my
computer (again). I realize this because the list becomes populated with this:

Wow, what an ugly computer name. And even though I've invested a bunch of time in this setup
already, I have to fix this now, because it is much cleaner than doing the
awful sp_dropserver/sp_addserver rigamarole later. Unlike the .NET rule above, in this case, I do have to
completely cancel out of setup, go to system settings, rename the computer, and reboot to start all over
again.

Yeah, that is so much better. I joked with Andy that his script could also prompt the user, asking them if
they are happy with the computer name; if they say no, it stops, and tells them to try again when
they've renamed it – this can also save some time. He incorporated that into his script, but warns that
he only tested it in one case.

AM2 -- Script must be run from a powershell prompt with Admin permissions

DISM will error if you don't have elevated privs

Ensure .NET 3.5 is Enabled...

/LimitAccess tells DISM to not check Windows Update

/Source: points at install files (included in Windows ISO at \sources\sxs

You can omit these 2 params if you want to pull files from Windows Update

Write-Host "Enabling .NET 3.5"

DISM /Online /Enable-Feature /FeatureName:NetFx3 /All /NoRestart `

/LimitAccess /Source:D:\sources\sxs

http://twitter.com/AMtwo
http://www.impatientdba.com/
http://3e723i3p31pq1qxv94182h1atrq.wpengine.netdna-cdn.com/wp-content/uploads/aaronbertrand/media/name_bad.png
http://3e723i3p31pq1qxv94182h1atrq.wpengine.netdna-cdn.com/wp-content/uploads/aaronbertrand/media/name_good.png

Make sure you like your computer's name before you install SQL

$yes = New-Object System.Management.Automation.Host.ChoiceDescription "&Yes", `

 "Continues with SQL Server installation."

$no = New-Object System.Management.Automation.Host.ChoiceDescription "&No", `

 "Prompts to rename computer and aborts installation."

$options = [System.Management.Automation.Host.ChoiceDescription[]]($yes, $no)

$result = $host.ui.PromptForChoice("This computer is named: $env:computername",

 " Do you like that name?", $options, 0)

switch ($result)

 {

 0 {Write-Host "Glad you like it."

 ./setup.exe /ACTION=INSTALL

 }

 1 {Write-Host "Let's change it."

 $newName = Read-Host "New computer name"

 Rename-Computer $newName

 }

 }

Andy noted that his server build script is a little different, since client versions of Windows block Add-
NewWindowsFeature. Here is the version he uses on servers:

Import-Module ServerManager

$Net = Get-WindowsFeature net-framework-core

if ($Net.InstallState -ne "Installed")

 {Add-WindowsFeature net-framework-core}

SUMMARY

I'm sure I'm not alone in either of these (or both). Hopefully writing this post will serve as a reminder to
both of us to stop messing this up. Since I don't foresee any non-Windows 10 VMs in my immediate
future, now that 10240 is officially out, I'm going to go build myself a base VM image with a proper
name and .NET 3.5 installed.

T-SQL and Execution Plans
FORMAT() is nice and all, but…
By Aaron Bertrand

Back when SQL Server 2012 was still in beta, I blogged about the new FORMAT() function: SQL Server
v.Next (Denali) : CTP3 T-SQL Enhancements : FORMAT().

At that time, I was so excited about the new functionality, that I didn't even think to do any performance
testing. I did address this in a more recent blog post, but solely in the context of stripping time from a
datetime: Trimming time from datetime – a follow-up.

Last week, my good friend Jason Horner (blog | @jasonhorner) trolled me with these tweets:

My issue with this is just that FORMAT() looks convenient, but it is extremely inefficient compared to
other approaches (oh and that AS VARCHAR thing is bad too). If you're doing this onesy-twosy and for
small resultsets, I wouldn't worry too much about it; but at scale, it can get pretty expensive. Let me
illustrate with an example. First, let's create a small table with 1000 pseudo-random dates:

My issue with this is just that FORMAT() looks convenient, but it is extremely inefficient compared to
other approaches (oh and that AS VARCHAR thing is bad too). If you're doing this onesy-twosy and for
small resultsets, I wouldn't worry too much about it; but at scale, it can get pretty expensive. Let me
illustrate with an example. First, let's create a small table with 1000 pseudo-random dates:

SELECT TOP (1000) d = DATEADD(DAY, CHECKSUM(NEWID())%1000, o.create_date)
 INTO dbo.dtTest
 FROM sys.all_objects AS o
 ORDER BY NEWID();
GO
CREATE CLUSTERED INDEX d ON dbo.dtTest(d);

Now, let's prime the cache with the data from this table, and illustrate three of the common ways
people tend to present just the time:

SELECT d,
 CONVERT(DATE, d),
 CONVERT(CHAR(10), d, 120),
 FORMAT(d, 'yyyy-MM-dd')

http://sqlperformance.com/2015/06/t-sql-queries/format-is-nice-and-all-but?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/06/t-sql-queries/format-is-nice-and-all-but?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
https://msdn.microsoft.com/en-us/library/hh213505(v=sql.110).aspx
http://sqlblog.com/blogs/aaron_bertrand/archive/2011/08/09/sql-server-v-next-denali-ctp3-t-sql-enhancements-format.aspx
http://sqlblog.com/blogs/aaron_bertrand/archive/2011/08/09/sql-server-v-next-denali-ctp3-t-sql-enhancements-format.aspx
http://sqlperformance.com/2012/10/t-sql-queries/trim-time?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://blog.jasonhorner.com/
http://twitter.com/jasonhorner
http://sqlblog.com/blogs/aaron_bertrand/archive/2009/10/09/bad-habits-to-kick-declaring-varchar-without-length.aspx
http://sqlblog.com/blogs/aaron_bertrand/archive/2009/10/09/bad-habits-to-kick-declaring-varchar-without-length.aspx

FROM dbo.dtTest;

Now, let's perform individual queries that use these different techniques. We'll run them each 5 times
and we'll run the following variations:

1. Selecting all 1,000 rows

2. Selecting TOP (1) ordered by the clustered index key

3. Assigning to a variable (which forces a full scan, but prevents SSMS rendering from interfering
with performance)

Here is the script:

-- select all 1,000 rows
GO
SELECT d FROM dbo.dtTest;
GO 5
SELECT d = CONVERT(DATE, d) FROM dbo.dtTest;
GO 5
SELECT d = CONVERT(CHAR(10), d, 120) FROM dbo.dtTest;
GO 5
SELECT d = FORMAT(d, 'yyyy-MM-dd') FROM dbo.dtTest;
GO 5

-- select top 1
GO
SELECT TOP (1) d FROM dbo.dtTest ORDER BY d;
GO 5
SELECT TOP (1) CONVERT(DATE, d) FROM dbo.dtTest ORDER BY d;
GO 5
SELECT TOP (1) CONVERT(CHAR(10), d, 120) FROM dbo.dtTest ORDER BY d;
GO 5
SELECT TOP (1) FORMAT(d, 'yyyy-MM-dd') FROM dbo.dtTest ORDER BY d;
GO 5

-- force scan but leave SSMS mostly out of it
GO
DECLARE @d DATE;
SELECT @d = d FROM dbo.dtTest;
GO 5
DECLARE @d DATE;
SELECT @d = CONVERT(DATE, d) FROM dbo.dtTest;
GO 5
DECLARE @d CHAR(10);
SELECT @d = CONVERT(CHAR(10), d, 120) FROM dbo.dtTest;
GO 5
DECLARE @d CHAR(10);
SELECT @d = FORMAT(d, 'yyyy-MM-dd') FROM dbo.dtTest;

GO 5

Now, we can measure the performance with the following query (my system is pretty quiet; on yours,
you may need to perform more advanced filtering than just execution_count):

SELECT
 [t] = CONVERT(CHAR(255), t.[text]),
 s.total_elapsed_time,
 avg_elapsed_time = CONVERT(DECIMAL(12,2),s.total_elapsed_time / 5.0),
 s.total_worker_time,
 avg_worker_time = CONVERT(DECIMAL(12,2),s.total_worker_time / 5.0),
 s.total_clr_time
FROM sys.dm_exec_query_stats AS s
CROSS APPLY sys.dm_exec_sql_text(s.[sql_handle]) AS t
WHERE s.execution_count = 5
 AND t.[text] LIKE N'%dbo.dtTest%'
ORDER BY s.last_execution_time;

Results in my case were fairly consistent:

And to visualize the avg_elapsed_time output (click to enlarge):

http://cdn.sqlperformance.com/wp-content/uploads/2015/06/format_not_nice_1.png

FORMAT() is clearly the loser : avg_elapsed_time results (microseconds)

What we can learn from these results (again):

1. First and foremost, FORMAT() is expensive.

2. FORMAT() can, admittedly, provide more flexibility and give more intuitive methods that are
consistent with those in other languages like C#. However, in addition to its overhead, and
whileCONVERT() style numbers are cryptic and less exhaustive, you may have to use the older
approach anyway, since FORMAT() is only valid in SQL Server 2012 and newer.

3. Even the standby CONVERT() method can be drastically expensive (though only severely so in
the case where SSMS had to render the results - it clearly handles strings differently than date
values).

4. Just pulling the datetime value directly out of the database was always most efficient. You
should profile what additional time it takes for your application to format the date as desired at
the presentation tier - it's highly likely that you're not going to want SQL Server to get involved
with prettying format at all (and in fact many would argue that this is where that logic always
belongs).

We're only talking microseconds here, but we're also only talking 1,000 rows. Scale that out to your
actual table sizes, and the impact of choosing the wrong formatting approach could be devastating.

If you want to try out this experiment on your own machine, I've uploaded a sample
script: FormatIsNiceAndAllBut.sql_.zip

http://sqlperformance.com/wp-content/uploads/2015/06/FormatIsNiceAndAllBut.sql_.zip

Calculating the Median with a Dynamic Cursor
By Paul White

A simple definition of the median is:

The median is the middle value in a sorted list of numbers

To flesh that out a little, we can find the median of a list of numbers using the following procedure:

1. Sort the numbers (in ascending or descending order, it does not matter which).

2. The middle number (by position) in the sorted list is the median.

3. If there are two "equally middle" numbers, the median is the average of the two middle values.

Aaron Bertrand has previously performance-tested several ways to compute the median in SQL Server:

• What is the fastest way to calculate the median?

• Best approaches for grouped median

Rob Farley recently added another approach aimed at pre-2012 installations:

• Medians pre-SQL 2012

This article introduces a new method using a dynamic cursor.

The 2012 OFFSET-FETCH Method

We will start by looking at the best-performing implementation, created by Peter Larsson. It uses the
SQL Server 2012 OFFSET extension to the ORDER BY clause to efficiently locate the one or two middle
rows needed to compute the median.

OFFSET Single Median

Aaron's first article tested computing a single median over a ten million row table:

CREATE TABLE dbo.obj
(
 id integer NOT NULL IDENTITY(1,1),
 val integer NOT NULL
);

INSERT dbo.obj WITH (TABLOCKX)
 (val)
SELECT TOP (10000000)
 AO.[object_id]
FROM sys.all_columns AS AC
CROSS JOIN sys.all_objects AS AO
CROSS JOIN sys.all_objects AS AO2
WHERE AO.[object_id] > 0
ORDER BY
 AC.[object_id];

http://sqlperformance.com/2015/07/t-sql-queries/calculating-the-median-with-a-dynamic-cursor?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/07/t-sql-queries/calculating-the-median-with-a-dynamic-cursor?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://www.mathsisfun.com/median.html
http://sqlperformance.com/2012/08/t-sql-queries/median?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2014/02/t-sql-queries/grouped-median?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlblog.com/blogs/rob_farley/archive/2015/01/27/medians-pre-sql-2012.aspx
https://msdn.microsoft.com/en-us/library/ms188385(v=sql.110).aspx

CREATE UNIQUE CLUSTERED INDEX cx
ON dbo.obj(val, id);

Peter Larsson's solution using the OFFSET extension is:

DECLARE @Start datetime2 = SYSUTCDATETIME();

DECLARE @Count bigint = 10000000
--(
-- SELECT COUNT_BIG(*)
-- FROM dbo.obj AS O
--);

SELECT
 Median = AVG(1.0 * SQ1.val)
FROM
(
 SELECT O.val
 FROM dbo.obj AS O
 ORDER BY O.val
 OFFSET (@Count - 1) / 2 ROWS
 FETCH NEXT 1 + (1 - @Count % 2) ROWS ONLY
) AS SQ1;

SELECT Peso = DATEDIFF(MILLISECOND, @Start, SYSUTCDATETIME());

The code above hard-codes the result of counting the rows in the table. All tested methods for
computing the median need this count in order to calculate the median row numbers, so it is a constant
cost. Leaving the row-counting operation out of the timing avoids one possible source of variation.

The execution plan for the OFFSET solution is shown below:

The Top operator quickly skips over the unnecessary rows, passing just the one or two rows needed to
compute the median on to the Stream Aggregate. When run with a warm cache and execution plan
collection tuned off, this query runs for 910 ms on average on my laptop. This is a machine with an Intel
i7 740QM processor running at 1.73 GHz with Turbo disabled (for consistency).

OFFSET Grouped Median

Aaron's second article tested the performance of calculating a median per group, using a million row
Sales table with ten thousand entries for each of one hundred sales people:

http://ark.intel.com/products/49024/Intel-Core-i7-740QM-Processor-6M-cache-1_73-GHz
http://ark.intel.com/products/49024/Intel-Core-i7-740QM-Processor-6M-cache-1_73-GHz

CREATE TABLE dbo.Sales
(
 SalesPerson integer NOT NULL,
 Amount integer NOT NULL
);

WITH X AS
(
 SELECT TOP (100)
 V.number
 FROM master.dbo.spt_values AS V
 GROUP BY
 V.number
)
INSERT dbo.Sales WITH (TABLOCKX)
(
 SalesPerson,
 Amount
)
SELECT
 X.number,
 ABS(CHECKSUM(NEWID())) % 99
FROM X
CROSS JOIN X AS X2
CROSS JOIN X AS X3;

CREATE CLUSTERED INDEX cx
ON dbo.Sales
 (SalesPerson, Amount);

Again, the best-performing solution uses OFFSET:

DECLARE @s datetime2 = SYSUTCDATETIME();

DECLARE @Result AS table
(
 SalesPerson integer PRIMARY KEY,
 Median float NOT NULL
);

INSERT @Result
SELECT d.SalesPerson, w.Median
FROM
(
 SELECT SalesPerson, COUNT(*) AS y
 FROM dbo.Sales
 GROUP BY SalesPerson
) AS d

CROSS APPLY
(
 SELECT AVG(0E + Amount)
 FROM
 (
 SELECT z.Amount
 FROM dbo.Sales AS z WITH (PAGLOCK)
 WHERE z.SalesPerson = d.SalesPerson
 ORDER BY z.Amount
 OFFSET (d.y - 1) / 2 ROWS
 FETCH NEXT 2 - d.y % 2 ROWS ONLY
) AS f
) AS w(Median);

SELECT Peso = DATEDIFF(MILLISECOND, @s, SYSUTCDATETIME());

The important part of the execution plan is shown below:

The top row of the plan is concerned with finding the group row count for each sales person. The lower
row uses the same plan elements seen for the single-group median solution to compute the median for
each sales person. When run with a warm cache and execution plans turned off, this query executes
in 320 ms on average on my laptop.

Using a Dynamic Cursor

It might seem crazy to even think about using a cursor to calculate the median. Transact SQL cursors
have a (mostly well-deserved) reputation for being slow and inefficient. It is also often thought that
dynamic cursors are the worst type of cursor. These points are valid in some circumstances, but not
always.

Transact SQL cursors are limited to processing a single row at a time, so they can indeed be slow if many
rows need to be fetched and processed. That is not the case for the median calculation though: all we
need to do is locate and fetch the one or two middle values efficiently. A dynamic cursor is very suitable
for this task as we shall see.

Single Median Dynamic Cursor

The dynamic cursor solution for a single median calculation consists of the following steps:

1. Create a dynamic scrollable cursor over the ordered list of items.

2. Calculate the position of the first median row.

3. Reposition the cursor using FETCH RELATIVE.

4. Decide if a second row is needed to compute the median.

5. If not, return the single median value immediately.

6. Otherwise, fetch the second value using FETCH NEXT.

7. Compute the average of the two values and return.

Notice how closely that list reflects the simple procedure for finding the median given at the start of this
article. A complete Transact SQL code implementation is shown below:

-- Dynamic cursor
DECLARE @Start datetime2 = SYSUTCDATETIME();

DECLARE
 @RowCount bigint, -- Total row count
 @Row bigint, -- Median row number
 @Amount1 integer, -- First amount
 @Amount2 integer, -- Second amount
 @Median float; -- Calculated median

SET @RowCount = 10000000;
--(
-- SELECT COUNT_BIG(*)
-- FROM dbo.obj AS O
--);

DECLARE Median CURSOR
 LOCAL
 SCROLL
 DYNAMIC
 READ_ONLY
FOR
 SELECT
 O.val
 FROM dbo.obj AS O
 ORDER BY
 O.val;

OPEN Median;

-- Calculate the position of the first median row
SET @Row = (@RowCount + 1) / 2;

-- Move to the row

FETCH RELATIVE @Row
FROM Median
INTO @Amount1;

IF @Row = (@RowCount + 2) / 2
BEGIN
 -- No second row, median is the single value we have
 SET @Median = @Amount1;
END
ELSE
BEGIN
 -- Get the second row
 FETCH NEXT
 FROM Median
 INTO @Amount2;

 -- Calculate the median value from the two values
 SET @Median = (@Amount1 + @Amount2) / 2e0;
END;

SELECT Median = @Median;

SELECT DynamicCur = DATEDIFF(MILLISECOND, @Start, SYSUTCDATETIME());

The execution plan for the FETCH RELATIVE statement shows the dynamic cursor efficiently
repositioning to the first row required for the median calculation:

The plan for the FETCH NEXT (only required if there is a second middle row, as in these tests) is a single
row fetch from the saved position of the cursor:

The advantages of using a dynamic cursor here are:

1. It avoids traversing the whole set (reading stops after the median rows are found); and

2. No temporary copy of the data is made in tempdb, as it would be for a static or keyset cursor.

Note we cannot specify a FAST_FORWARD cursor here (leaving the choice of a static-like or dynamic-like
plan to the optimizer) because the cursor needs to be scrollable to support FETCH RELATIVE. Dynamic is
the optimal here choice anyway.

When run with a warm cache and execution plan collection tuned off, this query runs for 930 ms on
average on my test machine. This is a little slower than the 910 ms for the OFFSET solution, but the
dynamic cursor is significantly faster than the other methods Aaron and Rob tested, and it does not
require SQL Server 2012 (or later).

I am not going to repeat testing the other pre-2012 methods here, but as an example of the size of the
performance gap, the following row-numbering solution takes 1550 ms on average (70% slower):

DECLARE @Start datetime2 = SYSUTCDATETIME();

DECLARE @Count bigint = 10000000
--(
-- SELECT COUNT_BIG(*)
-- FROM dbo.obj AS O
--);

SELECT AVG(1.0 * SQ1.val) FROM
(
 SELECT
 O.val,
 rn = ROW_NUMBER() OVER (
 ORDER BY O.val)
 FROM dbo.obj AS O WITH (PAGLOCK)
) AS SQ1
WHERE
 SQ1.rn BETWEEN (@Count + 1)/2 AND (@Count + 2)/2;

SELECT RowNumber = DATEDIFF(MILLISECOND, @Start, SYSUTCDATETIME());

Grouped Median Dynamic Cursor Test

It is simple to extend the single median dynamic cursor solution to compute grouped medians. For the
sake of consistency, I am going to use nested cursors (yes, really):

1. Open a static cursor over the sales people and row counts.

2. Compute the median for each person using a new dynamic cursor each time.

3. Save each result to a table variable as we go.

The code is shown below:

http://blogs.msdn.com/b/sqlqueryprocessing/archive/2009/08/12/understanding-sql-server-fast-forward-server-cursors.aspx

-- Timing
DECLARE @s datetime2 = SYSUTCDATETIME();

-- Holds results
DECLARE @Result AS table
(
 SalesPerson integer PRIMARY KEY,
 Median float NOT NULL
);

-- Variables
DECLARE
 @SalesPerson integer, -- Current sales person
 @RowCount bigint, -- Current row count
 @Row bigint, -- Median row number
 @Amount1 float, -- First amount
 @Amount2 float, -- Second amount
 @Median float; -- Calculated median

-- Row counts per sales person
DECLARE SalesPersonCounts
 CURSOR
 LOCAL
 FORWARD_ONLY
 STATIC
 READ_ONLY
FOR
 SELECT
 SalesPerson,
 COUNT_BIG(*)
 FROM dbo.Sales
 GROUP BY SalesPerson
 ORDER BY SalesPerson;

OPEN SalesPersonCounts;

-- First person
FETCH NEXT
FROM SalesPersonCounts
INTO @SalesPerson, @RowCount;

WHILE @@FETCH_STATUS = 0
BEGIN
 -- Records for the current person
 -- Note dynamic cursor
 DECLARE Person CURSOR
 LOCAL
 SCROLL
 DYNAMIC
 READ_ONLY

 FOR
 SELECT
 S.Amount
 FROM dbo.Sales AS S
 WHERE
 S.SalesPerson = @SalesPerson
 ORDER BY
 S.Amount;

 OPEN Person;

 -- Calculate median row 1
 SET @Row = (@RowCount + 1) / 2;

 -- Move to median row 1
 FETCH RELATIVE @Row
 FROM Person
 INTO @Amount1;

 IF @Row = (@RowCount + 2) / 2
 BEGIN
 -- No second row, median is the single value
 SET @Median = @Amount1;
 END
 ELSE
 BEGIN
 -- Get the second row
 FETCH NEXT
 FROM Person
 INTO @Amount2;

 -- Calculate the median value
 SET @Median = (@Amount1 + @Amount2) / 2e0;
 END;

 -- Add the result row
 INSERT @Result (SalesPerson, Median)
 VALUES (@SalesPerson, @Median);

 -- Finished with the person cursor
 CLOSE Person;
 DEALLOCATE Person;

 -- Next person
 FETCH NEXT
 FROM SalesPersonCounts
 INTO @SalesPerson, @RowCount;
END;

---- Results

--SELECT
-- R.SalesPerson,
-- R.Median
--FROM @Result AS R;

-- Tidy up
CLOSE SalesPersonCounts;
DEALLOCATE SalesPersonCounts;

-- Show elapsed time
SELECT NestedCur = DATEDIFF(MILLISECOND, @s, SYSUTCDATETIME());

The outer cursor is deliberately static because all rows in that set will be touched (also, a dynamic cursor
is not available due to the grouping operation in the underlying query). There is nothing particularly new
or interesting to see in the execution plans this time around.

The interesting thing is the performance. Despite the repeated creation and deallocation of the inner
dynamic cursor, this solution performs really well on the test data set. With a warm cache and execution
plans turned off, the cursor script completes in 330 ms on average on my test machine. This is again a
tiny bit slower than the 320 ms recorded by the OFFSET grouped median, but It beats the other standard
solutions listed in Aaron's and Rob's articles by a large margin.

Again, as an example of the performance gap to the other non-2012 methods, the following row-
numbering solution runs for 485 ms on average on my test rig (50% worse):

DECLARE @s datetime2 = SYSUTCDATETIME();

DECLARE @Result AS table
(
 SalesPerson integer PRIMARY KEY,
 Median numeric(38, 6) NOT NULL
);

INSERT @Result
SELECT
 S.SalesPerson,
 CA.Median
FROM
(
 SELECT
 SalesPerson,
 NumRows = COUNT_BIG(*)
 FROM dbo.Sales
 GROUP BY SalesPerson
) AS S
CROSS APPLY
(
 SELECT AVG(1.0 * SQ1.Amount) FROM

 (
 SELECT
 S2.Amount,
 rn = ROW_NUMBER() OVER (
 ORDER BY S2.Amount)
 FROM dbo.Sales AS S2 WITH (PAGLOCK)
 WHERE
 S2.SalesPerson = S.SalesPerson
) AS SQ1
 WHERE
 SQ1.rn BETWEEN (S.NumRows + 1)/2 AND (S.NumRows + 2)/2
) AS CA (Median);

SELECT RowNumber = DATEDIFF(MILLISECOND, @s, SYSUTCDATETIME());

Results Summary

In the single median test the dynamic cursor ran for 930 ms versus 910 ms for the OFFSET method.
In the grouped median test, the nested cursor ran for 330 ms versus 320 ms for OFFSET.

In both cases, the cursor method was significantly faster than the other non-OFFSET methods. If you
need to calculate a single or grouped median on a pre-2012 instance, a dynamic cursor or nested cursor
really could be the optimal choice.

Cold Cache Performance

Some of you may be wondering about cold cache performance. Running the following before each test:

CHECKPOINT;
DBCC DROPCLEANBUFFERS;

These are the results for the single median test:

OFFSET method: 940 ms
Dynamic cursor: 955 ms

For the grouped median:

OFFSET method: 380 ms
Nested cursors: 385 ms

Final Thoughts

http://cdn.sqlperformance.com/wp-content/uploads/2015/07/image1.png

The dynamic cursor solutions really are significantly faster than the non-OFFSET methods for both single
and grouped medians, at least with these sample data sets. I deliberately chose to reuse Aaron's test
data so the data sets were not intentionally skewed toward the dynamic cursor. There might be other
data distributions for which the dynamic cursor is not a good option. Nevertheless, it does show that
there are still times when a cursor can be a fast and efficient solution to the right sort of problem. Even
dynamic and nested cursors.

Eagle-eyed readers may have noticed the PAGLOCK hint in the OFFSET grouped median test. This is
required for best performance, for reasons I will cover in my next article. Without it, the 2012 solution
actually loses to the nested cursor by a decent margin (590ms versus 330ms).

Locking and Performance
By Paul White

The type and number of locks acquired and released during query execution can have a surprising effect
on performance (when using a locking isolation level like the default read committed) even where no
waiting or blocking occurs. There is no information in execution plans to indicate the amount of locking
activity during execution, which makes it harder to spot when excessive locking is causing a performance
problem.

To explore some less well-known locking behaviours in SQL Server, I will reuse the queries and sample
data from my last post on calculating medians. In that post, I mentioned that the OFFSETgrouped
median solution needed an explicit PAGLOCK locking hint to avoid losing badly to the nested
cursor solution, so let us start by having a look at the reasons for that in detail.

The OFFSET Grouped Median Solution

The grouped median test reused the sample data from Aaron Bertrand's earlier article. The script below
recreates this million-row setup, consisting of ten thousand records for each of a hundred imaginary
sales people:

CREATE TABLE dbo.Sales
(
 SalesPerson integer NOT NULL,
 Amount integer NOT NULL
);

WITH X AS
(
 SELECT TOP (100)
 V.number
 FROM master.dbo.spt_values AS V
 GROUP BY
 V.number
)
INSERT dbo.Sales WITH (TABLOCKX)
(
 SalesPerson,
 Amount
)
SELECT
 X.number,
 ABS(CHECKSUM(NEWID())) % 99
FROM X
CROSS JOIN X AS X2
CROSS JOIN X AS X3;

CREATE CLUSTERED INDEX cx
ON dbo.Sales

http://sqlperformance.com/2015/07/sql-plan/locking-and-performance?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/07/sql-plan/locking-and-performance?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/07/t-sql-queries/calculating-the-median-with-a-dynamic-cursor?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2014/02/t-sql-queries/grouped-median?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

 (SalesPerson, Amount);

The SQL Server 2012 (and later) OFFSET solution created by Peter Larsson is as follows (without any
locking hints):

DECLARE @s datetime2 = SYSUTCDATETIME();

DECLARE @Result AS table
(
 SalesPerson integer PRIMARY KEY,
 Median float NOT NULL
);

INSERT @Result
 (SalesPerson, Median)
SELECT
 d.SalesPerson,
 w.Median
FROM
(
 SELECT SalesPerson, COUNT(*) AS y
 FROM dbo.Sales
 GROUP BY SalesPerson
) AS d
CROSS APPLY
(
 SELECT AVG(0E + Amount)
 FROM
 (
 SELECT z.Amount
 FROM dbo.Sales AS z
 WHERE z.SalesPerson = d.SalesPerson
 ORDER BY z.Amount
 OFFSET (d.y - 1) / 2 ROWS
 FETCH NEXT 2 - d.y % 2 ROWS ONLY
) AS f
) AS w (Median);

SELECT Peso = DATEDIFF(MILLISECOND, @s, SYSUTCDATETIME());

The important parts of the post-execution plan are shown below:

With all required data in memory, this query executes in 580 ms on average on my laptop (running SQL

Server 2014 Service Pack 1). The performance of this query can be improved to 320 ms simply by adding a
page granularity locking hint to the Sales table in the apply subquery:

DECLARE @s datetime2 = SYSUTCDATETIME();

DECLARE @Result AS table
(
 SalesPerson integer PRIMARY KEY,
 Median float NOT NULL
);

INSERT @Result
 (SalesPerson, Median)
SELECT
 d.SalesPerson,
 w.Median
FROM
(
 SELECT SalesPerson, COUNT(*) AS y
 FROM dbo.Sales
 GROUP BY SalesPerson
) AS d
CROSS APPLY
(
 SELECT AVG(0E + Amount)
 FROM
 (
 SELECT z.Amount
 FROM dbo.Sales AS z WITH (PAGLOCK) -- NEW!
 WHERE z.SalesPerson = d.SalesPerson
 ORDER BY z.Amount
 OFFSET (d.y - 1) / 2 ROWS
 FETCH NEXT 2 - d.y % 2 ROWS ONLY
) AS f
) AS w (Median);

SELECT Peso = DATEDIFF(MILLISECOND, @s, SYSUTCDATETIME());

The execution plan is unchanged (well, aside from the locking hint text in showplan XML of course):

Grouped Median Locking Analysis

The explanation for the dramatic improvement in performance due to the PAGLOCK hint is quite simple,
at least initially.

If we manually monitor locking activity while this query executes, we see that without the page locking
granularity hint, SQL Server acquires and releases over half a million row level locks while seeking the
clustered index. There is no blocking to blame; simply acquiring and releasing this many locks adds a
substantial overhead to this query's execution. Requesting page level locks reduces the locking activity
greatly, resulting in much improved performance.

This particular plan's locking performance issue is confined to the clustered index seek in the plan above.
The full scan of the clustered index (used to compute the number of rows present for each sales person)
uses page level locks automatically. This is an interesting point. The detailed locking behaviour of the
SQL Server engine is not documented in Books Online to any great extent, but various members of the
SQL Server team have made a few general remarks over the years, including the fact the unrestricted
scans tend to start off taking page locks, whereas smaller operations tend to start off with row locks.

The query optimizer does make some information available to the storage engine, including cardinality
estimates, internal hints for isolation level and locking granularity, which internal optimizations may be
safely applied and so on. Again, these details are not documented in Books Online. In the end, the
storage engine uses a variety of information to decide which locks are required at run time, and at which
granularity they should be taken.

As a side note, and remembering that we are talking about a query executing under the default locking
read committed transaction isolation level, note that the row locks taken without the granularity hint
will not escalate to a table lock in this case. This is because the normal behaviour under read committed
is to release the previous lock just before acquiring the next lock, meaning that only a single shared row
lock (with its associated higher-level intent-shared locks) will be held at any particular moment. Since
the number of concurrently-held row locks never reaches the threshold, no lock escalation is attempted.

The OFFSET Single Median Solution

The performance test for a single median calculation uses a different set of sample data, again
reproduced from Aaron's earlier article. The script below creates a table with ten million rows of
pseudo-random data:

CREATE TABLE dbo.obj
(
 id integer NOT NULL IDENTITY(1,1),
 val integer NOT NULL
);

INSERT dbo.obj WITH (TABLOCKX)
 (val)
SELECT TOP (10000000)
 AO.[object_id]
FROM sys.all_columns AS AC
CROSS JOIN sys.all_objects AS AO
CROSS JOIN sys.all_objects AS AO2
WHERE AO.[object_id] > 0
ORDER BY
 AC.[object_id];

CREATE UNIQUE CLUSTERED INDEX cx
ON dbo.obj(val, id);

The OFFSET solution is:

DECLARE @Start datetime2 = SYSUTCDATETIME();

DECLARE @Count bigint = 10000000
--(
-- SELECT COUNT_BIG(*)
-- FROM dbo.obj AS O
--);

SELECT
 Median = AVG(1.0 * SQ1.val)
FROM
(
 SELECT O.val
 FROM dbo.obj AS O
 ORDER BY O.val
 OFFSET (@Count - 1) / 2 ROWS
 FETCH NEXT 1 + (1 - @Count % 2) ROWS ONLY
) AS SQ1;

SELECT Peso = DATEDIFF(MILLISECOND, @Start, SYSUTCDATETIME());

The post-execution plan is:

http://sqlperformance.com/2012/08/t-sql-queries/median?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

This query executes in 910 ms on average on my test machine. Performance is unchanged if
a PAGLOCK hint is added, but the reason for that is not what you might be thinking…

Single Median Locking Analysis

You might be expecting the storage engine to choose page-level shared locks anyway, due to the
clustered index scan, explaining why a PAGLOCK hint has no effect. In fact, monitoring the locks taken
while this query executes reveals that no shared locks (S) are taken at all, at any granularity. The only
locks taken are intent-shared (IS) at the object and page level.

The explanation for this behaviour comes in two parts. The first thing to notice is that the Clustered
Index Scan is below a Top operator in the execution plan. This has an important effect on cardinality
estimates, as shown in the pre-execution (estimated) plan:

The OFFSET and FETCH clauses in the query reference an expression and a variable, so the query
optimizer guesses at the number of rows that will be needed at runtime. The standard guess for Top is
one hundred rows. This is a terrible guess of course, but it is enough to convince the storage engine to
lock at row granularity instead of at the page level.

If we disable the "row goal" effect of the Top operator using documented trace flag 4138, the estimated
number of rows at the scan changes to ten million (which is still wrong, but in the other direction). This
is enough to change the storage engine's locking granularity decision, so that page-level shared locks
(note, not intent-shared locks) are taken:

DECLARE @Start datetime2 = SYSUTCDATETIME();

DECLARE @Count bigint = 10000000
--(
-- SELECT COUNT_BIG(*)
-- FROM dbo.obj AS O
--);

SELECT
 Median = AVG(1.0 * SQ1.val)
FROM
(
 SELECT O.val

https://support.microsoft.com/en-us/kb/2667211

 FROM dbo.obj AS O
 ORDER BY O.val
 OFFSET (@Count - 1) / 2 ROWS
 FETCH NEXT 1 + (1 - @Count % 2) ROWS ONLY
) AS SQ1
OPTION (QUERYTRACEON 4138); -- NEW!

SELECT Peso = DATEDIFF(MILLISECOND, @Start, SYSUTCDATETIME());

The estimated execution plan produced under trace flag 4138 is:

Returning to the main example, the hundred-row estimate due to the guessed row goal means that the
storage engine elects to lock at the row level. However, we only observe intent-shared (IS) locks at the
table and page level. These higher-level locks would be quite normal if we did see row-level shared (S)
locks, so where did they go?

The answer is that the storage engine contains another optimization which can skip the row-level shared
locks in certain circumstances. When this optimization is applied, the higher-level intent-shared locks
are still acquired.

To summarize, for the single-median query:

1. The use of a variable and expression in the OFFSET clause means the optimizer guesses
cardinality.

2. The low estimate means the storage engine decides on a row-level locking strategy.

3. An internal optimization means the row-level S locks are skipped at runtime, leaving only the IS
locks at the page and object level.

The single median query would have had the same row-locking performance problem as the grouped
median (due to the query optimizer's inaccurate estimate) but it was saved by a separate storage engine
optimization that resulted in only intent-shared page and table locks being taken at runtime.

The Grouped Median Test Revisited

You may be wondering why the Clustered Index Seek in the grouped median test did not take advantage
of the same storage engine optimization to skip row-level shared locks. Why were so many shared row
locks used, making the PAGLOCK hint necessary?

The short answer is that this optimization is not available for INSERT...SELECT queries. If we run
the SELECT on its own (i.e. without writing the results to a table), and without a PAGLOCK hint, the row
lock skipping optimization is applied:

http://sqlblog.com/blogs/paul_white/archive/2010/11/01/read-committed-shared-locks-and-rollbacks.aspx

DECLARE @s datetime2 = SYSUTCDATETIME();

--DECLARE @Result AS table
--(
-- SalesPerson integer PRIMARY KEY,
-- Median float NOT NULL
--);

--INSERT @Result
-- (SalesPerson, Median)
SELECT
 d.SalesPerson,
 w.Median
FROM
(
 SELECT SalesPerson, COUNT(*) AS y
 FROM dbo.Sales
 GROUP BY SalesPerson
) AS d
CROSS APPLY
(
 SELECT AVG(0E + Amount)
 FROM
 (
 SELECT z.Amount
 FROM dbo.Sales AS z
 WHERE z.SalesPerson = d.SalesPerson
 ORDER BY z.Amount
 OFFSET (d.y - 1) / 2 ROWS
 FETCH NEXT 2 - d.y % 2 ROWS ONLY
) AS f
) AS w (Median);

SELECT Peso = DATEDIFF(MILLISECOND, @s, SYSUTCDATETIME());

Only table- and page-level intent-shared (IS) locks are utilised, and performance increases to the same
level as when we use the PAGLOCK hint. You will not find this behaviour in the documentation of course,
and it could change at any time. Still, it is good to be aware of.

Also, in case you were wondering, trace flag 4138 has no effect on the storage engine's locking
granularity choice in this case because the estimated number of rows at the seek is too low (per apply
iteration) even with the row goal disabled.

Before drawing conclusions about the performance of a query, be sure to check the number and type of
locks it is taking during execution. Though SQL Server usually chooses the 'right' granularity, there are
times when it can get things wrong, sometimes with dramatic effects on performance.

Improving the Row Numbering Median Solution
By Paul White

The fastest way to compute a median uses the SQL Server 2012 OFFSET extension to the ORDER
BY clause. Running a close second, the next fastest solution uses a (possibly nested) dynamic cursor that
works on all versions. This article looks at a common pre-2012 ROW_NUMBER solution to the median
calculation problem to see why it performs less well, and what can be done to make it go faster.

Single Median Test

The sample data for this test consists of a single ten million row table (reproduced from Aaron
Bertrand's original article):

CREATE TABLE dbo.obj
(
 id integer NOT NULL IDENTITY(1,1),
 val integer NOT NULL
);

INSERT dbo.obj WITH (TABLOCKX)
 (val)
SELECT TOP (10000000)
 AO.[object_id]
FROM sys.all_columns AS AC
CROSS JOIN sys.all_objects AS AO
CROSS JOIN sys.all_objects AS AO2
WHERE AO.[object_id] > 0
ORDER BY
 AC.[object_id];

CREATE UNIQUE CLUSTERED INDEX cx
ON dbo.obj(val, id);

The OFFSET solution

To set the benchmark, here is the SQL Server 2012 (or later) OFFSET solution created by Peter Larsson:

DECLARE @Start datetime2 = SYSUTCDATETIME();

DECLARE @Count bigint = 10000000
--(
-- SELECT COUNT_BIG(*)
-- FROM dbo.obj AS O
--);

SELECT
 Median = AVG(1.0 * SQ1.val)
FROM
(

http://sqlperformance.com/2015/07/sql-plan/improving-row-numbering-median?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/07/sql-plan/improving-row-numbering-median?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/07/t-sql-queries/calculating-the-median-with-a-dynamic-cursor?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2012/08/t-sql-queries/median?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

 SELECT O.val
 FROM dbo.obj AS O
 ORDER BY O.val
 OFFSET (@Count - 1) / 2 ROWS
 FETCH NEXT 1 + (1 - (@Count % 2)) ROWS ONLY
) AS SQ1;

SELECT Peso = DATEDIFF(MILLISECOND, @Start, SYSUTCDATETIME());

The query to count the rows in the table is commented out and replaced with a hard-coded value so as
to concentrate on the performance of the core code. With a warm cache and execution plan collection
turned off, this query runs for 910 ms on average on my test machine. The execution plan is shown
below:

As a side note, it is interesting that this moderately complex query qualifies for a trivial plan:

The ROW_NUMBER Solution

For systems running SQL Server 2008 R2 or earlier, the best-performing of the alterative solutions uses a
dynamic cursor as mentioned previously. If you are unable (or unwilling) to consider that as an option, it
is natural to think about emulating the 2012 OFFSET execution plan using ROW_NUMBER.

The basic idea is to number the rows in the appropriate order, then filter for just the one or two rows
needed to compute the median. There are several ways to write this in Transact SQL; a compact version
that captures all the key elements is as follows:

DECLARE @Start datetime2 = SYSUTCDATETIME();

DECLARE @Count bigint = 10000000
--(
-- SELECT COUNT_BIG(*)
-- FROM dbo.obj AS O
--);

SELECT AVG(1.0 * SQ1.val) FROM
(
 SELECT
 O.val,
 rn = ROW_NUMBER() OVER (
 ORDER BY O.val)
 FROM dbo.obj AS O
) AS SQ1
WHERE
 SQ1.rn BETWEEN (@Count + 1)/2 AND (@Count + 2)/2;

SELECT Pre2012 = DATEDIFF(MILLISECOND, @Start, SYSUTCDATETIME());

The resulting execution plan is quite similar to the OFFSET version:

It is worth looking at each of the plan operators in turn to understand them fully:

1. The Segment operator is redundant in this plan. It would be required if
the ROW_NUMBER ranking function had a PARTITION BY clause, but it does not. Even so, it
remains in the final plan.

2. The Sequence Project adds a calculated row number to the stream of rows.

3. The Compute Scalar defines an expression associated with the need to implicitly convert
the val column to numeric so it can be multiplied by the constant literal 1.0 in the query. This
computation is deferred until needed by a later operator (which happens to be the Stream
Aggregate). This runtime optimization means the implicit conversion is only performed for the
two rows processed by the Stream Aggregate, not the 5,000,001 rows indicated for the
Compute Scalar.

4. The Top operator is introduced by the query optimizer. It recognises that at most, only the
first (@Count + 2) / 2 rows are needed by the query. We could have added a TOP ... ORDER BYin
the subquery to make this explicit, but this optimization makes that largely unnecessary.

5. The Filter implements the condition in the WHERE clause, filtering out all but the two 'middle'
rows needed to compute the median (the introduced Top is also based on this condition).

6. The Stream Aggregate computes the SUM and COUNT of the two median rows.

http://sqlblog.com/blogs/paul_white/archive/2012/09/05/compute-scalars-expressions-and-execution-plan-performance.aspx
http://cdn.sqlperformance.com/wp-content/uploads/2015/07/image4.png

7. The final Compute Scalar computes the average from the sum and count.

Raw Performance

Compared with the OFFSET plan, we might expect that the additional Segment, Sequence Project, and
Filter operators are going to have some adverse effect on performance. It is worth taking a moment to
compare the estimated costs of the two plans:

The OFFSET plan has an estimated cost of 0.0036266 units, while the ROW_NUMBER plan is estimated
at 0.0036744 units. These are very small numbers, and there is little difference between the two.

So, it is perhaps surprising that the ROW_NUMBER query actually runs for 4000 ms on average,
compared with 910 ms average for the OFFSET solution. Some of this increase can surely be explained
by the overhead of the extra plan operators, but a factor of four seems excessive. There must be more
to it.

You have probably also noticed that the cardinality estimates for both estimated plans above are pretty
hopelessly wrong. This is due to the effect of the Top operators, which have an expression referencing a
variable as their row count limits. The query optimizer cannot see the contents of variables at
compilation time, so it resorts to its default guess of 100 rows. Both plans actually encounter 5,000,001
rows at runtime.

This is all very interesting, but it does not directly explain why the ROW_NUMBER query is more than
four times slower than the OFFSET version. After all, the 100 row cardinality estimate is just as wrong in
both cases.

Improving the performance of the ROW_NUMBER solution

In my previous article, we saw how the performance of the grouped median OFFSET test could be
almost doubled by simply adding a PAGLOCK hint. This hint overrides the storage engine's normal
decision to acquire and release shared locks at the row granularity (due to the low expected cardinality).

As a further reminder, the PAGLOCK hint was unnecessary in the single median OFFSET test due to a
separate internal optimization that can skip row level shared locks, resulting in only a small number of
intent-shared locks being taken at the page level.

We might expect the ROW_NUMBER single median solution to benefit from the same internal
optimization, but it does not. Monitoring locking activity while the ROW_NUMBER query executes, we
see over half a million individual row level shared locks being taken and released.

http://sqlblog.com/blogs/paul_white/archive/2010/11/01/read-committed-shared-locks-and-rollbacks.aspx

This is the problem with undocumented internal optimizations: we can never be sure when they will and
will not be applied.

So, now we know what the problem is, we can improve the locking performance in the same way we did
previously: either with a PAGLOCK lock granularity hint, or by increasing the cardinality estimate
using documented trace flag 4138.

Disabling the "row goal" using the trace flag is the less satisfactory solution for several reasons. First, it is
only effective in SQL Server 2008 R2 or later. We would most likely prefer the OFFSETsolution in SQL
Server 2012, so this effectively limits the trace flag fix to SQL Server 2008 R2 only. Second, applying the
trace flag requires administrator-level permissions, unless applied via a plan guide. A third reason is that
disabling row goals for the whole query may have other undesirable effects, especially in more complex
plans.

By contrast, the PAGLOCK hint is effective, available in all versions of SQL Server without any special
permissions, and does not have any major side effects beyond locking granularity.

Applying the PAGLOCK hint to the ROW_NUMBER query increases performance dramatically: from 4000
ms to 1500 ms:

DECLARE @Start datetime2 = SYSUTCDATETIME();

DECLARE @Count bigint = 10000000
--(
-- SELECT COUNT_BIG(*)
-- FROM dbo.obj AS O
--);

SELECT AVG(1.0 * SQ1.val) FROM
(
 SELECT
 O.val,
 rn = ROW_NUMBER() OVER (
 ORDER BY O.val)
 FROM dbo.obj AS O WITH (PAGLOCK) -- New!
) AS SQ1
WHERE
 SQ1.rn BETWEEN (@Count + 1)/2 AND (@Count + 2)/2;

SELECT Pre2012 = DATEDIFF(MILLISECOND, @Start, SYSUTCDATETIME());

The 1500 ms result is still significantly slower than the 910 ms for the OFFSET solution, but at least it is
now in the same ballpark. The remaining performance differential is simply due to the extra work in the
execution plan:

https://support.microsoft.com/en-us/kb/2667211

In the OFFSET plan, five million rows are processed as far as the Top (with the expressions defined at the
Compute Scalar deferred as discussed earlier). In the ROW_NUMBER plan, the same number of rows
have to be processed by the Segment, Sequence Project, Top, and Filter.

Improving the Top / Top Descending Median Solution
By Paul White

Back in January 2015, my good friend and fellow SQL Server MVP Rob Farley wrote about a novel
solution to the problem of finding the median in SQL Server versions prior to 2012. As well as being an
interesting read by itself, it turns out to be a great example to use to demonstrate some advanced
execution plan analysis, and to highlight some subtle behaviours of the query optimizer and execution
engine.

Single Median

Although Rob's article specifically targets a grouped median calculation, I am going to start by applying
his method to a large single median calculation problem, because it highlights the important issues most
clearly. The sample data will once again come from Aaron Bertrand's original article:

CREATE TABLE dbo.obj
(
 id integer NOT NULL IDENTITY(1,1),
 val integer NOT NULL
);

INSERT dbo.obj WITH (TABLOCKX)
 (val)
SELECT TOP (10000000)
 AO.[object_id]
FROM sys.all_columns AS AC
CROSS JOIN sys.all_objects AS AO
CROSS JOIN sys.all_objects AS AO2
WHERE AO.[object_id] > 0
ORDER BY
 AC.[object_id];

CREATE UNIQUE CLUSTERED INDEX cx
ON dbo.obj(val, id);

Applying Rob Farley's technique to this problem gives the following code:

-- 5800ms
DECLARE @Start datetime2 = SYSUTCDATETIME();
DECLARE @Count bigint = 10000000
--(
-- SELECT COUNT_BIG(*)
-- FROM dbo.obj AS O
--);

SELECT
 Median = AVG(0E + f.val)
FROM
(

http://sqlperformance.com/2015/08/sql-plan/improving-the-top-top-descending-median-solution?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/08/sql-plan/improving-the-top-top-descending-median-solution?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlblog.com/blogs/rob_farley/archive/2015/01/27/medians-pre-sql-2012.aspx
http://sqlblog.com/blogs/rob_farley/archive/2015/01/27/medians-pre-sql-2012.aspx
http://sqlperformance.com/2012/08/t-sql-queries/median?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

 SELECT TOP (2 - @Count % 2)
 t.val
 FROM
 (
 SELECT TOP (@Count / 2 + 1)
 z.val
 FROM dbo.obj AS z
 ORDER BY
 z.val ASC
) AS t
 ORDER BY
 t.val DESC
) AS f;

SELECT RF = DATEDIFF(MILLISECOND, @Start, SYSUTCDATETIME());

As usual, I have commented out counting the number of rows in the table and replaced it with a
constant to avoid a source of performance variance. The execution plan for the important query is as
follows:

This query runs for 5800ms on my test machine.

The Sort Spill

The primary cause of this poor performance should be clear from looking at the execution plan above:
The warning on the Sort operator shows that an insufficient workspace memory grant caused a level 2
(multi-pass) spill to physical tempdb disk:

In versions of SQL Server before 2012, you would need to be separately monitoring for sort spill events
to see this. Anyway, the insufficient sort memory reservation is caused by a cardinality estimation error,
as the pre-execution (estimated) plan shows:

The 100-row cardinality estimate at the Sort input is a (wildly inaccurate) guess by the optimizer, due to
the local variable expression in the preceding Top operator:

Note that this cardinality estimation error is not a row-goal problem. Applying trace flag 4138 will
remove the row-goal effect below the first Top, but the post-Top estimate will still be a 100-row guess
(so the memory reservation for the Sort will still be far too small):

Hinting the value of the local variable

There are several ways we could resolve this cardinality estimation problem. One option is to use a hint
to provide the optimizer with information about the value held in the variable:

-- 3250ms
DECLARE @Start datetime2 = SYSUTCDATETIME();
DECLARE @Count bigint = 10000000
--(
-- SELECT COUNT_BIG(*)
-- FROM dbo.obj AS O
--);

SELECT
 Median = AVG(0E + f.val)
FROM
(
 SELECT TOP (2 - @Count % 2)
 t.val
 FROM
 (

http://blogs.msdn.com/b/queryoptteam/archive/2006/03/30/564912.aspx
https://support.microsoft.com/en-us/kb/2667211

 SELECT TOP (@Count / 2 + 1)
 z.val
 FROM dbo.obj AS z
 ORDER BY
 z.val ASC
) AS t
 ORDER BY
 t.val DESC
) AS f
OPTION (MAXDOP 1, OPTIMIZE FOR (@Count = 11000000)); -- NEW!

SELECT RF = DATEDIFF(MILLISECOND, @Start, SYSUTCDATETIME());

Using the hint improves performance to 3250ms from 5800ms. The post-execution plan shows that the
sort no longer spills:

There are a couple of downsides to this though. First, this new execution plan requires
a 388MB memory grant – memory which could otherwise be used by the server to cache plans, indexes,
and data:

Second, it can be difficult to choose a good number for the hint that will work well for all future
executions, without reserving memory unnecessarily.

Notice also that we had to hint a value for the variable that is 10% higher than the actual value of the
variable to eliminate the spill completely. This is not uncommon, because the general sorting algorithm
is rather more complex than a simple in-place sort. Reserving memory equal to the size of the set to be
sorted will not always (or even generally) be enough to avoid a spill at runtime.

Embedding and Recompiling

Another option is to take advantage of the Parameter Embedding Optimization enabled by adding a
query-level recompilation hint on SQL Server 2008 SP1 CU5 or later. This action will allow the optimizer
to see the runtime value of the variable, and optimize accordingly:

-- 3150ms
DECLARE @Start datetime2 = SYSUTCDATETIME();
DECLARE @Count bigint = 10000000
--(
-- SELECT COUNT_BIG(*)
-- FROM dbo.obj AS O
--);

SELECT
 Median = AVG(0E + f.val)
FROM
(
 SELECT TOP (2 - @Count % 2)
 t.val
 FROM
 (
 SELECT TOP (@Count / 2 + 1)
 z.val
 FROM dbo.obj AS z
 ORDER BY
 z.val ASC
) AS t
 ORDER BY
 t.val DESC
) AS f
OPTION (MAXDOP 1, RECOMPILE);

SELECT RF = DATEDIFF(MILLISECOND, @Start, SYSUTCDATETIME());

This improves execution time to 3150ms – 100ms better than using the OPTIMIZE FOR hint. The reason
for this further small improvement can be discerned from the new post-execution plan:

The expression (2 – @Count % 2) – as seen previously in the second Top operator – can now be folded
down to a single known value. A post-optimization rewrite can then combine the Top with the Sort,
resulting in a single Top N Sort. This rewrite was not previously possible because collapsing Top + Sort
into a Top N Sort only works with a constant literal Top value (not variables or parameters).

Replacing the Top and Sort with a Top N Sort has a small beneficial effect on performance (100ms here),
but it also almost entirely eliminates the memory requirement, because a Top N Sort only has to keep
track of the N highest (or lowest) rows, rather than the whole set. As a result of this change in algorithm,

http://sqlperformance.com/2013/08/t-sql-queries/parameter-sniffing-embedding-and-the-recompile-options?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

the post-execution plan for this query shows that the minimum 1MB memory was reserved for the Top
N Sort in this plan, and only 16KB was used at runtime (remember, the full-sort plan required 388MB):

Avoiding Recompilation

The (obvious) drawback of using the recompile query hint is that it requires a full compilation on every
execution. In this case, the overhead is pretty small – around 1ms of CPU time and 272KB of memory.
Even so, there is a way to tweak the query such that we get the benefits of a Top N Sort without using
any hints, and without recompiling.

The idea comes from recognising that a maximum of two rows will be required for the final median
calculation. It might be one row, or it might be two at runtime, but it can never be more. This insight
means we can add a logically-redundant Top (2) intermediate step to the query as follows:

-- 3150ms
DECLARE @Start datetime2 = SYSUTCDATETIME();
DECLARE @Count bigint = 10000000
--(
-- SELECT COUNT_BIG(*)
-- FROM dbo.obj AS O
--);

SELECT
 Median = AVG(0E + f.val)
FROM
(
 SELECT TOP (2 - @Count % 2)
 t.val
 FROM
 (
 SELECT TOP (2) -- NEW!
 z.val
 FROM
 (

 SELECT TOP (@Count / 2 + 1)
 z.val
 FROM dbo.obj AS z
 ORDER BY
 z.val ASC
) AS z
 ORDER BY z.val DESC
) AS t
 ORDER BY
 t.val DESC
) AS f
OPTION (MAXDOP 1);

SELECT RF = DATEDIFF(MILLISECOND, @Start, SYSUTCDATETIME());

The new Top (with the all-important constant literal) means the final execution plan features the desired
Top N Sort operator without recompiling:

The performance of this execution plan is unchanged from the recompile-hinted version at 3150ms and
the memory requirement is the same. Note though that the lack of parameter embedding means the
cardinality estimates below the sort are 100-row guesses (though that does not affect performance
here).

The main takeaway at this stage is that if you want a low-memory Top N Sort, you have to use a
constant literal, or enable the optimizer to see a literal via the parameter embedding optimization.

The Compute Scalar

Eliminating the 388MB memory grant (while also making a 100ms performance improvement) is
certainly worthwhile, but there is a much bigger performance win available. The unlikely target of this
final improvement is the Compute Scalar just above the Clustered Index Scan.

This Compute Scalar relates to the expression (0E + f.val) contained in the AVG aggregate in the query. In
case that looks weird to you, this is a fairly common query-writing trick (like multiplying by 1.0) to avoid
integer arithmetic in the average calculation, but it has some very important side-effects.

There is a particular sequence of events here that we need to follow step by step.

First, notice that 0E is a constant literal zero, with a float data type. In order to add this to the integer
column val, the query processor must convert the column from integer to float (in accordance with
the data type precedence rules). A similar sort of conversion would be necessary had we chosen to

https://msdn.microsoft.com/en-nz/library/ms190309.aspx

multiply the column by 1.0 (a literal with an implicit numeric data type). The important point is that this
routine trick introduces an expression.

Now, SQL Server generally tries to push expressions down the plan tree as far as possible during
compilation and optimization. This is done for several reasons, including to make matching expressions
with computed columns easier, and to facilitate simplifications using constraint information. This push-
down policy explains why the Compute Scalar appears much closer to the leaf level of the plan than the
original textual position of the expression in the query would suggest.

A risk of performing this push-down is that the expression might end up being computed more times
than necessary. Most plans feature a reducing row count as we move up the plan tree, due to the effect
of joins, aggregation, and filters. Pushing expressions down the tree therefore risks evaluating those
expressions more times (i.e. on more rows) than necessary.

To mitigate this, SQL Server 2005 introduced an optimization whereby Compute Scalars may
simply define an expression, with the work of actually evaluating the expression deferred until a later
operator in the plan requires the result. When this optimization works as intended, the effect is to gain
all the benefits of pushing expressions down the tree, while still only actually evaluating the expression
as many times as actually needed.

What all this Compute Scalar stuff means

In our running example, the 0E + val expression was originally associated with the AVG aggregate, so we
might expect to see it at (or slightly after) the Stream Aggregate. However, this expression was pushed
down the tree to become a new Compute Scalar just after the scan, with the expression labelled as
[Expr1004].

Looking at the execution plan, we can see that [Expr1004] is referenced by the Stream Aggregate (Plan
Explorer Expressions Tab extract shown below):

All things being equal, evaluation of expression [Expr1004] would be deferred until the aggregate needs
those values for the sum part of the average calculation. Since the aggregate can only ever possibly
encounter one or two rows, this should result in [Expr1004] being evaluated only once or twice:

Unfortunately, this is not quite how it works out here. The problem is the blocking Sort operator:

This forces evaluation of [Expr1004], so instead of it being evaluated just once or twice at the Stream
Aggregate, the Sort means we end up converting the val column to a float and adding zero to
it5,000,001 times!

A workaround

Ideally, SQL Server would be a bit smarter about all this, but that is not how it works today. There is no
query hint to prevent expressions being pushed down the plan tree, and we cannot force Compute
Scalars with a Plan Guide either. There is, inevitably, an undocumented trace flag, but it is not one I can
responsibly talk about in the present context.

So, for better or worse, this leaves us with trying to find a query rewrite that happens to prevent SQL
Server separating the expression from the aggregate and pushing it down past the Sort, without
changing the result of the query. This is not as easy as you might think, but the (admittedly slightly odd-
looking) modification below achieves this using a CASE expression on a non-deterministic intrinsic
function:

-- 2150ms
DECLARE @Start datetime2 = SYSUTCDATETIME();
DECLARE @Count bigint = 10000000
--(
-- SELECT COUNT_BIG(*)
-- FROM dbo.obj AS O
--);

SELECT
 -- NEW!
 Median = AVG(CASE WHEN GETDATE() >= {D '1753-01-01'} THEN 0E + f.val END)
FROM
(
 SELECT TOP (2 - @Count % 2)
 t.val

 FROM
 (
 SELECT TOP (2)
 z.val
 FROM
 (
 SELECT TOP (@Count / 2 + 1)
 z.val
 FROM dbo.obj AS z
 ORDER BY
 z.val ASC
) AS z
 ORDER BY z.val DESC
) AS t
 ORDER BY
 t.val DESC
) AS f
OPTION (MAXDOP 1);

SELECT RF = DATEDIFF(MILLISECOND, @Start, SYSUTCDATETIME());

The execution plan for this final form of the query is shown below:

Notice that a Compute Scalar no longer appears between the Clustered Index Scan and the Top. The 0E
+ val expression is now computed at the Stream Aggregate on a maximum of two rows (rather than five
million!) and performance increases by a further 32% from 3150ms to 2150ms as a result.

This still does not compare that well with the sub-second performance of the OFFSET and dynamic
cursor median-calculation solutions, but it still represents a very significant improvement over the
original 5800ms for this method on a large single-median problem set.

The CASE trick is not guaranteed to work in future, of course. The takeaway is not so much about using
weird case expression tricks, as it is about the potential performance implications of Compute Scalars.
Once you know about this sort of thing, you might think twice before multiplying by 1.0 or adding float
zero inside an average calculation.

Update: please see the first comment for a nice workaround by Robert Heinig that does not require any
undocumented trickery. Something to bear in mind when you're next tempted to multiply an integer by
decimal (or float) one in an average aggregate.

Grouped Median

For completeness, and to tie this analysis more closely back to Rob's original article, we will finish up by
applying the same improvements to a grouped median calculation. The smaller set sizes (per group)
mean the effects will be smaller, of course.

http://sqlperformance.com/2015/07/t-sql-queries/calculating-the-median-with-a-dynamic-cursor?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

The grouped median sample data (again as originally created by Aaron Bertrand) comprises ten
thousand rows for each of one hundred imaginary sales people:

CREATE TABLE dbo.Sales
(
 SalesPerson integer NOT NULL,
 Amount integer NOT NULL
);

WITH X AS
(
 SELECT TOP (100)
 V.number
 FROM master.dbo.spt_values AS V
 GROUP BY
 V.number
)
INSERT dbo.Sales WITH (TABLOCKX)
(
 SalesPerson,
 Amount
)
SELECT
 X.number,
 ABS(CHECKSUM(NEWID())) % 99
FROM X
CROSS JOIN X AS X2
CROSS JOIN X AS X3;

CREATE CLUSTERED INDEX cx
ON dbo.Sales
 (SalesPerson, Amount);

Applying Rob Farley's solution directly gives the following code, which executes in 560ms on my
machine.

-- 560ms Original
DECLARE @s datetime2 = SYSUTCDATETIME();

SELECT
 d.SalesPerson,
 w.Median
FROM
(
 SELECT S.SalesPerson, COUNT_BIG(*) AS y
 FROM dbo.Sales AS S
 GROUP BY S.SalesPerson
) AS d
CROSS APPLY

http://sqlperformance.com/2014/02/t-sql-queries/grouped-median?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

(
 SELECT AVG(0E + f.Amount)
 FROM
 (
 SELECT TOP (2 - d.y % 2)
 t.Amount
 FROM
 (
 SELECT TOP (d.y / 2 + 1)
 z.Amount
 FROM dbo.Sales AS z
 WHERE z.SalesPerson = d.SalesPerson
 ORDER BY z.Amount ASC
) AS t
 ORDER BY t.Amount DESC
) AS f
) AS w (Median)
OPTION (MAXDOP 1);

SELECT DATEDIFF(MILLISECOND, @s, SYSUTCDATETIME());

The execution plan has obvious similarities to the single median:

Our first improvement is to replace the Sort with a Top N Sort, by adding an explicit Top (2). This
improves execution time slightly from 560ms to 550ms.

-- 550ms
DECLARE @s datetime2 = SYSUTCDATETIME();

SELECT
 d.SalesPerson,
 w.Median
FROM
(
 SELECT S.SalesPerson, COUNT_BIG(*) AS y
 FROM dbo.Sales AS S
 GROUP BY S.SalesPerson
) AS d
CROSS APPLY
(

 SELECT AVG(0E + f.Amount)
 FROM
 (
 SELECT TOP (2 - d.y % 2)
 q.Amount
 FROM
 (
 -- NEW!
 SELECT TOP (2) t.Amount
 FROM
 (
 SELECT TOP (d.y / 2 + 1)
 z.Amount
 FROM dbo.Sales AS z
 WHERE z.SalesPerson = d.SalesPerson
 ORDER BY z.Amount ASC
) AS t
 ORDER BY t.Amount DESC
) AS q
 ORDER BY q.Amount DESC
) AS f
) AS w (Median)
OPTION (MAXDOP 1);

SELECT DATEDIFF(MILLISECOND, @s, SYSUTCDATETIME());

The execution plan shows the Top N Sort as expected:

Finally, we deploy the odd-looking CASE expression to remove the pushed Compute Scalar expression.
This further improves performance to 450ms (a 20% improvement over the original):

-- 450ms
DECLARE @s datetime2 = SYSUTCDATETIME();

SELECT
 d.SalesPerson,
 w.Median
FROM
(
 SELECT S.SalesPerson, COUNT_BIG(*) AS y

 FROM dbo.Sales AS S
 GROUP BY S.SalesPerson
) AS d
CROSS APPLY
(
 -- NEW!
 SELECT AVG(CASE WHEN GETDATE() >= {D '1753-01-01'} THEN 0E + Amount END)
 FROM
 (
 SELECT TOP (2 - d.y % 2)
 q.Amount
 FROM
 (
 SELECT TOP (2) t.Amount
 FROM
 (
 SELECT TOP (d.y / 2 + 1)
 z.Amount
 FROM dbo.Sales AS z
 WHERE z.SalesPerson = d.SalesPerson
 ORDER BY z.Amount ASC
) AS t
 ORDER BY t.Amount DESC
) AS q
 ORDER BY q.Amount DESC
) AS f
) AS w (Median)
OPTION (MAXDOP 1);

SELECT DATEDIFF(MILLISECOND, @s, SYSUTCDATETIME());

The finished execution plan is as follows:

Hash Joins on Nullable Columns
By Paul White

This article explores some less well-known query optimizer features and limitations, and explains the
reasons for extremely poor hash join performance in a specific case.

Sample Data

The sample data creation script that follows relies on an existing table of numbers. If you do not have
one of these already, the script below can be used to create one efficiently. The resulting table will
contain a single integer column with numbers from one to one million:

WITH Ten(N) AS
(
 SELECT 1 UNION ALL SELECT 1 UNION ALL SELECT 1 UNION ALL
 SELECT 1 UNION ALL SELECT 1 UNION ALL SELECT 1 UNION ALL
 SELECT 1 UNION ALL SELECT 1 UNION ALL SELECT 1 UNION ALL SELECT 1
)
SELECT TOP (1000000)
 n = IDENTITY(int, 1, 1)
INTO dbo.Numbers
FROM Ten T10,
 Ten T100,
 Ten T1000,
 Ten T10000,
 Ten T100000,
 Ten T1000000;

ALTER TABLE dbo.Numbers
ADD CONSTRAINT PK_dbo_Numbers_n
PRIMARY KEY CLUSTERED (n)
WITH (SORT_IN_TEMPDB = ON, MAXDOP = 1, FILLFACTOR = 100);

The sample data itself consists of two tables, T1 and T2. Both have a sequential integer primary key
column named pk, and a second nullable column named c1. Table T1 has 600,000 rows where even-
numbered rows have the same value for c1 as the pk column, and odd-numbered rows are null. Table c2
has 32,000 rows where column c1 is NULL in every row. The following script creates and populates these
tables:

CREATE TABLE dbo.T1
(
 pk integer NOT NULL,
 c1 integer NULL,
 CONSTRAINT PK_dbo_T1
 PRIMARY KEY CLUSTERED (pk)
);

CREATE TABLE dbo.T2

http://sqlperformance.com/2015/11/sql-plan/hash-joins-on-nullable-columns?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/11/sql-plan/hash-joins-on-nullable-columns?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

(
 pk integer NOT NULL,
 c1 integer NULL,
 CONSTRAINT PK_dbo_T2
 PRIMARY KEY CLUSTERED (pk)
);

INSERT dbo.T1 WITH (TABLOCKX)
 (pk, c1)
SELECT
 N.n,
 CASE
 WHEN N.n % 2 = 1 THEN NULL
 ELSE N.n
 END
FROM dbo.Numbers AS N
WHERE
 N.n BETWEEN 1 AND 600000;

INSERT dbo.T2 WITH (TABLOCKX)
 (pk, c1)
SELECT
 N.n,
 NULL
FROM dbo.Numbers AS N
WHERE
 N.n BETWEEN 1 AND 32000;

UPDATE STATISTICS dbo.T1 WITH FULLSCAN;
UPDATE STATISTICS dbo.T2 WITH FULLSCAN;

The first ten rows of sample data in each table looks like this:

Joining the two tables

This first test involves joining the two tables on column c1 (not the pk column), and returning the pk
value from table T1 for rows that join:

SELECT T1.pk
FROM dbo.T1 AS T1
JOIN dbo.T2 AS T2
 ON T2.c1 = T1.c1;

The query will actually return no rows because column c1 is NULL in all rows of table T2, so no rows can
match the equality join predicate. This may sound like an odd thing to do, but I am assured it is based on
a real production query (greatly simplified for ease of discussion).

Note that this empty result does not depend on the setting of ANSI_NULLS, because that only controls
how comparisons with a null literal or variable are handled. For column comparisons, an equality
predicate always rejects nulls.

The execution plan for this simple join query has some interesting features. We will look first at the pre-
execution ('estimated') plan in SQL Sentry Plan Explorer:

The warning on the SELECT icon is just complaining about a missing index on table T1 for column c1
(with pk as an included column). The index suggestion is irrelevant here.

The first real item of interest in this plan is the Filter:

This IS NOT NULL predicate does not appear in the source query, though it is implied in the join
predicate as mentioned previously. It is interesting that it has been broken out as an explicit extra
operator, and placed before the join operation. Note that even without the Filter, the query would still
produce correct results – the join itself would still reject the nulls.

https://msdn.microsoft.com/en-nz/library/ms188048.aspx
http://www.sqlsentry.com/products/plan-explorer/sql-server-query-view?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

The Filter is curious for other reasons as well. It has an estimated cost of exactly zero (even though it is
expected to operate on 32,000 rows), and it has not been pushed down into the Clustered Index Scan as
a residual predicate. The optimizer is normally pretty keen to do this.

Both these things are explained by the fact this Filter is introduced in a post-optimization rewrite. After
the query optimizer completes its cost-based processing, there are a relatively small number of fixed
plan rewrites that are considered. One of these is responsible for introducing the Filter.

We can see the output of cost-based plan selection (before the rewrite) using undocumented trace flags
8607 and the familiar 3604 to direct textual output to the console (messages tab in SSMS):

The output tree shows a hash join, two scans, and some parallelism (exchange) operators. There is no
null-rejecting Filter on the c1 column of table T2.

The particular post-optimization rewrite looks exclusively at the build input of a hash join. Depending on
its assessment of the situation, it may add an explicit Filter to reject rows that are null in the join key.
The effect of the Filter on estimated row counts is also written into the execution plan, but because
cost-based optimization is already completed, a cost for the Filter is not computed. In case it is not
obvious, computing costs is a waste of effort if all cost-based decisions have already been made.

The Filter remains directly on the build input rather than being pushed down into the Clustered Index
Scan because main optimization activity has completed. The post-optimization rewrites are effectively
last-minute tweaks to a completed execution plan.

A second, and quite separate, post-optimization rewrite is responsible for the Bitmap operator in the
final plan (you may have noticed it was also missing from the 8607 output):

This operator also has a zero estimated cost for both I/O and CPU. The other thing that identifies it as an
operator introduced by a late tweak (rather than during cost-based optimization) is that its name is
Bitmap followed by a number. There are other types of bitmaps introduced during cost-based
optimization as we will see a bit later on.

For now, the important thing about this bitmap is that it records c1 values seen during the build phase
of the hash join. The completed bitmap is pushed to the probe side of the join when the hash transitions
from build phase to the probe phase. The bitmap is used to perform early semi-join reduction,
eliminating rows from the probe side that cannot possibly join. if you need more details on this, please
see my previous article on the subject.

The second effect of the bitmap can be seen on the probe-side Clustered Index Scan:

The screenshot above shows the completed bitmap being checked as part of the Clustered Index Scan
on table T1. Since the source column is an integer (a bigint would also work) the bitmap check is pushed
all the way into the storage engine (as indicated by the 'INROW' qualifier) rather than being checked by
the query processor. More generally, the bitmap may be applied to any operator on the probe side,

http://sqlblog.com/blogs/paul_white/archive/2011/07/07/bitmap-magic.aspx

from the exchange down. How far the query processor can push the bitmap depends on the type of the
column and the version of SQL Server.

To complete the analysis of the major features of this execution plan, we need to look at the post-
execution ('actual') plan:

The first thing to notice is the distribution of rows across threads between the T2 scan and the
Repartition Streams exchange immediately above it. On one test run, I saw the following distribution on
a system with four logical processors:

The distribution is not particularly even, as often the case for a parallel scan on a relatively small number
of rows, but at least all threads received some work. The thread distribution between the same
Repartition Streams exchange and the Filter is very different:

This shows that all 32,000 rows from table T2 were processed by a single thread. To see why, we need to
look at the exchange properties:

This exchange, like the one on the probe side of the hash join, needs to ensure that rows with the same
join key values end up at the same instance of the hash join. At DOP 4, there are four hash joins, each
with its own hash table. For correct results, build-side rows and probe-side rows with the same join keys

must arrive at the same hash join; otherwise we might check a probe-side row against the wrong hash
table.

In a row-mode parallel plan, SQL Server achieves this by repartitioning both inputs using the same hash
function on the join columns. In the present case, the join is on column c1, so the inputs are distributed
across threads by applying a hash function (partitioning type: hash) to the join key column (c1). The
issue here is that column c1 contains only a single value – null – in table T2, so all 32,000 rows are given
the same hash value, as so all end up on the same thread.

The good news is that none of this really matters for this query. The post-optimization rewrite Filter
eliminates all rows before very much work is done. On my laptop, the query above executes (producing
no results, as expected) in around 70ms.

Joining three tables

For the second test, we add an extra join from table T2 to itself on its primary key:

SELECT T1.pk
FROM dbo.T1 AS T1
JOIN dbo.T2 AS T2
 ON T2.c1 = T1.c1
JOIN dbo.T2 AS T3 -- New!
 ON T3.pk = T2.pk;

This does not change the logical results of the query, but it does change the execution plan:

As expected, the self-join of table T2 on its primary key has no effect on the number of rows that qualify
from that table:

The distribution of rows across threads is also good in this plan section. For the scans, it is similar to
before because the parallel scan distributes rows to threads on demand. The exchanges repartition
based on a hash of the join key, which is the pk column this time around. Given the range of different pk
values, the resulting thread distribution is also very even:

Turning to the more interesting section of the estimated plan, there are some differences from the two-
table test:

Once again, the build-side exchange ends up routing all rows to the same thread because c1 is the join
key, and hence the partitioning column for the Repartition Streams exchanges (remember, c1 is null for
all rows in table T2).

There are two other important differences in this section of the plan compared with the previous test.
First, there is no Filter to remove null-c1 rows from the build side of the hash join. The explanation for
that is tied to the second difference – the Bitmap has changed, though it is not obvious from the picture
above:

This is an Opt_Bitmap, not a Bitmap. The difference is that this bitmap was introduced during cost-based
optimization, not by a last-minute rewrite. The mechanism that considers optimized bitmaps is
associated with processing star-join queries. The star-join logic requires at least three joined tables, so
this explains why an optimized bitmap was not considered in the two-table join example.

This optimized bitmap has a non-zero estimated CPU cost, and directly affects the overall plan chosen by
the optimizer. Its effect on the probe-side cardinality estimate can be seen at the Repartition Streams
operator:

Note the cardinality effect is seen at the exchange, even though the bitmap is eventually pushed all the
way down into the storage engine ('INROW') just as we saw in the first test (but note the Opt_Bitmap
reference now):

The post-execution ('actual') plan is as follows:

The predicted effectiveness of the optimized bitmap means the separate post-optimization rewrite for
the null Filter is not applied. Personally, I think this is unfortunate because eliminating the nulls early
with a Filter would negate the need to build the bitmap, populate the hash tables, and perform the
bitmap-enhanced scan of table T1. Nevertheless, the optimizer decides otherwise and there is just no
arguing with it in this instance.

Despite the extra self-join of table T2, and the extra work associated with the missing Filter, this
execution plan still produces the expected result (no rows) in quick time. A typical execution on my
laptop takes around 200ms.

Changing the data type

For this third test, we will change the data type of column c1 in both tables from integer to decimal.
There is nothing particularly special about this choice; the same effect can be seen with any numeric
type that is not integer or bigint.

ALTER TABLE dbo.T1
ALTER COLUMN c1 decimal(9,0) NULL;

ALTER TABLE dbo.T2
ALTER COLUMN c1 decimal(9,0) NULL;

ALTER INDEX PK_dbo_T1 ON dbo.T1
REBUILD WITH (MAXDOP = 1);

ALTER INDEX PK_dbo_T2 ON dbo.T2
REBUILD WITH (MAXDOP = 1);

UPDATE STATISTICS dbo.T1 WITH FULLSCAN;
UPDATE STATISTICS dbo.T2 WITH FULLSCAN;

Reusing the three-join join query:

SELECT T1.pk
FROM dbo.T1 AS T1
JOIN dbo.T2 AS T2
 ON T2.c1 = T1.c1
JOIN dbo.T2 AS T3
 ON T3.pk = T2.pk;

The estimated execution plan looks very familiar:

Aside from the fact that the optimized bitmap can no longer be applied 'INROW' by the storage engine
due to the change of data type, the execution plan is essentially identical. The capture below shows the
change in scan properties:

Unfortunately, performance is rather dramatically affected. This query executes not in 70ms or 200ms,
but in around 20 minutes. In the test that produced the following post-execution plan, the runtime was
actually 22 minutes and 29 seconds:

The most obvious difference is that the Clustered Index Scan on table T1 returns 300,000 rows even
after the optimized bitmap filter is applied. This makes some sense, since the bitmap is built on rows
that contain only nulls in the c1 column. The bitmap removes non-null rows from the T1 scan, leaving
just the 300,000 rows with null values for c1. Remember, half the rows in T1 are null.

Even so, it seems strange that joining 32,000 rows with 300,000 rows should take over 20 minutes. In
case you were wondering, one CPU core was pegged at 100% for the entire execution. The explanation
for this poor performance and extreme resource usage builds on some ideas we explored earlier:

We already know, for example, that despite the parallel execution icons, all rows from T2 end up on the
same thread. As a reminder, the row-mode parallel hash join requires repartitioning on the join columns
(c1). All rows from T2 have the same value – null – in column c1, so all rows end up on the same thread.
Similarly, all rows from T1 that pass the bitmap filter also have null in column c1, so they also repartition
to the same thread. This explains why a single core does all the work.

It might still seem unreasonable that hash joining 32,000 rows with 300,000 rows should take 20
minutes, especially since the join columns on both sides are null, and will not join anyway. To
understand this, we need to think about how this hash join works.

The build input (the 32,000 rows) creates a hash table using the join column, c1. Since every build-side
row contains the same value (null) for join column c1, this means all 32,000 rows end up in the same
hash bucket. When the hash join switches to probing for matches, each probe-side row with a null c1

column also hashes to the same bucket. The hash join must then check all 32,000 entries in that bucket
for a match.

Checking the 300,000 probe rows results in 32,000 comparisons being made 300,000 times. This is the
worst case for a hash join: All build side rows hash to the same bucket, resulting in what is essentially a
Cartesian product. This explains the long execution time and constant 100% processor utilization as the
hash follows the long hash bucket chain.

This poor performance helps explain why the post-optimization rewrite to eliminate nulls on the build
input to a hash join exists. It is unfortunate that the Filter was not applied in this case.

Workarounds

The optimizer chooses this plan shape because it incorrectly estimates that the optimized bitmap will
filter out all the rows from table T1. Though this estimate is shown at the Repartition Streams instead of
the Clustered Index Scan, this is still the basis of the decision. As a reminder here is the relevant section
of the pre-execution plan again:

If this were a correct estimate, it would take no time at all to process the hash join. It is unfortunate that
the selectivity estimate for the optimized bitmap is so very wrong when the data type is not a simple
integer or bigint. It seems a bitmap built on an integer or bigint key is also able to filter out null rows
that cannot join. If this is indeed the case, this is a major reason to prefer integer or bigint join columns.

The workarounds that follow are largely based on the idea of eliminating the problematic optimized
bitmaps.

Serial Execution

One way to prevent optimized bitmaps being considered is to require a non-parallel plan. Row-mode
Bitmap operators (optimized or otherwise) are only seen in parallel plans:

SELECT T1.pk
FROM
(
 dbo.T2 AS T2
 JOIN dbo.T2 AS T3
 ON T3.pk = T2.pk
)

JOIN dbo.T1 AS T1
 ON T1.c1 = T2.c1
OPTION (MAXDOP 1, FORCE ORDER);

That query is expressed using slightly different syntax with a FORCE ORDER hint to generate a plan shape
that is more easily comparable with the previous parallel plans. The essential feature is the MAXDOP 1
hint.

That estimated plan shows the post-optimization rewrite Filter being reinstated:

The post-execution version of the plan shows that it filters out all rows from the build input, meaning
the probe side scan can be skipped altogether:

As you would expect, this version of the query executes very quickly – about 20ms on average for me.
We can achieve a similar effect without the FORCE ORDER hint and query rewrite:

SELECT T1.pk
FROM dbo.T1 AS T1
JOIN dbo.T2 AS T2
 ON T2.c1 = T1.c1
JOIN dbo.T2 AS T3
 ON T3.pk = T2.pk
OPTION (MAXDOP 1);

The optimizer chooses a different plan shape in this case, with the Filter placed directly above the scan
of T2:

This executes even faster – in about 10ms – as one would expect. Naturally, this would not be a good
choice if the number of rows present (and joinable) were much larger.

Turning Off Optimized Bitmaps

There is no query hint to turn off optimized bitmaps, but we can achieve the same effect using a couple
of undocumented trace flags. As always, this is just for interest value; you would not want to ever use
these in a real system or application:

SELECT T1.pk
FROM dbo.T1 AS T1
JOIN dbo.T2 AS T2
 ON T2.c1 = T1.c1
JOIN dbo.T2 AS T3
 ON T3.pk = T2.pk
OPTION (QUERYTRACEON 7497, QUERYTRACEON 7498);

The resulting execution plan is:

The Bitmap there is a post-optimization rewrite bitmap, not an optimized bitmap:

Note the zero cost estimates and Bitmap name (rather than Opt_Bitmap). without an optimized bitmap
to skew the cost estimates, the post-optimization rewrite to include a null-rejecting Filter is activated.
This execution plan runs in about 70ms.

The same execution plan (with Filter and non-optimized Bitmap) can also be produced by disabling the
optimizer rule responsible for generating star join bitmap plans (again, strictly undocumented and not
for real-world use):

SELECT T1.pk
FROM dbo.T1 AS T1
JOIN dbo.T2 AS T2
 ON T2.c1 = T1.c1
JOIN dbo.T2 AS T3
 ON T3.pk = T2.pk
OPTION (QUERYRULEOFF StarJoinToHashJoinsWithBitmap);

Including an explicit filter

This is the simplest option, but one would only think to do it if aware of the issues discussed so far. Now
that we know we need to eliminate nulls from T2.c1, we can add this to the query directly:

SELECT T1.pk
FROM dbo.T1 AS T1
JOIN dbo.T2 AS T2

 ON T2.c1 = T1.c1
JOIN dbo.T2 AS T3
 ON T3.pk = T2.pk
WHERE
 T2.c1 IS NOT NULL; -- New!

The resulting estimated execution plan is perhaps not quite what you might be expecting:

The extra predicate we added has been pushed into the middle Clustered Index Scan of T2:

The post-execution plan is:

Notice that the Merge Join shuts down after reading one row from its top input, then failing to find a
row on its lower input, due to the effect of the predicate we added. The Clustered Index Scan of table T1
is never executed at all, because the Nested Loops join never gets a row on its driving input. This final
query form executes in one or two milliseconds.

Final thoughts

This article has covered a fair amount of ground to explore some less well-known query optimizer
behaviours, and explain the reasons for extremely poor hash join performance in a specific case.

It might be tempting to ask why the optimizer does not routinely add null-rejecting filters prior to
equality joins. One can only suppose that this would not be beneficial in enough common cases. Most
joins are not expected to encounter many null = null rejections, and adding predicates routinely could
quickly become counter-productive, particularly if many join columns are present. For most joins,
rejecting nulls inside the join operator is probably a better option (from a cost model perspective) than
introducing an explicit Filter.

It does seem that there is an effort to prevent the very worst cases from manifesting through the post-
optimization rewrite designed to reject null join rows before they reach the build input of a hash join. It
seems that an unfortunate interaction exists between the effect of optimized bitmap filters and the
application of this rewrite. It is also unfortunate that when this performance problem does occur, it is
very difficult to diagnose from the execution plan alone.

For now, the best option seems to be aware of this potential performance issue with hash joins on
nullable columns, and to add explicit null-rejecting predicates (with a comment!) to ensure an efficient
execution plan is produced, if necessary. Using a MAXDOP 1 hint may also reveal an alternative plan
with the tell-tale Filter present.

As a general rule, queries that join on integer type columns and go looking for data that exists tend to fit
the optimizer model and execution engine capabilities rather better than the alternatives.

Acknowledgements

I want to thank SQL_Sasquatch (@sqL_handLe) for his permission to respond to his original article with a
technical analysis. The sample data used here is heavily based on that article.

I also want to thank Rob Farley (blog | twitter) for our technical discussions over the years, and
especially one in January 2015 where we discussed the implications of extra null-rejecting predicates for
equi-joins. Rob has written about related topics several times, including in Inverse Predicates – look both
ways before you cross.

https://twitter.com/sqL_handLe
http://sql-sasquatch.blogspot.co.nz/2015/10/sql-server-hash-joins-on-nullable.html
http://sqlblog.com/blogs/rob_farley/
https://twitter.com/rob_farley
http://sqlblog.com/blogs/rob_farley/archive/2010/11/09/inverse-predicates-look-both-ways-before-you-cross.aspx
http://sqlblog.com/blogs/rob_farley/archive/2010/11/09/inverse-predicates-look-both-ways-before-you-cross.aspx

More showplan improvements? Yes, please!
By Aaron Bertrand

Since it seems like Microsoft is in an investing mood, given their recent addition of Actual Rows Read
(see this post from Kendra Little for more details), I thought I would point out a few other
enhancements I think would be great ideas for improving the lives of query tuners.

The first is one I posted just the other day, asking for the XML to reveal the interpreted data type of a
parameter (whether it comes from a variable, input parameter, or literal):

• Connect #2088233 : Please add parameter data types to showplan

Another is the following from Hugo Kornelis, who asks for more accurate row counts on loop join
operators (background in Connect #491342). Paul White and Erland Sommarskog agree:

• Connect #743480 : Remove inconsistency in actual vs estimated rows in execution plans

Speaking of Paul White, he recommends that unique filtered indexes should actually be recognized by
the optimizer as unique; currently, suboptimal plans can be produced (but this was brushed away with
no comment):

• Connect #782213 : Recognize unique filtered indexes as unique

And Paul also recommends distinction in the plan when a GROUP BY has been simplified away (also
closed as won't fix, without much further information at all):

• Connect #730458 : Enhance Show Plan to Distinguish Scalar & Vector Aggregates

(Paul also has four active bugs that you should read up on, IMHO.)

Finally, Adam Machanic complains about a pervasive issue where clicking on showplan XML in
Management Studio yields raw XML instead of the graphical plan:

• Connect #652855 : Valid showplan XML fails to automatically produce graphical showplan

I'm sure you have other ideas for showplan improvements, including Connect items I missed here. But I
hope you can find the time to read, understand, and vote and comment on these issues – while it may
not feel like it, doing so is worthwhile, even if the item is currently closed.

http://sqlperformance.com/2015/12/sql-plan/more-showplan-improvements?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/12/sql-plan/more-showplan-improvements?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://www.littlekendra.com/2015/12/03/actual-number-of-rows-read-in-sql-server-execution-plans/
https://connect.microsoft.com/SQLServer/Feedback/Details/2088233
https://connect.microsoft.com/SQLServer/feedback/details/491342/sql-server-2008-bad-rowcount-estimate-leads-to-bad-query-plan
https://connect.microsoft.com/SQLServer/Feedback/Details/743480
https://connect.microsoft.com/SQLServer/feedback/details/782213/recognize-unique-filtered-indexes-as-unique
https://connect.microsoft.com/SQLServer/feedback/details/730458/enhance-show-plan-to-distinguish-scalar-vector-aggregates
https://connect.microsoft.com/SQLServer/SearchResults.aspx?FeedbackType=0&Status=1&Scope=0&UserHandle=Paul%20White%20NZ&SortOrder=5&TabView=0
https://connect.microsoft.com/SQLServer/Feedback/Details/652855

Optimizing Update Queries
By Paul White

This article uses a simple query to explore some deep internals concerning update queries.

Sample Data and Configuration

The sample data creation script below requires a table of numbers. If you do not have one of these
already, the script below can be used to create one efficiently. The resulting numbers table will contain a
single integer column with numbers from one to one million:

WITH Ten(N) AS
(
 SELECT 1 UNION ALL SELECT 1 UNION ALL SELECT 1 UNION ALL
 SELECT 1 UNION ALL SELECT 1 UNION ALL SELECT 1 UNION ALL
 SELECT 1 UNION ALL SELECT 1 UNION ALL SELECT 1 UNION ALL SELECT 1
)
SELECT TOP (1000000)
 n = IDENTITY(int, 1, 1)
INTO dbo.Numbers
FROM Ten T10,
 Ten T100,
 Ten T1000,
 Ten T10000,
 Ten T100000,
 Ten T1000000;

ALTER TABLE dbo.Numbers
ADD CONSTRAINT PK_dbo_Numbers_n
PRIMARY KEY CLUSTERED (n)
WITH (SORT_IN_TEMPDB = ON, MAXDOP = 1, FILLFACTOR = 100);

The script below creates a clustered sample data table with 10,000 IDs, with about 100 different start
dates per ID. The end date column is initially set to the fixed value '99991231'.

CREATE TABLE dbo.Example
(
 SomeID integer NOT NULL,
 StartDate date NOT NULL,
 EndDate date NOT NULL
);
GO
INSERT dbo.Example WITH (TABLOCKX)
 (SomeID, StartDate, EndDate)
SELECT DISTINCT
 1 + (N.n % 10000),
 DATEADD(DAY, 50000 * RAND(CHECKSUM(NEWID())), '20010101'),
 CONVERT(date, '99991231', 112)
FROM dbo.Numbers AS N

http://sqlperformance.com/2015/12/sql-plan/optimizing-update-queries?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/12/sql-plan/optimizing-update-queries?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

WHERE
 N.n >= 1
 AND N.n <= 1000000
OPTION (MAXDOP 1);

CREATE CLUSTERED INDEX
 CX_Example_SomeID_StartDate
ON dbo.Example
 (SomeID, StartDate)
WITH (MAXDOP = 1, SORT_IN_TEMPDB = ON);

While the points made in this article apply pretty generally to all current versions of SQL Server, the
configuration information below can be used to ensure you see similar execution plans and performance
effects:

• SQL Server 2012 Service Pack 3 x64 Developer Edition

• Max server memory set to 2048 MB

• Four logical processors available to the instance

• No trace flags enabled

• Default read committed isolation level

• RCSI and SI database options disabled

Hash Aggregate Spills

If you run the data creation script above with actual execution plans enabled, the hash aggregate may
spill to tempdb, generating a warning icon:

When executed on SQL Server 2012 Service Pack 3, additional information about the spill is shown in the
tooltip:

This spill might be surprising, given that the input row estimates for the Hash Match are exactly correct:

https://support.microsoft.com/en-us/kb/3107400
http://cdn.sqlperformance.com/wp-content/uploads/2015/12/image.png

We are used to comparing estimates on the input for sorts and hash joins (build input only), but eager
hash aggregates are different. A hash aggregate works by accumulating grouped result rows in the hash
table, so it is the number of output rows that is important:

The cardinality estimator in SQL Server 2012 makes a rather poor guess at the number of distinct values
expected (1,000 versus 999,034 actual); the hash aggregate spills recursively to level 4 at runtime as a
consequence. The 'new' cardinality estimator available in SQL Server 2014 onward happens to produce a
more accurate estimation for the hash output in this query, so you will not see a hash spill in that case:

The number of Actual Rows may be slightly different for you, given the use of a pseudo-random number
generator in the script. The important point is that Hash Aggregate spills depend on the number of
unique values output, not on the input size.

The Update Specification

The task at hand is to update the example data such that the end dates are set to the day before the
following start date (per SomeID). For example, the first few rows of the sample data might look like this
before the update (all end dates set to 9999-12-31):

Then like this after the update:

1. Baseline Update Query

One reasonably natural way to express the required update in T-SQL is as follows:

UPDATE dbo.Example WITH (TABLOCKX)
SET EndDate =
 ISNULL
 (
 (
 SELECT TOP (1)
 DATEADD(DAY, -1, E2.StartDate)
 FROM dbo.Example AS E2 WITH (TABLOCK)
 WHERE
 E2.SomeID = dbo.Example.SomeID
 AND E2.StartDate > dbo.Example.StartDate
 ORDER BY
 E2.StartDate ASC
),
 CONVERT(date, '99991231', 112)
)
OPTION (MAXDOP 1);

The post-execution (actual) execution plan is:

The most notable feature is the use of an Eager Table Spool to provide Halloween Protection. This is
required for correct operation here due to the self-join of the update target table. The effect is that
everything to the right of the spool is run to completion, storing all the information needed to make
changes in a tempdb work table. Once the reading operation is completed, the contents of the work
table are replayed to apply the changes at the Clustered Index Update iterator.

http://sqlperformance.com/2013/02/t-sql-queries/halloween-problem-part-1?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2015/12/image7.png

Performance

To focus on the maximum performance potential of this execution plan, we can run the same update
query multiple times. Clearly, only the first run will result in any changes to the data, but this turns out
to be a minor consideration. If this bothers you, feel free to reset the end date column before each run
using the following code. The broad points I will be making do not depend on the number of data
changes actually made.

UPDATE dbo.Example WITH (TABLOCKX)
SET EndDate = CONVERT(date, '99991231', 112);

With execution plan collection disabled, all required pages in the buffer pool, and no resetting of the
end date values between runs, this query typically executes in around 5700ms on my laptop. The
statistics IO output is as follows: (read ahead reads and LOB counters were zero, and are omitted for
space reasons)

Table 'Example'. Scan count 999035, logical reads 6186219, physical reads 0
Table 'Worktable'. Scan count 1, logical reads 2895875, physical reads 0

The scan count represents the number of times a scanning operation was started. For the Example
table, this is 1 for the Clustered Index Scan, and 999,034 for each time the correlated Clustered Index
Seek is rebound. The work table used by the Eager Spool has a scanning operation started just once.

Logical Reads

The more interesting information in the IO output is the number of logical reads: over 6 million for the
Example table, and almost 3 million for the work table.

The Example table logical reads are mostly associated with the Seek and the Update. The Seek incurs 3
logical reads for each iteration: 1 each for the root, intermediate, and leaf levels of the index. The
Update likewise costs 3 reads each time a row is updated, as the engine navigates down the b-tree to
locate the target row. The Clustered Index Scan is responsible for only a few thousand reads, one
per page read.

The Spool work table is also structured internally as a b-tree, and counts multiple reads as the spool
locates the insert position while consuming its input. Perhaps counter-intuitively, the spool counts no
logical reads while it is being read to drive the Clustered Index Update. This is simply a consequence of
the implementation: a logical read is counted whenever the code executes the BPool::Getmethod.
Writing to the spool calls this method at each level of the index; reading from the spool follows a
different code path that does not call BPool::Get at all.

Notice also that the statistics IO output reports a single total for the Example table, despite the fact it is
accessed by three different iterators in the execution plan (the Scan, Seek, and Update). This latter fact
makes it hard to correlate logical reads to the iterator that caused them. I hope this limitation is
addressed in a future version of the product.

2. Update using Row Numbers

Another way to express the update query involves numbering the rows per ID and joining:

WITH Numbered AS
(
 SELECT
 E.SomeID,
 E.StartDate,
 E.EndDate,
 rn = ROW_NUMBER() OVER (
 PARTITION BY E.SomeID
 ORDER BY E.StartDate ASC)
 FROM dbo.Example AS E
)
UPDATE This WITH (TABLOCKX)
SET EndDate =
 ISNULL
 (
 DATEADD(DAY, -1, NextRow.StartDate),
 CONVERT(date, '99991231', 112)
)
FROM Numbered AS This
LEFT JOIN Numbered AS NextRow WITH (TABLOCK)
 ON NextRow.SomeID = This.SomeID
 AND NextRow.rn = This.rn + 1
OPTION (MAXDOP 1, MERGE JOIN);

The post-execution plan is as follows:

This query typically runs in 2950ms on my laptop, which compares favourably with the 5700ms (in the
same circumstances) seen for the original update statement. The statistics IO output is:

Table 'Example'. Scan count 2, logical reads 3001808, physical reads 0
Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0

This shows two scans started for the Example table (one for each Clustered Index Scan iterator). The
logical reads are again an aggregate over all iterators that access this table in the query plan. As before,
the lack of a breakdown makes it impossible to determine which iterator (of the two Scans and the
Update) was responsible for the 3 million reads.

http://cdn.sqlperformance.com/wp-content/uploads/2015/12/image8.png

Nevertheless, I can tell you that the Clustered Index Scans count only a few thousand logical reads each.
The vast majority of the logical reads are caused by the Clustered Index Update navigating down the
index b-tree to find the update position for each row it processes. You will have to take my word for it
for the moment; more explanation will be forthcoming shortly.

The Downsides

That is pretty much the end of the good news for this form of the query. It performs much better than
the original, but it is much less satisfactory for a number of other reasons. The main issue is caused by
an optimizer limitation, which means it does not recognise that the row numbering operation produces
a unique number for each row within a SomeID partition.

This simple fact leads to a number of undesirable consequences. For one thing, the merge join is
configured to run in many-to-many join mode. This is the reason for the (unused) work table in the
statistics IO (many-to-many merge requires a work table for duplicate join key rewinds). Expecting a
many-to-many join also means the cardinality estimate for the join output is hopelessly wrong:

As a consequence of that, the Sort requests far too much memory grant. The root node properties show
the Sort would have liked 812,752 KB of memory, though it was only granted 379,440 KB due to the
restricted max server memory setting (2048 MB). The sort actually used a maximum of 58,968 KB at
runtime:

Excessive memory grants steal memory away from other productive uses, and can lead to queries
waiting until memory becomes available. In many respects, excessive memory grants can be more of a
problem than underestimates.

The optimizer limitation also explains why a merge join hint was necessary on the query for best
performance. Without this hint, the optimizer incorrectly assesses that a hash join would be cheaper
than the many-to-many merge join. The hash join plan runs in 3350ms on average.

As a final negative consequence, notice that the Sort in the plan is a Distinct Sort. Now there are a
couple of reasons for that Sort (not least because it can provide the required Halloween Protection) but
it is only a Distinct Sort because the optimizer misses the uniqueness information. Overall, it is hard to
like much about this execution plan beyond the performance.

3. Update using the LEAD Analytic Function

http://cdn.sqlperformance.com/wp-content/uploads/2015/12/image9.png

Since this article primarily targets SQL Server 2012 and later, we can express the update query quite
naturally using the LEAD analytic function. In an ideal world, we could use a very compact syntax like:

-- Not allowed
UPDATE dbo.Example WITH (TABLOCKX)
SET EndDate = LEAD(StartDate) OVER (
 PARTITION BY SomeID ORDER BY StartDate);

Unfortunately, this is not legal. It results in error message 4108, "Windowed functions can only appear
in the SELECT or ORDER BY clauses". This is a bit frustrating because we were hoping for an execution
plan that could avoid a self-join (and the associated update Halloween Protection).

The good news is that we can still avoid the self-join using a Common Table Expression or derived table.
The syntax is a little more verbose, but the idea is pretty much the same:

WITH CED AS
(
 SELECT
 E.EndDate,
 CalculatedEndDate =
 DATEADD(DAY, -1,
 LEAD(E.StartDate) OVER (
 PARTITION BY E.SomeID
 ORDER BY E.StartDate))
 FROM dbo.Example AS E
)
UPDATE CED WITH (TABLOCKX)
SET CED.EndDate =
 ISNULL
 (
 CED.CalculatedEndDate,
 CONVERT(date, '99991231', 112)
)
OPTION (MAXDOP 1);

The post-execution plan is:

This typically runs in about 3400ms on my laptop, which is slower than the row number solution
(2950ms) but still much faster than the original (5700ms). One thing that stands out from the execution
plan is the sort spill (again, additional spill information courtesy of the improvements in SP3):

http://cdn.sqlperformance.com/wp-content/uploads/2015/12/image11.png

This is quite a small spill, but it still might be affecting performance to some extent. The odd thing about
it is that the input estimate to the Sort is exactly correct:

Luckily, there is a "fix" for this specific condition in SQL Server 2012 SP2 CU8 (and other releases – see
the KB article for details). Running the query with the fix and required trace flag 7470 enabled means
the Sort requests enough memory to ensure it will never to spill to disk if the estimated input sort size is
not exceeded.

LEAD Update Query Without Sort Spill

For variety, the fix-enabled query below uses derived table syntax instead of a CTE:

UPDATE CED WITH (TABLOCKX)
SET CED.EndDate =
 ISNULL
 (
 CED.CalculatedEndDate, CONVERT(date, '99991231', 112)
)
FROM
(
 SELECT
 E.EndDate,
 CalculatedEndDate =
 DATEADD(DAY, -1,
 LEAD(E.StartDate) OVER (
 PARTITION BY E.SomeID
 ORDER BY E.StartDate))
 FROM dbo.Example AS E
) AS CED
OPTION (MAXDOP 1, QUERYTRACEON 7470);

The new post-execution plan is:

https://support.microsoft.com/en-us/kb/3088480
http://cdn.sqlperformance.com/wp-content/uploads/2015/12/image14.png

Eliminating the small spill improves performance from 3400ms to 3250ms. The statistics IO output is:

Table 'Example'. Scan count 1, logical reads 2999455, physical reads 0
Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0

If you compare this with the logical reads for the row numbered query, you will see that the logical
reads have decreased from 3,001,808 to 2,999,455 – a difference of 2,353 reads. This corresponds
exactly to the removal of a single Clustered Index Scan (one read per page).

You may remember I mentioned that the vast majority of the logical reads for these update queries are
associated with the Clustered Index Update, and that the Scans were associated with "only a few
thousand reads". We can now see this a little more directly by running a simple row-counting query
against the Example table:

SET STATISTICS IO ON;
SELECT COUNT(*) FROM dbo.Example WITH (TABLOCK);
SET STATISTICS IO OFF;

The IO output shows exactly the 2,353 logical read difference between the row number and lead
updates:

Table 'Example'. Scan count 1, logical reads 2353, physical reads 0

Further Improvement?

The spill-fixed lead query (3250ms) is still quite a bit slower than the double row numbered query
(2950ms), which may be a little surprising. Intuitively, one might expect a single scan and analytic
function (Window Spool and Stream Aggregate) to be faster than two scans, two sets of row numbering,
and a join.

Regardless, the thing that leaps out from the lead query execution plan is the Sort. It was also present in
the row-numbered query, where it contributed Halloween Protection as well as an optimized sort order
for the Clustered Index Update (which has the DMLRequestSort property set).

The thing is, this Sort is completely unnecessary in the lead query plan. It is not needed for Halloween
Protection because the self-join has gone. It is not needed for optimized insert sort order either: the
rows are being read in Clustered Key order, and there is nothing in the plan to disturb that order. The
real problem can be seen by looking at the Sort properties:

Notice the Order By section there. The Sort is ordering by SomeID and StartDate (the clustered index
keys) but also by [Uniq1002], which is the uniquifier. This is a consequence of not declaring the clustered
index as unique, even though we took steps in the data population query to ensure that the
combination of SomeID and StartDate would in fact be unique. (This was deliberate, so I could talk about
this.)

Even so, this is a limitation. Rows are read from the Clustered Index in order, and the necessary internal
guarantees exist such that the optimizer could safely avoid this Sort. It is simply a oversight that the
optimizer does not recognize that the incoming stream is sorted by uniquifier as well as by SomeID and
StartDate. It recognises that (SomeID, StartDate) order could be preserved, but not (SomeID, StartDate,
uniquifier). Again, I hope this will be addressed in a future version.

To work around this, we can do what we should have done in the first place: build the clustered index as
unique:

CREATE UNIQUE CLUSTERED INDEX CX_Example_SomeID_StartDate
ON dbo.Example (SomeID, StartDate)
WITH (DROP_EXISTING = ON, MAXDOP = 1);

I will leave it as an exercise for the reader to show that the first two (non-LEAD) queries do not benefit
from this indexing change (omitted purely for space reasons – there is a lot to cover).

The Final Form of the Lead Update Query

With the unique clustered index in place, the exact same LEAD query (CTE or derived table as you
please) produces the estimated (pre-execution) plan we expect:

This seems pretty optimal. A single read and write operation with a minimum of operators in between.
Certainly, it seems much better than the previous version with the unnecessary Sort, which executed in
3250ms once the avoidable spill was removed (at the cost of increasing the memory grant a bit).

The post-execution (actual) plan is almost exactly the same as the pre-execution plan:

All the estimates are exactly correct, except the output of the Window Spool, which is off by 2 rows. The
statistics IO information is exactly the same as before the Sort was removed, as you would expect:

Table 'Example'. Scan count 1, logical reads 2999455, physical reads 0
Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0

To summarize briefly, the only apparent difference between this new plan and the immediately previous
one is that the Sort (with an estimated cost contribution of almost 80%) has been removed.

It may come as a surprise then, to learn that the new query – without the Sort – executes in 5000ms.
This is much worse than the 3250ms with the Sort, and almost as long as the 5700ms original loop join
query. The double row numbering solution is still way ahead at 2950ms.

Explanation

The explanation is somewhat esoteric and relates to the way latches are handled for the latest query.
We can show this effect in several ways, but the simplest is probably to look at the wait and latch
statistics using DMVs:

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);
DBCC SQLPERF('sys.dm_os_latch_stats', CLEAR);

WITH CED AS
(
 SELECT
 E.EndDate,
 CalculatedEndDate =
 DATEADD(DAY, -1,
 LEAD(E.StartDate) OVER (
 PARTITION BY E.SomeID
 ORDER BY E.StartDate))
 FROM dbo.Example AS E
)
UPDATE CED WITH (TABLOCKX)
SET CED.EndDate =

http://cdn.sqlperformance.com/wp-content/uploads/2015/12/image17.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/12/image18.png

 ISNULL
 (
 CED.CalculatedEndDate,
 CONVERT(date, '99991231', 112)
)
OPTION (MAXDOP 1);

SELECT * FROM sys.dm_os_latch_stats AS DOLS
WHERE DOLS.waiting_requests_count > 0
ORDER BY DOLS.latch_class;

SELECT * FROM sys.dm_os_wait_stats AS DOWS
WHERE DOWS.waiting_tasks_count > 0
ORDER BY DOWS.waiting_tasks_count DESC;

When the clustered index is not unique, and there is a Sort in the plan, there are no significant waits,
just a couple of PAGEIOLATCH_UP waits and the expected SOS_SCHEDULER_YIELDs.

When the clustered index is unique, and the Sort is removed, the waits are:

There are 982,080 exclusive page latches there, with a wait time that explains pretty much all of the
extra execution time. To emphasise, that is almost one latch wait per row updated! We might expect a
latch per row change, but not a latch wait, especially when the test query is the only activity on the
instance. The latch waits are short, but there are an awful lot of them.

Lazy Latches

Following the query execution with a debugger and analyser attached, the explanation is as follows.

The Clustered Index Scan uses lazy latches – an optimization that means latches are only released when
another thread requires access to the page. Normally, latches are released immediately after reading or
writing. Lazy latches optimize the case where scanning a whole page would otherwise acquire and
release the same page latch for every row. When lazy latching is used without contention, only a single
latch is taken for the whole page.

The problem is that the pipelined nature of the execution plan (no blocking operators) means that reads
overlap with writes. When the Clustered Index Update attempts to acquire an EX latch to modify a row,
it will almost always find that the page is already latched SH (the lazy latch taken by the Clustered Index
Scan). This situation results in a latch wait.

As part of preparing to wait and switching to the next runnable item on the scheduler, the code is
careful to release any lazy latches. Releasing the lazy latch signals the first eligible waiter, which happens

to be itself. So, we have the strange situation where a thread blocks itself, releases its lazy latch, then
signals itself that it is runnable again. The thread picks up again, and continues, but only after all that
wasted suspend and switch, signal and resume work has been done. As I said before, the waits are short,
but there are a lot of them.

For all I know, this odd sequence of events is by design and for good internal reasons. Even so, there is
no getting away from the fact that it has a fairly dramatic affect on performance here. I will make some
enquiries about this and update the article if there is a public statement to make. In the meantime,
excessive self-latch waits might be something to watch out for with pipelined update queries, though it
is not clear what should be done about it from the query writer's point of view.

Does this mean that the double row-numbering approach is the best we can do for this query? Not
quite.

4. Manual Halloween Protection

This last option might sound and look a bit crazy. The broad idea is to write all the information needed
to make the changes to a table variable, then perform the update as a separate step.

For want of a better description, I call this the "manual HP" approach because it is conceptually similar
to writing all the change information to an Eager Table Spool (as seen in the first query) before driving
the Update from that Spool.

Anyway, the code is as follows:

DECLARE @U AS table
(
 SomeID integer NOT NULL,
 StartDate date NOT NULL,
 NewEndDate date NULL,
 PRIMARY KEY CLUSTERED (SomeID, StartDate)
);

INSERT @U
 (SomeID, StartDate, NewEndDate)
SELECT
 E.SomeID,
 E.StartDate,
 DATEADD(DAY, -1,
 LEAD(E.StartDate) OVER (
 PARTITION BY E.SomeID
 ORDER BY E.StartDate))
FROM dbo.Example AS E WITH (TABLOCK)
OPTION (MAXDOP 1);

UPDATE E WITH (TABLOCKX)
SET E.EndDate =
 ISNULL
 (
 U.NewEndDate, CONVERT(date, '99991231', 112)

)
FROM dbo.Example AS E
JOIN @U AS U
 ON U.SomeID = E.SomeID
 AND U.StartDate = E.StartDate
OPTION (MAXDOP 1, MERGE JOIN);

That code deliberately uses a table variable to avoid the cost of auto-created statistics that using a
temporary table would incur. This is OK here because I know the plan shape I want, and it does not
depend on cost estimations or statistical information.

The only downside to the table variable (without a trace flag) is that the optimizer will typically estimate
a single row and choose nested loops for the update. To prevent this, I have used a merge join hint.
Again, this is driven by knowing exactly the plan shape to be achieved.

The post-execution plan for the table variable insert looks exactly the same as the query that had the
problem with the latch waits:

The advantage this plan has is that it is not changing the same table it is reading from. No Halloween
Protection is required, and there is no chance of latch interference. In addition, there are significant
internal optimizations for tempdb objects (locking and logging) and other normal bulk loading
optimizations are also applied. Remember that bulk optimizations are only available for inserts, not
updates or deletes.

The post-execution plan for the update statement is:

The Merge Join here is the efficient one-to-many type. More to the point, this plan qualifies for a special
optimization that means the Clustered Index Scan and Clustered Index Update share the same rowset.
The important consequence is that the Update no longer has to locate the row to update – it is already
positioned correctly by the read. This saves an awful lot of logical reads (and other activity) at the
Update.

There is nothing in normal execution plans to show where this Shared Rowset optimization is applied,
but enabling undocumented trace flag 8666 exposes extra properties on the Update and Scan that show

http://cdn.sqlperformance.com/wp-content/uploads/2015/12/image20.png

rowset sharing is in use, and that steps are taken to ensure the update is safe from the Halloween
Problem.

The statistics IO output for the two queries is as follows:

Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0
Table 'Example'. Scan count 1, logical reads 2353, physical reads 0

(999034 row(s) affected)

Table 'Example'. Scan count 1, logical reads 2353, physical reads 0
Table '#B9C034B8'. Scan count 1, logical reads 2353, physical reads 0

Both reads of the Example table involve a single scan and one logical read per page (see the simple row
counting query previously). The #B9C034B8 table is the name of the internal tempdb object backing the
table variable. The total logical reads for both queries is 3 * 2353 = 7,059. The work table is the in-
memory internal storage used by the Window Spool.

The typical execution time for this query is 2300ms. Finally, we have something that beats the double
row-numbering query (2950ms), as unlikely as it might seem.

Final Thoughts

There may be even better ways to write this update that perform even better than the "manual HP"
solution above. The performance results may even be different on your hardware and SQL Server
configuration, but neither of these are the main point of this article. That is not to say that I am not
interested to see better queries or performance comparisons – I am.

The point is that there is an awful lot more going on inside SQL Server than is exposed in execution
plans. Hopefully some of the details discussed in this rather long article will be interesting or even useful
to some people.

It is good to have expectations of performance, and to know what plan shapes and properties are
generally beneficial. That sort of experience and knowledge will serve you well for 99% or more of the
queries you will ever be asked to tune. Sometimes, though, it is good try something a little weird or
unusual just to see what happens, and to validate those expectations.

Another Reason to Use NOEXPAND hints in Enterprise Edition
By Paul White

I have previously written about the benefits of using NOEXPAND hints, even in Enterprise Edition. The
details are all in the linked article, but to summarize briefly:

• SQL Server will only automatically create statistics on an indexed view when a NOEXPAND table
hint is used. Omitting this hint can lead to execution plan warnings about missing statistics that
cannot be resolved by creating statistics manually.

• SQL Server will only use automatically or manually created view statistics in cardinality
estimation calculations when the query references the view directly and a NOEXPAND hint is
used. For all but the most trivial view definitions, this means the quality of cardinality estimates
is likely to be lower when this hint is not used, often resulting in less optimal execution plans.

• The lack of, or inability to use, view statistics can cause the optimizer to guess at cardinality
estimates, even where base table statistics are available. This can happen where part of the
query plan is replaced with an indexed view reference by the automatic view matching feature,
but view statistics are not available, as described above.

There is another consequence of not using the NOEXPAND hint, which I mentioned in passing a couple
of years ago in my article, Optimizer Limitations with Filtered Indexes:

The NOEXPAND hints are needed even in Enterprise Edition to ensure the uniqueness guarantee
provided by the view indexes is used by the optimizer.

This article examines that statement, and its implications in more detail.

Demo Setup

The following script creates a simple table and indexed view:

CREATE TABLE dbo.T
(
 col1 integer NOT NULL
);
GO
INSERT dbo.T WITH (TABLOCKX)
 (col1)
SELECT
 SV.number
FROM master.dbo.spt_values AS SV
WHERE
 SV.type = N'P';
GO
CREATE VIEW dbo.VT
WITH SCHEMABINDING
AS
SELECT T.col1
FROM dbo.T AS T;

http://sqlperformance.com/2015/12/sql-performance/noexpand-hints?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/12/sql-performance/noexpand-hints?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2014/01/sql-plan/indexed-views-and-statistics?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2013/04/t-sql-queries/optimizer-limitations-with-filtered-indexes?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook%5C

GO
CREATE UNIQUE CLUSTERED INDEX cuq
ON dbo.VT (col1);

That creates a single column heap table, and an unrestricted view of the same table with a unique
clustered index. This is not intended to be a realistic use case for an indexed view; but it will help
illustrate the key points with the minimum of distractions. The important point is that the base table
here has no indexes at all (not even a clustered index) but the view does, and that index is unique.

The Example Query

Consider the following simple query against the base table:

SELECT DISTINCT
 T.col1
FROM dbo.T AS T;

The execution plan you will see for this query depends on the edition of SQL Server in use. If not
Enterprise Edition (or equivalent) you will see a plan like this:

The SQL Server query optimizer has chosen to scan the base table and apply the specified distinctness
using a Distinct Sort operator. This plan shape is fully expected, since automatic indexed view matching
is not available outside Enterprise Edition. I am going to stop saying "Enterprise Edition or equivalent"
from this point forward, but please continue to infer that I mean any edition that supports automatic
view matching when I say, "Enterprise Edition" from now on.

The EXPAND VIEWS hint

This is a bit of an aside, but to get the same plan on Enterprise Edition, we need to use an EXPAND
VIEWS query hint:

SELECT DISTINCT
 T.col1
FROM dbo.T AS T
OPTION (EXPAND VIEWS);

It might seem a bit odd to use this hint when there are no view references in the query, but that is how it
works. The EXPAND VIEWS hint effectively specifies that indexed view matching should be disabled
while compiling and optimizing the query. To be clear: Without this hint, Enterprise Edition may
otherwise match (parts of) the query to one or more indexed views.

With Automatic View Matching Enabled

Without an EXPAND VIEWS hint, compiling the same query on Developer Edition (for example) produces
a different plan:

The application of indexed view matching means the execution plan features a scan of the view
clustered index instead of a base table scan.

The same plan is produced in this case if the query references the view directly (instead of the base
table):

SELECT DISTINCT
 V.col1
FROM dbo.VT AS V;

In all editions, the view reference is expanded before query optimization begins. In Enterprise-
equivalent editions, the expanded form may be matched back to the view later on. This is a key concept
to understand when thinking about how the query compiler and optimizer use indexed views in SQL
Server.

The Stream Aggregate

The most interesting difference between the two plans we have seen so far is the Stream Aggregate in
the view-matched plan. If you look at the estimated costs of the Table Scan and View Scan operators,
you will see they are exactly the same. The optimizer did not decide to use the indexed view because it
made accessing the data any cheaper. Rather, scanning the view index allows theDISTINCT requirement
to be implemented as a Stream Aggregate, rather than a Hash Aggregate or Distinct Sort (as in the first
plan).

A Stream Aggregate requires input ordered by the grouping column(s). In this case, the distinct is
equivalent to grouping by the single column, and the view's unique clustered index provides the
necessary ordering guarantee. The optimizer's cost model identifies the Stream Aggregate as a cheaper
option than a Distinct Sort or Hash Aggregate for this query. This is the basis for the optimizer choosing
to access the indexed view when automatic view matching is available.

With all that said and understood, the Stream Aggregate is still unexpected: Given the uniqueness
guarantee provided by the view index, there is no need to perform this grouping operation at all.
The unique clustered index already ensures the column contains no duplicates.

This, in a nutshell, is the problem. When automatic view matching is used, the optimizer recognises the
ordering guarantee provided by the view index, but not the uniqueness guarantee.

Using a NOEXPAND hint

To get the ideal execution plan to this query, we need to reference the view directly and use
a NOEXPAND table hint:

SELECT DISTINCT
 V.col1
FROM dbo.VT AS V WITH (NOEXPAND);

This gives us the plan an experienced database person would expect; one that correctly recognises that
the distinct operation is redundant and can be removed:

A Second Example

Failing to take advantage of uniqueness guarantee provided by an view index can have other effects on
the final execution plan. Consider now a self join of the indexed view (again, just to illustrate a concept –
this is not intended to be a realistic query):

SELECT
 V1.col1,
 V2.col1
FROM dbo.VT AS V1
JOIN dbo.VT AS V2
 ON V2.col1 = V1.col1;

Using Developer Edition the execution plan chosen does not access the indexed view at all, and features
a hash join (sometimes an indication that a useful index is missing):

Now let us try exactly the same query, but with a NOEXPAND hint on each view reference:

SELECT
 V1.col1,

 V2.col1
FROM dbo.VT AS V1 WITH (NOEXPAND)
JOIN dbo.VT AS V2 WITH (NOEXPAND)
 ON V2.col1 = V1.col1;

The execution plan now features two indexed view accesses and a merge join:

This new plan has a much lower estimated cost than the hash join plan, so why did the optimizer not
choose this option before? We can see why by adding a merge join hint to the original query:

SELECT
 V1.col1,
 V2.col1
FROM dbo.VT AS V1
JOIN dbo.VT AS V2
 ON V2.col1 = V1.col1
OPTION (MERGE JOIN);

This gives a similar-looking plan that chooses to access the view even though NOEXPAND was not
specified:

The overall estimated cost of this plan is higher than both previous examples. The Merge Join in this
plan also accounts for a higher proportion of the total estimated cost than before (98% versus 48.2%).

The reason for this can be seen by looking at the properties of the merge join. In the NOEXPAND plan, it
was a one-to-many merge join. In the plan directly above, it is a many-to-many merge join. The
optimizer's cost model assigns a higher cost to many-to-many merge joins because a tempdb worktable
is needed to handle any duplicates.

Conclusions

The guarantees provided by a unique index can be a powerful optimization tool, so it is a shame that
automatic index matching is currently unable to take advantage of it. The potential benefits go beyond
eliminating unnecessary aggregations or enabling a one-to-many merge join as seen in the preceding
simple examples. In general, in can be tough to spot that an execution plan is sub-optimal because the
optimizer missed taking advantage of a uniqueness guarantee.

This optimizer limitation does not only apply to the unique clustered index that a view must have in
order to be materialized. In more complex scenarios, additional nonclustered indexes may also be
present on the view; perhaps to reflect cross-table relationships that are difficult to enforce or represent
otherwise. If these nonclustered indexes are defined to be unique, the optimizer will overlook these
guarantees as well, if automatic index matching is used.

Adding this to the limitations around the creation and usage of statistical information, it seems that
relying on automatic view matching can result in inferior execution plans. The safest option is probably
to reference indexed views explicitly, and to use a NOEXPAND hint every time – at least until these
issues are addressed in the product.

Mitigating Factors

I should stress that the issue described in this article only applies to the uniqueness guarantee provided
by a unique view index. If the optimizer can get the required uniqueness information another way, the
chances are good that optimization problems will be avoided.

For example, there may be a suitable unique index on a base table referenced by the view. Or, in the
case of a view that contains aggregation, the optimizer can already infer a useful uniqueness guarantee
from the view's GROUP BY clause. The common practice of adding a view clustered index to the
grouping keys adds no extra uniqueness information in that case.

Nevertheless, there are times where this "uniqueness oversight" can mean you will get better quality
execution plans by using an explicit view reference and NOEXPAND hints, even in Enterprise Edition.

SQL Server 2016
SQL Server 2016 : Performance Impact of Always Encrypted
By Aaron Bertrand

As part of T-SQL Tuesday #69, I've blogged about the limitations of Always Encrypted, and I mentioned
there that performance could be negatively impacted by its use (as you might expect, stronger security
often does have trade-offs). In this post, I wanted to take a quick look at this, keeping in mind (again)
that these results are based off of CTP 2.2 code, so very early in the development cycle, and are not
necessarily reflective of the performance you'll see come RTM.

First, I wanted to demonstrate that Always Encrypted works from client applications even if the latest
version of SQL Server 2016 is not installed there. You do, though, have to install the .NET Framework 4.6
preview (most recent version here, and that may change) in order to support the Column Encryption
Setting connection string attribute. If you are running Windows 10, or have installed Visual Studio 2015,
this step is not necessary, as you should already have a recent enough version of the .NET Framework.

Next, you need to make sure the Always Encrypted certificate exists on all clients. You create the master
and column encryption keys within the database, as any Always Encrypted tutorial will show you, then
you need to export the certificate from that machine, and import it on the others where application
code will run. Open certmgr.msc, and expand Certificates – Current User > Personal > Certificates, and
there should be one there called Always Encrypted Certificate. Right-click that, choose All Tasks > Export,
and follow the prompts. I exported the private key and provided a password, which produced a .pfx file.
Then you just repeat the opposite process on the client machines: Open certmgr.msc, expand
Certificates – Current User > Personal, right-click Certificates, choose All Tasks > Import, and point it at
the .pfx file you created above. (Official help here.)

(There are more secure ways to manage these certificates – it is not likely you'd just want to deploy the
certificate like this to all machines, as you will soon ask yourself what was the point? I was only doing
this in my isolated environment for the purposes of this demo – I wanted to make sure my application
was retrieving data over the wire and not just in local memory.)

We create two databases, one with an encrypted table, and one without. We do this to isolate
connection strings and also to measure space usage. Of course, there are more granular ways to control
which commands need to use an encryption-enabled connection – see the note titled "Controlling the
performance impact…" in this article.

The tables look like this:

-- encrypted copy, in database Encrypted

CREATE TABLE dbo.Employees
(
 ID INT IDENTITY(1,1) PRIMARY KEY,
 LastName NVARCHAR(32) COLLATE Latin1_General_BIN2
 ENCRYPTED WITH (ENCRYPTION_TYPE = DETERMINISTIC,
 ALGORITHM = 'AEAD_AES_256_CBC_HMAC_SHA_256',
 COLUMN_ENCRYPTION_KEY = ColumnKey) NOT NULL,
 Salary INT
 ENCRYPTED WITH (ENCRYPTION_TYPE = RANDOMIZED,

http://sqlperformance.com/2015/08/sql-server-2016/perf-impact-always-encrypted?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/08/sql-server-2016/perf-impact-always-encrypted?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlbama.com/archive/2015/08/t-sql-tuesday-69-encryption/
http://blogs.sqlsentry.com/aaronbertrand/t-sql-tuesday-69-always-encrypted-limitations/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://www.microsoft.com/en-US/download/details.aspx?id=44928
http://blogs.msdn.com/b/sqlsecurity/archive/2015/06/04/getting-started-with-always-encrypted.aspx
http://windows.microsoft.com/en-us/windows/import-export-certificates-private-keys
https://msdn.microsoft.com/en-us/library/mt147923.aspx

 ALGORITHM = 'AEAD_AES_256_CBC_HMAC_SHA_256',
 COLUMN_ENCRYPTION_KEY = ColumnKey) NOT NULL
);

-- unencrypted copy, in database Normal

CREATE TABLE dbo.Employees
(
 ID INT IDENTITY(1,1) PRIMARY KEY,
 LastName NVARCHAR(32) COLLATE Latin1_General_BIN2 NOT NULL,
 Salary INT NOT NULL
);

With these tables in place, I wanted to set up a very simple command-line application to perform the
following tasks against both the encrypted and unencrypted versions of the table:

• Insert 100,000 employees, one at a time

• Read through 100 random rows, 1,000 times

• Output timestamps before and after each step

So we have a stored procedure in a completely separate database used to produce random integers to
represent salaries, and random Unicode strings of varying lengths. We're going to do this one at a time
to better simulate real usage of 100,000 inserts happening independently (though not concurrently, as I
am not brave enough to try to properly develop and manage a multi-threaded C# application, or try to
coordinate and synchronize multiple instances of a single application).

CREATE DATABASE Utility;
GO

USE Utility;
GO

CREATE PROCEDURE dbo.GenerateNameAndSalary
 @Name NVARCHAR(32) OUTPUT,
 @Salary INT OUTPUT
AS
BEGIN
 SET NOCOUNT ON;
 SELECT @Name = LEFT(CONVERT(NVARCHAR(32), CRYPT_GEN_RANDOM(64)), RAND() * 32 + 1);
 SELECT @Salary = CONVERT(INT, RAND()*100000)/100*100;
END
GO

A couple of rows of sample output (we don't care about the actual content of the string, just that it
varies):

酹２׿ዌ륒㦢㮧羮怰㉤盿⚉嗝䬴敏⽁캘♜鼹䓧

98600

贓峂쌄탠❼缉腱蛽 뱶

72000

Then the stored procedures the application will ultimately call (these are identical in both databases,
since your queries don't need to be changed to support Always Encrypted):

CREATE PROCEDURE dbo.AddPerson
 @LastName NVARCHAR(32),
 @Salary INT
AS
BEGIN
 SET NOCOUNT ON;
 INSERT dbo.Employees(LastName, Salary) SELECT @LastName, @Salary;
END
GO

CREATE PROCEDURE dbo.RetrievePeople
AS
BEGIN
 SET NOCOUNT ON;
 SELECT TOP (100) ID, LastName, Salary
 FROM dbo.Employees
 ORDER BY NEWID();
END
GO

Now, the C# code, starting with the connectionStrings portion of App.config. The important part being
the Column Encryption Setting option for only the database with the encrypted columns (for brevity,
assume all three connection strings contain the same Data Source, and the same SQL
authentication User ID and Password):

<connectionStrings>
 <add name="Utility" connectionString="Initial Catalog=Utility;..."/>
 <add name="Normal" connectionString="Initial Catalog=Normal;..."/>
 <add name="Encrypt" connectionString="Initial Catalog=Encrypted; Column Encryption
Setting=Enabled;..."/>
</connectionStrings>

And Program.cs (sorry, for demos like this, I'm terrible at going in and renaming things logically):

using System;
using System.Collections.Generic;

using System.Text;
using System.Configuration;
using System.Data;
using System.Data.SqlClient;

namespace AEDemo
{
 class Program
 {
 static void Main(string[] args)
 {
 using (SqlConnection con1 = new SqlConnection())
 {
 Console.WriteLine(DateTime.UtcNow.ToString("hh:mm:ss.fffffff"));
 string name;
 string EmptyString = "";
 int salary;
 int i = 1;
 while (i <= 100000)
 {
 con1.ConnectionString =
ConfigurationManager.ConnectionStrings["Utility"].ToString();
 using (SqlCommand cmd1 = new SqlCommand("dbo.GenerateNameAndSalary",
con1))
 {
 cmd1.CommandType = CommandType.StoredProcedure;
 SqlParameter n = new SqlParameter("@Name", SqlDbType.NVarChar, 32)
 { Direction = ParameterDirection.Output };
 SqlParameter s = new SqlParameter("@Salary", SqlDbType.Int)
 { Direction = ParameterDirection.Output };
 cmd1.Parameters.Add(n);
 cmd1.Parameters.Add(s);
 con1.Open();
 cmd1.ExecuteNonQuery();
 name = n.Value.ToString();
 salary = Convert.ToInt32(s.Value);
 con1.Close();
 }

 using (SqlConnection con2 = new SqlConnection())
 {
 con2.ConnectionString =
ConfigurationManager.ConnectionStrings[args[0]].ToString();
 using (SqlCommand cmd2 = new SqlCommand("dbo.AddPerson", con2))
 {
 cmd2.CommandType = CommandType.StoredProcedure;

 SqlParameter n = new SqlParameter("@LastName", SqlDbType.NVarChar,
32);
 SqlParameter s = new SqlParameter("@Salary", SqlDbType.Int);
 n.Value = name;
 s.Value = salary;
 cmd2.Parameters.Add(n);
 cmd2.Parameters.Add(s);
 con2.Open();
 cmd2.ExecuteNonQuery();
 con2.Close();
 }
 }
 i++;
 }
 Console.WriteLine(DateTime.UtcNow.ToString("hh:mm:ss.fffffff"));
 i = 1;
 while (i <= 1000)
 {
 using (SqlConnection con3 = new SqlConnection())
 {
 con3.ConnectionString =
ConfigurationManager.ConnectionStrings[args[0]].ToString();
 using (SqlCommand cmd3 = new SqlCommand("dbo.RetrievePeople", con3))
 {
 cmd3.CommandType = CommandType.StoredProcedure;
 con3.Open();
 SqlDataReader rdr = cmd3.ExecuteReader();
 while (rdr.Read())
 {
 EmptyString += rdr[0].ToString();
 }
 con3.Close();
 }
 }
 i++;
 }
 Console.WriteLine(DateTime.UtcNow.ToString("hh:mm:ss.fffffff"));
 }
 }
 }
}

Then we can call the .exe with the following command lines:

AEDemoConsole.exe "Normal"

AEDemoConsole.exe "Encrypt"

And it will produce three lines of output for each call: the start time, the time after 100,000 rows were
inserted, and the time after 100 rows were read 1,000 times. Here were the results I saw on my system,
averaged over 5 runs each:

Duration (seconds) of writing and reading data

There is a clear impact to writing the data – not quite 2X, but more than 1.5X. There was a much lower
delta on reading and decrypting the data – at least in these tests – but that wasn't free, either.

As far as space usage, there is roughly a 3X penalty for storing encrypted data (given the nature of most
encryption algorithms, this shouldn't be shocking). Keep in mind this was on a table with only a single
clustered primary key. Here were the figures:

Space (MB) used to store data

http://cdn.sqlperformance.com/wp-content/uploads/2015/08/AE-Perf.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/08/AE-Space.png

So obviously there are some penalties with using Always Encrypted, as there typically are with just about
all security-related solutions (the saying "no free lunch" comes to mind). I'll repeat that these tests were
performed against CTP 2.2, which may be radically different than the final release of SQL Server 2016.
Also, these differences I have observed may reflect only the nature of the tests I concocted; obviously I
am hoping you can use this approach to test your results against your schema, on your hardware, and
with your data access patterns.

Always Encrypted Performance : A Follow-Up
By Aaron Bertrand

Last week, I wrote about the limitations of Always Encrypted as well as the performance impact. I
wanted to post a follow-up after performing more testing, primarily due to the following changes:

• I added a test for local, to see if network overhead was significant (previously, the test was only
remote). Though, I should put "network overhead" in air quotes, because these are two VMs on
the same physical host, so not really a true bare metal analysis.

• I added a few extra (non-encrypted) columns to the table to make it more realistic (but not
really that realistic).

• DateCreated DATETIME NOT NULL DEFAULT SYSUTCDATETIME(),
• DateModified DATETIME NOT NULL DEFAULT SYSUTCDATETIME(),
• IsActive BIT NOT NULL DEFAULT 1

Then altered the retrieval procedure accordingly:

ALTER PROCEDURE dbo.RetrievePeople
AS
BEGIN
 SET NOCOUNT ON;
 SELECT TOP (100) LastName, Salary, DateCreated, DateModified, Active
 FROM dbo.Employees
 ORDER BY NEWID();
END
GO

Added a procedure to truncate the table (previously I was doing that manually between tests):

CREATE PROCEDURE dbo.Cleanup
AS
BEGIN
 SET NOCOUNT ON;
 TRUNCATE TABLE dbo.Employees;
END
GO

Added a procedure for recording timings (previously I was manually parsing console output):

USE Utility;
GO

CREATE TABLE dbo.Timings
(
 Test NVARCHAR(32),

http://sqlperformance.com/2015/08/sql-server-2016/always-encrypted-performance-follow-up?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/08/sql-server-2016/always-encrypted-performance-follow-up?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://blogs.sqlsentry.com/aaronbertrand/t-sql-tuesday-69-always-encrypted-limitations/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/08/sql-server-2016/perf-impact-always-encrypted?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

 InsertTime INT,
 SelectTime INT,
 TestCompleted DATETIME NOT NULL DEFAULT SYSUTCDATETIME(),
 HostName SYSNAME NOT NULL DEFAULT HOST_NAME()
);
GO

CREATE PROCEDURE dbo.AddTiming
 @Test VARCHAR(32),
 @InsertTime INT,
 @SelectTime INT
AS
BEGIN
 SET NOCOUNT ON;
 INSERT dbo.Timings(Test,InsertTime,SelectTime)
 SELECT @Test,@InsertTime,@SelectTime;
END
GO

I added a pair of databases which used page compression – we all know that encrypted values don't
compress well, but this is a polarizing feature that may be used unilaterally even on tables with
encrypted columns, so I thought I would just profile these too. (And added two more connection strings
to App.Config.)

<connectionStrings>
 <add name="Normal"
 connectionString="...;Initial Catalog=Normal;"/>
 <add name="Encrypt"
 connectionString="...;Initial Catalog=Encrypt;Column Encryption Setting=Enabled;"/>
 <add name="NormalCompress"
 connectionString="...;Initial Catalog=NormalCompress;"/>
 <add name="EncryptCompress"
 connectionString="...;Initial Catalog=EncryptCompress;Column Encryption
Setting=Enabled;"/>
</connectionStrings>

• I made many improvements to the C# code (see the Appendix) based on feedback from
tobi (which led to this Code Review question) and some great assistance from co-worker Brooke
Philpott (@Macromullet). These included:

o eliminating the stored procedure to generate random names/salaries, and doing that in
C# instead

o using Stopwatch instead of clumsy date/time strings

o more consistent use of using() and elimination of .Close()

o slightly better naming conventions (and comments!)

http://sqlperformance.com/2015/08/sql-server-2016/always-encrypted-performance-follow-up#cscode
http://sqlperformance.com/2015/08/sql-server-2016/perf-impact-always-encrypted#comment-110637
http://sqlperformance.com/2015/08/sql-server-2016/perf-impact-always-encrypted#comment-110637
http://codereview.stackexchange.com/q/100694/11852
http://twitter.com/Macromullet

o changing while loops to for loops

o using a StringBuilder instead of naive concatenation (which I had initially chosen
intentionally)

o consolidating the connection strings (though I am still intentionally making a new
connection within every loop iteration)

Then I created a simple batch file that would run each test 5 times (and repeated this on both the local
and remote computers):

for /l %%x in (1,1,5) do (^
AEDemoConsole "Normal" & ^
AEDemoConsole "Encrypt" & ^
AEDemoConsole "NormalCompress" & ^
AEDemoConsole "EncryptCompress" & ^
)

After the tests were complete, measuring the durations and space used would be trivial (and building
charts from the results would just take a little manipulation in Excel):

-- duration

SELECT HostName, Test,
 AvgInsertTime = AVG(1.0*InsertTime),
 AvgSelectTime = AVG(1.0*SelectTime)
FROM Utility.dbo.Timings
GROUP BY HostName, Test
ORDER BY HostName, Test;

-- space

USE Normal; -- NormalCompress; Encrypt; EncryptCompress;

SELECT COUNT(*)*8.192
 FROM sys.dm_db_database_page_allocations(DB_ID(),
 OBJECT_ID(N'dbo.Employees'), NULL, NULL, N'LIMITED');

Duration Results

Here are the raw results from the duration query above (CANUCK is the name of the machine that hosts
the instance of SQL Server, and HOSER is the machine that ran the remote version of the code):

Raw results of duration query

Obviously it will be easier to visualize in another form. As shown in the first graph, remote access had a
significant impact on the duration of the inserts (over 40% increase), but compression had little impact
at all. Encryption alone roughly doubled the the duration for any test category:

Duration (milliseconds) to insert 100,000 rows

For the reads, compression had a much bigger impact on performance than either encryption or reading
the data remotely:

http://cdn.sqlperformance.com/wp-content/uploads/2015/08/ae-grid.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/08/ae-time1.png

Duration (milliseconds) to read 100 random rows 1,000 times

Space Results

As you might have predicted, compression can significantly reduce the amount of space required to
store this data (roughly in half), whereas encryption can be seen impacting data size in the opposite
direction (almost tripling it). And, of course, compressing encrypted values doesn't pay off:

Space used (KB) to store 100,000 rows with or without compression and with or without encryption

Summary

http://cdn.sqlperformance.com/wp-content/uploads/2015/08/ae-time2.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/08/AE-Space1.png

This should give you a rough idea of what to expect the impact to be when implementing Always
Encrypted. Keep in mind, though, that this was a very particular test, and that I was using an early CTP
build. Your data and access patterns may yield very different results, and further advances in future CTPs
and updates to the .NET Framework may reduce some of these differences even in this very test.

You'll also notice that the results here were slightly different across the board than in my previous post.
This can be explained:

• The insert times were faster in all cases because I am no longer incurring an extra round-trip to
the database to generate the random name and salary.

• The select times were faster in all cases because I am no longer using a sloppy method of string
concatenation (which was included as part of the duration metric).

• The space used was slightly larger in both cases, I suspect because of a different distribution of
random strings that were generated.

Appendix A – C# Console Application Code

using System;
using System.Configuration;
using System.Text;
using System.Data;
using System.Data.SqlClient;

namespace AEDemo
{
 class AEDemo
 {
 static void Main(string[] args)
 {
 // set up a stopwatch to time each portion of the code
 var timer = System.Diagnostics.Stopwatch.StartNew();

 // random object to furnish random names/salaries
 var random = new Random();

 // connect based on command-line argument
 var connectionString = ConfigurationManager.ConnectionStrings[args[0]].ToString();

 using (var sqlConnection = new SqlConnection(connectionString))
 {
 // this simply truncates the table, which I was previously doing manually
 using (var sqlCommand = new SqlCommand("dbo.Cleanup", sqlConnection))
 {
 sqlConnection.Open();
 sqlCommand.ExecuteNonQuery();
 }
 }

http://sqlperformance.com/2015/08/sql-server-2016/perf-impact-always-encrypted?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook

 // first, generate 100,000 name/salary pairs and insert them
 for (int i = 1; i <= 100000; i++)
 {
 // random salary between 32750 and 197500
 var randomSalary = random.Next(32750, 197500);

 // random string of random number of characters
 var length = random.Next(1, 32);
 char[] randomCharArray = new char[length];
 for (int byteOffset = 0; byteOffset < length; byteOffset++)
 {
 randomCharArray[byteOffset] = (char)random.Next(65, 90); // A-Z
 }
 var randomName = new string(randomCharArray);

 // this stored procedure accepts name and salary and writes them to table
 // in the databases with encryption enabled, SqlClient encrypts here
 // so in a trace you would see @LastName = 0xAE4C12..., @Salary = 0x12EA32...
 using (var sqlConnection = new SqlConnection(connectionString))
 {
 using (var sqlCommand = new SqlCommand("dbo.AddEmployee", sqlConnection))
 {
 sqlCommand.CommandType = CommandType.StoredProcedure;
 sqlCommand.Parameters.Add("@LastName", SqlDbType.NVarChar, 32).Value =
randomName;
 sqlCommand.Parameters.Add("@Salary", SqlDbType.Int).Value =
randomSalary;
 sqlConnection.Open();
 sqlCommand.ExecuteNonQuery();
 }
 }
 }

 // capture the timings
 timer.Stop();
 var timeInsert = timer.ElapsedMilliseconds;
 timer.Reset();
 timer.Start();

 var placeHolder = new StringBuilder();

 for (int i = 1; i <= 1000; i++)
 {
 using (var sqlConnection = new SqlConnection(connectionString))
 {
 // loop through and pull 100 rows, 1,000 times

 using (var sqlCommand = new SqlCommand("dbo.RetrieveRandomEmployees",
sqlConnection))
 {
 sqlCommand.CommandType = CommandType.StoredProcedure;
 sqlConnection.Open();
 using (var sqlDataReader = sqlCommand.ExecuteReader())
 {
 while (sqlDataReader.Read())
 {
 // do something tangible with the output
 placeHolder.Append(sqlDataReader[0].ToString());
 }
 }
 }
 }
 }

 // capture timings again, write both to db
 timer.Stop();
 var timeSelect = timer.ElapsedMilliseconds;

 using (var sqlConnection = new SqlConnection(connectionString))
 {
 using (var sqlCommand = new SqlCommand("Utility.dbo.AddTiming",
sqlConnection))
 {
 sqlCommand.CommandType = CommandType.StoredProcedure;
 sqlCommand.Parameters.Add("@Test", SqlDbType.NVarChar, 32).Value =
args[0];
 sqlCommand.Parameters.Add("@InsertTime", SqlDbType.Int).Value =
timeInsert;
 sqlCommand.Parameters.Add("@SelectTime", SqlDbType.Int).Value =
timeSelect;
 sqlConnection.Open();
 sqlCommand.ExecuteNonQuery();
 }
 }
 }
 }
}

SQL Server 2016 – Introduction to Stretch Database
By Tim Radney

Beginning with SQL Server 2016 you will have the ability to store portions of a database in the cloud.
This new ability is known as Stretch Database and the feature will be beneficial to those needing to keep
transactional data for long periods of time and those looking to save money on storage. Being able to
seamlessly migrate data to the Microsoft Azure Cloud will give you the ability to archive data without
having to change the way your applications query the data.

In SQL Server 2016 Community Technology Preview 2 (CTP2), Stretch Database migrates entire tables. If
your database is already set up to store archive data in separate tables from current data, you will be
able to easily migrate the archive data to Azure. Once you enable Stretch Database, it will silently
migrate your data to an Azure SQL Database. Stretch Database leverages the processing power in Azure
to run queries against remote data by rewriting the query. You will see this as a "remote query"
operator in the query plan.

An easy way to identify databases and tables that are eligible for being Stretch-enabled is to download
and run the SQL Server 2016 Upgrade Advisor and run the Stretch Database Advisor. Aaron Bertrand
(@AaronBertrand) wrote about this recently:

• Identify Candidate Tables for SQL Server 2016 Stretch Databases

Limitations for Stretch Database

Not all tables will be eligible for being Stretch-enabled. Certain table properties, data and column types,
constraints, and indexes are not supported, such as:

• Memory-optimized and replicated tables
• Tables that contain FILESTREAM data, use Change Tracking or Change Data
• Data types such as timestamp, sql_variant, XML, geography or columns that are Always

Encrypted
• Check and default constraints or foreign key constraints that reference the table
• XML, full-text, spatial, clustered columnstore and indexed views that reference the Stretch-

enabled table
• You cannot run UPDATE or DELETE statements, or run CREATE INDEX or ALTER INDEX operations

on a Stretch-enabled table

For a full listing of limitations, you can visit: Requirements and limitations for Stretch Database.

Setting up Stretch Database

Getting started isn't a complicated task. You'll need an Azure account and then enable Stretch Database
on the instance.

To enable Stretch Database on an instance run:

http://sqlperformance.com/2015/08/sql-server-2016/intro-stretch-database?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/08/sql-server-2016/intro-stretch-database?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
https://www.microsoft.com/en-us/download/details.aspx?id=48119
http://twitter.com/AaronBertrand
http://www.mssqltips.com/sqlservertip/3689/identify-candidate-tables-for-sql-server-2016-stretch-databases/
https://msdn.microsoft.com/en-us/library/dn935016.aspx

EXEC sys.sp_configure N'remote data archive', '1';
RECONFIGURE;
GO

For this demo I'm going to use the AdventureWorks2014 database on a SQL Server 2016 CPT2 instance.
I'll start by creating a new table:

USE [AdventureWorks2014];
GO

CREATE TABLE dbo.StretchTest
(
 FirstName VARCHAR(50),
 LastName VARCHAR(50)
);
GO

And then I'll populate the test table StretchTest with some data:

USE [AdventureWorks2014];
GO

INSERT INTO dbo.StretchTest(FirstName, LastName)
VALUES('Paul', 'Randal'), ('Kimberly', 'Tripp'),('Jonathan', 'Kehayias'),
 ('Erin', 'Stellato'),('Glenn', 'Berry'), ('Tim', 'Radney');
GO

I now have a table that I can stretch to the Microsoft Azure Cloud. To do this I'll use the GUI by right-clicking

on AdventureWorks2014, choosing Tasks, and selecting Enable Database for Stretch.

The Enable Database for Stretch wizard will open, as below:

I'll click next:

http://cdn.sqlperformance.com/wp-content/uploads/2015/08/Image1.jpg
http://cdn.sqlperformance.com/wp-content/uploads/2015/08/Image2.jpg

And sign in to my Microsoft Azure account:

I'm then prompted to verify which account I want to use:

http://cdn.sqlperformance.com/wp-content/uploads/2015/08/Image3.jpg
http://cdn.sqlperformance.com/wp-content/uploads/2015/08/Image4.jpg

Then I select which Azure location I want to use and specify an admin login and password. When you do this,

make sure to make note of the admin username and password because you will need this in the future in
order to reconnect to the Azure SQL Database if you have to restore the database.

I then click next:

And click Finish and the database starts provisioning to Azure SQL Database Server.

http://cdn.sqlperformance.com/wp-content/uploads/2015/08/Image5.jpg
http://cdn.sqlperformance.com/wp-content/uploads/2015/08/Image6.jpg

I've just created a secure linked server definition on my local server that has the remote Azure SQL database

as the endpoint. I can view this in Server Objects, Linked Servers as well as in my Azure account under SQL

Databases. Note that only system processes can use this linked server; user logins cannot issue queries
through the linked server to the remote endpoint.

Now that Stretch Database is enabled for the instance and for the AdventureWorks2014 database I can now
stretch my new table. To stretch the table to Azure I need to alter the table and enable remote data archive.

USE [AdventureWorks2014];
GO

ALTER TABLE [StretchTest]
ENABLE REMOTE_DATA_ARCHIVE WITH (MIGRATION_STATE = ON);
GO

In addition to new features with SQL Server 2016, there are some new DMVs as well. To monitor the
migration of data to Azure you can query sys.dm_db_rda_migration_status. When I queried the DMV
after enabling remote data archive I was able to see that the 6 rows were migrated:

Backup and Restore of a Stretch Database

http://cdn.sqlperformance.com/wp-content/uploads/2015/08/Image7.jpg

Currently in SQL Server 2016 CTP2 when a database that is Stretch-enabled is backed up, a shallow
backup is created which does not include the data that has been migrated to the Azure SQL database. It
is expected that with the RTM release of SQL Server 2016 backing up a Stretch-enabled database will
create a deep backup that will contain both local and stretched data.

When restoring a database that is Stretch-enabled, you'll have to reconnect the local database to the
remote Azure SQL Database. You do this by running the stored procedure
sys.sp_reauthorize_remote_data_archive as a db_owner.

If I now back up the Stretch-enabled AdventureWorks2014 database and restore it, I will no longer be
able to query the StretchTest table until I reconnect to Azure SQL Database by running:

USE [AdventureWorks2014];
GO

EXEC sys.sp_reauthorize_remote_data_archive @azure_username, @azure_password;
GO

Once reconnected I get a message similar to the one below and then I'm able to query the Stretched
data once again:

Copying remote database 'RDAAdventureWorks201467B6D9D4-E8E0-4C54-B3EF-7C2D3F1326C4' to
remote database 'RDAAdventureWorks2014660B555C-8DD1-4750-9A04-2868CD1C646D'.

Waiting for remote database copy to complete.

Remote database 'RDAAdventureWorks2014660B555C-8DD1-4750-9A04-2868CD1C646D' has
completed copying, and is now online.

When restoring a Stretch-enabled database to another instance, that instance must have "remote data
archive enabled". Once you have restored the database and enabled "remote data archive", all that is
required is reconnecting to the Azure SQL Database by running the
sys.sp_reauthorize_remote_data_archive stored procedure.

The backups for Azure SQL Databases for Basic, Standard, and Premium service tiers are taken every
hour. The backup retention period varies depending on the service tier level. At time of writing, for basic
it is 7 days, standard 14 days, and premium is 35 days. You can restore Azure SQL Databases by using the
Microsoft Azure web portal.

Un-migrate Data

To migrate data back to local storage from an Azure SQL Database you will need to create a new local
table with the same schema as the Stretch-enabled table. You then have to copy the data from the
Stretch-enabled table into the new local table. Once the data is copied you drop the Stretch-enabled
table and rename the new local table to the name of the Stretch-enabled table that was just dropped.

You can only disable Stretch for a database once all Stretch-enabled tables have been dropped. If you
drop a database enabled for Stretch, the local database is removed but the remote data is not; you will
have to drop the remote database from the Azure management portal.

Summary

Stretch Database is an easy way to migrate archive data to Microsoft Azure, if your database supports it.
Currently in SQL Server 2016 CTP2 there are many limitations with table, data, and column properties,
data and column types, constraints, and indexes. If you are not restricted by those limitations, then
Stretch Database is a simple way to migrate historical data to Azure SQL Database and free up valuable
local storage. Managing backups will become a bit more complex since your data will be split between
on premise and in the cloud.

I'm looking forward to these restrictions being lifted in the RTM release, and I'm sure many of you will
be able to make use of this cool feature.

Service Broker Enhancements in SQL Server 2016
By Aaron Bertrand

In advance of this week's PASS Summit, and surely dozens and dozens of announcements around SQL
Server 2016, I thought I would share a tidbit of a feature that's been hidden in the CTPs for some time
now, but that Microsoft hasn't had a chance to publicize: Additional maintenance operations available
for Service Broker queues.

Remus Rusanu (@rusanu) discussed the problems that fragmentation at high volume can cause for
queues in this post:

• Dealing with Large Queues

There, he revealed that you could actually use DBCC REINDEX against the internal table, but you had to
determine the internal table name, and connect via the DAC. Not exactly convenient.

Now, almost six years later, if you believe you are experiencing fragmentation problems due to high
load, you can force index REORGANIZE or REBUILD operations against the queue's internal table by
referencing the queue directly:

ALTER QUEUE dbo.myQueue REORGANIZE;
-- or
ALTER QUEUE dbo.myQueue REBUILD;

How do you know how much fragmentation you have in a queue? Well, queues have been added as a
permissible object to pass to sys.dm_db_index_physical_stats, too:

SELECT * FROM sys.dm_db_index_physical_stats
 (
 DB_ID(),
 OBJECT_ID(N'dbo.QueryNotificationErrorsQueue'),
 -1, 0, 'SAMPLED'
);

And you get similar output to the same interrogation of a regular table.

Additionally, you can move the queue to another filegroup; this operation will rebuild the internal queue
table and all of its indexes on the new filegroup:

ALTER QUEUE dbo.myQueue MOVE TO [MY_FILEGROUP];

These new capabilities should allow for greater scalability of Service Broker solutions.

http://sqlperformance.com/2015/10/sql-performance/service-broker-enhancements?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/10/sql-performance/service-broker-enhancements?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://twitter.com/rusanu
http://rusanu.com/2010/03/09/dealing-with-large-queues/

SQL Server 2016 : Availability Group Enhancements
By Aaron Bertrand

At MS Ignite this week, several details were revealed about the changes in Availability Groups that will
ship in SQL Server 2016. I wanted to provide a very quick list of bullets on the major highlights at a high
level, to get you excited about these AG enhancements:

• Optional setting to fail over based on database failure – in 2012 and 2014, failover is
determined almost entirely at the instance level. If a database goes offline, suspect, or corrupt,
the AG keeps humming along. In SQL Server 2016, you will be able to have certain database
metrics to initiate failover for the entire group.

• Distributed Transaction Coordinator support – in current versions, MSDTC is not supported for
AG databases, but it will be fully supported in SQL Server 2016 (it will require an operating
system update as well – it is possible that you will need the most recent version of Windows
Server for full support across all scenarios).

• Group Managed Service Accounts are fully supported – these "worked" in SQL Server
2012/2014, but were not fully supported, and had some issues (see background
information here, here, here, and here).

• Load Balancing for Readable Secondaries – you will be able to use a round-robin mechanism for
routing read-only requests through the listener to take balanced advantage of all secondaries,
versus the current approach of requests always going to the "first" available secondary.

• Additional automatic failover targets – you'll be able to specify up to three total secondaries for
automatic failover; this matches the number of synchronous replicas allowed.

• Improved log transport performance – this entire pipeline was overhauled and refactored for
lower CPU usage and higher throughput.

• Basic Availability Group – this has finally been confirmed as of CTP 3.2 to be an official option
for Standard Edition customers in SQL Server 2016. For feature details and limitations,
seeOverview of AlwaysOn Basic Availability Groups .

http://sqlperformance.com/2015/12/sql-server-2016/availability-group-enhancements?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/12/sql-server-2016/availability-group-enhancements?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://ignite.microsoft.com/
http://blogs.technet.com/b/fmustafa/archive/2012/09/17/active-directory-domain-services-in-windows-server-2012-new-features.aspx
http://joeydantoni.com/2012/12/14/group-managed-service-accounts/
https://connect.microsoft.com/SQLServer/feedback/details/767211/gmsa-for-sql-server-failover-clusters
http://blogs.msdn.com/b/arvindsh/archive/2014/02/03/managed-service-accounts-msa-and-sql-2012-practical-tips.aspx
https://msdn.microsoft.com/en-us/library/mt614935.aspx

SQL Server 2016 : sys.dm_exec_function_stats
By Aaron Bertrand

In SQL Server 2016 CTP 2.1, there is one new object that appeared after CTP 2.0:
sys.dm_exec_function_stats. This is intended to provide similar functionality
to sys.dm_exec_procedure_stats, sys.dm_exec_query_stats, and sys.dm_exec_trigger_stats. So it is now
possible to track aggregate runtime metrics for user-defined functions.

Or is it?

In CTP 2.1 at least, I could only derive any meaningful metrics here for regular scalar functions – nothing
was registered for inline or multi-statement TVFs. I am not surprised about the inline functions, since
they are essentially expanded before execution anyway. But since multi-statement TVFs are often
performance problems, I was hoping they would show up too. They do still appear in
sys.dm_exec_query_stats, so you can still derive their performance metrics from there, but it can get
tricky to perform aggregations when you really do have multiple statements that perform some share of
the work – nothing is rolled up for you.

Let's take a quick look at how this plays out. Let's say we have a simple table with 100,000 rows:

SELECT TOP (100000) o1.[object_id], o1.create_date
 INTO dbo.src
 FROM sys.all_objects AS o1
 CROSS JOIN sys.all_objects AS o2
 ORDER BY o1.[object_id];
GO
CREATE CLUSTERED INDEX x ON dbo.src([object_id]);
GO
-- prime the cache
SELECT [object_id], create_date FROM dbo.src;

I wanted to compare what happens when we investigate scalar UDFs, multi-statement table-valued
functions, and inline table-valued functions, and how we see what work was done in each case. First,
imagine something trivial that we can do in the SELECT clause, but that we may want to
compartmentalize away, like formatting a date as a string:

CREATE PROCEDURE dbo.p_dt_Standard
 @dt_ CHAR(10) = NULL
AS
BEGIN
 SET NOCOUNT ON;
 SELECT @dt_ = CONVERT(CHAR(10), create_date, 120)

http://sqlperformance.com/2015/06/sql-server-2016/sys-dm-exec-function-stats?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/06/sql-server-2016/sys-dm-exec-function-stats?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
https://msdn.microsoft.com/en-us/library/cc280701(sql.130).aspx
https://msdn.microsoft.com/en-us/library/ms189741(sql.130).aspx
https://msdn.microsoft.com/en-us/library/cc280646(sql.130).aspx

 FROM dbo.src
 ORDER BY [object_id];
END
GO

(I assign the output to a variable, which forces the entire table to be scanned, but prevents the
performance metrics from being influenced by the efforts of SSMS to consume and render the output.
Thanks for the reminder, Mikael Eriksson.)

A lot of times you'll see people putting that conversion into a function, and it can be scalar or TVF, like
these:

CREATE FUNCTION dbo.dt_Inline(@dt_ DATETIME)
RETURNS TABLE
AS
 RETURN (SELECT dt_ = CONVERT(CHAR(10), @dt_, 120));
GO

CREATE FUNCTION dbo.dt_Multi(@dt_ DATETIME)
RETURNS @t TABLE(dt_ CHAR(10))
AS
BEGIN
 INSERT @t(dt_) SELECT CONVERT(CHAR(10), @dt_, 120);
 RETURN;
END
GO

CREATE FUNCTION dbo.dt_Scalar(@dt_ DATETIME)
RETURNS CHAR(10)
AS
BEGIN
 RETURN (SELECT CONVERT(CHAR(10), @dt_, 120));
END
GO

I created procedure wrappers around these functions as follows:

CREATE PROCEDURE dbo.p_dt_Inline
 @dt_ CHAR(10) = NULL
AS
BEGIN
 SET NOCOUNT ON;
 SELECT @dt_ = dt.dt_
 FROM dbo.src AS o
 CROSS APPLY dbo.dt_Inline(o.create_date) AS dt
 ORDER BY o.[object_id];
END

http://dba.stackexchange.com/users/2103/mikael-eriksson

GO

CREATE PROCEDURE dbo.p_dt_Multi
 @dt_ CHAR(10) = NULL
AS
BEGIN
 SET NOCOUNT ON;
 SELECT @dt_ = dt.dt_
 FROM dbo.src
 CROSS APPLY dbo.dt_Multi(create_date) AS dt
 ORDER BY [object_id];
END
GO

CREATE PROCEDURE dbo.p_dt_Scalar
 @dt_ CHAR(10) = NULL
AS
BEGIN
 SET NOCOUNT ON;
 SELECT @dt_ = dt = dbo.dt_Scalar(create_date)
 FROM dbo.src
 ORDER BY [object_id];
END
GO

(And no, the dt_ convention you're seeing is not some new thing I think is a good idea, it was just the
simplest way I could isolate all of these queries in the DMVs from everything else being collected. It also
made it easy to append suffixes to easily distinguish between the query inside the stored procedure and
the ad hoc version.)

Next, I created a #temp table to store timings, and repeated this process (both executing the stored
procedure twice, and executing the body of the procedure as an isolated ad hoc query twice, and
tracking the timing of each one):

CREATE TABLE #t
(
 ID INT IDENTITY(1,1),
 q VARCHAR(32),
 s DATETIME2,
 e DATETIME2
);
GO

INSERT #t(q,s) VALUES('p Standard',SYSDATETIME());
GO

EXEC dbo.p_dt_Standard;
GO 2

UPDATE #t SET e = SYSDATETIME() WHERE ID = 1;
GO

INSERT #t(q,s) VALUES('ad hoc Standard',SYSDATETIME());
GO

DECLARE @dt_st CHAR(10);
 SELECT @dt_st = CONVERT(CHAR(10), create_date, 120)
 FROM dbo.src
 ORDER BY [object_id];
GO 2

UPDATE #t SET e = SYSDATETIME() WHERE ID = 2;
GO
-- repeat for inline, multi and scalar versions

Then I ran some diagnostic queries, and here were the results:

sys.dm_exec_function_stats

SELECT name = OBJECT_NAME(object_id),
 execution_count,
 time_milliseconds = total_elapsed_time/1000
FROM sys.dm_exec_function_stats
WHERE database_id = DB_ID()
ORDER BY name;

Results:

name execution_count time_milliseconds
--------- --------------- -----------------
dt_Scalar 400000 1116

That is not a typo; only the scalar UDF shows any presence in the new DMV.

sys.dm_exec_procedure_stats

SELECT name = OBJECT_NAME(object_id),
 execution_count,
 time_milliseconds = total_elapsed_time/1000
FROM sys.dm_exec_procedure_stats
WHERE database_id = DB_ID()
ORDER BY name;

Results:

name execution_count time_milliseconds
------------- --------------- -----------------
p_dt_Inline 2 74
p_dt_Multi 2 269
p_dt_Scalar 2 1063
p_dt_Standard 2 75

This is not a surprising result: using a scalar function leads to an order-of-magnitude performance
penalty, while the multi-statement TVF was only about 4x worse. Over multiple tests, the inline function
was always as fast or a millisecond or two faster than no function at all.

sys.dm_exec_query_stats

SELECT
 query = SUBSTRING([text],s,e),
 execution_count,
 time_milliseconds
FROM
(
 SELECT t.[text],
 s = s.statement_start_offset/2 + 1,
 e = COALESCE(NULLIF(s.statement_end_offset,-1),8000)/2,
 s.execution_count,
 time_milliseconds = s.total_elapsed_time/1000
 FROM sys.dm_exec_query_stats AS s
 OUTER APPLY sys.dm_exec_sql_text(s.[sql_handle]) AS t
 WHERE t.[text] LIKE N'%dt[_]%'
) AS x;

Truncated results, re-ordered manually:

query (truncated) execution_count
time_milliseconds
-- --------------- ---

-- p Standard:
SELECT @dt_ = CONVERT(CHAR(10), create_date, 120) ... 2 75
-- ad hoc Standard:
SELECT @dt_st = CONVERT(CHAR(10), create_date, 120) ... 2 72

-- p Inline:
SELECT @dt_ = dt.dt_ FROM dbo.src AS o CROSS APPLY dbo.dt_Inline... 2 74
-- ad hoc Inline:
SELECT @dt_in = dt.dt_ FROM dbo.src AS o CROSS APPLY dbo.dt_Inline... 2 72

-- all Multi:

INSERT @t(dt_) SELECT CONVERT(CHAR(10), @dt_, 120); 184 5
-- p Multi:
SELECT @dt_ = dt.dt_ FROM dbo.src CROSS APPLY dbo.dt_Multi... 2 270
-- ad hoc Multi:
SELECT @dt_m = dt.dt_ FROM dbo.src AS o CROSS APPLY dbo.dt_Multi... 2 257

-- all scalar:
RETURN (SELECT CONVERT(CHAR(10), @dt_, 120)); 400000 581
-- p Scalar:
SELECT @dt_ = dbo.dt_Scalar(create_date)... 2 986
-- ad hoc Scalar:
SELECT @dt_sc = dbo.dt_Scalar(create_date)... 2 902

An important thing to note here is that the time in milliseconds for the INSERT in the multi-statement
TVF and the RETURN statement in the scalar function are also accounted for within the individual
SELECTs, so it does not make sense to just add up all of the timings.

Manual timings

And then finally, the timings from the #temp table:

SELECT query = q,
 time_milliseconds = DATEDIFF(millisecond, s, e)
 FROM #t
 ORDER BY ID;

Results:

query time_milliseconds
--------------- -----------------
p Standard 107
ad hoc Standard 78
p Inline 80
ad hoc Inline 78
p Multi 351
ad hoc Multi 263
p Scalar 992
ad hoc Scalar 907

Additional interesting results here: the procedure wrapper always had some overhead, though how
significant that is might be truly subjective.

Summary

My point here today was merely to show the new DMV in action, and set expectations correctly – some
performance metrics for functions will still be misleading, and some will still not be available at all (or at
least be very tedious to piece together for yourself).

I do think this new DMV covers one of the biggest pieces of query monitoring that SQL Server was
missing before, though: that scalar functions are sometimes invisible performance killers, because the
only reliable way to identify their usage was to parse the query text, which is far from foolproof. Never
mind the fact that that won't allow you to isolate their impact on performance, or that you'd have to
have known to be looking for scalar UDFs in the query text in the first place.

Appendix

I've attached the script: DMExecFunctionStats.zip

Also, as of CTP1, here is the set of columns:

Columns currently in sys.dm_exec_function_stats

http://sqlperformance.com/wp-content/uploads/2015/06/DMExecFunctionStats.zip

SQL Server 2016 : In-Memory OLTP Enhancements
By Aaron Bertrand

I posted earlier about the changes to Availability Groups in SQL Server 2016, which I learned about
at MS Ignite largely from a session by Joey D'Antoni and Denny Cherry. Another great session was from
Kevin Farlee and Sunil Agarwal on the changes in store for In-Memory OLTP (the feature formerly known
as "Hekaton"). An interesting side note: the video of this session shows a demo where Kevin is running
CTP2.0 (build 13.0.200) – though it is probably not the build we'll see publicly this summer.

* LOB support will not be available in the CTP shipping this summer.

ALTER TABLE is an offline operation, and will support adding/dropping columns, indexes, and
constraints. There will be new syntax extensions to support some of these actions. You can change your
bucket count values with a simple rebuild (however note that any rebuild will require 2X memory):

ALTER TABLE dbo.InMemoryTable
 ALTER INDEX IX_NC_Hash
 REBUILD WITH (BUCKET_COUNT = 1048576);

In addition to these capacity / feature enhancements, there are also some additional performance
enhancements. For example, there will be the ability to add an in-memory, updateable, non-clustered
columnstore index over either disk-based or in-memory tables. And they have simplified the way that
deleted rows are processed (in 2014, those operations use FileStream; in 2016, they will skip this step).

http://sqlperformance.com/2015/11/sql-server-2016/in-memory-oltp-enhancements?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/11/sql-server-2016/in-memory-oltp-enhancements?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/12/sql-server-2016/availability-group-enhancements?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://ignite.microsoft.com/
https://myignite.microsoft.com/#/videos/bc3b10f5-13b4-e411-b87f-00155d5066d7

There have also been improvements to the migration advisors and the best practices analyzer – they are
now lighter on data gathering and provide more context about migration complexity.

There are still some limitations with some of these changes. TDE, as an example, requires additional
steps when upgrading a database. But it's clear that as In-Memory OLTP gets more mature, they are
chipping away at many of the biggest roadblocks to adoption.

But wait, there's more! If you want to use In-Memory OLTP in Azure SQL Database, there will be a public
preview with full support coming this summer. So you won't need your own physical server with 2 TB of
memory to push this feature to its limits. Do not expect any trickling of this feature into Standard
Edition, however.

Statistics and Table Structure
Please help improve SQL Server statistics!
By Aaron Bertrand

A long time ago, I used to publish Connect digests – little posts that highlighted a few bug reports or
suggestions on Connect that I thought deserved more attention. Now, I will say this: I am not really a big
fan of a system where the person with the most friends willing to vote gets his or her way, because the
SQL Server team should be able to ignore or defer noise, and focus on the most important and impactful
bugs or suggestions. But that is not how they do thing in Redmond. So, today, I have a request: help me
by voting and commenting on these three Connect items, all of which aim to improve how SQL Server
statistics work.

(Note that comments hold much more weight than mere vote counts, so please state your business case,
if you have one that is sharable.)

MAXDOP hint for UPDATE STATISTICS

SQL Server 2016 has added a MAXDOP hint for DBCC CHECK commands, so why not for stats updates?
On partitioned tables this can have a great impact on the rest of the workload. We should also be able
to override the system-defined MAXDOP for automatic stats updates, but for now I'd be happy with
more control over manual statistics management. The request is captured in the following Connect
item:

• Connect #628971 : Add MAXDOP parameter to Update Stats

Let the query optimizer see partition-level stats

Erin Stellato has blogged about the benefits of incremental stats here, but really hit the nail on the head
about its problems in this post: Incremental Statistics are NOT used by the Query Optimizer. Please read
through that and then vote and comment on the item I just created (I can't believe I never noticed that a
DCR didn't already exist for this):

• Connect #2010834 : Optimizer should actually *use* per-partition stats

Auto-stats should consider the number of rows in a filtered index/stat

Currently, relying on automatic updates to filtered indexes and statistics is like Waiting for Godot – the
algorithm uses the number of rows in the table when determining the churn threshold, not the number
of rows in the index. This means that most filtered indexes – and indeed the most useful filtered indexes
– will never be updated automatically. (I talk about this here, and Kimberly Tripp talks about
it here and here. I'm sure others have blogged about it too.) I think it's time for this to change – if you
agree, please vote and comment on Joe Sack's item (the title indicates filtered statistics, but it really
relates to both):

• Connect #509638 : Suggesting change to filtered statistics updates

http://sqlperformance.com/2015/11/sql-statistics/please-help-improve-sql-server-statistics?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/11/sql-statistics/please-help-improve-sql-server-statistics?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
https://connect.microsoft.com/SQLServer/feedback/details/628971/add-maxdop-parameter-to-update-stats
http://sqlperformance.com/2015/05/sql-statistics/improving-maintenance-incremental-statistics?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/05/sql-statistics/incremental-statistics-are-not-used-by-the-query-optimizer?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
https://connect.microsoft.com/SQLServer/feedback/details/2010834
http://sqlperformance.com/2013/04/t-sql-queries/filtered-indexes?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://www.sqlskills.com/blogs/kimberly/filtered-indexes-and-filtered-stats-might-become-seriously-out-of-date/
http://www.sqlskills.com/blogs/kimberly/category/filtered-indexes/
https://connect.microsoft.com/SQLServer/feedback/details/509638

Custom Built Statistics
By Dan Holmes

Post by Dan Holmes, who blogs at sql.dnhlms.com.

SQL Server Books Online (BOL), whitepapers, and many other sources will show you how and why you
might want to update statistics on a table or index. However, you only get one way to shape those
values. I will show you how you can create the statistics exactly the way you want within the bounds of
the 200 steps available.

Disclaimer: This works for me because I know my application, my database, and my user’s regular
workflow and application usage patterns. However, it does use undocumented commands and, if used
incorrectly, could make your application perform significantly worse.

In our application, the Scheduling user is regularly reading and writing data that represents events for
tomorrow and the next couple of days. Data for today and earlier is not used by the Scheduler. First
thing in the morning, the data set for tomorrow starts at a couple hundred rows and by midday can be
1400 and higher. The following chart will illustrate the row counts. This data was collected on the
morning of Wednesday November 18, 2015. Historically, you can see that the regular row count is
approximately 1,400 except for weekend days and the next day.

For the Scheduler the only pertinent data is the next few days. What is happening today and happened
yesterday isn’t relevant to his activity. So how does this cause a problem? This table has 2,259,205 rows
which means the change in row counts from morning to noon will not be enough to trigger a SQL Server
initiated statistics update. Furthermore, a manually scheduled job that builds statistics using UPDATE
STATISTICS populates the histogram with a sample of all the data in the table but may not include the
relevant information. This row count delta is enough to change the plan. However, without a statistics
update and an accurate histogram, the plan will not change for the better as the data changes.

A relevant selection of the histogram for this table from a backup dated on 11/4/2015 might look like
this:

http://sqlperformance.com/2015/11/sql-statistics/dan-holmes-custom-built-statistics?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/11/sql-statistics/dan-holmes-custom-built-statistics?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sql.dnhlms.com/
http://cdn.sqlperformance.com/wp-content/uploads/2015/11/MorningRowCounts.png

The values of interest are not reflected accurately in the histogram. What would be used for the date of
11/5/2015 would be the high value 1/4/2016. Based on the graph, this histogram is clearly not a good
source of information for the optimizer for the date of interest. Forcing the values of use into the
histogram isn’t reliable, so how can you do that? My first attempt was to repeatedly use theWITH
SAMPLE option of UPDATE STATISTICS and query the histogram until the values I needed were in the
histogram (an effort detailed here). Ultimately, that approach proved to be unreliable.

This histogram can lead to a plan with this type of behavior. The underestimate of rows produces a
Nested Loop join and an index seek. The reads are subsequently higher than they should be because of
this plan choice. This will also have an effect on statement duration.

What would work much better is to create the data exactly how you want it, and here’s how to do that.

There is an unsupported option of UPDATE STATISTICS: STATS_STREAM. This is used by Microsoft
Customer Support to export and import statistics so they can get an optimizer recreate without having
all the data in the table. We can use that feature. The idea is to create a table that mimics the DDL of the
statistic we want to customize. The relevant data is added to the table. The statistics are exported and
imported into the original table.

In this case, it is a table with 200 rows of not NULL dates and 1 row that includes the NULL values.
Additionally, there is an index on that table that matches the index that has the bad histogram values.

The name of the table is tblTripsScheduled. It has a non-clustered index on (id, TheTripDate) and a
clustered index on TheTripDate. There are a handful of other columns, but only the ones involved in the
index are important.

Create a table (temp table if you want) that mimics the table and index. The table and index looks like
this:

http://sql.dnhlms.com/2013/09/unskewing-statistics-when-you-know_4688.html
http://cdn.sqlperformance.com/wp-content/uploads/2015/11/dh_dbccOutput.png

CREATE TABLE #tbltripsscheduled_cix_tripsscheduled(
 id INT NOT NULL
 , tripdate DATETIME NOT NULL
 , PRIMARY KEY NONCLUSTERED(id, tripdate)
);

CREATE CLUSTERED INDEX thetripdate ON #tbltripsscheduled_cix_tripsscheduled(tripdate);

Next, the table needs to be populated with 200 rows of data that the statistics should be based on. For
my situation, it is the day-of through the next sixty days. The past and beyond 60 days is populated with
a "randomish" selection of every 10 days. (The cnt value in the CTE is a debug value. It does not play a
role in the final results.) The descending order for the rn column ensures that the 60 days are included,
and then as much of the past as possible.

DECLARE @date DATETIME = '20151104';

WITH tripdates
AS
(
 SELECT thetripdate, COUNT(*) cnt
 FROM dbo.tbltripsscheduled
 WHERE NOT thetripdate BETWEEN @date AND @date
 AND thetripdate < DATEADD(DAY, 60, @date) --only look 60 days out GROUP BY thetripdate
 HAVING DATEDIFF(DAY, 0, thetripdate) % 10 = 0
 UNION ALL
 SELECT thetripdate, COUNT(*) cnt
 FROM dbo.tbltripsscheduled
 WHERE thetripdate BETWEEN @date AND DATEADD(DAY, 60, @date)
 GROUP BY thetripdate
),
tripdate_top_200
AS
(
 SELECT *
 FROM
 (
 SELECT *, ROW_NUMBER() OVER(ORDER BY thetripdate DESC) rn
 FROM tripdates
) td
 WHERE rn <= 200
)
INSERT #tbltripsscheduled_cix_tripsscheduled (id, tripdate)
SELECT t.tripid, t.thetripdate
FROM tripdate_top_200 tp
INNER JOIN dbo.tbltripsscheduled t ON t.thetripdate = tp.thetripdate;

Our table is now populated with every row that is valuable for the user today and a selection of
historical rows. If the column TheTripdate was nullable, the insert would have also included the
following:

UNION ALL
SELECT id, thetripdate
FROM dbo.tbltripsscheduled
WHERE thetripdate IS NULL;

Next, we update the statistics on the index of our temp table.

UPDATE STATISTICS #tbltrips_IX_tbltrips_tripdates (tripdates) WITH FULLSCAN;

Now, export those statistics to a temp table. That table looks like this. It matches the output of DBCC
SHOW_STATISTICS WITH HISTOGRAM.

CREATE TABLE #stats_with_stream
(
 stream VARBINARY(MAX) NOT NULL
 , rows INT NOT NULL
 , pages INT NOT NULL
);

DBCC SHOW_STATISTICS has an option to export the statistics as a stream. It is that stream that we
want. That stream is also the same stream that the UPDATE STATISTICS stream option uses. To do that:

INSERT INTO #stats_with_stream --SELECT * FROM #stats_with_stream
EXEC ('DBCC SHOW_STATISTICS (N''tempdb..#tbltripsscheduled_cix_tripsscheduled'', thetripdate)
 WITH STATS_STREAM,NO_INFOMSGS');

The final step is to create the SQL that updates the statistics of our target table, and then execute it.

DECLARE @sql NVARCHAR(MAX);
SET @sql = (SELECT 'UPDATE STATISTICS tbltripsscheduled(cix_tbltripsscheduled) WITH
STATS_STREAM = 0x' + CAST('' AS XML).value('xs:hexBinary(sql:column("stream"))',
'NVARCHAR(MAX)') FROM #stats_with_stream);
EXEC (@sql);

At this point, we have replaced the histogram with our custom-built one. You can verify by checking the
histogram:

In this selection of the data on 11/4, all the days from 11/4 onwards are represented, and the historical
data is represented and accurate. Revisiting the portion of the query plan shown earlier, you can see the
optimizer made a better choice based on the corrected statistics:

There is a performance benefit to imported stats. The cost to compute the stats are on an "offline"
table. The only downtime for the production table is the duration of the stream import.

This process does use undocumented features and it looks like it could be dangerous, but remember
there is an easy undo: the update statistics statement. If something goes wrong, the statistics can always
be updated using standard T-SQL.

Scheduling this code to run regularly can greatly help the optimizer produce better plans given a data
set that changes over the tipping point but not enough to trigger a statistics update.

When I finished the first draft of this article, the row count on the table in the first chart changed from
217 to 717. That is a 300% change. That is enough to change the behavior of the optimizer but not
enough to trigger a statistics update. This data change would have left a bad plan in place. It is with the
process described here that this problem is solved.

References:

• UPDATE STATISTICS (Books Online)

• SQL 2008 Statistics Whitepaper

• Tipping Point Search

https://msdn.microsoft.com/en-us/library/ms187348.aspx
https://technet.microsoft.com/en-us/library/dd535534(v=sql.100).aspx
https://www.google.com/webhp?q=sql%20server%20tipping%20point
http://cdn.sqlperformance.com/wp-content/uploads/2015/11/dh_dbccOutput2.png

Partitioning on a Budget
By Aaron Bertrand

Last year, I presented a solution to simulate Availability Group readable secondaries without investing in
Enterprise Edition. Not to stop people from buying Enterprise Edition, as there are a lot of benefits
outside of AGs, but more so for those that have no chance of ever having Enterprise Edition in the first
place:

• Readable Secondaries on a Budget

I try to be a relentless advocate for the Standard Edition customer; it is almost a running joke that surely
– given the number of features it gets in each new release – that edition as a whole is on the
deprecation path. In private meetings with Microsoft I have pushed for features to also be included in
Standard Edition, especially with features that are much more beneficial to small businesses than those
with unlimited hardware budget.

Enterprise Edition customers enjoy the manageability and performance benefits offered by table
partitioning, but this feature is not available in Standard Edition. An idea struck me recently that there is
a way to achieve at least some of partitioning's upsides on any edition, and it doesn't involve partitioned
views. This is not to say that partitioned views are not a viable option worth considering; these are
described well by others, including Daniel Hutmacher (Partitioned views over table partitioning)
and Kimberly Tripp (Partitioned Tables v. Partitioned Views–Why are they even still around?). My idea is
just a little simpler to implement.

Your New Hero: Filtered Indexes

Now, I know, this feature is a four-letter word to some; before you go any further, you should be happily
comfortable with filtered indexes, or at least aware of their limitations. Some reading to give you some
fair balance before I try to sell you on them:

• I talk about several shortcomings in How filtered indexes could be a more powerful feature, and
point out plenty of Connect items for you to vote up;

• Paul White (@SQL_Kiwi) talks about tuning problems in Optimizer Limitations with Filtered
Indexes and also in An Unexpected Side-Effect of Adding a Filtered Index; and,

• Jes Borland (@grrl_geek) tells us What You Can (and Can't) Do With Filtered Indexes.

Read all those? And you're still here? Great.

The TL;DR of this is that you can use filtered indexes to keep all of your "hot data" in a separate physical
structure, and even on separate underlying hardware (you may have a fast SSD or PCIe drive available,
but it can't hold the whole table).

A Quick Example

There are many use cases where a portion of the data is queried much more frequently than the rest –
think of a retail store managing orders, a bakery scheduling wedding cake deliveries, or a football
stadium measuring attendance and concession data. In these cases, most or all of the everyday query
activity is concerned with "current" data.

http://sqlperformance.com/2015/12/sql-indexes/partitioning-on-a-budget?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2015/12/sql-indexes/partitioning-on-a-budget?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2014/10/sql-performance/readable-secondaries-on-a-budget?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
https://technet.microsoft.com/en-us/library/ms190019.aspx
https://technet.microsoft.com/en-us/library/ms190019.aspx
https://twitter.com/dhmacher
http://sqlsunday.com/2014/08/31/partitioned-views/
http://twitter.com/KimberlyLTripp
http://sqlmag.com/blog/partitioned-tables-v-partitioned-views-why-are-they-even-still-around
http://sqlperformance.com/2013/04/t-sql-queries/filtered-indexes?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://twitter.com/SQL_Kiwi
http://sqlperformance.com/2013/04/t-sql-queries/optimizer-limitations-with-filtered-indexes?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2013/04/t-sql-queries/optimizer-limitations-with-filtered-indexes?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://sqlperformance.com/2014/06/sql-plan/filtered-index-side-effect?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://twitter.com/grrl_geek
http://www.brentozar.com/archive/2013/11/what-you-can-and-cant-do-with-filtered-indexes/

Let's keep it simple; we'll create a database with a very narrow Orders table:

CREATE DATABASE PoorManPartition;
GO

USE PoorManPartition;
GO

CREATE TABLE dbo.Orders
(
 OrderID INT IDENTITY(1,1) PRIMARY KEY,
 OrderDate DATE NOT NULL DEFAULT SYSUTCDATETIME(),
 OrderTotal DECIMAL(8,2) --, ...other columns...
);

Now, let's say you have enough space on your fast storage to keep a month of data (with plenty of
headroom to account for seasonality and future growth). We can add a new filegroup, and place a data
file on the fast drive.

ALTER DATABASE PoorManPartition ADD FILEGROUP HotData;
GO

ALTER DATABASE PoorManPartition ADD FILE
(
 Name = N'HotData',
 FileName = N'Z:\folder\HotData.mdf',
 Size = 100MB,
 FileGrowth = 25MB
)
TO FILEGROUP HotData;

Now, let's create a filtered index on our HotData filegroup, where the filter includes everything from the
beginning of November 2015, and the common columns involved in time-based queries are in the key or
include list:

CREATE INDEX FilteredIndex
 ON dbo.Orders(OrderDate)
 INCLUDE(OrderTotal)
 WHERE OrderDate >= '20151101'
 AND OrderDate < '20151201'
 ON HotData;

We can insert a few rows and check the execution plan to be sure that covered queries can, in fact, use
the index:

INSERT dbo.Orders(OrderDate) VALUES('20151001'),('20151103'),('20151127');

GO

SELECT index_id, rows
 FROM sys.partitions
 WHERE object_id = OBJECT_ID(N'dbo.Orders');

/*
 Results:

 index_id rows
 -------- ----
 1 3
 2 2
*/

SELECT OrderID, OrderDate, OrderTotal
 FROM dbo.Orders
 WHERE OrderDate >= '20151102'
 AND OrderDate < '20151106';

The resulting execution plan, sure enough, uses the filtered index (even though the filter predicate in
the query does not match the index definition exactly):

Now, December 1st rolls around, and it's time to swap out our November data and replace it with
December. We can just re-create the filtered index with a new filter predicate, and use
theDROP_EXISTING option:

CREATE INDEX FilteredIndex
 ON dbo.Orders(OrderDate)
 INCLUDE(OrderTotal)
 WHERE OrderDate >= '20151201'
 AND OrderDate < '20160101'
 WITH (DROP_EXISTING = ON)
 ON HotData;

Now, we can add a few more rows, check the partition stats, and run our previous query and a new one
to check the indexes used:

INSERT dbo.Orders(OrderDate) VALUES('20151202'),('20151205');

GO

SELECT index_id, rows
 FROM sys.partitions
 WHERE object_id = OBJECT_ID(N'dbo.Orders');

/*
 Results:

 index_id rows
 -------- ----
 1 5
 2 2
*/

SELECT OrderID, OrderDate, OrderTotal
 FROM dbo.Orders
 WHERE OrderDate >= '20151102'
 AND OrderDate < '20151106';

SELECT OrderID, OrderDate, OrderTotal
 FROM dbo.Orders
 WHERE OrderDate >= '20151202'
 AND OrderDate < '20151204';

In this case we get a clustered index scan with the November query:

(But that would be different if we had a separate, non-filtered index with OrderDate as the key.)

And I won't show it again, but with the December query, we get the same filtered index seek as before.

You could also maintain multiple indexes, one for the current month, one for the previous month, and
so on, and you can just manage them separately (on December 1st you just drop the index from
October, and leave November's alone, for example). You could also maintain multiple indexes of shorter
or longer time spans (current and previous week, current and previous quarter), etc. The solution is
pretty flexible.

Due to the limitations of filtered indexes, I will not try to push this as a perfect solution, nor a complete
replacement for table partitioning or partitioned views. Switching out a partition, for example, is a
metadata operation, while re-creating an index with DROP_EXISTING can have a lot of logging (and since
you're not on Enterprise Edition, can't be run online). You may also find that partitioned views are more

your speed – there is more work around maintaining separate physical tables and the constraints that
make the partitioned view possible, but the payoff in terms of query performance might be better in
some cases.

Automation

The act of re-creating the index can be automated quite easily, using a simple job that does something
like this once a month (or whatever your "hot" window size is):

DECLARE @sql NVARCHAR(MAX),
 @dt DATE = DATEADD(DAY, 1-DAY(GETDATE()), GETDATE());

SET @sql = N'CREATE INDEX FilteredIndex
 ON dbo.Orders(OrderDate)
 INCLUDE(OrderTotal)
 WHERE OrderDate >= ''' + CONVERT(CHAR(8), @dt, 112) + N'''
 WITH (DROP_EXISTING = ON)
 ON HotData;';

EXEC PoorManPartition.sys.sp_executesql @sql;

You could also be creating multiple indexes months in advance, much like creating future partitions in
advance – after all, the future indexes won't occupy any space until there is data relevant to their
predicates. And you can just drop the indexes that were segmenting the older data that you now want
to become cold.

Hindsight

After I finished this article, of course, I came across another of Kimberly Tripp's posts, that you should
read before proceeding with anything I'm advocating here (and which I had read before I started):

• How about Filtered Indexes instead of Partitioning?

For multiple reasons, Kimberly is much more in favor of partitioned views to implement something
similar to partitioning in Standard Edition; however, for certain scenarios, the use of filtered indexes still
intrigues me enough to continue with my experimentation. One of the areas where filtered indexes can
be beneficial is when your "hot" data has multiple criteria – not just sliced by date, but also by other
attributes (maybe you want quick queries against all orders from this month that are for a specific tier of
customer or above a certain dollar amount).

Up Next…

In a future post, I'll play with this concept on a higher-end system, with some real-world volume and
workload. I want to discover performance differences between this solution, a non-filtered covering
index, a partitioned view, and a partitioned table. Inside a VM on a laptop with only SSDs available
would probably not yield realistic or fair tests at scale.

http://sqlmag.com/blog/how-about-filtered-indexes-instead-partitioning

T-SQL Tuesday #72 : Models Gone Wild!
By Aaron Bertrand

November's installment of T-SQL Tuesday, hosted by Mickey Stuewe (@SQLMickey), has nothing to do
with Zoolander or Gisele Bundchen. The topic is "Data Modeling Gone Wrong," and since I'm old and
grumpy, I've seen a lot of data modeling sins over the years. I tend to share a lot of my war stories in
sessions I deliver in person; for this post, I thought I would share a few of my favorites, and why I think
they're bad. These are kind of rambling, but I've sorted them into two categories for you: naming issues
and data type issues.

NAMING ISSUES

1. Shorthand – don't call a table cust – why not Customers (or Customer if you really subscribe to
the idea that each row is a self-contained entity)? I don't subscribe to the notion that you can
gain all kinds of productivity from saving a few characters of typing using shorthand or
abbreviations – especially when they can lead to ambiguity (I often harp on this about shorthand
like DATEPART(Y, ...) – where the Y doesn't mean what you think it means).

2. Object prefixes – I commonly see the tbl prefix ("tibble") on every table in the system. I know
that in many disciplines we're taught to use self-documenting prefixes, but for tables (and
procedures, and functions, and triggers…), they are simply unnecessary. The leading tibble just
makes everything sort together in a list, and requires additional visual parsing to
findtblCustomers, for example.

I don't recall ever looking at a piece of code and trying to figure out which objects were tables
and which were procedures or functions – the context makes that obvious, and naming things
incorrectly won't fool you:

INSERT dbo.fnFoo -- not a function, in spite of the prefix

EXEC dbo.tblBar; -- not a table, in spite of the prefix

1. You might argue, well, tibble allows me to differentiate a table from a view. I would argue that
there aren't many cases where this matters – you largely treat views and tables the same. If you
need to distinguish for the few cases where it does matter (like a non-updateable view), I'd
rather you use prefixes or some other naming scheme for the views, since they're the exception.

Another problem with using the tibble prefix: what happens if you later change that table to a view or
table-valued function? You'll either have to rename it and refactor all of the referencing code, or be
ready to explain the backstory every time someone asks why there is a view named tblSomething.

(And for stored procedures, please be very careful about using the sp_ prefix – which doesn't even stand
for stored procedure, by the way. As I have documented in the past, it can cause unexpected results and
even hurt performance. I don't think any prefix is necessary here either, but if you must use one, please
choose something other than sp_.)

2. Column/variable prefixes – another thing we learn from other disciplines is to prefix columns or
variables with their data types, for example intCustomerID. Like tbl, this may help the developer

http://blogs.sqlsentry.com/aaronbertrand/t-sql-tuesday-72-models-gone-wild/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://twitter.com/SQLMickey
http://mickeystuewe.com/2015/11/03/t-sql-tuesday-72-invitation-data-modeling-gone-wrong/
https://twitter.com/sqlqueen/status/660177486748119040
https://twitter.com/sqlqueen/status/660177486748119040
http://sqlperformance.com/2012/10/t-sql-queries/sp_prefix
http://sqlperformance.com/2012/10/t-sql-queries/sp_prefix

in a rush who doesn't understand the schema and doesn't know how to look at metadata, but it
can cause the same kind of issue later. What if your IDENTITY column exceeds the bounds of
an int and needs to become a bigint? What if you decide to change to GUIDs for your primary
keys? Those refactoring tasks may be complex enough without throwing a necessary rename on
top of it all. And speaking of GUIDs, the actual type name in SQL Server is uniqueidentifier –
does it make sense to be consistent and call your keyuniqueidentifierCustomerID?

3. Object consistency – I once had a customer system I was dealing with where there were two
stored procedures for updating a customer, dbo.Customer_Update and dbo.usp_updatecust.
Let me assure you that it was very frustrating for their team, who spent hours trying to find and
reproduce a bug in one stored procedure, when the code was actually calling the other. The
problem was that the person who started debugging the code followed one naming convention
and didn't even think to check the application code or look for other possible stored procedures
that were being called. Your standard isn't important, but pick one, enforce it, and stick with it.
Personally, I prefer Entity_Verb over verb[_]entity, since I am often looking for the stored
procedures involving customers, but very rarely am I looking for all the stored procedures that
update anything.

4. Entity consistency – I've seen systems where one table had id, another had Id, a third had ID,
and others still hadcust, CustID, customerid and Customer_Id. As with object names, pick a
standard for an entity, and stick with it (including case sensitivity, because you never know
when you may end up on a case sensitive collation). A CustomerIDshould be identifiable
as CustomerID no matter where in the data model it appears. IMHO, consistency trumps the
fact that this may seem redundant in the Customers table.

DATA TYPE ISSUES

1. Storing dates as strings – this is a pretty common one; people like to have their dates stored in
their preferred format, e.g. mm/dd/yyyy or dd/mm/yyyy. Aside from the fact that formatting
belongs in the presentation tier, and that ambiguous, regional formats are largely useless today,
this causes all kinds of issues with the data itself. For one, if the data type isvarchar, how do you
perform validation? What is preventing someone from storing 99/82/3109 or 33/-4/6666? Oh,
the application makes sure the string parameter gets passed a valid date? That's great, until
someone bypasses your application to perform data modifications. You also lose the ability to
perform date/time operations like DATEADD, DATENAME, andDATEPART without performing
explicit conversions or potential errors due to language or other settings. Sorting and range
queries also don't work correctly without explicitly converting the column first, which almost
always means a scan – even if there is an index on that string column. (And it doesn't make a lot
of sense to sort a string that begins with the day or month.) For a longer rambling on this topic,
see Bad habits to kick : mis-handling date / range queries.

2. Using Unicode when you don't need it – I've lost count of the number of times I've seen people
using nvarchar for things like telephone, postal code, or even GUIDs stored as strings. These
things will never need to support characters outside of the basic ASCII character set; using

http://sqlblog.com/blogs/aaron_bertrand/archive/2009/10/16/bad-habits-to-kick-mishandling-date-range-queries.aspx

Unicode here just means these columns will take up twice as much space, both on disk and in
the buffer pool (unless you are using Data Compression in SQL Server 2008 R2 or later).

3. Not using Unicode when you DO need it – conversely, there are many cases where you don't
think up front that you will need to support foreign character sets, but you will later – things like
proper names or company names. Imagine this person fills out your web form, and you store
their name in a varchar column:

INSERT dbo.Customers(Name) SELECT 'Aṣṭādhyāyī Ağçayş';

When you print out their business cards or add a salutation to their e-mail, it's going to come out
looking like this:

A??adhyayi Agçays

Or even worse:

A☐☐☐dhy☐y☐ A☐☐ay☐

1. This is not a good way to make friends in the international market, and it can be a royal pain to
change later. So think hard about these design decisions up front. If I were to weigh the impact
of disk space versus the cost of refactoring, I would always lean toward using Unicode for any
column that could ever potentially require Unicode, and just dealing with the extra space
requirements. So, if in doubt, choose nvarchar. And above all, be consistent – when you start
mixing varchar andnvarchar, you end up with implicit conversions, which can often have drastic
effects on your workload.

2. Making your variable length columns too long – one thing I see frequently is the reluctance to
pick an upper bound for a variable length column – e-mail and URL, for example, are often set to
4000 or 8000 characters, or even max types. Even though an e-mail can't be longer than 320
characters (64 for localpart, 1 for @ symbol, 255 for domain), and a URL can't be longer than
1,024 or 2,048 characters, depending on which browser is your lowest common denominator.
For max types there are inherent inefficiencies and differences in behavior that are well
documented. For picking an arbitrary length in the 4000/8000 range, a lesser-known problem is
that if you have e-mail address defined as varchar(8000), but the largest value is 120 characters,
and the average is 36 characters, the memory grant for any query is going to be based on the
assumption that the average e-mail address is 4,000 characters long. On your local system and
with a small data set, that's not really a problem; at scale, though, it's going to be painful.

3. Storing comma-separated lists – this is a popular one that has been getting further muddled by
support for other non-relational data like XML and JSON. Basically, my opinion is this: any single

http://sqlblog.com/blogs/aaron_bertrand/archive/2009/08/23/sql-server-2008-r2-digging-deeper-into-unicode-compression.aspx
http://sqlperformance.com/2013/04/t-sql-queries/implicit-conversion-costs
http://sqlperformance.com/2013/04/t-sql-queries/implicit-conversion-costs

fact that you care about independently, should be stored independently. If you're stuffing pet
names into a comma-separated list and you're going to want to search for everyone with a pet
named Snowball or Santa's Little Helper, that comma-separated list is going to make your job
very hard. Try to think about *all* of the future uses of the data, not just focusing on what is the
easiest way for the application to pass a "list" to SQL Server and store it (and in fact, think about
it as a set, not a list). Depending on the application, you might actually want a better way to do
this end-to-end: table-valued parameters, where the app doesn't have to take a set and build a
single string, and the database never has to turn around and split that string back into its
original set.

Now, I am not saying there are zero use cases for storing XML or JSON inside of SQL Server – there
certainly are valid scenarios. But ideally, either the application(s) should not rely on extracting parts or
searching these blobs inside the database, or users should understand that those features are unlikely to
be very fast.

SUMMARY

I really could go on and on about these things, but I'll save you some agony for now. Please do keep in
mind that many of these things I discourage are subjective, and they often do have valid pros, I just
don't prioritize the pros as high as the cons.

http://sqlperformance.com/2012/08/t-sql-queries/splitting-strings-now-with-less-t-sql

Applying Data Compression to the SQL Sentry Database : Part 5 (Follow-up)
By Melissa Connors

Recently, I completed a four-part series on Applying Data Compression to the SQL Sentry Database (Part
1 | Part 2 | Part 3 | Part 4). You might be asking yourself why I am posting Part 5 if I recently completed
the series and the answer is that I wanted to follow up on some comments from the previous parts. The
comments provided some questions and helpful suggestions from Kevin Kline (b | t) and Glenn Berry
(b | t). Kevin wondered about wait stats that might be specific to data compression and Glenn provided
a tip on setting MAXDOP while applying compression to prevent the process from consuming all of the
available CPU.

DATA COMPRESSION AND WAIT STATISTICS

For Kevin's question on wait statistics, I utilized SQL Sentry Performance Advisor to collect and view the
SQL Server Waits. I reused the test databases and environment from my data compression series as
described in the previous posts. The first thing I did while looking for wait statistics related to data
compression was rebuild all of the indexes in my test databases, where each database had a method of
compression previously implemented (none, row, or page). I could see the category of waits in real-time
on the SQL Sentry Performance Advisor Dashboard. Screens from those trials are shown below.

Figure 1 showing SQL Server Waits in the Performance Advisor Dashboard for the database with no
compression

Figure 2 showing SQL Server Waits in the Performance Advisor Dashboard for the database with row
compression

http://blogs.sqlsentry.com/melissaconnors/sql-sentry-data-compression-5/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=5&utm_campaign=ebook
http://blogs.sqlsentry.com/melissaconnors/sql-sentry-data-compression-1/
http://blogs.sqlsentry.com/melissaconnors/sql-sentry-data-compression-1/
http://blogs.sqlsentry.com/melissaconnors/sql-sentry-data-compression-2/
http://blogs.sqlsentry.com/melissaconnors/sql-sentry-data-compression-3/
http://blogs.sqlsentry.com/melissaconnors/sql-sentry-data-compression-4/
http://blogs.sqlsentry.com/author/KevinKline/
https://twitter.com/kekline
https://sqlserverperformance.wordpress.com/
https://twitter.com/GlennAlanBerry
http://www.sqlsentry.com/products/performance-advisor/sql-server-performance

Figure 3 showing SQL Server Waits in the Performance Advisor Dashboard for the database with page
compression

The orange shaded areas in the figures above represent the Disk category of waits. As one might expect,
the reduced I/O and disk-related activity in the compressed databases leads to fewer disks waits when
using those databases. Visually, it is easy to see the significant reduction in orange from Figure 1 to
Figure 2, and the even more dramatic reduction when comparing Figure 1 to Figure 3. From the
Performance Advisor Dashboard it is simple to navigate to the details of SQL Server Waits by category,
class, and type by right clicking on the screen and selecting Quick Report. This will allow you to view
specific percentages and actual wait times in milliseconds (ms).

Figure 4 showing how to generate the SQL Server Wait Stats Analysis Report from Performance Advisor

Figure 5 showing the SQL Server Wait Stats Analysis Report

The SQL Server Wait Stats Analysis can be exported to Excel, PDF, or Word, making it easy to compare
the wait statistics from different trials and baselines. If you like to use wait statistics as part of your
performance troubleshooting and tuning (and who doesn't?) then I'm sure you can see how this could
simplify the data collection and presentation for you.

In a subsequent test, I examined how wait statistics changed over a period of two hours while the SQL
Sentry database was using the different methods of compression during its usual monitoring. As shown
below, there was a reduction in disk waits, which resulted in fewer waits overall.

Figure 6 showing SQL Server Waits by Category for the database with no compression

Figure 7 showing SQL Server Waits by Category for the database with row compression

Figure 8 showing SQL Server Waits by Category for the database with page compression

During my testing, I did not come across any wait statistics that were specific to data compression. Kevin
also dug into this more and responses from those in the SQL Server Community indicated that a wait
statistic specific to data compression overhead does not exist. There were some helpful suggestions
regarding specific Extended Events for Columnstore indexes, which I plan to explore in the future.

DATA COMPRESSION AND MAX DEGREE OF PARALLELISM

The next thing I wanted to demonstrate in this post was based on Glenn Berry's comment on Part 2 of
my series where he said, "One thing you can (and probably should) do is to set MAXDOP = 1 when you
rebuild your indexes to apply ROW or PAGE compression, especially if you are doing it with ONLINE = ON.
This will usually make it take longer, (unless sequential I/O capacity is your bottleneck), but it will reduce
the CPU impact to your system, since only one processor core will be rebuilding the index." I thought this
was great advice and wanted to see the impact on my test environment.

http://blogs.sqlsentry.com/melissaconnors/sql-sentry-data-compression-2/

Figure 9 showing CPU utilization for each method of compression with unrestricted and restricted MAXDOP settings

Figure 9, above, shows a comparison of the CPU utilization when the Maximum Degree of Parallelism
was unrestricted (MAXDOP=0) and when it was restricted to a single CPU core (MAXDOP=1). When
MAXDOP was unrestricted, the average CPU utilization ranged from 30% to 73%, and while applying row
or page compression, it spiked to just under 100%. When MAXDOP is restricted to a single CPU, the
average CPU utilization is below 13% for all three methods, which makes sense because this server has 8
cores (100/8 = 12.5 and it's using that core near or at capacity to apply the compression). Total CPU
utilization might average or spike higher than that, of course, as other things are happening on the
system, but on a quiet test server you will likely be able to see something similar in the average when
restricting MAXDOP. Performance Advisor also provides a clear view of this while monitoring the
system. Figure 10, below, shows an example of applying compression with MAXDOP = 1 in my test
environment.

Figure 10 showing the process limited to a single core while applying page compression

As Glenn had mentioned, restricting MAXDOP does come with the strong likelihood of increasing the
amount of time required for the process to complete. You can see the difference in my lab environment
below. It is rather significant for applying page compression in this example.

Figure
11 showing total duration to apply each method of compression with unrestricted and restricted MAXDOP settings

I hope this post has provided you with some helpful additional guidance for applying data compression
to your SQL Sentry database or other SQL Server databases, as well as ideas on how you can use SQL
Sentry Performance Advisor for your own testing and analysis. Thank you for reading, and thank you to
Kevin and Glenn for providing the feedback, which prompted me to write this follow-up.

Index
Berry, Glenn

 Analyzing I/O Performance for SQL Server

 Using Microsoft DiskSpd to Test Your Storage Subsystem

 Introduction to Storage Spaces Direct for SQL Server

Bertrand, Aaron

 T-SQL Tuesday #67 : New Backup and Restore Extended Events

 What I mess up whenever I install SQL Server on a new VM

 FORMAT() is nice and all, but…

 More showplan improvements? Yes, please!

 SQL Server 2016 : Performance Impact of Always Encrypted

 Always Encrypted Performance : A Follow-Up

 Service Broker Enhancements in SQL Server 2016

 Please help improve SQL Server statistics!

 Partitioning on a Budget

 SQL Server 2016 : Availability Group Enhancements

SQL Server 2016 : sys.dm_exec_function_stats

SQL Server 2016 : In-Memory OLTP Enhancements

T-SQL Tuesday #72 : Models Gone Wild!

Connors, Melissa

 Applying Data Compression to the SQL Sentry Database : Part 5 (Follow-up)

Edwards, Lorie

 T-SQL Tuesday #68 : Just Say No to Defaults

Hall, Jason

 Nothing Is Free, Including Buffer Space

Holmes, Dan

 Custom Built Statistics

Kehayias, Jonathan

Monitoring Availability Group Replica Synchronization

Kline, Kevin

 T-SQL Tuesday #68 : The "Smoking Man" of SQL Server Defaults

Martin, John

 Monitoring for Suspect Pages

Radney, Tim

 The Importance of Maintenance on MSDB

 Network Load Testing Using iPerf

 SQL Server 2016 – Introduction to Stretch Database

Randal, Paul

 Knee-Jerk Wait Statistics : CXPACKET

 More on CXPACKET Waits: Skewed Parallelism

 Knee-Jerk Wait Statistics : PAGELATCH

Randall, Justin

 T-SQL Tuesday #68 : Default Settings for SQL Server Agent

Stellato,Erin

Proactive SQL Server Health Checks, Part 4 : ERRORLOG

Proactive SQL Server Health Checks, Part 5 : Wait Statistics

Capture Execution Plan Warnings using Extended Events

White, Paul

 Calculating the Median with a Dynamic Cursor

Locking and Performance

Improving the Row Numbering Median Solution

Improving the Top / Top Descending Median Solution

Hash Joins on Nullable Columns

Optimizing Update Queries

Another Reason to Use NOEXPAND hints in Enterprise Edition

	Foreword
	Table of Contents
	Monitoring
	T-SQL Tuesday #67 : New Backup and Restore Extended Events
	The Importance of Maintenance on MSDB
	Proactive SQL Server Health Checks, Part 4 : ERRORLOG
	Monitoring Availability Group Replica Synchronization
	Proactive SQL Server Health Checks, Part 5 : Wait Statistics
	Capture Execution Plan Warnings using Extended Events
	Monitoring for Suspect Pages
	Nothing Is Free, Including Buffer Space

	Wait Statistics
	Knee-Jerk Wait Statistics : CXPACKET
	More on CXPACKET Waits: Skewed Parallelism
	Knee-Jerk Wait Statistics : PAGELATCH

	System Configuration
	Analyzing I/O Performance for SQL Server
	Using Microsoft DiskSpd to Test Your Storage Subsystem
	Introduction to Storage Spaces Direct for SQL Server
	Network Load Testing Using iPerf
	T-SQL Tuesday #68 : Just Say No to Defaults
	T-SQL Tuesday #68 : The "Smoking Man" of SQL Server Defaults
	T-SQL Tuesday #68 : Default Settings for SQL Server Agent
	What I mess up whenever I install SQL Server on a new VM

	T-SQL and Execution Plans
	FORMAT() is nice and all, but…
	Calculating the Median with a Dynamic Cursor
	Locking and Performance
	Improving the Row Numbering Median Solution
	Improving the Top / Top Descending Median Solution
	Hash Joins on Nullable Columns
	More showplan improvements? Yes, please!
	Optimizing Update Queries
	Another Reason to Use NOEXPAND hints in Enterprise Edition

	SQL Server 2016
	SQL Server 2016 : Performance Impact of Always Encrypted
	Always Encrypted Performance : A Follow-Up
	SQL Server 2016 – Introduction to Stretch Database
	Service Broker Enhancements in SQL Server 2016
	SQL Server 2016 : Availability Group Enhancements
	SQL Server 2016 : sys.dm_exec_function_stats
	SQL Server 2016 : In-Memory OLTP Enhancements

	Statistics and Table Structure
	Please help improve SQL Server statistics!
	Custom Built Statistics
	Partitioning on a Budget
	T-SQL Tuesday #72 : Models Gone Wild!
	Applying Data Compression to the SQL Sentry Database : Part 5 (Follow-up)

	Index

