

High Performance Techniques for Microsoft SQL Server Volume 3

Editor-in-chief:
Aaron Bertrand

Authors:

Aaron Bertrand
Erin Stellato
Glenn Berry

Joe Sack
Jonathan Kehayias

Paul Randal
Paul White
Rick Pittser

eBook Lead:

Michael Kuras

Project Lead:
Kevin Kline

Copyright © 2015 SQL Sentry Inc
All Rights Reserved

Foreword
I am happy to introduce to you our third eBook based on articles posted to our performance-related

blog site, SQLPerformance.com. Once again, you will find a great selection of chapters assembled to

provide you with deep insight into many wide-reaching performance issues involving SQL Server.

I want to thank SQL Sentry for making me Editor-in-Chief of the site, and my esteemed colleagues Kevin

Kline, Eric Smith, and Michael Kuras for helping to put this material together. I also want to thank all of

our authors, who literally read like a “who’s who” in the SQL Server community. And finally, you – our

readers – who continue to drive us to produce top-notch, quality content. Thank you.

Aaron Bertrand

Table of Contents
Foreword

Table of Contents

Database Design

Aggregates and Partitioning

Two Partitioning Peculiarities

Finding Performance Benefits with Partitioning

T-SQL Tuesday #33 : Trick Shots : Schema Switch-A-Roo

Schema Switch-A-Roo : Part 2

The Price of Not Purging

Generate random integers without collisions

Making the Case for INSTEAD OF Triggers – Part 1

Indexes & Query Optimization

Don’t just blindly create those “missing” indexes!

How filtered indexes could be a much more powerful feature

Optimizer Limitations with Filtered Indexes

An Unexpected Side-Effect of Adding a Filtered Index

Optimization Phases and Missed Opportunities

Working Around Missed Optimizations

Parameter Sniffing, Embedding, and the RECOMPILE Options

Parallel Execution Plans – Branches and Threads

StarJoinInfo in Execution Plans

T-SQL Queries

Another argument for stored procedures

How expensive are column-side Implicit Conversions?

Incorrect Results with Merge Join

Performance Surprises and Assumptions : Arbitrary TOP 1

Performance Surprises and Assumptions : DATEDIFF

For the last time, NO, you can’t trust IDENT_CURRENT()

Best approaches for grouped running totals

Best approaches for grouped median

Maintaining a grouped running MAX (or MIN)

Follow-up on cursor options

High Availablity & Disaster Recovery

Troubleshooting AlwaysOn – Sometimes it takes many sets of eyes

Avoid HA/DR Solution Self-Delusion

SQL Server Standard Edition High Availability Features

Configuring Availability Group connectivity

Readable Secondaries on a Budget

Performance Tuning and Troubleshooting

Knee-Jerk Wait Statistics: PAGEIOLATCH_SH

Knee-Jerk PerfMon Counters: Page Life Expectancy

Performance Tuning the Whole Query Plan

Index

Database Design
Aggregates and Partitioning
By Paul White

The changes in the internal representation of partitioned tables between SQL Server 2005 and SQL

Server 2008 resulted in improved query plans and performance in the majority of cases (especially when

parallel execution is involved). Unfortunately, the same changes caused some things that worked well in

SQL Server 2005 to suddenly not work so well in SQL Server 2008 and later. This post looks at a one

example where the SQL Server 2005 query optimizer produced a superior execution plan compared with

later versions.

Sample Table and Data

The examples in this post use the following partitioned table and data:

CREATE PARTITION FUNCTION PF (integer)
AS RANGE RIGHT
FOR VALUES
 (
 10000, 20000, 30000, 40000, 50000,
 60000, 70000, 80000, 90000, 100000,
 110000, 120000, 130000, 140000, 150000
);

CREATE PARTITION SCHEME PS
AS PARTITION PF
ALL TO ([PRIMARY]);
GO
CREATE TABLE dbo.T4
(
 RowID integer IDENTITY NOT NULL,
 SomeData integer NOT NULL,

 CONSTRAINT PK_T4
 PRIMARY KEY CLUSTERED (RowID)
 ON PS (RowID)
);

INSERT dbo.T4 WITH (TABLOCKX)
 (SomeData)
SELECT
 ABS(CHECKSUM(NEWID()))
FROM dbo.Numbers AS N
WHERE
 N.n BETWEEN 1 AND 150000;

CREATE NONCLUSTERED INDEX nc1
ON dbo.T4 (SomeData)
ON PS (RowID);

Partitioned Data Layout

Our table has a partitioned clustered index. In this case, the clustering key also serves as the partitioning

key (though this is not a requirement, in general). Partitioning results in separate physical storage units

(rowsets) that the query processor presents to users as a single entity.

The diagram below shows the first three partitions of our table:

The nonclustered index is partitioned in the same way (it is “aligned”):

Each partition of the nonclustered index covers a range of RowID values. Within each partition, the data

is ordered by SomeData (but the RowID values will not be ordered in general).

The MIN/MAX Problem

It is reasonably well-known that MIN and MAX aggregates do not optimize well on partitioned tables

(unless the column being aggregated also happens to be the partitioning column). This limitation (which

still exists in SQL Server 2014 CTP 1) has been written about many times over the years; my favourite

coverage is in this article by Itzik Ben-Gan. To briefly illustrate the issue, consider the following query:

SELECT MIN(SomeData)
FROM dbo.T4;

http://sqlmag.com/sql-server/max-and-min-aggregates-against-partitioned-tables

The execution plan on SQL Server 2008 or above is as follows:

This plan reads all 150,000 rows from the index and a Stream Aggregate computes the minimum value

(the execution plan is essentially the same if we request the maximum value instead). The SQL Server

2005 execution plan is slightly different (though no better):

This plan iterates over partition numbers (listed in the Constant Scan) fully scanning a partition at a time.

All 150,000 rows are still eventually read and processed by the Stream Aggregate.

Look back at the partitioned table and index diagrams and think about how the query could be

processed more efficiently on our data set. The nonclustered index seems a good choice to resolve the

query because it contains SomeData values in an order that could be exploited when computing the

aggregate.

Now, the fact that the index is partitioned does complicate matters a bit: each partition of the index is

ordered by the SomeData column, but we cannot simply read the lowest value from any

particular partition to get the right answer to the whole query.

Once the essential nature of the problem is understood, a human being can see that an efficient

strategy would be to find the single lowest value of SomeData in each partition of the index, and then

take the lowest value from the per-partition results.

This is essentially the workaround that Itzik presents in his article; rewrite the query to compute an

aggregate per-partition (using APPLY syntax) and then aggregate again over those per-partition results.

Using that approach, the rewritten MIN query produces this execution plan (see Itzik’s article for the

exact syntax):

This plan reads partition numbers from a system table, and retrieves the lowest value of SomeData in

each partition. The final Stream Aggregate just computes the minimum over the per-partition results.

The important feature in this plan is that it reads a single row from each partition (exploiting the sort

order of the index within each partition). It is much more efficient than the optimizer's plan that

processed all 150,000 rows in the table.

MIN and MAX within a single partition

Now consider the following query to find the minimum value in the SomeData column, for a range of

RowID values that are contained within a single partition:

SELECT MIN(SomeData)
FROM dbo.T4
WHERE RowID >= 15000
AND RowID < 18000;

We have seen that the optimizer has trouble with MIN and MAX over multiple partitions, but we would

expect those limitations not to apply to a single partition query.

The single partition is the one bounded by the RowID values 10,000 and 20,000 (refer back to the

partitioning function definition). The partitioning function was defined as RANGE RIGHT, so the 10,000

boundary value belongs to partition #2 and the 20,000 boundary belongs to partition #3. The range of

RowID values specified by our new query is therefore contained within partition 2 alone.

The graphical execution plans for this query looks the same on all SQL Server versions from 2005

onward:

Plan Analysis

The optimizer took the RowID range specified in the WHERE clause and compared it with the partition

function definition to determine that only partition 2 of the nonclustered index needed to be accessed.

The SQL Server 2005 plan properties for the Index Scan shows the single-partition access clearly:

The other highlighted property is the Scan Direction. The order of the scan differs depending on whether

the query is looking for the minimum or maximum SomeData value. The nonclustered index is ordered

(per partition, remember) on ascending SomeData values, so the Index Scan direction is FORWARD if the

query asks for the minimum value, and BACKWARD if the maximum value is needed (the screen shot

above was taken from the MAX query plan).

There is also a residual Predicate on the Index Scan to check that the RowID values scanned from

partition 2 match the WHERE clause predicate. The optimizer assumes that RowID values are distributed

pretty randomly through the nonclustered index, so it expects to find the first row that matches

the WHERE clause predicate pretty quickly. The partitioned data layout diagram shows that the RowID

values are indeed quite randomly distributed in the index (which is ordered by the SomeData column

remember):

The Top operator in the query plan limits the Index Scan to a single row (from either the low or high end

of the index depending on the Scan Direction). Index Scans can be problematic in query plans, but the

Top operator makes it an efficient option here: the scan can only ever produce one row, then it

stops. The Top and ordered Index Scan combination effectively performs a seek to the highest or lowest

value in the index that also matches the WHERE clause predicates. A Stream Aggregate also appears in

the plan to ensure that a NULL is generated in case no rows are returned by the Index Scan.

Scalar MIN and MAX aggregates are defined to return a NULL when the input is an empty set.

Overall, this is a very efficient strategy, and the plans have an estimated cost of just 0.0032921 units as a

result. So far so good.

The Boundary Value Problem

This next example modifies the top end of the RowID range:

SELECT MIN(SomeData)
FROM dbo.T4
WHERE RowID >= 15000
AND RowID < 20000;

Notice that the query excludes the 20,000 value by using a “less than” operator. Recall that the 20,000

value belongs to partition 3 (not partition 2) because the partition function is defined as RANGE

RIGHT. The SQL Server 2005 optimizer handles this situation correctly, producing the optimal single-

partition query plan, with an estimated cost of 0.0032878:

However, the same query produces a different plan on SQL Server 2008 and later (including SQL Server 2014

CTP 1):

Now we have a Clustered Index Seek (instead of the desired Index Scan and Top operator

combination). All 5,000 rows that match the WHERE clause are processed through the Stream Aggregate

in this new execution plan. The estimated cost of this plan is 0.0199319 units – more than six times the

cost of the SQL Server 2005 plan.

Cause

The SQL Server 2008 (and later) optimizers do not quite get the internal logic right when an interval

references, but excludes, a boundary value belonging to a different partition. The optimizer incorrectly

thinks that multiple partitions will be accessed, and concludes that it cannot use the single-partition

optimization for MIN and MAX aggregates.

Workarounds

One option is to rewrite the query using >= and <= operators so we do not reference a boundary value

from another partition (even to exclude it!):

SELECT MIN(SomeData)
FROM dbo.T4
WHERE RowID >= 15000
AND RowID <= 19999;

This results in the optimal plan, touching a single partition:

Unfortunately, it is not always possible to specify correct boundary values in this way (depending on the

type of the partitioning column). An example of that is with date & time types where it is best to use

half-open intervals. Another objection to this workaround is more subjective: the partitioning function

excludes one boundary from the range, so it seems most natural to write the query also using half-open

interval syntax.

A second workaround is to specify the partition number explicitly (and retaining the half-open interval):

SELECT MIN(SomeData)
FROM dbo.T4
WHERE RowID >= 15000
AND RowID < 20000
AND $PARTITION.PF(RowID) = 2;

This produces the optimal plan, at the expensive of requiring an extra predicate and relying on the user

to work out what the partition number should be.

Of course it would be better if the 2008-and-later optimizers produced the same optimal plan SQL

Server 2005 did. In a perfect world, a more comprehensive solution would also address the multi-

partition case, making the workaround Itzik describes unnecessary as well.

http://sqlblog.com/blogs/aaron_bertrand/archive/2009/10/16/bad-habits-to-kick-mishandling-date-range-queries.aspx
http://sqlblog.com/blogs/aaron_bertrand/archive/2009/10/16/bad-habits-to-kick-mishandling-date-range-queries.aspx
http://connect.microsoft.com/SQLServer/feedback/details/240968/partition-table-using-min-max-functions-and-top-n-index-selection-and-performance
http://connect.microsoft.com/SQLServer/feedback/details/240968/partition-table-using-min-max-functions-and-top-n-index-selection-and-performance

Two Partitioning Peculiarities
By Paul White

Table partitioning in SQL Server is essentially a way of making multiple physical tables (rowsets) look like

a single table. This abstraction is performed entirely by the query processor, a design that makes things

simpler for users, but which makes complex demands of the query optimizer. This post looks at two

examples which exceed the optimizer’s abilities in SQL Server 2008 onward.

Join Column Order Matters

This first example shows how the textual order of ON clause conditions can affect the query plan

produced when joining partitioned tables. To start with, we need a partitioning scheme, a partitioning

function, and two tables:

CREATE PARTITION FUNCTION PF (integer)
AS RANGE RIGHT
FOR VALUES
 (
 10000, 20000, 30000, 40000, 50000,
 60000, 70000, 80000, 90000, 100000,
 110000, 120000, 130000, 140000, 150000
);

CREATE PARTITION SCHEME PS
AS PARTITION PF
ALL TO ([PRIMARY]);
GO
CREATE TABLE dbo.T1
(
 c1 integer NOT NULL,
 c2 integer NOT NULL,
 c3 integer NOT NULL,

 CONSTRAINT PK_T1
 PRIMARY KEY CLUSTERED (c1, c2, c3)
 ON PS (c1)
);

CREATE TABLE dbo.T2
(
 c1 integer NOT NULL,
 c2 integer NOT NULL,
 c3 integer NOT NULL,

 CONSTRAINT PK_T2
 PRIMARY KEY CLUSTERED (c1, c2, c3)
 ON PS (c1)
);

Next, we load both tables with 150,000 rows. The data does not matter very much; this example uses

a standard Numbers table containing all the integer values from 1 to 150,000 as a data source. Both

tables are loaded with the same data.

http://sqlblog.com/blogs/adam_machanic/archive/2006/07/12/you-require-a-numbers-table.aspx

INSERT dbo.T1 WITH (TABLOCKX)
 (c1, c2, c3)
SELECT
 N.n * 1,
 N.n * 2,
 N.n * 3
FROM dbo.Numbers AS N
WHERE
 N.n BETWEEN 1 AND 150000;

INSERT dbo.T2 WITH (TABLOCKX)
 (c1, c2, c3)
SELECT
 N.n * 1,
 N.n * 2,
 N.n * 3
FROM dbo.Numbers AS N
WHERE
 N.n BETWEEN 1 AND 150000;

Our test query performs a simple inner join of these two tables. Again, the query is not important or

intended to be particularly realistic, it is used to demonstrate an odd effect when joining partitioned

tables. The first form of the query uses an ON clause written in c3, c2, c1 column order:

SELECT *
FROM dbo.T1 AS T1
JOIN dbo.T2 AS T2
 ON t1.c3 = t2.c3
 AND t1.c2 = t2.c2
 AND t1.c1 = t2.c1;

The execution plan produced for this query (on SQL Server 2008 and later) features a parallel hash join,

with an estimated cost of 2.6953:

This is a bit unexpected. Both tables have a clustered index in (c1, c2, c3) order, partitioned by c1, so we

would expect a merge join, taking advantage of the index ordering. Let’s try writing the ON clause in (c1,

c2, c3) order instead:

SELECT *
FROM dbo.T1 AS T1
JOIN dbo.T2 AS T2

 ON t1.c1 = t2.c1
 AND t1.c2 = t2.c2
 AND t1.c3 = t2.c3;

The execution plan now uses the expected merge join, with an estimated cost of 1.64119 (down

from 2.6953). The optimizer also decides that it is not worth using parallel execution:

Noting that the merge join plan is clearly more efficient, we can attempt to force a merge join for the

original ON clause order using a query hint:

SELECT *
FROM dbo.T1 AS T1
JOIN dbo.T2 AS T2
 ON t1.c3 = t2.c3
 AND t1.c2 = t2.c2
 AND t1.c1 = t2.c1
OPTION (MERGE JOIN);

The resulting plan does use a merge join as requested, but it also features sorts on both inputs, and goes

back to using parallelism. The estimated cost of this plan is a whopping 8.71063:

Both sort operators have the same properties:

The optimizer thinks the merge join needs its inputs sorted in the strict written order of the ON clause,

introducing explicit sorts as a result. The optimizer is aware that a merge join requires its inputs sorted

in the same way, but it also knows that the column order does not matter. Merge join on (c1, c2, c3) is

equally happy with inputs sorted on (c3, c2, c1) as it is with inputs sorted on (c2, c1, c3) or any other

combination.

Unfortunately, this reasoning is broken in the query optimizer when partitioning is involved. This is

an optimizer bug that has been fixed in SQL Server 2008 R2 and later, although trace flag4199 is

required to activate the fix:

SELECT *
FROM dbo.T1 AS T1
JOIN dbo.T2 AS T2
 ON t1.c3 = t2.c3
 AND t1.c2 = t2.c2
 AND t1.c1 = t2.c1
OPTION (QUERYTRACEON 4199);

You would normally enable this trace flag using DBCC TRACEON or as a start-up option, because

the QUERYTRACEON hint is not documented for use with 4199. The trace flag is required in SQL Server

2008 R2, SQL Server 2012, and SQL Server 2014 CTP1.

Anyway, how ever the flag is enabled, the query now produces the optimal merge join whatever

the ON clause ordering:

There is no fix for SQL Server 2008, the workaround is to write the ON clause in the ‘right’ order! If you

encounter a query like this on SQL Server 2008, try forcing a merge join and look at the sorts to

determine the ‘correct’ way to write your query’s ON clause.

This issue does not arise in SQL Server 2005 because that release implemented partitioned queries using

the APPLY model:

The SQL Server 2005 query plan joins one partition from each table at a time, using an in-memory table

(the Constant Scan) containing partition numbers to process. Each partition is merge joined separately

on the inner side of the join, and the 2005 optimizer is smart enough to see that the ON clause column

order does not matter.

This latest plan is an example of a collocated merge join, a facility that was lost when moving from SQL

Server 2005 to the new partitioning implementation in SQL Server 2008. A suggestion on Connect

to reinstate collocated merge joins has been closed as Won’t Fix.

Group By Order Matters

The second peculiarity I want to look at follows a similar theme, but relates to the order of columns in

a GROUP BY clause rather than the ON clause of an inner join. We will need a new table to demonstrate:

CREATE TABLE dbo.T3
(
 RowID integer IDENTITY NOT NULL,
 UserID integer NOT NULL,

https://connect.microsoft.com/SQLServer/feedback/details/759266/partition-wise-joins

 SessionID integer NOT NULL,
 LocationID integer NOT NULL,

 CONSTRAINT PK_T3
 PRIMARY KEY CLUSTERED (RowID)
 ON PS (RowID)
);

INSERT dbo.T3 WITH (TABLOCKX)
 (UserID, SessionID, LocationID)
SELECT
 ABS(CHECKSUM(NEWID())) % 50,
 ABS(CHECKSUM(NEWID())) % 30,
 ABS(CHECKSUM(NEWID())) % 10
FROM dbo.Numbers AS N
WHERE
 N.n BETWEEN 1 AND 150000;

The table has an aligned nonclustered index, where ‘aligned’ simply means it is partitioned in the same

way as the clustered index (or heap):

CREATE NONCLUSTERED INDEX nc1
ON dbo.T3 (UserID, SessionID, LocationID)
ON PS (RowID);

Our test query groups data across the three nonclustered index columns and returns a count for each

group:

SELECT LocationID, UserID, SessionID, COUNT_BIG(*)
FROM dbo.T3
GROUP BY LocationID, UserID, SessionID;

The query plan scans the nonclustered index and uses a Hash Match Aggregate to count rows in each

group:

There are two problems with Hash Aggregate:

1. It is a blocking operator. No rows are returned to the client until all rows have been aggregated.

2. It requires a memory grant to hold the hash table.

In many real-world scenarios, we would prefer a Stream Aggregate here because that operator is only

blocking per group, and does not require a memory grant. Using this option, the client application would

start receiving data earlier, would not have to wait for memory to be granted, and the SQL Server can

use the memory for other purposes.

We can require the query optimizer to use a Stream Aggregate for this query by adding an OPTION

(ORDER GROUP) query hint. This results in the following execution plan:

The Sort operator is fully blocking and also requires a memory grant, so this plan appears to be worse

than simply using a hash aggregate. But why is the sort needed? The properties show that the rows are

being sorted in the order specified by our GROUP BY clause:

This sort is expected because partition-aligning the index (in SQL Server 2008 onward) means the

partition number is added as a leading column of the index. In effect, the nonclustered index keys are

(partition, user, session, location) due to the partitioning. Rows in the index are still sorted by user,

session, and location, but only within each partition.

If we restrict the query to a single partition, the optimizer ought to be able to use the index to feed a

Stream Aggregate without sorting. In case that requires some explanation, specifying a single partition

means the query plan can eliminate all other partitions from the nonclustered index scan, resulting in a

stream of rows that is ordered by (user, session, location).

We can achieve this partition elimination explicitly using the $PARTITION function:

SELECT LocationID, UserID, SessionID, COUNT_BIG(*)
FROM dbo.T3

WHERE $PARTITION.PF(RowID) = 1
GROUP BY LocationID, UserID, SessionID;

Unfortunately, this query still uses a Hash Aggregate, with an estimated plan cost of 0.287878:

The scan is now just over one partition, but the (user, session, location) ordering has not helped the

optimizer use a Stream Aggregate. You might object that (user, session, location) ordering is not helpful

because the GROUP BY clause is (location, user, session), but the key order does not matter for a

grouping operation.

Let’s add an ORDER BY clause in the order of the index keys to prove the point:

SELECT LocationID, UserID, SessionID, COUNT_BIG(*)
FROM dbo.T3
WHERE $PARTITION.PF(RowID) = 1
GROUP BY LocationID, UserID, SessionID
ORDER BY UserID, SessionID, LocationID;

Notice that the ORDER BY clause matches the nonclustered index key order, though the GROUP

BY clause does not. The execution plan for this query is:

Now we have the Stream Aggregate we were after, with an estimated plan cost of 0.0423925 (compared

with 0.287878 for the Hash Aggregate plan – almost 7 times more).

The other way to achieve a Stream Aggregate here is to reorder the GROUP BY columns to match the

nonclustered index keys:

SELECT LocationID, UserID, SessionID, COUNT_BIG(*)
FROM dbo.T3 AS T1
WHERE $PARTITION.PF(RowID) = 1
GROUP BY UserID, SessionID, LocationID;

This query produces the same Stream Aggregate plan shown immediately above, with exactly the same

cost. This sensitivity to GROUP BY column order is specific to partitioned table queries in SQL Server 2008

and later.

You may recognize that the root cause of the problem here is similar to the previous case involving a

Merge Join. Both Merge Join and Stream Aggregate require input sorted on the join or aggregation keys,

but neither cares about the order of those keys. A Merge Join on (x, y, z) is just as happy receiving rows

ordered by (y, z, x) or (z, y, x) and the same is true for Stream Aggregate.

This optimizer limitation also applies to DISTINCT in the same circumstances. The following query results

in a Hash Aggregate plan with an estimated cost of 0.286539:

SELECT DISTINCT LocationID, UserID, SessionID
FROM dbo.T3 AS T1
WHERE $PARTITION.PF(RowID) = 1;

If we write the DISTINCT columns in the order of the nonclustered index keys…

SELECT DISTINCT UserID, SessionID, LocationID
FROM dbo.T3 AS T1
WHERE $PARTITION.PF(RowID) = 1;

…we are rewarded with a Stream Aggregate plan with a cost of 0.041455:

To summarize, this is a limitation of the query optimizer in SQL Server 2008 and later (including SQL
Server 2014 CTP 1) that is not resolved by using trace flag 4199 as was the case for the Merge Join
example. The problem only occurs with partitioned tables with a GROUP BY or DISTINCT over three or
more columns using an aligned partitioned index, where a single partition is processed.

As with the Merge Join example, this represents a backward step from the SQL Server 2005 behaviour.
SQL Server 2005 did not add an implied leading key to partitioned indexes, using an APPLY technique
instead. In SQL Server 2005, all the queries presented here using $PARTITION to specify a single partition
result in query plans that performs partition elimination and use Stream Aggregates without any query
text reordering.

The changes to partitioned table processing in SQL Server 2008 improved performance in several
important areas, primarily related to the efficient parallel processing of partitions. Unfortunately, these
changes had side effects which have not all been resolved in later releases.

Finding Performance Benefits with Partitioning
By Erin Stellato

Partitioning is a SQL Server feature often implemented to alleviate challenges related to manageability,

maintenance tasks, or locking and blocking. Administration of large tables can become easier with

partitioning, and it can improve scalability and availability. In addition, a by-product of partitioning can

be improved query performance. It's not a guarantee or a given, and it’s not the driving reason to

implement partitioning, but it is something worth reviewing when you partition a large table.

Background

As a quick review, the SQL Server partitioning feature is only available in Enterprise and Developer

Editions. Partitioning can be implemented during initial database design, or it can be put into place after

a table already has data in it. Understand that changing an existing table with data to a partitioned table

is not always fast and simple, but it’s quite feasible with good planning and the benefits can be quickly

realized.

A partitioned table is one where the data is separated into smaller physical structures based on the

value for a specific column (called the partitioning column, which is defined in the partition function). If

you want to separate data by year, you might use a column called DateSold as the partitioning column,

and all data for 2013 would reside in one structure, all data for 2012 would reside in a different

structure, etc. These separate sets of data allow for focused maintenance (you can rebuild just a

partition of an index, rather than the entire index) and permit data to be quickly added and removed

because it can be staged in advance of actually being added to, or removed from, the table.

The Setup

To examine the differences in query performance for a partitioned versus a non-partitioned table, I

created two copies of the Sales.SalesOrderHeader table from the AdventureWorks2012 database. The

non-partitioned table was created with only a clustered index on SalesOrderID, the traditional primary

key for the table. The second table was partitioned on OrderDate, with OrderDate and SalesOrderID as

the clustering key, and had no additional indexes. Note that there are numerous factors to consider

when deciding what column to use for partitioning. Partitioning often, but certainly not always, uses a

date field to define the partition boundaries. As such, OrderDate was selected for this example, and

sample queries were used to simulate typical activity against the SalesOrderHeader table. The

statements to create and populate both tables can be downloaded here.

After creating the tables and adding data, the existing indexes were verified and then statistics updated

with FULLSCAN:

EXEC sp_helpindex 'Sales.Big_SalesOrderHeader';
GO
EXEC sp_helpindex 'Sales.Part_SalesOrderHeader';
GO

UPDATE STATISTICS [Sales].[Big_SalesOrderHeader] WITH FULLSCAN;
GO
UPDATE STATISTICS [Sales].[Part_SalesOrderHeader] WITH FULLSCAN;
GO

http://technet.microsoft.com/en-us/library/ms190787.aspx
http://technet.microsoft.com/en-us/library/ms190787.aspx
http://msdn.microsoft.com/en-us/library/cc645993.aspx
http://msdn.microsoft.com/en-us/library/cc645993.aspx
http://cdn.sqlperformance.com/wp-content/uploads/2013/09/Create_Tables_PartitioningAW2012.zip

SELECT
 sch.name + '.' + so.name AS [Table],
 ss.name AS [Statistic],
 sp.last_updated AS [Stats Last Updated],
 sp.rows AS [Rows],
 sp.rows_sampled AS [Rows Sampled],
 sp.modification_counter AS [Row Modifications]
FROM sys.stats AS ss
INNER JOIN sys.objects AS so ON ss.[object_id] = so.[object_id]
INNER JOIN sys.schemas AS sch ON so.[schema_id] = sch.[schema_id]
OUTER APPLY sys.dm_db_stats_properties(so.[object_id], ss.stats_id) AS sp
WHERE so.[object_id] IN (OBJECT_ID(N'Sales.Big_SalesOrderHeader'),
OBJECT_ID(N'Sales.Part_SalesOrderHeader'))
AND ss.stats_id = 1;

In addition, both tables have the exact same distribution of data and minimal fragmentation.

Performance for a Simple Query

Before any additional indexes were added, a basic query was executed against both tables to calculate

totals earned by sales person for orders placed in December 2012:

SELECT [SalesPersonID], SUM([TotalDue])
FROM [Sales].[Big_SalesOrderHeader]
WHERE [OrderDate] BETWEEN '2012-12-01' AND '2012-12-31'
GROUP BY [SalesPersonID];
GO

SELECT [SalesPersonID], SUM([TotalDue])
FROM [Sales].[Part_SalesOrderHeader]
WHERE [OrderDate] BETWEEN '2012-12-01' AND '2012-12-31'
GROUP BY [SalesPersonID];
GO

STATISTICS IO OUTPUT
Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-ahead reads

0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Table 'Big_SalesOrderHeader'. Scan count 9, logical reads 2710440, physical reads

2226, read-ahead reads 2658769, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-ahead reads

0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Table 'Part_SalesOrderHeader'. Scan count 9, logical reads 248128, physical reads 3,

read-ahead reads 245030, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Totals by Sales Person for December – Non-Partitioned Table

Totals by Sales Person for December – Partitioned Table

As expected, the query against the non-partitioned table had to perform a full scan of the table as there
was no index to support it. In contrast, the query against the partitioned table only needed to access
one partition of the table.

To be fair, if this was a query repeatedly executed with different date ranges, the appropriate
nonclustered index would exist. For example:

CREATE NONCLUSTERED INDEX [Big_SalesOrderHeader_SalesPersonID]
ON [Sales].[Big_SalesOrderHeader] ([OrderDate]) INCLUDE ([SalesPersonID], [TotalDue]);

With this index created, when the query is re-executed, the I/O statistics drop and the plan changes to
use the nonclustered index:

STATISTICS IO OUTPUT
Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-ahead reads

0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Table 'Big_SalesOrderHeader'. Scan count 9, logical reads 42901, physical reads 3,

read-ahead reads 42346, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Totals by Sales Person for December – NCI on Non-Partitioned Table

With a supporting index, the query against Sales.Big_SalesOrderHeader requires significantly fewer
reads than the clustered index scan against Sales.Part_SalesOrderHeader, which is not unexpected since

the clustered index is much wider. If we create a comparable nonclustered index for
Sales.Part_SalesOrderHeader, we see similar I/O numbers:

CREATE NONCLUSTERED INDEX [Part_SalesOrderHeader_SalesPersonID]
ON [Sales].[Part_SalesOrderHeader]([SalesPersonID]) INCLUDE ([TotalDue]);

STATISTICS IO OUTPUT
Table 'Part_SalesOrderHeader'. Scan count 9, logical reads 42894, physical reads 1,

read-ahead reads 42378, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Totals by Sales Person for December – NCI on Partitioned Table with Elimination

And if we look at the properties of the nonclustered Index Scan, we can verify that the engine accessed
only one partition (6).

As stated originally, partitioning is not typically implemented to improve performance. In the example
shown above, the query against the partitioned table doesn’t perform significantly better as long as the
appropriate nonclustered index exists.

Performance for an Ad-Hoc Query

A query against the partitioned table can outperform the same query against the non-partitioned table
in some cases, for example when the query has to use the clustered index. While it’s ideal to have the
majority of queries supported by nonclustered indexes, some systems allow ad-hoc queries from users,
and others have queries that may run so infrequently they don’t warrant supporting indexes. Against
the SalesOrderHeader table, a user might run the following query to find orders from December 2012
that needed to ship by the end of the year but didn’t, for a particular set of customers and with a
TotalDue greater than $1000:

SELECT
[SalesOrderID],
[OrderDate],
[DueDate],
[ShipDate],
[AccountNumber],
[CustomerID],
[SalesPersonID],
[SubTotal],

[TotalDue]
FROM [Sales].[Big_SalesOrderHeader]
WHERE [TotalDue] > 1000
AND [CustomerID] BETWEEN 10000 AND 20000
AND [OrderDate] BETWEEN '2012-12-01' AND '2012-12-31'
AND [DueDate] < '2012-12-31'
AND [ShipDate] > '2012-12-31';
GO

SELECT
[SalesOrderID],
[OrderDate],
[DueDate],
[ShipDate],
[AccountNumber],
[CustomerID],
[SalesPersonID],
[SubTotal],
[TotalDue]
FROM [Sales].[Part_SalesOrderHeader]
WHERE [TotalDue] > 1000
AND [CustomerID] BETWEEN 10000 AND 20000
AND [OrderDate] BETWEEN '2012-12-01' AND '2012-12-31'
AND [DueDate] < '2012-12-31'
AND [ShipDate] > '2012-12-31';
GO

STATISTICS IO OUTPUT
Table 'Big_SalesOrderHeader'. Scan count 9, logical reads 2711220, physical reads

8386, read-ahead reads 2662400, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'Part_SalesOrderHeader'. Scan count 9, logical reads 248128, physical reads 0,

read-ahead reads 243792, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Ad-Hoc Query – Non-Partitioned Table

Ad-Hoc Query – Partitioned Table

Against the non-partitioned table the query required a full scan against the clustered index, but against
the partitioned table, the query performed an index seek of the clustered index, as the engine used
partition elimination and only read the data it absolutely needed. In this example, it’s a significant
difference in terms of I/O, and depending on the hardware, could be a dramatic difference in execution
time. The query could be optimized by adding the appropriate index, but it’s typically not feasible to
index for every single query. In particular, for solutions that allow ad-hoc queries, it’s fair to say that you
never know what users are going to do. A query may run once and never run again, and creating an
index after the fact is futile. Therefore, when changing from a non-partitioned table to a partitioned
table, it’s important to apply the same effort and approach as regular index tuning; you want to verify
that the appropriate indexes exist to support the majority of queries.

Performance and Index Alignment

An additional factor to consider when creating indexes for a partitioned table is whether to align the
index or not. Indexes must be aligned with the table if you’re planning to switch data in and out of
partitions. Creating a nonclustered index on a partitioned table creates an aligned index by default,
where the partitioning column is added as an included column to the index.

A non-aligned index is created by specifying a different partition scheme or a different filegroup. The
partitioning column can be part of the index as a key column or an included column, but if the table’s
partition scheme is not used, or a different filegroup is used, the index will not be aligned.

An aligned index is partitioned just like the table – the data will exist in separate structures – and
therefore partition elimination can occur. An unaligned index exists as one physical structure, and may
not provide the expected benefit for a query, depending on the predicate. Consider a query that does
count of sales by account number, grouped by month:

SELECT DATEPART(MONTH,[OrderDate]),COUNT([AccountNumber])
FROM [Sales].[Part_SalesOrderHeader]
WHERE [OrderDate] BETWEEN '2013-01-01' AND '2013-07-31'
GROUP BY DATEPART(MONTH,[OrderDate])
ORDER BY DATEPART(MONTH,[OrderDate]);

If you’re not that familiar with partitioning, you might create an index like this to support the query
(note that the PRIMARY filegroup is specified):

CREATE NONCLUSTERED INDEX [Part_SalesOrderHeader_AccountNumber_NotAL]
ON [Sales].[Part_SalesOrderHeader]([AccountNumber])
ON [PRIMARY];

This index is not aligned, even though it includes OrderDate because it’s part of the primary key. The
columns are also included if we create an aligned index, but note the difference in syntax:

CREATE NONCLUSTERED INDEX [Part_SalesOrderHeader_AccountNumber_AL]
ON [Sales].[Part_SalesOrderHeader]([AccountNumber]);

We can verify what columns exist in the index using Kimberly Tripp’s sp_helpindex:

EXEC sp_SQLskills_SQL2008_helpindex 'Sales.Part_SalesOrderHeader’;

sp_helpindex for Sales.Part_SalesOrderHeader

When we run our query and force it to use the non-aligned index, the entire index is scanned. Even
though OrderDate is part of the index, it is not the leading column so the engine has to check the
OrderDate value for every AccountNumber to see if it falls between January 1, 2013 and July 31, 2013:

SELECT DATEPART(MONTH,[OrderDate]),COUNT([AccountNumber])
FROM [Sales].[Part_SalesOrderHeader]
WITH(INDEX([Part_SalesOrderHeader_AccountNumber_NotAL]))
WHERE [OrderDate] BETWEEN '2013-01-01' AND '2013-07-31'
GROUP BY DATEPART(MONTH,[OrderDate])
ORDER BY DATEPART(MONTH,[OrderDate]);

STATISTICS IO OUTPUT
Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-ahead reads

0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Table 'Part_SalesOrderHeader'. Scan count 9, logical reads 786861, physical reads 1,

read-ahead reads 770929, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

http://www.sqlskills.com/blogs/kimberly/category/sp_helpindex-rewrites/

Account Totals by Month (January – July 2013) Using Non-Aligned NCI (forced)

In contrast, when the query is forced to use the aligned index, partition elimination can be used, and
fewer I/Os are required, even though OrderDate is not a leading column in the index.

SELECT DATEPART(MONTH,[OrderDate]),COUNT([AccountNumber])
FROM [Sales].[Part_SalesOrderHeader]
WITH(INDEX([Part_SalesOrderHeader_AccountNumber_AL]))
WHERE [OrderDate] BETWEEN '2013-01-01' AND '2013-07-31'
GROUP BY DATEPART(MONTH,[OrderDate])
ORDER BY DATEPART(MONTH,[OrderDate]);

STATISTICS IO OUTPUT
Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-ahead reads

0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Table 'Part_SalesOrderHeader'. Scan count 9, logical reads 456258, physical reads 16,

read-ahead reads 453241, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Account Totals by Month (January – July 2013) Using Aligned NCI (forced)

Summary

The decision to implement partitioning is one which requires due consideration and planning. Ease of
management, improved scalability and availability, and a reduction in blocking are common reasons to
partition tables. Improving query performance is not a reason to employ partitioning, though it can be a
beneficial side-effect in some cases. In terms of performance, it is important to ensure that your
implementation plan includes a review of query performance. Confirm that your indexes continue to
appropriately support your queries after the table is partitioned, and verify that queries using the
clustered and nonclustered indexes benefit from partition elimination where applicable.

T-SQL Tuesday #33 : Trick Shots : Schema Switch-A-Roo
By Aaron Bertrand

This month's T-SQL Tuesday is being hosted by Mike Fal (blog|twitter), and the topic is Trick Shots,

where we're invited to tell the community about some solution we used in SQL Server that felt, at least

to us, as a sort of "trick shot" – something similar to using massé, "English" or complicated bank shots in

billiards or snooker. After working with SQL Server for some 15 years, I've had the occasion to come up

with tricks to solve some pretty interesting problems, but one that seems to be quite reusable, easily

adapts to many situations, and is simple to implement, is something I call "schema switch-a-roo."

Let's say you have a scenario where you have a large lookup table that needs to get refreshed

periodically. This lookup table is needed across many servers and can contain data that gets populated

from an external or 3rd party source, e.g. IP or domain data, or can represent data from within your own

environment.

The first couple of scenarios where I needed a solution for this were making metadata and denormalized

data available to read-only "data caches" – really just SQL Server MSDE (and later Express) instances

installed on various web servers, so the web servers pulled this cached data locally instead of bothering

the primary OLTP system. This may seem redundant, but off-loading read activity away from the primary

OLTP system, and being able to take the network connection out of the equation completely, led to a

real bump in all-around performance and, most notably, for end users.

These servers did not need up-to-the minute copies of the data; in fact, a lot of the cache tables were

only updated daily. But since the systems were 24×7, and some of these updates could take several

minutes, they often got in the way of real customers doing real things on the system.

The Original Approach(es)

At the very beginning, the code was rather simplistic: we deleted rows that had been removed from the

source, updated all the rows that we could tell had changed, and inserted all the new rows. It looked

something like this (error handling etc. removed for brevity):

BEGIN TRANSACTION;

DELETE dbo.Lookup
 WHERE [key] NOT IN
 (SELECT [key] FROM [source]);

UPDATE d SET [col] = s.[col]
 FROM dbo.Lookup AS d
 INNER JOIN [source] AS s
 ON d.[key] = s.[key]
 -- AND [condition to detect change];

INSERT dbo.Lookup([cols])
 SELECT [cols] FROM [source]
 WHERE [key] NOT IN
 (SELECT [key] FROM dbo.Lookup);

COMMIT TRANSACTION;

http://www.mikefal.net/
http://twitter.com/Mike_Fal
http://www.mikefal.net/2012/08/07/invitation-to-t-sql-tuesday-33-trick-shots-tsql2sday/
http://en.wikipedia.org/wiki/Cue_sports_techniques#Mass.C3.A9_shot
http://www.easypooltutor.com/articles/3-how-to-use-sidespin/140-cue-ball-control-using-english.html

Needless to say this transaction could cause some real performance issues when the system was in use.

Surely there were other ways to do this, but every method we tried was equally slow and expensive.

How slow and expensive? "Let me count the scans…"

Since this pre-dated MERGE, and we had already discarded "external" approaches like DTS, through

some testing we determined that it would be more efficient to just wipe the table and re-populate it,

rather than to try and sync to the source:

BEGIN TRANSACTION;

TRUNCATE TABLE dbo.Lookup;

INSERT dbo.Lookup([cols])
 SELECT [cols] FROM [source];

COMMIT TRANSACTION;

Now, as I explained, this query from [source] could take a couple of minutes, especially if all of the web

servers were being updated in parallel (we tried to stagger where we could). And if a customer was on

the site and trying to run a query involving the lookup table, they had to wait for that transaction to

finish. In most cases, if they're running this query at midnight, it wouldn't really matter if they got

yesterday's copy of the lookup data or today's; so, making them wait for the refresh seemed silly, and

actually did lead to a number of support calls.

So while this was better, it was certainly far from perfect.

My Initial Solution : sp_rename

My initial solution, back when SQL Server 2000 was cool, was to create a "shadow" table:

CREATE TABLE dbo.Lookup_Shadow([cols]);

This way I could populate the shadow table without interrupting users at all, and then perform a three-

way rename – a fast, metadata-only operation – only after the population was complete. Something like

this (again, grossly simplified):

TRUNCATE TABLE dbo.Lookup_Shadow;

INSERT dbo.Lookup_Shadow([cols])
 SELECT [cols] FROM [source];

BEGIN TRANSACTION;

 EXEC sp_rename N'dbo.Lookup', N'dbo.Lookup_Fake';
 EXEC sp_rename N'dbo.Lookup_Shadow', N'dbo.Lookup';

COMMIT TRANSACTION;

-- if successful:
EXEC sp_rename N'dbo.Lookup_Fake', N'dbo.Lookup_Shadow';

The downside to this initial approach was that sp_rename has a non-suppressible output message

warning you about the dangers of renaming objects. In our case we performed this task through SQL

Server Agent jobs, and we handled a lot of metadata and other cache tables, so the job history was

flooded with all these useless messages and actually caused real errors to be truncated from the history

details. (I complained about this in 2007, but my suggestion was ultimately dismissed and closed as

"Won't Fix.")

A Better Solution : Schemas

Once we upgraded to SQL Server 2005, I discovered this fantastic command called CREATE SCHEMA. It

was trivial to implement the same type of solution using schemas instead of renaming tables, and now

the Agent history wouldn't be polluted with all of these unhelpful messages. Basically I created two new

schemas:

CREATE SCHEMA fake AUTHORIZATION dbo;
CREATE SCHEMA shadow AUTHORIZATION dbo;

Then I moved the Lookup_Shadow table into the cache schema, and renamed it:

ALTER SCHEMA shadow TRANSFER dbo.Lookup_Shadow;

EXEC sp_rename N'shadow.Lookup_Shadow', N'Lookup';

(If you are just implementing this solution, you'd be creating a new copy of the table in the schema, not

moving the existing table there and renaming it.)

With those two schemas in place, and a copy of the Lookup table in the shadow schema, my three-way

rename became a three-way schema transfer:

TRUNCATE TABLE shadow.Lookup;

INSERT shadow.Lookup([cols])
 SELECT [cols] FROM [source];

-- perhaps an explicit statistics update here

BEGIN TRANSACTION;

 ALTER SCHEMA fake TRANSFER dbo.Lookup;
 ALTER SCHEMA dbo TRANSFER shadow.Lookup;

COMMIT TRANSACTION;

ALTER SCHEMA shadow TRANSFER fake.Lookup;

At this point you can of course empty out the shadow copy of the table, however in some cases I found

it useful to leave the "old" copy of the data around for troubleshooting purposes:

TRUNCATE TABLE shadow.Lookup;

http://connect.microsoft.com/SQLServer/feedback/details/266048/sp-rename-suppress-caution-warning-message
http://connect.microsoft.com/SQLServer/feedback/details/266048/sp-rename-suppress-caution-warning-message
http://msdn.microsoft.com/en-us/library/ms189462.aspx

Anything further that you do with the shadow copy, you'll want to make sure you do outside of the

transaction – the two transfer operations should be as concise and quick as possible.

Some Caveats

 Foreign Keys

This won't work out of the box if the lookup table is referenced by foreign keys. In our case we

didn't point any constraints at these cache tables, but if you do, you may have to stick with

intrusive methods such as MERGE. Or use append-only methods and disable or drop the foreign

keys before performing any data modifications (then re-create or re-enable them afterward). If

you stick with MERGE / UPSERT techniques and you're doing this between servers or, worse yet,

from a remote system, I highly recommend getting the raw data locally rather than trying to use

these methods between servers.

 Statistics

Switching the tables (using rename or schema transfer) will lead to statistics flipping back and

forth between the two copies of the table, and this can obviously be an issue for plans. So you

may consider adding explicit statistics updates as part of this process.

 Other Approaches

There are of course other ways to do this that I simply haven't had the occasion to try. Partition

switching and using a view + synonym are two approaches I may investigate in the future for a

more thorough treatment of the topic. I'd be interested to hear your experiences and how

you've solved this problem in your environment. And yes, I realize that this problem is largely

solved by Availability Groups and readable secondaries in SQL Server 2012, but I consider it a

"trick shot" if you can solve the problem without throwing high-end licenses at the problem, or

replicating an entire database to make a few tables redundant. :-)

Conclusion

If you can live with the limitations here, this approach may well be a better performer than a scenario

where you essentially take a table offline using SSIS or your own MERGE / UPSERT routine, but please be

sure to test both techniques. The most significant point is that the end user accessing the table should

have the exact same experience, any time of the day, even if they hit the table in the middle of your

periodic update.

Schema Switch-A-Roo : Part 2
By Aaron Bertrand

Back in August I wrote a post on my schema-swap methodology for T-SQL Tuesday. The approach

essentially allows you to lazy load a copy of a table (say, a lookup table of some kind) in the background

to minimize interference with users: once the background table is up to date, all that is required to

deliver the updated data to users is an interruption long enough to commit a metadata change.

In that post, I mentioned two caveats that the methodology I have championed over the years doesn't

currently cater to: foreign key constraints and statistics. There are a host of other features that may

interfere with this technique as well. One that came up in conversation recently: triggers. And there are

others: identity columns, primary key constraints, default constraints, check constraints, constraints

that reference UDFs, indexes, views (including indexed views, which require SCHEMABINDING), and

partitions. I'm not going to deal with all of these today, but I thought I would test out a few to see

exactly what happens.

I will confess that my original solution was basically a poor man's snapshot, without all of the hassles,

whole-database and licensing requirements: these were read-only copies of tables from production that

were being "mirrored" using T-SQL and the schema swap technique. So they didn't need any of these

fancy keys, constraints, triggers and other features. But I do see that the technique can be useful in

more scenarios, and in those scenarios some of the above factors can come into play.

So let's set up a simple pair of tables that have several of these properties, perform a schema swap, and

see what breaks. :-)

First, the schemas:

CREATE SCHEMA prep;
GO
CREATE SCHEMA live;
GO
CREATE SCHEMA holder;
GO

Now, the table in the live schema, including a trigger and a UDF:

CREATE FUNCTION dbo.udf()
RETURNS INT
AS
BEGIN
 RETURN (SELECT 20);
END
GO

CREATE TABLE live.t1
(
 id INT IDENTITY(1,1),
 int_column INT NOT NULL DEFAULT 1,
 udf_column INT NOT NULL DEFAULT dbo.udf(),
 computed_column AS CONVERT(INT, int_column + 1),

http://www.sqlperformance.com/2012/08/t-sql-queries/t-sql-tuesday-schema-switch-a-roo

 CONSTRAINT pk_live PRIMARY KEY(id),
 CONSTRAINT ck_live CHECK (int_column > 0)
);
GO

CREATE TRIGGER live.trig_live
ON live.t1
FOR INSERT
AS
BEGIN
 PRINT 'live.trig';
END
GO

Now, we repeat the same thing for the copy of the table in prep. We also need a second copy of the

trigger, because we can't create a trigger in the prep schema that references a table inlive, or vice-versa.

We'll purposely set the identity to a higher seed and a different default value for int_column (to help us

better keep track of which copy of the table we're really dealing with after multiple schema swaps):

CREATE TABLE prep.t1
(
 id INT IDENTITY(1000,1),
 int_column INT NOT NULL DEFAULT 2,
 udf_column INT NOT NULL DEFAULT dbo.udf(),
 computed_column AS CONVERT(INT, int_column + 1),
 CONSTRAINT pk_prep PRIMARY KEY(id),
 CONSTRAINT ck_prep CHECK (int_column > 1)
);
GO

CREATE TRIGGER prep.trig_prep
ON prep.t1
FOR INSERT
AS
BEGIN
 PRINT 'prep.trig';
END
GO

Now, let's insert a couple of rows into each table and observe the output:

SET NOCOUNT ON;

INSERT live.t1 DEFAULT VALUES;
INSERT live.t1 DEFAULT VALUES;

INSERT prep.t1 DEFAULT VALUES;
INSERT prep.t1 DEFAULT VALUES;

SELECT * FROM live.t1;
SELECT * FROM prep.t1;

Results:

id int_column udf_column computed_column

1 1 20 2

2 1 20 2

Results from live.t1

id int_column udf_column computed_column

1000 2 20 3

1001 2 20 3

Results from prep.t1

And in the messages pane:

live.trig

live.trig

prep.trig

prep.trig

Now, let's perform a simple schema swap:

-- assume that you do background loading of prep.t1 here

BEGIN TRANSACTION;
 ALTER SCHEMA holder TRANSFER prep.t1;
 ALTER SCHEMA prep TRANSFER live.t1;
 ALTER SCHEMA live TRANSFER holder.t1;
COMMIT TRANSACTION;

And then repeat the exercise:

SET NOCOUNT ON;

INSERT live.t1 DEFAULT VALUES;
INSERT live.t1 DEFAULT VALUES;

INSERT prep.t1 DEFAULT VALUES;
INSERT prep.t1 DEFAULT VALUES;

SELECT * FROM live.t1;
SELECT * FROM prep.t1;

The results in the tables seem okay:

id int_column udf_column computed_column

1 1 20 2

2 1 20 2

3 1 20 2

4 1 20 2

Results from live.t1

id int_column udf_column computed_column

1000 2 20 3

1001 2 20 3

1002 2 20 3

1003 2 20 3

Results from prep.t1

But the messages pane lists the trigger output in the wrong order:

prep.trig

prep.trig

live.trig

live.trig

So, let's dig into all of the metadata. Here is a query that will quickly inspect all of the identity columns,

triggers, primary keys, default and check constraints for these tables, focusing on the schema of the

associated object, the name, and the definition (and the seed / last value for identity columns):

SELECT
 [type] = 'Check',
 [schema] = OBJECT_SCHEMA_NAME(parent_object_id),
 name,
 [definition]
FROM sys.check_constraints
WHERE OBJECT_SCHEMA_NAME(parent_object_id) IN (N'live',N'prep')
UNION ALL
SELECT
 [type] = 'Default',
 [schema] = OBJECT_SCHEMA_NAME(parent_object_id),
 name,
 [definition]
FROM sys.default_constraints
WHERE OBJECT_SCHEMA_NAME(parent_object_id) IN (N'live',N'prep')
UNION ALL
SELECT
 [type] = 'Trigger',
 [schema] = OBJECT_SCHEMA_NAME(parent_id),
 name,
 [definition] = OBJECT_DEFINITION([object_id])

FROM sys.triggers
WHERE OBJECT_SCHEMA_NAME(parent_id) IN (N'live',N'prep')
UNION ALL
SELECT
 [type] = 'Identity',
 [schema] = OBJECT_SCHEMA_NAME([object_id]),
 name = 'seed = ' + CONVERT(VARCHAR(12), seed_value),
 [definition] = 'last_value = ' + CONVERT(VARCHAR(12), last_value)
FROM sys.identity_columns
WHERE OBJECT_SCHEMA_NAME([object_id]) IN (N'live',N'prep')
UNION ALL
SELECT
 [type] = 'Primary Key',
 [schema] = OBJECT_SCHEMA_NAME([parent_object_id]),
 name,
 [definition] = ''
FROM sys.key_constraints
WHERE OBJECT_SCHEMA_NAME([object_id]) IN (N'live',N'prep');

Results indicate quite a metadata mess:

type schema name definition

Check prep ck_live ([int_column]>(0))

Check live ck_prep ([int_column]>(1))

Default prep df_live1 ((1))

Default prep df_live2 ([dbo].[udf]())

Default live df_prep1 ((2))

Default live df_prep2 ([dbo].[udf]())

Trigger prep trig_live
CREATE TRIGGER live.trig_live ON live.t1 FOR INSERT AS BEGIN PRINT

'live.trig'; END

Trigger live trig_prep
CREATE TRIGGER prep.trig_prep ON prep.t1 FOR INSERT AS BEGIN PRINT

'prep.trig'; END

Identity prep seed = 1 last_value = 4

Identity live
seed =

1000
last_value = 1003

Primary

Key
prep pk_live

Primary

Key
live pk_prep

Metadata duck-duck-goose

The problems with the identity columns and constraints don't seem to be a big issue. Even though the

objects *seem* to point to the wrong objects according to the catalog views, the functionality – at least

for basic inserts – operates as you might expect if you had never looked at the metadata.

The big problem is with the trigger – forgetting for a moment how trivial I made this example, in the real

world, it probably references the base table by schema and name. In which case, when it is attached to

the wrong table, things can go… well, wrong. Let's switch back:

BEGIN TRANSACTION;
 ALTER SCHEMA holder TRANSFER prep.t1;
 ALTER SCHEMA prep TRANSFER live.t1;
 ALTER SCHEMA live TRANSFER holder.t1;
COMMIT TRANSACTION;

(You can run the metadata query again to convince yourself that everything is back to normal.)

Now let's change the trigger *only* on the live version to actually do something useful (well, "useful" in

the context of this experiment):

ALTER TRIGGER live.trig_live
ON live.t1
FOR INSERT
AS
BEGIN
 SELECT i.id, msg = 'live.trig'
 FROM inserted AS i
 INNER JOIN live.t1 AS t
 ON i.id = t.id;
END
GO

Now let's insert a row:

INSERT live.t1 DEFAULT VALUES;

Results:

id msg

---- ----------

5 live.trig

Then perform the swap again:

BEGIN TRANSACTION;
 ALTER SCHEMA holder TRANSFER prep.t1;
 ALTER SCHEMA prep TRANSFER live.t1;
 ALTER SCHEMA live TRANSFER holder.t1;

COMMIT TRANSACTION;

And insert another row:

INSERT live.t1 DEFAULT VALUES;

Results (in the messages pane):

prep.trig

Uh-oh. If we perform this schema swap once an hour, then for 12 hours out of every day, the trigger is

not doing what we expect it to do, since it is associated with the wrong copy of the table! Now let's alter

the "prep" version of the trigger:

ALTER TRIGGER prep.trig_prep
ON prep.t1
FOR INSERT
AS
BEGIN
 SELECT i.id, msg = 'prep.trig'
 FROM inserted AS i
 INNER JOIN prep.t1 AS t
 ON i.id = t.id;
END
GO

Result:

Msg 208, Level 16, State 6, Procedure trig_prep, Line 1

Invalid object name 'prep.trig_prep'.

Well, that's definitely not good. Since we are in the metadata-is-swapped phase, there is no such object;

the triggers are now live.trig_prep and prep.trig_live. Confused yet? Me too. So let's try this:

EXEC sp_helptext 'live.trig_prep';

Results:

CREATE TRIGGER prep.trig_prep
ON prep.t1
FOR INSERT
AS
BEGIN
 PRINT 'prep.trig';
END

Well, isn't that funny? How do I alter this trigger when its metadata isn't even properly reflected in its own

definition? Let's try this:

ALTER TRIGGER live.trig_prep
ON prep.t1
FOR INSERT
AS
BEGIN
 SELECT i.id, msg = 'prep.trig'
 FROM inserted AS i
 INNER JOIN prep.t1 AS t
 ON i.id = t.id;
END
GO

Results:

Msg 2103, Level 15, State 1, Procedure trig_prep, Line 1

Cannot alter trigger 'live.trig_prep' because its schema is different from the schema

of the target table or view.

This is no good either, obviously. It seems there isn't really a good way to resolve this scenario that

doesn't involve swapping the objects back to their original schemas. I could alter this trigger to be

against live.t1:

ALTER TRIGGER live.trig_prep
ON live.t1
FOR INSERT
AS
BEGIN
 SELECT i.id, msg = 'live.trig'
 FROM inserted AS i
 INNER JOIN live.t1 AS t
 ON i.id = t.id;
END
GO

But now I have two triggers that say, in their body text, that they operate against live.t1, but only this

one actually executes. Yes, my head is spinning (and so was Michael J. Swart's (@MJSwart) in this blog

post). And note that, in order to clean this mess up, after swapping schemas back again, I can drop the

triggers with their original names:

DROP TRIGGER live.trig_live;
DROP TRIGGER prep.trig_prep;

If I try DROP TRIGGER live.trig_prep;, for example, I get an object not found error.

Resolutions?

A workaround for the trigger issue is to dynamically generate the CREATE TRIGGER code, and drop and

re-create the trigger, as part of the swap. First, let's put a trigger back on the *current* table in live (you

can decide in your scenario if you even need a trigger on the prep version of the table at all):

CREATE TRIGGER live.trig_live

http://twitter.com/MJSwart
http://michaeljswart.com/2012/04/modifying-tables-online-part-5-just-one-more-thing/
http://michaeljswart.com/2012/04/modifying-tables-online-part-5-just-one-more-thing/

ON live.t1
FOR INSERT
AS
BEGIN
 SELECT i.id, msg = 'live.trig'
 FROM inserted AS i
 INNER JOIN live.t1 AS t
 ON i.id = t.id;
END
GO

Now, a quick example of how our new schema swap would work (and you may have to adjust this to

deal with each trigger, if you have multiple triggers, and repeat it for the schema on theprep version, if

you need to maintain a trigger there too. Take special care that the below code, for brevity, assumes

that there is only *one* trigger on live.t1.

BEGIN TRANSACTION;
 DECLARE
 @sql1 NVARCHAR(MAX),
 @sql2 NVARCHAR(MAX);

 SELECT
 @sql1 = N'DROP TRIGGER live.' + QUOTENAME(name) + ';',
 @sql2 = OBJECT_DEFINITION([object_id])
 FROM sys.triggers
 WHERE [parent_id] = OBJECT_ID(N'live.t1');

 EXEC sp_executesql @sql1; -- drop the trigger before the transfer

 ALTER SCHEMA holder TRANSFER prep.t1;
 ALTER SCHEMA prep TRANSFER live.t1;
 ALTER SCHEMA live TRANSFER holder.t1;

 EXEC sp_executesql @sql2; -- re-create it after the transfer
COMMIT TRANSACTION;

Another (less desirable) workaround would be to perform the entire schema swap operation twice,

including whatever operations occur against the prep version of the table. Which largely defeats the

purpose of the schema swap in the first place: reducing the time users can't access the table(s) and

bringing them the updated data with minimal interruption.

The Price of Not Purging
By Erin Stellato

I’m in the process of de-cluttering my house (too late in the summer to try and pass it off as spring

cleaning). You know, cleaning out closets, going through the kids’ toys, and organizing the basement. It’s

a painful process. When we moved into our house 10 years ago we had SO much room. Now I feel like

there’s stuff everywhere, and it makes it harder to find what I’m really looking for and it takes longer

and longer to clean up and organize.

Does this sound like any database you manage?

Many clients that I’ve worked with deal with purging data as an afterthought. At the time of the

implementation, everyone wants to save everything. “We never know when we might need it.” After a

year or two someone realizes there’s a lot of extra stuff in the database, but now people are afraid to

get rid of it. “We need to check with Legal to see if we can delete it.” But no one checks with Legal, or if

someone does, Legal goes back to the business owners to ask what to keep, and then the project grinds

to a halt. “We cannot come to a consensus about what can be deleted.” The project is forgotten, and

then two or four years down the road, the database is suddenly a terabyte, difficult to manage, and

people blame all performance issues on database size. You hear the words “partitioning” and “archive

database” thrown around, and sometimes you just get to delete a bunch of data, which has its own

issues.

Ideally you should decide on your purge strategy before implementation, or within the first six to twelve

months of go-live. But since we’re past that stage, let’s look at what impact this extra data can have.

Test Methodology

To set the stage, I took a copy of the Credit database and restored it to my SQL Server 2012 instance. I

dropped the three existing nonclustered indexes and added two of my own:

USE [master];
GO

RESTORE DATABASE [Credit]
FROM DISK = N'C:\SQLskills\SampleDatabases\Credit\CreditBackup100.bak'
WITH FILE = 1,
MOVE N'CreditData' TO N'D:\Databases\SQL2012\CreditData.mdf',
MOVE N'CreditLog' TO N'D:\Databases\SQL2012\CreditLog.ldf',
STATS = 5;
GO

ALTER DATABASE [Credit] MODIFY FILE (NAME = N'CreditData', SIZE = 14680064KB ,
FILEGROWTH = 524288KB);
GO
ALTER DATABASE [Credit] MODIFY FILE (NAME = N'CreditLog', SIZE = 2097152KB ,
FILEGROWTH = 524288KB);
GO

USE [Credit];
GO

DROP INDEX [dbo].[charge].[charge_category_link];

http://www.sqlskills.com/sql-server-resources/sql-server-demos/

DROP INDEX [dbo].[charge].[charge_provider_link];
DROP INDEX [dbo].[charge].[charge_statement_link];

CREATE NONCLUSTERED INDEX [charge_chargedate] ON [dbo].[charge] ([charge_dt]);
CREATE NONCLUSTERED INDEX [charge_provider] ON [dbo].[charge] ([provider_no]);

I then increased the number of rows in the table to 14.4 million, by re-inserting the original set of rows

multiple times, modifying the dates slightly:

INSERT INTO [dbo].[charge]
(
 [member_no],
 [provider_no],
 [category_no],
 [charge_dt],
 [charge_amt],
 [statement_no],
 [charge_code]
)
SELECT
 [member_no],
 [provider_no],
 [category_no],
 [charge_dt] - 175,
 [charge_amt],
 [statement_no],
 [charge_code]
FROM [dbo].[charge]
 WHERE [charge_no] BETWEEN 1 AND 2000000;
GO 3

INSERT INTO [dbo].[charge]
(
 [member_no],
 [provider_no],
 [category_no],
 [charge_dt],
 [charge_amt],
 [statement_no],
 [charge_code]
)
SELECT
 [member_no],
 [provider_no],
 [category_no],
 [charge_dt],
 [charge_amt],
 [statement_no],
 [charge_code]
FROM [dbo].[charge]
 WHERE [charge_no] BETWEEN 1 AND 2000000;
GO 2

INSERT INTO [dbo].[charge]
(
 [member_no],
 [provider_no],
 [category_no],

 [charge_dt],
 [charge_amt],
 [statement_no],
 [charge_code]
)
SELECT
 [member_no],
 [provider_no],
 [category_no],
 [charge_dt] + 79,
 [charge_amt],
 [statement_no],
 [charge_code]
FROM [dbo].[charge]
 WHERE [charge_no] BETWEEN 1 AND 2000000;
GO 3

Finally, I set up a test harness to execute a series of statements against the database four times each.

The statements are below:

ALTER INDEX ALL ON [dbo].[charge] REBUILD;

DBCC CHECKDB (Credit) WITH ALL_ERRORMSGS, NO_INFOMSGS;

BACKUP DATABASE [Credit]
TO DISK = N'D:\Backups\SQL2012\Credit.bak'
WITH NOFORMAT,
 INIT,
 NAME = N'Credit-Full Database Backup',
 STATS = 10;

SELECT [charge_no], [member_no], [charge_dt], [charge_amt]
 FROM [dbo].[charge]
 WHERE [charge_no] = 841345;

DECLARE @StartDate DATETIME = '1999-07-01';
DECLARE @EndDate DATETIME = '1999-07-31';

SELECT [charge_dt], COUNT([charge_dt])
 FROM [dbo].[charge]
 WHERE [charge_dt] BETWEEN @StartDate AND @EndDate
 GROUP BY [charge_dt];

SELECT [provider_no], COUNT([provider_no])
 FROM [dbo].[charge]
 WHERE [provider_no] = 475
 GROUP BY [provider_no];

SELECT [provider_no], COUNT([provider_no])
 FROM [dbo].[charge]
 WHERE [provider_no] = 140
 GROUP BY [provider_no];

Before each statement I executed

DBCC DROPCLEANBUFFERS;
GO

to clear the buffer pool. Obviously this is not something to execute against a production environment. I

did it here to provide a consistent starting point for each test.

After each execution, I increased the size of the dbo.charge table by inserting the 14.4 million rows I

started with, but I increased the charge_dt by one year for each execution. For example:

INSERT INTO [dbo].[charge]
(
 [member_no],
 [provider_no],
 [category_no],
 [charge_dt],
 [charge_amt],
 [statement_no],
 [charge_code]
)
SELECT
 [member_no],
 [provider_no],
 [category_no],
 [charge_dt] + 365,
 [charge_amt],
 [statement_no],
 [charge_code]
FROM [dbo].[charge]
WHERE [charge_no] BETWEEN 1 AND 14800000;
GO

After the addition of 14.4 million rows, I re-ran the test harness. I repeated this six times, essentially

adding six “years” of data. The dbo.charge table started with data from 1999, and after the repeated

inserts contained data through 2005.

Results

The results from the executions can be seen here:

Duration for Maintenance Tasks

Duration for Queries

The individual statements executed reflect typical database activity. Index rebuilds, integrity checks and

backups are part of regular database maintenance. The queries against the charge table represent a

singleton lookup as well as three variations of range scans specific to the data in the table.

Index Rebuilds, CHECKDB, and Backups

As expected for the maintenance tasks, duration and IO values increased as more rows were added to

the database. The database size increased by a factor of 10, and while the durations did not increase at

the same rate, a consistent increase was seen. Each maintenance task initially took less than 20 seconds

to complete, but as more rows were added, duration for the tasks increased to almost 1 minute and 20

seconds for 100 million rows (and to over 2 minutes for the index rebuild). This reflects the additional

time SQL Server required to complete the task due to additional data.

Singleton Lookup

The query against dbo.charge for a specific charge_no always produced one row – and would have

produced one row regardless of the value used, as charge_no is a unique identity. There is minimal

variation for this lookup. As rows are continually added to the table, the index may increase in depth by

one or two levels (more as the table gets wider), therefore adding a couple IOs, but this is a singleton

lookup with very few IOs.

Range Scans

The query for a date range (charge_dt) was modified after each insert to search the most recent year’s

data for July (e.g. '2005-07-01' to '2005-07-01' for the last set of tests), but returned just over 1.2 million

rows each time. In a real-world scenario, we wouldn’t expect the same number of rows to be returned

for the same month, year over year, nor would we expect the same number of rows to be returned for

every month in a year. But row counts could stay within the same range between months, with slight

increases over time. There exist fluctuations in duration for this query, but a review of the IO data

captured from sys.dm_io_virtual_file_stats shows consistency in the number of reads.

Query IO

The final two queries, for two different provider_no values, show the true effect of keeping data. In the

initial dbo.charge table, provider_no 475 had over 126,000 rows and provider_no 140 had over 1700

rows. For each 14.4 million rows that were added, approximately the same number of rows for each

provider_no was added. In a production environment, this type of data distribution is not uncommon,

and queries for this data may perform well in the first years of the solution, but may degrade over time

as more rows are added. Query duration increases by a factor of five (from 31 ms to 153 ms) between

the initial and final execution for provider_no 475. While this impact may not seem significant, note the

parallel increase in IO (above). If this were a query that executed with high frequency, and/or there

were similar queries that executed with regular frequency, the additional load can add up and affect

overall resource usage. Further, consider the impact when you’re working with tables that have billions

of rows, and are used in queries with complex joins, and the impact on your regular – and extremely

critical – maintenance tasks. Finally, take into account recoverability time. Your disaster recovery plan

should be based on restore times, and as database size grows, the database will take longer to restore in

its entirety. If you’re not regularly testing and timing your restores, recovering from a disaster could

take longer than you thought.

Summary

The examples shown here are simple illustrations of what can happen when a data archiving strategy is

not determined during database implementation, and there are many other scenarios to explore and

test. Old data which is rarely, if ever, accessed impacts more than just space on disk. It can affect query

performance and duration of maintenance tasks. As a DBA managing multiple databases on an instance,

one database that holds historical data can affect the performance and maintenance tasks of other

databases. Further, if reports execute against historical data, this can wreak havoc on already-busy OLTP

environment.

From the beginning, it’s critical that the lifespan of data in a database is determined, and a plan of action

put in place. For some solutions, it is required to keep all data forever. In this case, employ strategies to

keep database size manageable, for example: archive the data to a separate table or separate database

on a regular basis. In the event that data does not need to be stored for years and years, implement a

purging strategy that removes data on a regular basis. In this manner, you can throw out the toys that

are no longer played with, clothes that no longer fit, and random junk that you just don’t use every

three months…rather than once every 10 years.

Generate random integers without collisions
By Aaron Bertrand

From time to time I see someone express a requirement to create a random number for a key. Usually

this is to create some type of surrogate CustomerID or UserID that is a unique number within some

range, but is not issued sequentially, and is therefore far less guessable than an IDENTITY value.

Let's set aside, for the moment, that whether someone can guess a CustomerID or UserID should be

largely irrelevant – these surrogate values should not be exposed outside of the application, and an end

user shouldn't be able to do anything differently with the knowledge (or guess!) of someone else's ID.

After all, even if you generate a "random" number between 1 and 100,000 or 1 and 1,000,000, I could still

guess at any ID values that have already been generated, for example through brute force. And if I can do

anything with a positive match, there is something seriously broken with the application.

NEWID() solves the guessing issue, but the performance penalty is usually a deal-breaker, especially

when clustered: much wider keys than integers, and page splits due to non-sequential

values. NEWSEQUENTIALID() solves the page split problem, but is still a very wide key, and re-introduces

the issue that you can guess the next value (or recently-issued values) with some level of accuracy.

As a result, they want a technique to generate a random and unique integer. Generating a random

number on its own is not difficult, using methods like RAND() or CHECKSUM(NEWID()). The problem

comes when you have to detect collisions. Let's take a quick look at a typical approach, assuming we

want CustomerID values between 1 and 1,000,000:

DECLARE @rc INT = 0,
 @CustomerID INT = ABS(CHECKSUM(NEWID())) % 1000000 + 1;
 -- or ABS(CONVERT(INT,CRYPT_GEN_RANDOM(3))) % 1000000 + 1;
 -- or CONVERT(INT, RAND() * 1000000) + 1;
WHILE @rc = 0
BEGIN
 IF NOT EXISTS (SELECT 1 FROM dbo.Customers WHERE CustomerID = @CustomerID)
 BEGIN
 INSERT dbo.Customers(CustomerID) SELECT @CustomerID;
 SET @rc = 1;
 END
 ELSE
 BEGIN
 SELECT @CustomerID = ABS(CHECKSUM(NEWID())) % 1000000 + 1,
 @rc = 0;
 END
END

As the table gets larger, not only does checking for duplicates get more expensive, but your odds of
generating a duplicate go up as well. So this approach may seem to work okay when the table is small,
but I suspect that it must hurt more and more over time.

A Different Approach

I am a huge fan of auxiliary tables; I've been writing publicly about calendar tables and tables of
numbers for a decade, and using them for far longer. And this is a case where I think a pre-populated
table could come in real handy. Why rely on generating random numbers at runtime and dealing with
potential duplicates, when you can populate all of those values in advance and know – with 100%

http://sqlserver2000.databases.aspfaq.com/why-should-i-consider-using-an-auxiliary-calendar-table.html
http://sqlserver2000.databases.aspfaq.com/why-should-i-consider-using-an-auxiliary-numbers-table.html
http://sqlserver2000.databases.aspfaq.com/why-should-i-consider-using-an-auxiliary-numbers-table.html

certainty, if you protect your tables from unauthorized DML – that the next value you select has never
been used before?

CREATE TABLE dbo.RandomNumbers1
(
 RowID INT,
 Value INT, --UNIQUE,
 PRIMARY KEY (RowID, Value)
);

;WITH x AS
(
 SELECT TOP (1000000) s1.[object_id]
 FROM sys.all_objects AS s1
 CROSS JOIN sys.all_objects AS s2
 ORDER BY s1.[object_id]
)
INSERT dbo.RandomNumbers(RowID, Value)
SELECT
 r = ROW_NUMBER() OVER (ORDER BY [object_id]),
 n = ROW_NUMBER() OVER (ORDER BY NEWID())
FROM x
ORDER BY r;

This population took 9 seconds to create (in a VM on a laptop), and occupied around 17 MB on disk. The
data in the table looks like this:

(If we were worried about how the numbers were getting populated, we could add a unique constraint on

the Value column, which would make the table 30 MB. Had we applied page compression, it would have

been 11 MB or 25 MB, respectively.)

I created another copy of the table, and populated it with the same values, so that I could test two different

methods of deriving the next value:

CREATE TABLE dbo.RandomNumbers2
(
 RowID INT,
 Value INT, -- UNIQUE
 PRIMARY KEY (RowID, Value)
);

INSERT dbo.RandomNumbers2(RowID, Value)
 SELECT RowID, Value FROM dbo.RandomNumbers1;

Now, anytime we want a new random number, we can just pop one off the stack of existing numbers,

and delete it. This prevents us from having to worry about duplicates, and allows us to pull numbers –

using a clustered index – that are actually already in random order. (Strictly speaking, we don't have

to delete the numbers as we use them; we could add a column to indicate whether a value has been

used – this would make it easier to reinstate and reuse that value in the event that a Customer later gets

deleted or something goes wrong outside of this transaction but before they are fully created.)

DECLARE @holding TABLE(CustomerID INT);

DELETE TOP (1) dbo.RandomNumbers1
OUTPUT deleted.Value INTO @holding;

INSERT dbo.Customers(CustomerID, ...other columns...)
 SELECT CustomerID, ...other params...
 FROM @holding;

I used a table variable to hold the intermediate output, because there are various limitations with

composable DML that can make it impossible to insert into the Customers table directly from

the DELETE (for example, the presence of foreign keys). Still, acknowledging that it won't always be

possible, I also wanted to test this method:

DELETE TOP (1) dbo.RandomNumbers2
 OUTPUT deleted.Value, ...other params...
 INTO dbo.Customers(CustomerID, ...other columns...);

Note that neither of these solutions truly guarantee random order, particularly if the random numbers

table has other indexes (such as a unique index on the Value column). There is no way to define an order

for a DELETE using TOP; from the documentation:

When TOP is used with INSERT, UPDATE, MERGE, or DELETE, the referenced rows are not arranged in any

order and the ORDER BY clause can not be directly specified in these statements. If you need to use TOP

to insert, delete, or modify rows in a meaningful chronological order, you must use TOP together with an

ORDER BY clause that is specified in a subselect statement.

So, if you want to guarantee random ordering, you could do something like this instead:

http://msdn.microsoft.com/en-us/library/ms189463.aspx

DECLARE @holding TABLE(CustomerID INT);

;WITH x AS
(
 SELECT TOP (1) Value
 FROM dbo.RandomNumbers2
 ORDER BY RowID
)
DELETE x OUTPUT deleted.Value INTO @holding;

INSERT dbo.Customers(CustomerID, ...other columns...)
 SELECT CustomerID, ...other params...
 FROM @holding;

Another consideration here is that, for these tests, the Customers tables have a clustered primary key

on the CustomerID column; this will certainly lead to page splits as you insert random values. In the real

world, if you had this requirement, you would probably end up clustering on a different column.

Note that I've also left out transactions and error handling here, but these too should be a consideration

for production code.

Performance Testing

To draw some realistic performance comparisons, I created five stored procedures, representing the

following scenarios (testing speed, distribution, and collision frequency of the different random

methods, as well as the speed of using a predefined table of random numbers):

 Runtime generation using CHECKSUM(NEWID())

 Runtime generation using CRYPT_GEN_RANDOM()

 Runtime generation using RAND()

 Predefined numbers table with table variable

 Predefined numbers table with direct insert

They use a logging table to track duration and number of collisions:

CREATE TABLE dbo.CustomerLog
(
 LogID INT IDENTITY(1,1) PRIMARY KEY,
 pid INT,
 collisions INT,
 duration INT -- microseconds
);

The code for the procedures follows:

/* Runtime using CHECKSUM(NEWID()) */

CREATE PROCEDURE [dbo].[AddCustomer_Runtime_Checksum]

AS
BEGIN
 SET NOCOUNT ON;

 DECLARE
 @start DATETIME2(7) = SYSDATETIME(),
 @duration INT,
 @CustomerID INT = ABS(CHECKSUM(NEWID())) % 1000000 + 1,
 @collisions INT = 0,
 @rc INT = 0;

 WHILE @rc = 0
 BEGIN
 IF NOT EXISTS
 (
 SELECT 1 FROM dbo.Customers_Runtime_Checksum
 WHERE CustomerID = @CustomerID
)
 BEGIN
 INSERT dbo.Customers_Runtime_Checksum(CustomerID) SELECT @CustomerID;
 SET @rc = 1;
 END
 ELSE
 BEGIN
 SELECT
 @CustomerID = ABS(CHECKSUM(NEWID())) % 1000000 + 1,
 @collisions += 1,
 @rc = 0;
 END
 END

 SELECT @duration = DATEDIFF(MICROSECOND, @start,
CONVERT(DATETIME2(7),SYSDATETIME()));

 INSERT dbo.CustomerLog(pid, collisions, duration) SELECT 1, @collisions, @duration;
END
GO

/* runtime using CRYPT_GEN_RANDOM() */

CREATE PROCEDURE [dbo].[AddCustomer_Runtime_CryptGen]
AS
BEGIN
 SET NOCOUNT ON;

 DECLARE
 @start DATETIME2(7) = SYSDATETIME(),
 @duration INT,
 @CustomerID INT = ABS(CONVERT(INT,CRYPT_GEN_RANDOM(3))) % 1000000 + 1,
 @collisions INT = 0,
 @rc INT = 0;

 WHILE @rc = 0
 BEGIN
 IF NOT EXISTS
 (
 SELECT 1 FROM dbo.Customers_Runtime_CryptGen
 WHERE CustomerID = @CustomerID
)
 BEGIN

 INSERT dbo.Customers_Runtime_CryptGen(CustomerID) SELECT @CustomerID;
 SET @rc = 1;
 END
 ELSE
 BEGIN
 SELECT
 @CustomerID = ABS(CONVERT(INT,CRYPT_GEN_RANDOM(3))) % 1000000 + 1,
 @collisions += 1,
 @rc = 0;
 END
 END

 SELECT @duration = DATEDIFF(MICROSECOND, @start,
CONVERT(DATETIME2(7),SYSDATETIME()));

 INSERT dbo.CustomerLog(pid, collisions, duration) SELECT 2, @collisions, @duration;
END
GO

/* runtime using RAND() */

CREATE PROCEDURE [dbo].[AddCustomer_Runtime_Rand]
AS
BEGIN
 SET NOCOUNT ON;

 DECLARE
 @start DATETIME2(7) = SYSDATETIME(),
 @duration INT,
 @CustomerID INT = CONVERT(INT, RAND() * 1000000) + 1,
 @collisions INT = 0,
 @rc INT = 0;

 WHILE @rc = 0
 BEGIN
 IF NOT EXISTS
 (
 SELECT 1 FROM dbo.Customers_Runtime_Rand
 WHERE CustomerID = @CustomerID
)
 BEGIN
 INSERT dbo.Customers_Runtime_Rand(CustomerID) SELECT @CustomerID;
 SET @rc = 1;
 END
 ELSE
 BEGIN
 SELECT
 @CustomerID = CONVERT(INT, RAND() * 1000000) + 1,
 @collisions += 1,
 @rc = 0;
 END
 END

 SELECT @duration = DATEDIFF(MICROSECOND, @start,
CONVERT(DATETIME2(7),SYSDATETIME()));

 INSERT dbo.CustomerLog(pid, collisions, duration) SELECT 3, @collisions, @duration;
END
GO

/* pre-defined using a table variable */

CREATE PROCEDURE [dbo].[AddCustomer_Predefined_TableVariable]
AS
BEGIN
 SET NOCOUNT ON;

 DECLARE @start DATETIME2(7) = SYSDATETIME(), @duration INT;

 DECLARE @holding TABLE(CustomerID INT);

 DELETE TOP (1) dbo.RandomNumbers1
 OUTPUT deleted.Value INTO @holding;

 INSERT dbo.Customers_Predefined_TableVariable(CustomerID)
 SELECT CustomerID FROM @holding;

 SELECT @duration = DATEDIFF(MICROSECOND, @start,
CONVERT(DATETIME2(7),SYSDATETIME()));

 INSERT dbo.CustomerLog(pid, duration) SELECT 4, @duration;
END
GO

/* pre-defined using a direct insert */

CREATE PROCEDURE [dbo].[AddCustomer_Predefined_Direct]
AS
BEGIN
 SET NOCOUNT ON;

 DECLARE @start DATETIME2(7) = SYSDATETIME(), @duration INT;

 DELETE TOP (1) dbo.RandomNumbers2
 OUTPUT deleted.Value INTO dbo.Customers_Predefined_Direct;

 SELECT @duration = DATEDIFF(MICROSECOND, @start,
CONVERT(DATETIME2(7),SYSDATETIME()));

 INSERT dbo.CustomerLog(pid, duration) SELECT 5, @duration;
END
GO

And in order to test this, I would run each stored procedure 1,000,000 times:

EXEC dbo.AddCustomer_Runtime_Checksum;
EXEC dbo.AddCustomer_Runtime_CryptGen;
EXEC dbo.AddCustomer_Runtime_Rand;
EXEC dbo.AddCustomer_Predefined_TableVariable;
EXEC dbo.AddCustomer_Predefined_Direct;
GO 1000000

Not surprisingly, the methods using the predefined table of random numbers took slightly longer *at the

beginning of the test*, since they had to perform both read and write I/O every time. Keeping in mind

that these numbers are in microseconds, here are the average durations for each procedure, at different

intervals along the way (averaged over the first 10,000 executions, the middle 10,000 executions, the

last 10,000 executions, and the last 1,000 executions):

Average duration (in microseconds) of random generation using different approaches

This works out well for all methods when there are few rows in the Customers table, but as the table

gets larger and larger, the cost of checking the new random number against the existing data using the

runtime methods increases substantially, both because of increased I/O and also because the number of

collisions goes up (forcing you to try and try again). Compare the average duration when in the following

ranges of collision counts (and remember that this pattern only affects the runtime methods):

Average duration (in microseconds) during different ranges of collisions

I wish there were a simple way to graph duration against collision counts. I'll leave you with this tidbit:

on the last three inserts, the following runtime methods had to perform this many attempts before they

finally stumbled upon the last unique ID they were looking for, and this is how long it took:

 Number of collisions Duration (microseconds)

CHECKSUM(NEWID())

3rd to last row 63,545 639,358

2nd to last row 164,807 1,605,695

Last row 30,630 296,207

CRYPT_GEN_RANDOM()

3rd to last row 219,766 2,229,166

2nd to last row 255,463 2,681,468

Last row 136,342 1,434,725

RAND()

3rd to last row 129,764 1,215,994

2nd to last row 220,195 2,088,992

Last row 440,765 4,161,925

Excessive duration and collisions near the end of the line

It is interesting to note that the last row isn't always the one that yields the highest number of collisions,

so this can start to be a real problem long before you've used up 999,000+ values.

Another consideration

You may want to consider setting up some kind of alert or notification when the RandomNumbers table

starts getting below some number of rows (at which point you can re-populate the table with a new set

from 1,000,001 – 2,000,000, for example). You would have to do something similar if you were

generating random numbers on the fly – if you are keeping that to within a range of 1 – 1,000,000, then

you'd have to change the code to generate numbers from a different range once you've used up all of

those values.

If you are using the random number at runtime method, then you can avoid this situation by constantly

changing the pool size from which you draw a random number (which should also stabilize and

drastically reduce the number of collisions). For example, instead of:

DECLARE @CustomerID INT = ABS(CHECKSUM(NEWID())) % 1000000 + 1;

You could base the pool on the number of rows already in the table:

DECLARE @total INT = 1000000 + ISNULL(
 (SELECT SUM(row_count) FROM sys.dm_db_partition_stats
 WHERE [object_id] = OBJECT_ID('dbo.Customers') AND index_id = 1),0);

Now your only real worry is when you approach the upper bound for INT…

Making the Case for INSTEAD OF Triggers – Part 1
By Aaron Bertrand

Last year, I posted a tip called Improve SQL Server Efficiency by Switching to INSTEAD OF Triggers.

The big reason I tend to favor an INSTEAD OF trigger, particularly in cases where I expect a lot of

business logic violations, is that it seems intuitive that it would be cheaper to prevent an action

altogether, than to go ahead and perform it (and log it!), only to use an AFTER trigger to delete the

offending rows (or roll back the entire operation). The results shown in that tip demonstrated that this

was, in fact, the case – and I suspect they would be even more pronounced with more non-clustered

indexes affected by the operation.

However, that was on a slow disk, and on an early CTP of SQL Server 2014. In preparing a slide for a new

presentation I'll be doing this year on triggers, I found that on a more recent build of SQL Server 2014 –

combined with updated hardware – it was a bit trickier to demonstrate the same delta in performance

between an AFTER and INSTEAD OF trigger. So I set out to discover why, even though I immediately

knew this was going to be more work than I've ever done for a single slide.

One thing I want to mention is that triggers can use tempdb in different ways, and this might account for

some of these differences. An AFTER trigger uses the version store for the inserted and deleted pseudo-

tables, while an INSTEAD OF trigger makes a copy of this data in an internal worktable. The difference is

subtle, but worth pointing out.

The Variables

I am going to test various scenarios, including:

 Three different triggers:

o An AFTER trigger that deletes specific rows that fail

o An AFTER trigger that rolls back the whole transaction if any row fails

o An INSTEAD OF trigger that only inserts the rows that pass

 Different recovery models and snapshot isolation settings:

o FULL with SNAPSHOT enabled

o FULL with SNAPSHOT disabled

o SIMPLE with SNAPSHOT enabled

o SIMPLE with SNAPSHOT disabled

 Different disk layouts*:

o Data on SSD, log on 7200 RPM HDD

o Data on SSD, log on SSD

o Data on 7200 RPM HDD, log on SSD

http://www.mssqltips.com/sqlservertip/3139/improve-sql-server-efficiency-by-switching-to-instead-of-triggers/

o Data on 7200 RPM HDD, log on 7200 RPM HDD

 Different failure rates:

o 10%, 25%, and 50% failure rate across:

 Single batch insert of 20,000 rows

 10 batches of 2,000 rows

 100 batches of 200 rows

 1,000 batches of 20 rows

 20,000 singleton inserts

* tempdb is a single data file on a slow, 7200 RPM disk. This is intentional and meant to amplify any

bottlenecks caused by the various uses of tempdb. I plan to revisit this test at some point

when tempdb is on a faster SSD.

Okay, TL;DR Already!

If you just want to know the results, skip down. Everything in the middle is just background and an

explanation of how I set up and ran the tests. I am not heart-broken that not everyone will be interested

in all of the minutiae.

The Scenario

For this particular set of tests, the real-life scenario is one where a user picks a screen name, and the

trigger is designed to catch cases where the chosen name violates some rules. For example, it can't be

any variation of "ninny-muggins" (you can certainly use your imagination here).

I created a table with 20,000 unique user names:

USE model;
GO

-- 20,000 distinct, good Names
;WITH distinct_Names AS
(
 SELECT Name FROM sys.all_columns
 UNION
 SELECT Name FROM sys.all_objects
)
SELECT TOP (20000) Name
INTO dbo.GoodNamesSource
FROM
(
 SELECT Name FROM distinct_Names
 UNION
 SELECT Name + 'x' FROM distinct_Names
 UNION
 SELECT Name + 'y' FROM distinct_Names
 UNION
 SELECT Name + 'z' FROM distinct_Names

http://sqlperformance.com/2014/03/t-sql-queries/instead-of-triggers-1#results

) AS x;

CREATE UNIQUE CLUSTERED INDEX x ON dbo.GoodNamesSource(Name);

Then I created a table that would be the source for my "naughty names" to check against. In this case

it's just ninny-muggins-00001 through ninny-muggins-10000:

USE model;
GO

CREATE TABLE dbo.NaughtyUserNames
(
 Name NVARCHAR(255) PRIMARY KEY
);
GO

-- 10,000 "bad" names
INSERT dbo.NaughtyUserNames(Name)
 SELECT N'ninny-muggins-' + RIGHT(N'0000' + RTRIM(n),5)
 FROM
 (
 SELECT TOP (10000) n = ROW_NUMBER() OVER (ORDER BY Name)
 FROM dbo.GoodNamesSource
) AS x;

I created these tables in the model database so that every time I create a database, it would exist locally,

and I plan to create a lot of databases to test the scenario matrix listed above (rather than just change

database settings, clear out the log, etc). Please note, if you create objects in model for testing

purposes, make sure you delete those objects when you are done.

As an aside, I'm going to intentionally leave key violations and other error handling out of this, making

the naïve assumption that the chosen name is checked for uniqueness long before the insert is ever

attempted, but within the same transaction (just like the check against the naughty name table could

have been made in advance).

To support this, I also created the following three nearly identical tables in model, for test isolation

purposes:

USE model;
GO

-- AFTER (rollback)
CREATE TABLE dbo.UserNames_After_Rollback
(
 UserID INT IDENTITY(1,1) PRIMARY KEY,
 Name NVARCHAR(255) NOT NULL UNIQUE,
 DateCreated DATE NOT NULL DEFAULT SYSDATETIME()
);
CREATE INDEX x ON dbo.UserNames_After_Rollback(DateCreated) INCLUDE(Name);

-- AFTER (delete)

CREATE TABLE dbo.UserNames_After_Delete
(
 UserID INT IDENTITY(1,1) PRIMARY KEY,
 Name NVARCHAR(255) NOT NULL UNIQUE,
 DateCreated DATE NOT NULL DEFAULT SYSDATETIME()
);
CREATE INDEX x ON dbo.UserNames_After_Delete(DateCreated) INCLUDE(Name);

-- INSTEAD
CREATE TABLE dbo.UserNames_Instead
(
 UserID INT IDENTITY(1,1) PRIMARY KEY,
 Name NVARCHAR(255) NOT NULL UNIQUE,
 DateCreated DATE NOT NULL DEFAULT SYSDATETIME()
);
CREATE INDEX x ON dbo.UserNames_Instead(DateCreated) INCLUDE(Name);
GO

And the following three triggers, one for each table:

USE model;
GO

-- AFTER (rollback)
CREATE TRIGGER dbo.trUserNames_After_Rollback
ON dbo.UserNames_After_Rollback
AFTER INSERT
AS
BEGIN
 SET NOCOUNT ON;

 IF EXISTS
 (
 SELECT 1 FROM inserted AS i
 WHERE EXISTS
 (
 SELECT 1 FROM dbo.NaughtyUserNames
 WHERE Name = i.Name
)
)
 BEGIN
 ROLLBACK TRANSACTION;
 END
END
GO

-- AFTER (delete)
CREATE TRIGGER dbo.trUserNames_After_Delete
ON dbo.UserNames_After_Delete
AFTER INSERT
AS
BEGIN
 SET NOCOUNT ON;

 DELETE d

 FROM inserted AS i
 INNER JOIN dbo.NaughtyUserNames AS n
 ON i.Name = n.Name
 INNER JOIN dbo.UserNames_After_Delete AS d
 ON i.UserID = d.UserID;
END
GO

-- INSTEAD
CREATE TRIGGER dbo.trUserNames_Instead
ON dbo.UserNames_Instead
INSTEAD OF INSERT
AS
BEGIN
 SET NOCOUNT ON;

 INSERT dbo.UserNames_Instead(Name)
 SELECT i.Name
 FROM inserted AS i
 WHERE NOT EXISTS
 (
 SELECT 1 FROM dbo.NaughtyUserNames
 WHERE Name = i.Name
);
END
GO

You would probably want to consider additional handling to notify the user that their choice was rolled

back or ignored – but this, too, is left out for simplicity.

The Test Setup

I created sample data representing the three failure rates I wanted to test, changing 10 percent to 25

and then 50, and adding these tables, too, to model:

USE model;
GO

DECLARE @pct INT = 10, @cap INT = 20000;
-- change this ----^^ to 25 and 50

DECLARE @good INT = @cap - (@cap*(@pct/100.0));

SELECT Name, rn = ROW_NUMBER() OVER (ORDER BY NEWID())
INTO dbo.Source10Percent FROM
-- change this ^^ to 25 and 50
(
 SELECT Name FROM
 (
 SELECT TOP (@good) Name FROM dbo.GoodNamesSource ORDER BY NEWID()
) AS g
 UNION ALL
 SELECT Name FROM
 (
 SELECT TOP (@cap-@good) Name FROM dbo.NaughtyUserNames ORDER BY NEWID()
) AS b

) AS x;

CREATE UNIQUE CLUSTERED INDEX x ON dbo.Source10Percent(rn);
-- and here as well -------------------------^^

Each table has 20,000 rows, with a different mix of names that will pass and fail, and the row number

column makes it easy to divide the data up into different batch sizes for different tests, but with

repeatable failure rates for all of the tests.

Of course we need a place to capture the results. I chose to use a separate database for this, running

each test multiple times, simply capturing duration.

CREATE DATABASE ControlDB;
GO

USE ControlDB;
GO

CREATE TABLE dbo.Tests
(
 TestID INT,
 DiskLayout VARCHAR(15),
 RecoveryModel VARCHAR(6),
 TriggerType VARCHAR(14),
 [snapshot] VARCHAR(3),
 FailureRate INT,
 [sql] NVARCHAR(MAX)
);

CREATE TABLE dbo.TestResults
(
 TestID INT,
 BatchDescription VARCHAR(15),
 Duration INT
);

I populated the dbo.Tests table with the following script, so that I could execute different portions to set

up the four databases to match the current test parameters. Note that D:\ is an SSD, while G:\ is a 7200

RPM disk:

TRUNCATE TABLE dbo.Tests;
TRUNCATE TABLE dbo.TestResults;

;WITH d AS
(
 SELECT DiskLayout FROM (VALUES
 ('DataSSD_LogHDD'),
 ('DataSSD_LogSSD'),
 ('DataHDD_LogHDD'),
 ('DataHDD_LogSSD')) AS d(DiskLayout)
),
t AS
(
 SELECT TriggerType FROM (VALUES

 ('After_Delete'),
 ('After_Rollback'),
 ('Instead')) AS t(TriggerType)
),
m AS
(
 SELECT RecoveryModel = 'FULL'
 UNION ALL SELECT 'SIMPLE'
),
s AS
(
 SELECT IsSnapshot = 0
 UNION ALL SELECT 1
),
p AS
(
 SELECT FailureRate = 10
 UNION ALL SELECT 25
 UNION ALL SELECT 50
)
INSERT ControlDB.dbo.Tests
(
 TestID,
 DiskLayout,
 RecoveryModel,
 TriggerType,
 IsSnapshot,
 FailureRate,
 Command
)
SELECT
 TestID = ROW_NUMBER() OVER
 (
 ORDER BY d.DiskLayout, t.TriggerType, m.RecoveryModel, s.IsSnapshot, p.FailureRate
),
 d.DiskLayout,
 m.RecoveryModel,
 t.TriggerType,
 s.IsSnapshot,
 p.FailureRate,
 [sql]= N'SET NOCOUNT ON;

CREATE DATABASE ' + QUOTENAME(d.DiskLayout)
 + N' ON (name = N''data'', filename = N''' + CASE d.DiskLayout
WHEN 'DataSSD_LogHDD' THEN N'D:\data\data1.mdf'')
 LOG ON (name = N''log'', filename = N''G:\log\data1.ldf'');'
WHEN 'DataSSD_LogSSD' THEN N'D:\data\data2.mdf'')
 LOG ON (name = N''log'', filename = N''D:\log\data2.ldf'');'
WHEN 'DataHDD_LogHDD' THEN N'G:\data\data3.mdf'')
 LOG ON (name = N''log'', filename = N''G:\log\data3.ldf'');'
WHEN 'DataHDD_LogSSD' THEN N'G:\data\data4.mdf'')
 LOG ON (name = N''log'', filename = N''D:\log\data4.ldf'');' END
+ '
EXEC sp_executesql N''ALTER DATABASE ' + QUOTENAME(d.DiskLayout)
 + ' SET RECOVERY ' + m.RecoveryModel + ';'';'
+ CASE WHEN s.IsSnapshot = 1 THEN
'
EXEC sp_executesql N''ALTER DATABASE ' + QUOTENAME(d.DiskLayout)
 + ' SET ALLOW_SNAPSHOT_ISOLATION ON;'';
EXEC sp_executesql N''ALTER DATABASE ' + QUOTENAME(d.DiskLayout)

 + ' SET READ_COMMITTED_SNAPSHOT ON;'';'
ELSE '' END
+ '

DECLARE @d DATETIME2(7), @i INT, @LoopID INT, @loops INT, @perloop INT;

DECLARE c CURSOR LOCAL FAST_FORWARD FOR
 SELECT LoopID, loops, perloop FROM dbo.Loops;

OPEN c;

FETCH c INTO @LoopID, @loops, @perloop;

WHILE @@FETCH_STATUS <> -1
BEGIN
 EXEC sp_executesql N''TRUNCATE TABLE '
 + QUOTENAME(d.DiskLayout) + '.dbo.UserNames_' + t.TriggerType + ';'';

 SELECT @d = SYSDATETIME(), @i = 1;

 WHILE @i <= @loops
 BEGIN
 BEGIN TRY
 INSERT ' + QUOTENAME(d.DiskLayout) + '.dbo.UserNames_' + t.TriggerType + '(Name)
 SELECT Name FROM ' + QUOTENAME(d.DiskLayout) + '.dbo.Source' +
RTRIM(p.FailureRate) + 'Percent
 WHERE rn > (@i-1)*@perloop AND rn <= @i*@perloop;
 END TRY
 BEGIN CATCH
 SET @TestID = @TestID;
 END CATCH

 SET @i += 1;
 END

 INSERT ControlDB.dbo.TestResults(TestID, LoopID, Duration)
 SELECT @TestID, @LoopID, DATEDIFF(MILLISECOND, @d, SYSDATETIME());

 FETCH c INTO @LoopID, @loops, @perloop;
END

CLOSE c;
DEALLOCATE c;

DROP DATABASE ' + QUOTENAME(d.DiskLayout) + ';'
FROM d, t, m, s, p; -- implicit CROSS JOIN! Do as I say, not as I do! :-)

Then it was simple to run all of the tests multiple times:

USE ControlDB;
GO

SET NOCOUNT ON;

DECLARE @TestID INT, @Command NVARCHAR(MAX), @msg VARCHAR(32);

DECLARE d CURSOR LOCAL FAST_FORWARD FOR
 SELECT TestID, Command

 FROM ControlDB.dbo.Tests ORDER BY TestID;

OPEN d;

FETCH d INTO @TestID, @Command;

WHILE @@FETCH_STATUS <> -1
BEGIN
 SET @msg = 'Starting ' + RTRIM(@TestID);
 RAISERROR(@msg, 0, 1) WITH NOWAIT;

 EXEC sp_executesql @Command, N'@TestID INT', @TestID;

 SET @msg = 'Finished ' + RTRIM(@TestID);
 RAISERROR(@msg, 0, 1) WITH NOWAIT;

 FETCH d INTO @TestID, @Command;
END

CLOSE d;
DEALLOCATE d;

GO 10

On my system this took close to 6 hours, so be prepared to let this run its course uninterrupted. Also,

make sure you don't have any active connections or query windows open against themodel database,

otherwise you may get this error when the script attempts to create a database:

Msg 1807, Level 16, State 3

Could not obtain exclusive lock on database 'model'. Retry the operation later.

Results

There are many data points to look at (and all queries used to derive the data are referenced in the

Appendix). Keep in mind that every average duration denoted here is over 10 tests and is inserting a

total of 100,000 rows into the destination table.

Graph 1 – Overall Aggregates

The first graph shows overall aggregates (average duration) for the different variables in isolation (so

all tests using an AFTER trigger that deletes, *all* tests using an AFTER trigger that rolls back, etc).

http://sqlperformance.com/2014/03/t-sql-queries/instead-of-triggers-1#appendix
http://sqlperformance.com/2014/03/t-sql-queries/instead-of-triggers-1#appendix

Average duration, in milliseconds, for each variable in isolation

A few things jump out at us immediately:

 The INSTEAD OF trigger here is twice as fast as both AFTER triggers.

 Having the transaction log on SSD made a bit of a difference. Location of the data file much less

so.

 The batch of 20,000 singleton inserts was 7-8x slower than any other batch distribution.

 The single batch insert of 20,000 rows was slower than any of the non-singleton distributions.

 Failure rate, snapshot isolation and recovery model had little if any impact on performance.

Graph 2 – Best 10 Overall

This graph shows the fastest 10 results when every variable is considered. These are all INSTEAD OF

triggers where the largest percentage of rows fail (50%). Surprisingly, the fastest (though not by a lot)

had both data and log on the same HDD (not SSD). There is a mix of disk layouts and recovery models

here, but all 10 had snapshot isolation enabled, and the top 7 results all involved the 10 x 2,000 row

batch size.

Best 10 durations, in milliseconds, considering every variable

The fastest AFTER trigger – a ROLLBACK variant with 10% failure rate in the 100 x 200 row batch size –

came in at position #144 (806 ms).

Graph 3 – Worst 10 Overall

This graph shows the slowest 10 results when every variable is considered; all are AFTER variants, all

involve the 20,000 singleton inserts, and all have data and log on the same slow HDD.

Worst 10 durations, in milliseconds, considering every variable

The slowest INSTEAD OF test was in position #97, at 5,680 ms – a 20,000 singleton insert test where 10%

fail. It is interesting also to observe that not one single AFTER trigger using the 20,000 singleton insert

batch size fared better – in fact the 96th worst result was an AFTER (delete) test that came in at 10,219

ms – almost double the next slowest result.

Graph 4 – Log Disk Type, Singleton Inserts

The graphs above give us a rough idea of the biggest pain points, but they are either too zoomed in or

not zoomed in enough. This graph filters down to data based on reality: in most cases this type of

operation is going to be a singleton insert. I thought I would break it down by failure rate and the type of

disk the log is on, but only look at rows where the batch is made up of 20,000 individual inserts.

Duration, in milliseconds, grouped by failure rate and log location, for 20,000 individual inserts

Here we see that all of the AFTER triggers average in the 10-11 second range (depending on log

location), while all of the INSTEAD OF triggers are well below the 6 second mark.

Conclusion

So far, it seems clear to me that the INSTEAD OF trigger is a winner in most cases – in some cases more

so than others (for example, as the failure rate goes up). Other factors, such as recovery model, seem to

have much less impact on overall performance.

If you have other ideas for how to break the data down, or would like a copy of the data to perform your

own slicing and dicing, please let me know. If you'd like help setting this environment up so you can run

your own tests, I can help with that too.

While this test shows that INSTEAD OF triggers are definitely worth considering, it isn't the whole story. I

literally slapped these triggers together using the logic that I thought made the most sense for each

scenario, but trigger code – like any T-SQL statement – can be tuned for optimal plans. In a follow-up

post, I'll take a look at a potential optimization that may make the AFTER trigger more competitive.

Appendix

Queries used for the Results section:

Graph 1 – Overall Aggregates

SELECT RTRIM(l.loops) + ' x ' + RTRIM(l.perloop), AVG(r.Duration*1.0)
 FROM dbo.TestResults AS r
 INNER JOIN dbo.Loops AS l

mailto:abertrand@sqlsentry.net
http://sqlperformance.com/2014/03/t-sql-queries/instead-of-triggers-1#results

 ON r.LoopID = l.LoopID
 GROUP BY RTRIM(l.loops) + ' x ' + RTRIM(l.perloop);

SELECT t.IsSnapshot, AVG(Duration*1.0)
 FROM dbo.TestResults AS tr
 INNER JOIN dbo.Tests AS t
 ON tr.TestID = t.TestID
 GROUP BY t.IsSnapshot;

SELECT t.RecoveryModel, AVG(Duration*1.0)
 FROM dbo.TestResults AS tr
 INNER JOIN dbo.Tests AS t
 ON tr.TestID = t.TestID
 GROUP BY t.RecoveryModel;

SELECT t.DiskLayout, AVG(Duration*1.0)
 FROM dbo.TestResults AS tr
 INNER JOIN dbo.Tests AS t
 ON tr.TestID = t.TestID
 GROUP BY t.DiskLayout;

SELECT t.TriggerType, AVG(Duration*1.0)
 FROM dbo.TestResults AS tr
 INNER JOIN dbo.Tests AS t
 ON tr.TestID = t.TestID
 GROUP BY t.TriggerType;

SELECT t.FailureRate, AVG(Duration*1.0)
 FROM dbo.TestResults AS tr
 INNER JOIN dbo.Tests AS t
 ON tr.TestID = t.TestID
 GROUP BY t.FailureRate;

Graph 2 & 3 – Best & Worst 10

;WITH src AS
(
 SELECT DiskLayout, RecoveryModel, TriggerType, FailureRate, IsSnapshot,
 Batch = RTRIM(l.loops) + ' x ' + RTRIM(l.perloop),
 Duration = AVG(Duration*1.0)
 FROM dbo.Tests AS t
 INNER JOIN dbo.TestResults AS tr
 ON tr.TestID = t.TestID
 INNER JOIN dbo.Loops AS l
 ON tr.LoopID = l.LoopID
 GROUP BY DiskLayout, RecoveryModel, TriggerType, FailureRate, IsSnapshot,
 RTRIM(l.loops) + ' x ' + RTRIM(l.perloop)
),
agg AS
(
 SELECT label = REPLACE(REPLACE(DiskLayout,'Data',''),'_Log','/')
 + ', ' + RecoveryModel + ' recovery, ' + TriggerType
 + ', ' + RTRIM(FailureRate) + '% fail'
 + ', Snapshot = ' + CASE IsSnapshot WHEN 1 THEN 'ON' ELSE 'OFF' END
 + ', ' + Batch + ' (ops x rows)',
 best10 = ROW_NUMBER() OVER (ORDER BY Duration),
 worst10 = ROW_NUMBER() OVER (ORDER BY Duration DESC),
 Duration

 FROM src
)
SELECT grp, label, Duration FROM
(
 SELECT TOP (20) grp = 'best', label = RIGHT('0' + RTRIM(best10),2) + '. ' + label,
Duration
 FROM agg WHERE best10 <= 10
 ORDER BY best10 DESC
 UNION ALL
 SELECT TOP (20) grp = 'worst', label = RIGHT('0' + RTRIM(worst10),2) + '. ' + label,
Duration
 FROM agg WHERE worst10 <= 10
 ORDER BY worst10 DESC
) AS b
 ORDER BY grp;

Graph 4 – Log Disk Type, Singleton Inserts

;WITH x AS
(
 SELECT
 TriggerType,FailureRate,
 LogLocation = RIGHT(DiskLayout,3),
 Duration = AVG(Duration*1.0)
 FROM dbo.TestResults AS tr
 INNER JOIN dbo.Tests AS t
 ON tr.TestID = t.TestID
 INNER JOIN dbo.Loops AS l
 ON l.LoopID = tr.LoopID
 WHERE l.loops = 20000
 GROUP BY RIGHT(DiskLayout,3), FailureRate, TriggerType
)
SELECT TriggerType, FailureRate,
 HDDDuration = MAX(CASE WHEN LogLocation = 'HDD' THEN Duration END),
 SSDDuration = MAX(CASE WHEN LogLocation = 'SSD' THEN Duration END)
FROM x
GROUP BY TriggerType, FailureRate
ORDER BY TriggerType, FailureRate;

Indexes & Query Optimization
Don’t just blindly create those “missing” indexes!
By Aaron Bertrand

Kevin Kline (@kekline) and I recently held a query tuning webinar (well, one in a series, actually), and

one of the things that came up is the tendency of folks to create any missing index that SQL Server tells

them will be a good thing™. They can learn about these missing indexes from the Database Engine

Tuning Advisor (DTA), the missing index DMVs, or an execution plan displayed in Management Studio or

SQL Sentry Plan Explorer (all of which just relay information from exactly the same place):

The problem with just blindly creating this index is that SQL Server has decided that it is useful for a

particular query (or handful of queries), but completely and unilaterally ignores the rest of the workload.

As we all know, indexes are not "free" – you pay for indexes both in raw storage as well as maintenance

required on DML operations. It makes little sense, in a write-heavy workload, to add an index that helps

make a single query slightly more efficient, especially if that query is not run frequently. It can be very

important in these cases to understand your overall workload and strike a good balance between

making your queries efficient and not paying too much for that in terms of index maintenance.

So an idea I had was to "mash up" information from the missing index DMVs, the index usage stats DMV,

and information about query plans, to determine what type of balance currently exists and how the

overall benefit of adding the index might fare.

Missing indexes

First, we can take a look at the missing indexes that SQL Server currently suggests:

SELECT
 d.[object_id],
 s = OBJECT_SCHEMA_NAME(d.[object_id]),
 o = OBJECT_NAME(d.[object_id]),
 d.equality_columns,
 d.inequality_columns,

http://twitter.com/kekline
http://msdn.microsoft.com/en-us/library/ms166575.aspx
http://msdn.microsoft.com/en-us/library/ms166575.aspx
http://msdn.microsoft.com/en-us/library/ms345434.aspx
http://sqlsentry.net/plan-explorer/

 d.included_columns,
 s.unique_compiles,
 s.user_seeks, s.last_user_seek,
 s.user_scans, s.last_user_scan
INTO #candidates
FROM sys.dm_db_missing_index_details AS d
INNER JOIN sys.dm_db_missing_index_groups AS g
ON d.index_handle = g.index_handle
INNER JOIN sys.dm_db_missing_index_group_stats AS s
ON g.index_group_handle = s.group_handle
WHERE d.database_id = DB_ID()
AND OBJECTPROPERTY(d.[object_id], 'IsMsShipped') = 0;

This shows the table(s) and column(s) that would have been useful in an index, how many

compiles/seeks/scans would have been used, and when the last such event happened for each potential

index. You can also include columns like s.avg_total_user_cost and s.avg_user_impact if you want to use

those figures to prioritize.

Plan operations

Next, let's take a look at the operations used in all of the plans we have cached against the objects that

have been identified by our missing indexes.

CREATE TABLE #planops
(
 o INT,
 i INT,
 h VARBINARY(64),
 uc INT,
 Scan_Ops INT,
 Seek_Ops INT,
 Update_Ops INT
);

DECLARE @sql NVARCHAR(MAX) = N'';

SELECT @sql += N'
 UNION ALL SELECT o,i,h,uc,Scan_Ops,Seek_Ops,Update_Ops
 FROM
 (
 SELECT o = ' + RTRIM([object_id]) + ',
 i = ' + RTRIM(index_id) +',
 h = pl.plan_handle,
 uc = pl.usecounts,
 Scan_Ops = p.query_plan.value(''count(//RelOp[@LogicalOp = ''''Index
Scan'''''
 + ' or @LogicalOp = ''''Clustered Index Scan'''']/*/'
 + 'Object[@Index=''''' + QUOTENAME(name) + '''''])'', ''int''),
 Seek_Ops = p.query_plan.value(''count(//RelOp[@LogicalOp = ''''Index
Seek'''''
 + ' or @LogicalOp = ''''Clustered Index Seek'''']/*/'
 + 'Object[@Index=''''' + QUOTENAME(name) + '''''])'', ''int''),
 Update_Ops = p.query_plan.value(''count(//Update/Object[@Index='''''
 + QUOTENAME(name) + '''''])'', ''int'')
 FROM sys.dm_exec_cached_plans AS pl
 CROSS APPLY sys.dm_exec_query_plan(pl.plan_handle) AS p

 WHERE p.dbid = DB_ID()
 AND p.query_plan IS NOT NULL
) AS x
 WHERE Scan_Ops + Seek_Ops + Update_Ops > 0'
 FROM sys.indexes AS i
 WHERE i.index_id > 0
 AND EXISTS (SELECT 1 FROM #candidates WHERE [object_id] = i.[object_id]);

SET @sql = ';WITH xmlnamespaces (DEFAULT '
 + 'N''http://schemas.microsoft.com/sqlserver/2004/07/showplan'')
 ' + STUFF(@sql, 1, 16, '');

INSERT #planops EXEC sp_executesql @sql;

A friend over on dba.SE, Mikael Eriksson, suggested the following two queries which, on a larger system,

will perform much better than the XML / UNION query I cobbled together above, so you could

experiment with those first. His ending comment was that he "not surprisingly found out that less XML is

a good thing for performance. :)" Indeed.

-- alternative #1

with xmlnamespaces (default 'http://schemas.microsoft.com/sqlserver/2004/07/showplan')
insert #planops
select o,i,h,uc,Scan_Ops,Seek_Ops,Update_Ops
from
(
 select o = i.object_id,
 i = i.index_id,
 h = pl.plan_handle,
 uc = pl.usecounts,
 Scan_Ops = p.query_plan.value('count(//RelOp[@LogicalOp
 = ("Index Scan", "Clustered Index Scan")]/*/Object[@Index =
sql:column("i2.name")])', 'int'),
 Seek_Ops = p.query_plan.value('count(//RelOp[@LogicalOp
 = ("Index Seek", "Clustered Index Seek")]/*/Object[@Index =
sql:column("i2.name")])', 'int'),
 Update_Ops = p.query_plan.value('count(//Update/Object[@Index =
sql:column("i2.name")])', 'int')
 from sys.indexes as i
 cross apply (select quotename(i.name) as name) as i2
 cross apply sys.dm_exec_cached_plans as pl
 cross apply sys.dm_exec_query_plan(pl.plan_handle) AS p
 where exists (select 1 from #candidates as c where c.[object_id] = i.[object_id])
 and p.query_plan.exist('//Object[@Index = sql:column("i2.name")]') = 1
 and p.[dbid] = db_id()
 and i.index_id > 0
) as T
where Scan_Ops + Seek_Ops + Update_Ops > 0;

-- alternative #2

with xmlnamespaces (default 'http://schemas.microsoft.com/sqlserver/2004/07/showplan')
insert #planops
select o = coalesce(T1.o, T2.o),
 i = coalesce(T1.i, T2.i),
 h = coalesce(T1.h, T2.h),
 uc = coalesce(T1.uc, T2.uc),

http://dba.stackexchange.com/users/2103/mikael-eriksson

 Scan_Ops = isnull(T1.Scan_Ops, 0),
 Seek_Ops = isnull(T1.Seek_Ops, 0),
 Update_Ops = isnull(T2.Update_Ops, 0)
from
 (
 select o = i.object_id,
 i = i.index_id,
 h = t.plan_handle,
 uc = t.usecounts,
 Scan_Ops = sum(case when t.LogicalOp in ('Index Scan', 'Clustered Index Scan')
then 1 else 0 end),
 Seek_Ops = sum(case when t.LogicalOp in ('Index Seek', 'Clustered Index Seek')
then 1 else 0 end)
 from (
 select
 r.n.value('@LogicalOp', 'varchar(100)') as LogicalOp,
 o.n.value('@Index', 'sysname') as IndexName,
 pl.plan_handle,
 pl.usecounts
 from sys.dm_exec_cached_plans as pl
 cross apply sys.dm_exec_query_plan(pl.plan_handle) AS p
 cross apply p.query_plan.nodes('//RelOp') as r(n)
 cross apply r.n.nodes('*/Object') as o(n)
 where p.dbid = db_id()
 and p.query_plan is not null
) as t
 inner join sys.indexes as i
 on t.IndexName = quotename(i.name)
 where t.LogicalOp in ('Index Scan', 'Clustered Index Scan', 'Index Seek', 'Clustered
Index Seek')
 and exists (select 1 from #candidates as c where c.object_id = i.object_id)
 group by i.object_id,
 i.index_id,
 t.plan_handle,
 t.usecounts
) as T1
full outer join
 (
 select o = i.object_id,
 i = i.index_id,
 h = t.plan_handle,
 uc = t.usecounts,
 Update_Ops = count(*)
 from (
 select
 o.n.value('@Index', 'sysname') as IndexName,
 pl.plan_handle,
 pl.usecounts
 from sys.dm_exec_cached_plans as pl
 cross apply sys.dm_exec_query_plan(pl.plan_handle) AS p
 cross apply p.query_plan.nodes('//Update') as r(n)
 cross apply r.n.nodes('Object') as o(n)
 where p.dbid = db_id()
 and p.query_plan is not null
) as t
 inner join sys.indexes as i
 on t.IndexName = quotename(i.name)
 where exists
 (
 select 1 from #candidates as c where c.[object_id] = i.[object_id]

)
 and i.index_id > 0
 group by i.object_id,
 i.index_id,
 t.plan_handle,
 t.usecounts
) as T2
on T1.o = T2.o and
 T1.i = T2.i and
 T1.h = T2.h and
 T1.uc = T2.uc;

Now in the #planops table you have a bunch of values for plan_handle so that you can go and

investigate each of the individual plans in play against the objects that have been identified as lacking

some useful index. We're not going to use it for that right now, but you can easily cross-reference this

with:

SELECT
 OBJECT_SCHEMA_NAME(po.o),
 OBJECT_NAME(po.o),
 po.uc,po.Scan_Ops,po.Seek_Ops,po.Update_Ops,
 p.query_plan
FROM #planops AS po
CROSS APPLY sys.dm_exec_query_plan(po.h) AS p;

Now you can click on any of the output plans to see what they're currently doing against your objects.

Note that some of the plans will be repeated, since a plan can have multiple operators that reference

different indexes on the same table.

Index usage stats

Next, let's take a look at index usage stats, so we can see how much actual activity is currently running

against our candidate tables (and, particularly, updates).

SELECT [object_id], index_id, user_seeks, user_scans, user_lookups, user_updates
INTO #indexusage
FROM sys.dm_db_index_usage_stats AS s
WHERE database_id = DB_ID()
AND EXISTS (SELECT 1 FROM #candidates WHERE [object_id] = s.[object_id]);

Don't be alarmed if very few or no plans in the cache show updates for a particular index, even though

the index usage stats show that those indexes have been updated. This just means that the update plans

aren't currently in cache, which could be for a variety of reasons – for example, it could be a very read-

heavy workload and they've been aged out, or they're all single-use and optimize for ad hoc workloads is

enabled.

Putting it all together

The following query will show you, for each suggested missing index, the number of reads an index

might have assisted, the number of writes and reads that have currently been captured against the

existing indexes, the ratio of those, the number of plans associated with that object, and the total

number of use counts for those plans:

;WITH x AS
(
 SELECT
 c.[object_id],
 potential_read_ops = SUM(c.user_seeks + c.user_scans),
 [write_ops] = SUM(iu.user_updates),
 [read_ops] = SUM(iu.user_scans + iu.user_seeks + iu.user_lookups),
 [write:read ratio] = CONVERT(DECIMAL(18,2), SUM(iu.user_updates)*1.0 /
 SUM(iu.user_scans + iu.user_seeks + iu.user_lookups)),
 current_plan_count = po.h,
 current_plan_use_count = po.uc
 FROM
 #candidates AS c
 LEFT OUTER JOIN
 #indexusage AS iu
 ON c.[object_id] = iu.[object_id]
 LEFT OUTER JOIN
 (
 SELECT o, h = COUNT(h), uc = SUM(uc)
 FROM #planops GROUP BY o
) AS po
 ON c.[object_id] = po.o
 GROUP BY c.[object_id], po.h, po.uc
)
SELECT [object] = QUOTENAME(c.s) + '.' + QUOTENAME(c.o),
 c.equality_columns,
 c.inequality_columns,
 c.included_columns,
 x.potential_read_ops,
 x.write_ops,
 x.read_ops,
 x.[write:read ratio],
 x.current_plan_count,
 x.current_plan_use_count
FROM #candidates AS c
INNER JOIN x
ON c.[object_id] = x.[object_id]
ORDER BY x.[write:read ratio];

If your write:read ratio to these indexes is already > 1 (or > 10!), I think it gives reason for pause before

blindly creating an index that could only increase this ratio. The number of potential_read_ops shown,

however, may offset that as the number becomes larger. If the potential_read_ops number is very

small, you probably want to ignore the recommendation entirely before even bothering to investigate

the other metrics – so you could add a WHERE clause to filter some of those recommendations out.

A couple of notes:

1. These are read and write operations, not individually measured reads and writes of 8K pages.

2. The ratio and comparisons are largely educational; it could very well be the case that 10,000,000

write operations all affected a single row, while 10 read operations could have had substantially

more impact. This is just meant as a rough guideline and assumes that read and write operations

are weighted roughly the same.

3. You may also use slights variations on some of these queries to find out – outside of the missing

indexes SQL Server is recommending – how many of your current indexes are wasteful. There

are plenty of ideas about this online, including this post by Paul Randal (@PaulRandal).

I hope that gives some ideas for gaining more insight into your system's behavior before you decide to

add an index that some tool told you to create. I could have created this as one massive query, but I

think the individual parts will give you some rabbit holes to investigate, if you so wish.

Other notes

You may also want to extend this to capture current size metrics, the width of the table, and the number

of current rows (as well as any predictions about future growth); this can give you a good idea of how

much space a new index will take up, which can be a concern depending on your environment. I may

treat this in a future post.

Of course, you have to keep in mind that these metrics are only as useful as your uptime dictates. The

DMVs are cleared out after a restart (and sometimes in other, less disruptive scenarios), so if you think

this information will be useful over a longer period of time, taking periodic snapshots may be something

you want to consider.

http://www.sqlskills.com/blogs/paul/indexes-from-every-angle-how-can-you-tell-if-an-index-is-being-used/
http://twitter.com/PaulRandal

How filtered indexes could be a much more powerful feature
By Aaron Bertrand

Don't get me wrong; I love filtered indexes. They create opportunities for much more efficient use of

I/O, and finally allow us to implement proper ANSI-compliant unique constraints (where more than one

NULL is allowed). However, they are far from perfect. I wanted to point out a few areas where filtered

indexes could be improved and make them much more useful and practical to a large portion of

workloads out there.

First, the good news

Filtered indexes can make very quick work of previously expensive queries, and do so using less space

(and hence reduced I/O, even when scanned).

A quick example using Sales.SalesOrderDetailEnlarged (built using this script by Jonathan Kehayias

(@SQLPoolBoy)). This table has 4.8MM rows, with 587 MB of data and 363 MB of indexes. There is only

one nullable column, CarrierTrackingNumber, so let's play with that one. As is, the table currently has

about half of these values (2.4MM) as NULL. I'm going to reduce that to about 240K to simulate a

scenario where a small percentage of the rows in the table are actually eligible for an index, in order to

best highlight the benefits of a filtered index. The following query affects 2.17MM rows, leaving 241,507

rows with a NULL value for CarrierTrackingNumber:

UPDATE Sales.SalesOrderDetailEnlarged
 SET CarrierTrackingNumber = 'x'
 WHERE CarrierTrackingNumber IS NULL
 AND SalesOrderID % 10 <> 3;

Now, let's say there is a business requirement where we constantly want to review orders that have

products that have yet to be assigned a tracking number (think orders that are split up and shipped

separately). On the current table we would run these queries (and I've added the DBCC commands to

ensure cold cache in every case):

DBCC DROPCLEANBUFFERS;
DBCC FREEPROCCACHE;

SELECT COUNT(*)
 FROM Sales.SalesOrderDetailEnlarged
 WHERE CarrierTrackingNumber IS NULL;

SELECT ProductID, SalesOrderID
 FROM Sales.SalesOrderDetailEnlarged
 WHERE CarrierTrackingNumber IS NULL;

Which require clustered index scans and yield the following runtime metrics (as captured with SQL

Sentry Plan Explorer):

http://www.sqlskills.com/blogs/jonathan/enlarging-the-adventureworks-sample-databases/
http://twitter.com/SQLPoolBoy
http://sqlsentry.net/plan-explorer/
http://sqlsentry.net/plan-explorer/

In the "old" days (meaning since SQL Server 2005), we would have created this index (and in fact, even

in SQL Server 2012, this is the index SQL Server recommends):

CREATE INDEX IX_NotVeryHelpful
ON [Sales].[SalesOrderDetailEnlarged] ([CarrierTrackingNumber])
INCLUDE ([SalesOrderID],[ProductID]);

With that index in place, and running the above queries again, here are the metrics, with both queries

using an index seek as you might expect:

And then dropping that index and creating a slightly different one, simply adding a WHERE clause:

CREATE INDEX IX_Filtered_CTNisNULL
ON [Sales].[SalesOrderDetailEnlarged] ([CarrierTrackingNumber])
INCLUDE ([SalesOrderID],[ProductID])
WHERE CarrierTrackingNumber IS NULL;

We get these results, and both queries use the filtered index for their seeks:

Here is the additional space required by each index, compared to the reduction in runtime and I/O of

the above queries:

Index Index space Added space Duration Reads

No dedicated index 363 MB 15,700ms ~164,000

Non-filtered index 530 MB 167 MB (+46%) 169ms 1,084

Filtered index 367 MB 4 MB (+1%) 170ms 1,084

So, as you can see, the filtered index delivers performance improvements that are almost identical to

the non-filtered index (since both are able to obtain their data using the same number of reads), but at a

much lower storage cost, since the filtered index only has to store and maintain the rows that match the

filter predicate.

Now, let's put the table back to its original state:

UPDATE Sales.SalesOrderDetailEnlarged
 SET CarrierTrackingNumber = NULL
 WHERE CarrierTrackingNumber = 'x';

DROP INDEX IX_NotVeryHelpful ON Sales.SalesOrderDetailEnlarged;
DROP INDEX IX_Filtered_CTNisNULL ON Sales.SalesOrderDetailEnlarged;

Tim Chapman (@chapmandew) and Michelle Ufford (@sqlfool) have done a fantastic job outlining the

performance benefits of filtered indexes in their own ways, and you should check out their posts as well:

 Michelle Ufford: Filtered Indexes: What You Need To Know

 Tim Chapman: The Joys of Filtered Indexes

Also, ANSI-compliant unique constraints (sort of)

I thought I'd also briefly mention ANSI-compliant unique constraints. In SQL Server 2005, we would

create a unique constraint like this:

CREATE TABLE dbo.Personnel
(
 EmployeeID INT PRIMARY KEY,
 SSN CHAR(9) NULL,
 -- ... other columns ...
 CONSTRAINT UQ_SSN UNIQUE(SSN)
);

(We could also create a unique non-clustered index instead of a constraint; the underlying

implementation is essentially the same.)

Now, this is no problem if SSNs are known at the time of entry:

INSERT dbo.Personnel(EmployeeID, SSN)
VALUES(1,'111111111'),(2,'111111112');

It's also fine if we have the occasional SSN that is not known at the time of entry (think a Visa applicant

or perhaps even a foreign worker that doesn't have an SSN and never will):

INSERT dbo.Personnel(EmployeeID, SSN)
VALUES(3,NULL);

So far, so good. But what happens when we have a second employee with an unknown SSN?

http://twitter.com/chapmandew
http://twitter.com/sqlfool
http://sqlfool.com/2009/04/filtered-indexes-what-you-need-to-know/
http://blogs.msdn.com/b/timchapman/archive/2012/08/27/the-joys-of-filtered-indexes.aspx

INSERT dbo.Personnel(EmployeeID, SSN)
VALUES(4,NULL);

Result:

Msg 2627, Level 14, State 1, Line 1

Violation of UNIQUE KEY constraint 'UQ_SSN'. Cannot insert duplicate key in object

'dbo.Personnel'. The duplicate key value is (<NULL>).

The statement has been terminated.

So at any one time, only one NULL value can exist in this column. Unlike most scenarios, this is one case

where SQL Server treats two NULL values as equal (rather than determining that equality is simply

unknown and, in turn, false). Folks have been complaining about this inconsistency for years.

If this is a requirement, we can now work around this using filtered indexes:

ALTER TABLE dbo.Personnel DROP CONSTRAINT UQ_SSN;
GO

CREATE UNIQUE INDEX UQ_SSN ON dbo.Personnel(SSN)
 WHERE SSN IS NOT NULL;

Now our 4th insert works just fine, since uniqueness is only enforced on the non-NULL values. This is

kind of cheating, but it does meet the basic requirements that the ANSI standard intended (even though

SQL Server does not allow us to use ALTER TABLE ... ADD CONSTRAINT syntax to create a filtered unique

constraint).

But, hold the phone

These are great examples of what we can do with filtered indexes, but there are a lot of things we still

can't do, and several limitations and issues that come up as a result.

Statistics updates

This is one of the more important limitations IMHO. Filtered indexes don't benefit from auto-updating of

stats based on a percentage change of the subset of the table that is identified by the filter predicate; it

is based (like all non-filtered indexes) on churn against the whole table. This means that, depending on

what percentage of the table is in the filtered index, the number of rows in the index could quadruple or

halve and the statistics won't update unless you do so manually. Kimberly Tripp has given some great

information about this (and Gail Shaw cites an example where it took 257,000 updates before statistics

were updated for a filtered index that contained only 10,000 rows):

http://www.sqlskills.com/blogs/kimberly/filtered-indexes-and-filtered-stats-might-become-seriously-

out-of-date/

http://www.sqlskills.com/blogs/kimberly/category/filtered-indexes/

Also, Kimberly's colleague, Joe Sack (@JosephSack), has filed a Connect item that suggests correcting

this behavior for both filtered indexes and filtered statistics.

http://www.sqlskills.com/blogs/kimberly/filtered-indexes-and-filtered-stats-might-become-seriously-out-of-date/
http://www.sqlskills.com/blogs/kimberly/filtered-indexes-and-filtered-stats-might-become-seriously-out-of-date/
http://www.sqlskills.com/blogs/kimberly/category/filtered-indexes/
http://twitter.com/JosephSack
http://connect.microsoft.com/SQLServer/feedback/details/509638
http://connect.microsoft.com/SQLServer/feedback/details/509638

Filter expression limitations

There are several constructs you can't use in a filter predicate, such as NOT IN, OR and dynamic / non-

deterministic predicates like WHERE col >= DATEADD(DAY, -1, GETDATE()). Also, the optimizer may not

recognize a filtered index if the predicate does not exactly match the WHERE clause in the index

definition. Here are a few Connect items that try to coax some support for better coverage here:

Filtered index does not allow filters on disjunctions (closed: by design)

Filtered index creation failed with NOT IN clause (closed: by design)

Support for more complex WHERE clause in filtered indexes (active)

Other potential uses currently not possible

We currently can't create a filtered index on a persisted computed column, even if it is deterministic. We

can't point a foreign key at a unique filtered index; if we want an index to support the foreign key in

addition to the queries supported by the filtered index, we must create a second, redundant, non-

filtered index. And here are a few other similar limitations that have either been overlooked or not

considered yet:

Should be possible to create a filtered index on a deterministic persisted computed column (active)

Allow filtered unique index to be a candidate key for a foreign key (active)

ability to create filter indexes on indexed views (closed: won't fix)

Partitioning Error 1908 – Enhance Partitioning (closed: won't fix)

CREATE "FILTERED" COLUMNSTORE INDEX (active)

Issues with MERGE

And MERGE makes yet another appearance on my "watch out" list:

MERGE evaluates filtered index per row, not post operation, which causes filtered index violation (closed: won't fix)

MERGE fails to update with filtered index in place (closed: fixed)

MERGE statement bug when INSERT/DELETE used and filtered index (active)

MERGE Incorrectly Reports Unique Key Violations (active)

While one of these (seemingly closely-related) bugs says that it is fixed in SQL Server 2012, you may

need to contact PSS if you are hitting any variation of this issue, particularly on earlier versions (or stop

using MERGE, as I have suggested before).

http://connect.microsoft.com/SQLServer/feedback/details/341737
http://connect.microsoft.com/SQLServer/feedback/details/341891
http://connect.microsoft.com/SQLServer/feedback/details/666238
http://connect.microsoft.com/SQLServer/feedback/details/518328
http://connect.microsoft.com/SQLServer/feedback/details/498009
http://connect.microsoft.com/SQLServer/feedback/details/648551
http://connect.microsoft.com/SQLServer/feedback/details/380993
http://connect.microsoft.com/SQLServer/feedback/details/767027
http://connect.microsoft.com/SQLServer/feedback/details/766165
http://connect.microsoft.com/SQLServer/feedback/details/620367
http://connect.microsoft.com/SQLServer/feedback/details/596086
http://connect.microsoft.com/SQLServer/feedback/details/773895
http://www.sqlperformance.com/2013/02/t-sql-queries/another-merge-bug
http://www.sqlperformance.com/2013/02/t-sql-queries/another-merge-bug

Tool / DMV / built-ins limitations

There are many DMVs, DBCC commands, system procedures and client tools that we start to rely on

over time. However, not all of these things are updated to take advantage of new features; filtered

indexes are no exception. The following Connect items point out some issues that may trip you up if you

are expecting them to work with filtered indexes:

There is no way of creating filtered index from SSMS while designing a new table (closed: won't fix)

The filter expression of a filtered index is lost when a table is modified by the Table Designer (closed: won't fix)

Table designer doesn't script WHERE clause in filtered indexes (active)

SSMS table designer does not preserve index filter expression on table rebuild (closed: won't fix)

DBCC PAGE incorrect output with filtered indexes (active)

SQL 2008 Filtered Index Suggestions from DM Views and DTA (closed: won't fix)

Enhancements to the missing indexes DMV's for filtered indexes (closed: won't fix)

Syntax error when replicating compressed filtered indexes (closed: won't fix)

Agent: jobs use non-default options when running a T-SQL script (closed: won't fix)

View Dependencies fails with Transact-SQL Error 515 (active)

View Dependencies fails on certain objects (closed: won't fix)

Index options differences are not detected in the schema compare for two databases (closed: external)

Suggest exposing index filter condition in all views of index information (closed: won't fix)

sp_helpIndex results should include the Filter expression of Filter Indices (active)

Overload sp_help, sp_columns, sp_helpindex for 2008 features (closed: won't fix)

For the last three, don't hold your breath – Microsoft is quite unlikely to invest any time in the sp_

procedures, DMVs, INFORMATION_SCHEMA views, etc. Instead see Kimberly Tripp's sp_helpindex

rewrites, which include information about filtered indexes along with other new features that Microsoft

has left behind.

Optimizer Limitations

There are several Connect items that describe cases where filtered indexes *could* be used by the

optimizer, but instead are ignored. In some cases these are not considered "bugs" but rather "gaps in

functionality"…

SQL does not use filtered index on a simple query (closed: by design)

Filtered Index execution plan is not optimized (closed: won't fix)

http://connect.microsoft.com/SQLServer/feedback/details/330238
http://connect.microsoft.com/SQLServer/feedback/details/462053
http://connect.microsoft.com/SQLServer/feedback/details/362699
http://connect.microsoft.com/SQLServer/feedback/details/641363
http://connect.microsoft.com/SQLServer/feedback/details/776144
http://connect.microsoft.com/SQLServer/feedback/details/388360
http://connect.microsoft.com/SQLServer/feedback/details/329805
http://connect.microsoft.com/SQLServer/feedback/details/705448
http://connect.microsoft.com/SQLServer/feedback/details/381471
http://connect.microsoft.com/SQLServer/feedback/details/521333
http://connect.microsoft.com/SQLServer/feedback/details/346475
http://connect.microsoft.com/VisualStudio/feedback/details/715796
http://connect.microsoft.com/SQLServer/feedback/details/328183
http://connect.microsoft.com/SQLServer/feedback/details/330841
http://connect.microsoft.com/SQLServer/feedback/details/346040
http://www.sqlskills.com/blogs/kimberly/use-this-sp_helpindex-rewrites/
http://www.sqlskills.com/blogs/kimberly/use-this-sp_helpindex-rewrites/
http://connect.microsoft.com/SQLServer/feedback/details/329459
http://connect.microsoft.com/SQLServer/feedback/details/643850

Filtered index not used and key lookup with no output (closed: won't fix)

Usage of Filtered Index on BIT Column depends on exact SQL expression used in WHERE clause (active)

Linked server query does not optimize properly when a filtered unique index exists (closed: won't fix)

Row_Number() gives unpredictable results over Linked Servers where Filtered Indexes used (closed: no repro)

Obvious filtered index not used by QP (closed: by design)

Recognize unique filtered indexes as unique (active)

Paul White (@SQL_Kiwi) recently posted here on SQLPerformance.com a post that goes into great detail

about a couple of the above optimizer limitations.

And Tim Chapman wrote a great post outlining some other limitations of filtered indexes – such as the

inability to match the predicate to a local variable (fixed in 2008 R2 SP1) and the inability to specify a

filtered index in an index hint.

Conclusion

Filtered indexes have great potential and I had extremely high hopes for them when they were first

introduced in SQL Server 2008. However, most of the limitations that shipped with their first version still

exist today, one and a half (or two, depending on your perspective) major releases later. The above

seems like a pretty extensive laundry list of items that need to be addressed, but I did not mean for it to

come across that way. I just want people to be aware of the vast number of potential issues they may

need to consider when taking advantage of filtered indexes.

http://connect.microsoft.com/SQLServer/feedback/details/454744
http://connect.microsoft.com/SQLServer/feedback/details/690623
http://connect.microsoft.com/SQLServer/feedback/details/518900
http://connect.microsoft.com/SQLServer/feedback/details/764538
http://connect.microsoft.com/SQLServer/feedback/details/386221
http://connect.microsoft.com/SQLServer/feedback/details/782213
http://twitter.com/SQL_Kiwi
http://www.sqlperformance.com/2013/04/t-sql-queries/optimizer-limitations-with-filtered-indexes
http://www.sqlperformance.com/2013/04/t-sql-queries/optimizer-limitations-with-filtered-indexes
http://blogs.msdn.com/b/timchapman/archive/2012/08/27/the-drawback-of-using-filtered-indexes.aspx

Optimizer Limitations with Filtered Indexes
By Paul White

One of the filtered index use cases mentioned in Books Online concerns a column that contains mostly

NULL values. The idea is to create a filtered index that excludes the NULLs, resulting in a smaller

nonclustered index that requires less maintenance than the equivalent unfiltered index. Another

popular use of filtered indexes is to filter NULLs from a UNIQUE index, giving the behaviour users of

other database engines might expect from a default UNIQUE index or constraint: uniqueness being

enforced only for the non-NULL values.

Unfortunately, the query optimizer has limitations where filtered indexes are concerned. This post looks

at a couple of less well-known examples.

Sample Tables

We will use two tables (A & B) that have the same structure: a surrogate clustered primary key, a

mostly-NULL column that is unique (disregarding NULLs), and a padding column that represents the

other columns that might be in a real table.

The column of interest is the mostly-NULL one, which I have declared as SPARSE. The sparse option is

not required, I just include it because I don’t get much chance to use it. In any case, SPARSE probably

makes sense in a lot of scenarios where the column data is expected to be mostly NULL. Feel free to

remove the sparse attribute from the examples if you like.

CREATE TABLE dbo.TableA
(
 pk integer IDENTITY PRIMARY KEY,
 data bigint SPARSE NULL,
 padding binary(250) NOT NULL DEFAULT 0x
);

CREATE TABLE dbo.TableB
(
 pk integer IDENTITY PRIMARY KEY,
 data bigint SPARSE NULL,
 padding binary(250) NOT NULL DEFAULT 0x
);

Each table contains the numbers from 1 to 2,000 in the data column with an additional 40,000 rows

where the data column is NULL:

-- Numbers 1 - 2,000
INSERT
 dbo.TableA WITH (TABLOCKX)
 (data)
SELECT TOP (2000)
 ROW_NUMBER() OVER (ORDER BY (SELECT NULL))
FROM sys.columns AS c
CROSS JOIN sys.columns AS c2

http://technet.microsoft.com/en-us/library/cc280372.aspx

ORDER BY
 ROW_NUMBER() OVER (ORDER BY (SELECT NULL));

-- NULLs
INSERT TOP (40000)
 dbo.TableA WITH (TABLOCKX)
 (data)
SELECT
 CONVERT(bigint, NULL)
FROM sys.columns AS c
CROSS JOIN sys.columns AS c2;

-- Copy into TableB
INSERT dbo.TableB WITH (TABLOCKX)
 (data)
SELECT
 ta.data
FROM dbo.TableA AS ta;

Both tables get a UNIQUE filtered index for the 2,000 non-NULL data values:

CREATE UNIQUE NONCLUSTERED INDEX uqA
ON dbo.TableA (data)
WHERE data IS NOT NULL;

CREATE UNIQUE NONCLUSTERED INDEX uqB
ON dbo.TableB (data)
WHERE data IS NOT NULL;

The output of DBCC SHOW_STATISTICS summarizes the situation:

DBCC SHOW_STATISTICS (TableA, uqA) WITH STAT_HEADER;
DBCC SHOW_STATISTICS (TableB, uqB) WITH STAT_HEADER;

Sample Query

The query below performs a simple join of the two tables – imagine the tables are in some sort of

parent-child relationship and many of the foreign keys are NULL. Something along those lines anyway.

SELECT
 ta.data,
 tb.data
FROM dbo.TableA AS ta

JOIN dbo.TableB AS tb
 ON ta.data = tb.data;

Default execution plan

With SQL Server in its default configuration, the optimizer chooses an execution plan featuring a parallel

nested loops join:

This plan has an estimated cost of 7.7768 magic optimizer units™.

There are some strange things about this plan, however. The Index Seek uses our filtered index on table

B, but the query is driven by a Clustered Index Scan of table A. The join predicate is an equality test on

the data columns, which will reject NULLs (regardless of the ANSI_NULLS setting). We might have hoped

the optimizer would perform some advanced reasoning based on that observation, but no. This plan

reads every row from table A (including the 40,000 NULLs), performs a seek into the filtered index on

table B for each one, relying on the fact that NULL will not match NULL in that seek. This is a tremendous

waste of effort.

The odd thing is that the optimizer must have realized the join rejects NULLs in order to choose the

filtered index for the table B seek, but it did not think to filter NULLs from table A first – or better still, to

simply scan the NULL-free filtered index on table A. You might wonder if this is a cost-based decision,

maybe the statistics are not very good? Perhaps we should force the use of the filtered index with a

hint? Hinting the filtered index on table A just results in the same plan with the roles reversed –

scanning table B and seeking into table A. Forcing the filtered index for both tables produces error 8622:

the query processor could not produce a query plan.

Adding a NOT NULL predicate

Suspecting the cause to be something to do with the implied NULL-rejection of the join predicate, we

add an explicit NOT NULL predicate to the ON clause (or the WHERE clause if you prefer, it comes to the

same thing here):

SELECT
 ta.data,
 tb.data
FROM dbo.TableA AS ta
JOIN dbo.TableB AS tb
 ON ta.data = tb.data
 AND ta.data IS NOT NULL;

We added the NOT NULL check to the table A column because the original plan scanned that table’s

clustered index rather than using our filtered index (the seek into table B was fine – it did use the

filtered index). The new query is semantically exactly the same as the previous one, but the execution

plan is different:

Now we have the hoped-for scan of the filtered index on table A, producing 2,000 non-NULL rows to

drive the nested loop seeks into table B. Both tables are using our filtered indexes apparently optimally

now: the new plan costs just 0.362835 units (down from 7.7768). We can do better, however.

Adding two NOT NULL predicates

The redundant NOT NULL predicate for table A worked wonders; what happens if we add one for table B

as well?

SELECT
 ta.data,
 tb.data
FROM dbo.TableA AS ta
JOIN dbo.TableB AS tb
 ON ta.data = tb.data
 AND ta.data IS NOT NULL
 AND tb.data IS NOT NULL;

This query is still logically the same as the two previous efforts, but the execution plan is different again:

This plan builds a hash table for the 2,000 rows from table A, then probes for matches using the 2,000

rows from table B. The estimated number of rows returned is much better than the previous plan (did

you notice the 7,619 estimate there?) and the estimated execution cost has dropped again, from

0.362835 to 0.0772056.

You could try forcing a hash join using a hint on the original or single-NOT NULL queries, but you won’t

get the low-cost plan shown above. The optimizer just does not have the ability to fully reason about the

NULL-rejecting behaviour of the join as it applies to our filtered indexes without both redundant

predicates.

You are allowed to be surprised by this – even if it’s just the idea that one redundant predicate was not

enough (surely if ta.data is NOT NULL and ta.data = tb.data, it follows that tb.data is also NOT NULL,

right?)

Still not perfect

It’s a little surprising to see a hash join there. If you are familiar with the main differences between the

three physical join operators, you probably know that hash join is a top candidate where:

1. Pre-sorted input is not available

2. The hash build input is smaller than the probe input

3. The probe input is quite large

None of these things are true here. Our expectation would be that the best plan for this query and data

set would be a merge join, exploiting the ordered input available from our two filtered indexes. We can

try hinting a merge join, retaining the two extra ON clause predicates:

SELECT
 ta.data,
 tb.data
FROM dbo.TableA AS ta
JOIN dbo.TableB AS tb
 ON ta.data = tb.data
 AND ta.data IS NOT NULL
 AND tb.data IS NOT NULL
OPTION (MERGE JOIN);

The plan shape is as we hoped:

An ordered scan of both filtered indexes, great cardinality estimates, fantastic. Just one small problem:

this execution plan is much worse; the estimated cost has jumped from 0.0772056 to 0.741527. The

reason for the jump in estimated cost is revealed by checking the properties of the merge join operator:

This is an expensive many-to-many join, where the execution engine must keep track of duplicates from

the outer input in a worktable, and rewind as necessary. Duplicates? We are scanning a unique index! It

turns out the optimizer does not know that a filtered unique index produces unique values (connect

item here). In fact this is a one-to-one join, but the optimizer costs it as if it were many-to-many,

explaining why it prefers the hash join plan.

https://connect.microsoft.com/SQLServer/feedback/details/782213/recognize-unique-filtered-indexes-as-unique
https://connect.microsoft.com/SQLServer/feedback/details/782213/recognize-unique-filtered-indexes-as-unique

An Alternative Strategy

It seems we keep coming up against optimizer limitations when using filtered indexes here (despite it

being a highlighted use case in Books Online). What happens if we try using views instead?

Using Views

The following two views just filter the base tables to show the rows where the data column is NOT NULL:

CREATE VIEW dbo.VA
WITH SCHEMABINDING AS
SELECT
 pk,
 data,
 padding
FROM dbo.TableA
WHERE data IS NOT NULL;
GO
CREATE VIEW dbo.VB
WITH SCHEMABINDING AS
SELECT
 pk,
 data,
 padding
FROM dbo.TableB
WHERE data IS NOT NULL;

Rewriting the original query to use the views is trivial:

SELECT
 v.data,
 v2.data
FROM dbo.VA AS v
JOIN dbo.VB AS v2
 ON v.data = v2.data;

Remember this query originally produced a parallel nested loops plan costed at 7.7768 units. With the

view references, we get this execution plan:

This is exactly the same hash join plan we had to add redundant NOT NULL predicates to get with the

filtered indexes (the cost is 0.0772056 units as before). This is expected, because all we have essentially

done here is to push the extra NOT NULL predicates from the query to a view.

Indexing the views

We can also try materializing the views by creating a unique clustered index on the pk column:

CREATE UNIQUE CLUSTERED INDEX cuq ON dbo.VA (pk);
CREATE UNIQUE CLUSTERED INDEX cuq ON dbo.VB (pk);

Now we can add unique nonclustered indexes on the filtered data column in the indexed view:

CREATE UNIQUE NONCLUSTERED INDEX ix ON dbo.VA (data);
CREATE UNIQUE NONCLUSTERED INDEX ix ON dbo.VB (data);

Notice the filtering is performed in the view, these nonclustered indexes are not themselves filtered.

The perfect plan

We are now ready to run our query against the view, using the NOEXPAND table hint:

SELECT
 v.data,
 v2.data
FROM dbo.VA AS v WITH (NOEXPAND)
JOIN dbo.VB AS v2 WITH (NOEXPAND)
 ON v.data = v2.data;

The execution plan is:

The optimizer can see the unfiltered nonclustered view indexes are unique, so a many-to-many merge

join is not needed. This final execution plan has an estimated cost of 0.0310929 units – even lower than

the hash join plan (0.0772056 units). This validates our expectation that a merge join ought to have the

lowest estimated cost for this query and sample data set.

The NOEXPAND hints are needed even in Enterprise Edition to ensure the uniqueness guarantee

provided by the view indexes is used by the optimizer.

Summary

This post highlights two important optimizer limitations with filtered indexes:

 Redundant join predicates can be necessary to match filtered indexes

 Filtered unique indexes do not provide uniqueness information to the optimizer

In some cases it may be practical to simply add the redundant predicates to every query. The alternative is to

encapsulate the desired implied predicates in an unindexed view. The hash match plan in this post was much

better than the default plan, even though the optimizer ought to be able to find the slightly better merge join

plan. Sometimes, you may need to index the view and use NOEXPAND hints (required anyway for Standard

Edition instances). In still other circumstances, none of these approaches will be suitable. Sorry about that :)

An Unexpected Side-Effect of Adding a Filtered Index
By Paul White

Adding a filtered index can have surprising side-effects on existing queries, even where it seems the new

filtered index is completely unrelated. This post looks at an example affecting DELETE statements that

results in poor performance and an increased risk of deadlock.

Test Environment

The following table will be used throughout this post:

CREATE TABLE dbo.Data
(
 RowID integer IDENTITY NOT NULL,
 SomeValue integer NOT NULL,
 StartDate date NOT NULL,
 CurrentFlag bit NOT NULL,
 Padding char(50) NOT NULL DEFAULT REPLICATE('ABCDE', 10),
 CONSTRAINT PK_Data_RowID
 PRIMARY KEY CLUSTERED (RowID)
);

This next statement creates 499,999 rows of sample data:

INSERT dbo.Data WITH (TABLOCKX)
 (SomeValue, StartDate, CurrentFlag)
SELECT
 CONVERT(integer, RAND(n) * 1e6) % 1000,
 DATEADD(DAY, (N.n - 1) % 31, '20140101'),
 CONVERT(bit, 0)
FROM dbo.Numbers AS N
WHERE
 N.n >= 1
 AND N.n < 500000;

That uses a Numbers table as a source of consecutive integers from 1 to 499,999. In case you do not

have one of those in your test environment, the following code can be used to efficiently create one

containing integers from 1 to 1,000,000:

WITH
 N1 AS (SELECT N1.n FROM (VALUES (1),(1),(1),(1),(1),(1),(1),(1),(1),(1)) AS N1
(n)),
 N2 AS (SELECT L.n FROM N1 AS L CROSS JOIN N1 AS R),
 N3 AS (SELECT L.n FROM N2 AS L CROSS JOIN N2 AS R),
 N4 AS (SELECT L.n FROM N3 AS L CROSS JOIN N2 AS R),
 N AS (SELECT ROW_NUMBER() OVER (ORDER BY n) AS n FROM N4)
SELECT
 -- Destination column type integer NOT NULL
 ISNULL(CONVERT(integer, N.n), 0) AS n
INTO dbo.Numbers
FROM N
OPTION (MAXDOP 1);

http://dba.stackexchange.com/a/66030/1192

ALTER TABLE dbo.Numbers
ADD CONSTRAINT PK_Numbers_n
PRIMARY KEY (n)
WITH (SORT_IN_TEMPDB = ON, MAXDOP = 1);

The basis of the later tests will be to delete rows from the test table for a particular StartDate. To make

the process of identifying rows to delete more efficient, add this nonclustered index:

CREATE NONCLUSTERED INDEX
 IX_Data_StartDate
ON dbo.Data
 (StartDate);

The Sample Data

Once those steps are completed, the sample will look like this:

SELECT TOP (100)
 D.RowID,
 D.SomeValue,
 D.StartDate,
 D.CurrentFlag,
 D.Padding
FROM dbo.Data AS D
ORDER BY
 D.RowID;

The SomeValue column data may be slightly different due to the pseudo-random generation, but this

difference is not important. Overall, the sample data contains 16,129 rows for each of the 31 StartDate

dates in January 2014:

SELECT
 D.StartDate,
 NumRows = COUNT_BIG(*)

FROM dbo.Data AS D
GROUP BY
 D.StartDate
ORDER BY
 D.StartDate;

The last step we need to perform to make the data somewhat realistic, is to set the CurrentFlag column

to true for the highest RowID for each StartDate. The following script accomplishes this task:

WITH LastRowPerDay AS
(
 SELECT D.CurrentFlag
 FROM dbo.Data AS D
 WHERE D.RowID =
 (
 SELECT MAX(D2.RowID)
 FROM dbo.Data AS D2
 WHERE D2.StartDate = D.StartDate
)
)
UPDATE LastRowPerDay
SET CurrentFlag = 1;

The execution plan for this update features a Segment-Top combination to efficiently locate the highest

RowID per day:

Notice how the execution plan bears little resemblance to the written form of the query. This is a great

example of how the optimizer works from the logical SQL specification, rather than implementing the

http://sqlblog.com/blogs/paul_white/archive/2010/07/28/the-segment-top-query-optimisation.aspx

SQL directly. In case you are wondering, the Eager Table Spool in that plan is required for Halloween

Protection.

Deleting A Day of Data

Ok, so with the preliminaries completed, the task at hand is to delete rows for a particular StartDate.

This is the sort of query you might routinely run on the earliest date in a table, where the data has

reached the end of its useful life.

Taking 1 January 2014 as our example, the test delete query is simple:

DELETE dbo.Data
WHERE StartDate = '20140101';

The execution plan is likewise pretty simple, though worth looking at in a bit of detail:

Plan Analysis

The Index Seek on the far right uses the nonclustered index to find rows for the specified StartDate

value. It returns just the RowID values it finds, as the operator tooltip confirms:

If you are wondering how the StartDate index manages to return the RowID, remember that RowID is

the unique clustered index for the table, so it is automatically included in the StartDate nonclustered

index.

The next operator in the plan is the Clustered Index Delete. This uses the RowID value found by the

Index Seek to locate rows to remove.

The final operator in the plan is an Index Delete. This removes rows from the nonclustered

index IX_Data_StartDate that are related to the RowID removed by the Clustered Index Delete. To locate

http://sqlblog.com/blogs/paul_white/archive/2013/02/21/halloween-protection-the-complete-series.aspx
http://sqlblog.com/blogs/paul_white/archive/2013/02/21/halloween-protection-the-complete-series.aspx

these rows in the nonclustered index, the query processor needs the StartDate (the key for the

nonclustered index).

Remember the original Index Seek did not return the Start Date, just the RowID. So how does the query

processor get the StartDate for the index delete? In this particular case, the optimizer might have

noticed that the StartDate value is a constant and optimized it away, but this is not what happened. The

answer is that the Clustered Index Delete operator reads the StartDate value for the current row and

adds it to the stream. Compare the Output List of the Clustered Index Delete shown below, with that of

the Index Seek just above:

It might seem surprising to see a Delete operator reading data, but this is the way it works. The query

processor knows it will have to locate the row in the clustered index in order to delete it, so it might as

well defer reading columns needed to maintain nonclustered indexes until that time, if it can.

Adding a Filtered Index

Now imagine someone has a crucial query against this table that is performing badly. The helpful DBA

performs an analysis and adds the following filtered index:

CREATE NONCLUSTERED INDEX
 FIX_Data_SomeValue_CurrentFlag
ON dbo.Data (SomeValue)
INCLUDE (CurrentFlag)
WHERE CurrentFlag = 1;

The new filtered index has the desired effect on the problematic query, and everyone is happy. Notice

that the new index does not reference the StartDate column at all, so we do not expect it to affect our

day-delete query at all.

Deleting a day with the filtered index in place

We can test that expectation by deleting data for a second time:

DELETE dbo.Data
WHERE StartDate = '20140102';

Suddenly, the execution plan has changed to a parallel Clustered Index Scan:

Notice there is no separate Index Delete operator for the new filtered index. The optimizer has chosen

to maintain this index inside the Clustered Index Delete operator. This is highlighted inPlan Explorer as

shown above ("+1 non-clustered indexes") with full details in the tooltip:

If the table is large (think data warehouse) this change to a parallel scan might be very significant. What

happened to the nice Index Seek on StartDate, and why did a completely unrelated filtered index change

things so dramatically?

Finding the Problem

The first clue comes from looking at the properties of the Clustered Index Scan:

http://www.sqlsentry.com/products/plan-explorer/sql-server-query-view

As well as finding RowID values for the Clustered Index Delete operator to delete, this operator is now

reading CurrentFlag values. The need for this column is unclear, but it does at least begin to explain the

decision to scan: the CurrentFlag column is not part of our StartDate nonclustered index.

We can confirm this by rewriting the delete query to force the use of the StartDate nonclustered index:

DELETE D
FROM dbo.Data AS D
 WITH (INDEX(IX_Data_StartDate))
WHERE StartDate = '20140103';

The execution plan is closer to its original form, but it now features a Key Lookup:

The Key Lookup properties confirm this operator is retrieving CurrentFlag values:

You might also have noticed the warning triangles in the last two plans. These are missing index

warnings:

This is further confirmation that SQL Server would like to see the CurrentFlag column included in the

nonclustered index. The reason for the change to a parallel Clustered Index Scan is now clear: the query

processor decides that scanning the table will be cheaper than performing the Key Lookups.

Yes, but why?

This is all very weird. In the original execution plan, SQL Server was able to read extra column data

needed to maintain nonclustered indexes at the Clustered Index Delete operator. The CurrentFlag

column value is needed to maintain the filtered index, so why does SQL Server not just handle it in the

same way?

The short answer is that it can, but only If the filtered index is maintained in a separate Index Delete

operator. We can force this for the current query using undocumented trace flag 8790. Without this

flag, the optimizer chooses whether to maintain each index in a separate operator or as part of the base

table operation.

-- Forced wide update plan
DELETE dbo.Data
WHERE StartDate = '20140105'
OPTION (QUERYTRACEON 8790);

The execution plan is back to seeking the StartDate nonclustered index:

The Index Seek returns just RowID values (no CurrentFlag):

http://sqlblog.com/blogs/paul_white/archive/2013/01/26/optimizing-t-sql-queries-that-change-data.aspx

And the Clustered Index Delete reads the columns needed to maintain the nonclustered indexes,

including CurrentFlag:

This data is eagerly written to a table spool, which is the replayed for each index that needs maintaining.

Notice also the explicit Filter operator before the Index Delete operator for the filtered index.

Another pattern to watch out for

This problem does not always result in a table scan instead of an index seek. To see an example of this,

add another index to the test table:

CREATE NONCLUSTERED INDEX
 IX_Data_SomeValue_CurrentFlag
ON dbo.Data (SomeValue, CurrentFlag);

Note this index is not filtered, and does not involve the StartDate column. Now try a day-delete query

again:

DELETE dbo.Data
WHERE StartDate = '20140104';

The optimizer now comes up with this monster:

This query plan has a high surprise factor, but the root cause is the same. The CurrentFlag column is still

needed, but now the optimizer chooses an index intersection strategy to get it instead of a table scan.

Using the trace flag forces a per-index maintenance plan and sanity is once again restored (the only

difference is an extra spool replay to maintain the new index):

Only filtered indexes cause this

This issue only occurs if the optimizer chooses to maintain a filtered index in a Clustered Index Delete

operator. Non-filtered indexes are not affected, as the following example shows. The first step is to drop

the filtered index:

DROP INDEX FIX_Data_SomeValue_CurrentFlag
ON dbo.Data;

Now we need to write the query in a way that convinces the optimizer to maintain all the indexes in the

Clustered Index Delete. My choice for this is to use a variable and a hint to lower the optimizer's row

count expectations:

-- All qualifying rows will be deleted
DECLARE @Rows bigint = 9223372036854775807;

-- Optimize the plan for deleting 100 rows
DELETE TOP (@Rows)
FROM dbo.Data
OUTPUT
 Deleted.RowID,
 Deleted.SomeValue,
 Deleted.StartDate,
 Deleted.CurrentFlag
WHERE StartDate = '20140106'
OPTION (OPTIMIZE FOR (@Rows = 100));

The execution plan is:

Both nonclustered indexes are maintained by the Clustered Index Delete:

The Index Seek returns only the RowID:

The columns needed for the index maintenance are retrieved internally by the delete operator; these

details are not exposed in show plan output (so the output list of the delete operator would be empty). I

added an OUTPUT clause to the query to show the Clustered Index Delete once again returning data it

did not receive on its input:

Final Thoughts

This is a tricky limitation to work around. On the one hand, we generally do not want to use

undocumented trace flags in production systems.

The natural 'fix' is to add the columns needed for filtered index maintenance to all nonclustered indexes

that might be used to locate rows to delete. This is not a very appealing proposition, from a number of

points of view. Another alternative is to just not use filtered indexes at all, but that is hardly ideal either.

My feeling is that the query optimizer ought to consider a per-index maintenance alternative for filtered

indexes automatically, but its reasoning appears to be incomplete in this area right now (and based on

simple heuristics rather than properly costing per-index/per-row alternatives).

To put some numbers around that statement, the parallel clustered index scan plan chosen by the

optimizer came in at 5.5 units in my tests. The same query with the trace flag estimates a cost

of 1.4 units. With the third index in place, the parallel index-intersection plan chosen by the optimizer

had an estimated cost of 4.9, whereas the trace flag plan came in at 2.7 units (all tests on SQL Server

2014 RTM CU1 build 12.0.2342 under the 120 cardinality estimation model, and with trace flag

4199 enabled).

http://support.microsoft.com/kb/974006
http://support.microsoft.com/kb/974006

Optimization Phases and Missed Opportunities
By Paul White

There are two complementary skills that are very useful in query tuning. One is the ability to read and

interpret execution plans. The second is knowing a bit about how the query optimizer works to translate

SQL text into an execution plan. Putting the two things together can help us spot times when an

expected optimization was not applied, resulting in an execution plan that is not as efficient as it could

be. The lack of documentation around exactly which optimizations SQL Server can apply (and in what

circumstances) means that a lot of this comes down to experience, however.

An Example

The sample query for this article is based on question asked by SQL Server MVP Fabiano Amorim a few

months ago, based on a real-world problem he encountered. The schema and test query below is a

simplification of the real situation, but it retains all the important features.

CREATE TABLE dbo.T1 (pk integer PRIMARY KEY, c1 integer NOT NULL);
CREATE TABLE dbo.T2 (pk integer PRIMARY KEY, c1 integer NOT NULL);
CREATE TABLE dbo.T3 (pk integer PRIMARY KEY, c1 integer NOT NULL);
GO
CREATE INDEX nc1 ON dbo.T1 (c1);
CREATE INDEX nc1 ON dbo.T2 (c1);
CREATE INDEX nc1 ON dbo.T3 (c1);
GO
CREATE VIEW dbo.V1
AS
 SELECT c1 FROM dbo.T1
 UNION ALL
 SELECT c1 FROM dbo.T2
 UNION ALL
 SELECT c1 FROM dbo.T3;
GO
-- The test query
SELECT MAX(c1)
FROM dbo.V1;

Test 1 – 10,000 rows, SQL Server 2005+

The specific table data does not really matter for these tests. The following queries simply load 10,000

rows from a numbers table to each of the three test tables:

INSERT dbo.T1 (pk, c1)
SELECT n, n
FROM dbo.Numbers AS N
WHERE n BETWEEN 1 AND 10000;

INSERT dbo.T2 (pk, c1)
SELECT pk, c1 FROM dbo.T1;

INSERT dbo.T3 (pk, c1)
SELECT pk, c1 FROM dbo.T1;

With the data loaded, the execution plan produced for the test query is:

https://twitter.com/mcflyamorim

SELECT MAX(c1) FROM dbo.V1;

This execution plan is a pretty direct implementation of the logical SQL query (after the view reference

V1 is expanded). The optimizer sees the query after view expansion, almost as if the query had been

written out in full:

SELECT MAX(c1)
FROM
(
 SELECT c1 FROM dbo.T1
 UNION ALL
 SELECT c1 FROM dbo.T2
 UNION ALL
 SELECT c1 FROM dbo.T3
) AS V1;

Comparing the expanded text to the execution plan, the directness of the query optimizer’s

implementation is clear. There is an Index Scan for each read of the base tables, a Concatenation

operator to implement the UNION ALL, and a Stream Aggregate for the final MAX aggregate.

The execution plan properties show that cost-based optimization was started (optimization level is

FULL), but that it terminated early because a ‘good enough’ plan was found. The estimated cost of the

selected plan is 0.1016240 magic optimizer units.

http://blogs.microsoft.co.il/blogs/dannyr/archive/2008/10/09/what-estimated-subtree-cost-1-means-or-a-great-sql-server-history-story.aspx

Test 2 – 50,000 rows, SQL Server 2008 and 2008 R2

Run the following script to reset the test environment to run with 50,000 rows:

TRUNCATE TABLE dbo.T1;
TRUNCATE TABLE dbo.T2;
TRUNCATE TABLE dbo.T3;

INSERT dbo.T1 (pk, c1)
SELECT n, n
FROM dbo.Numbers AS N
WHERE n BETWEEN 1 AND 50000;

INSERT dbo.T2 (pk, c1)
SELECT pk, c1 FROM dbo.T1;

INSERT dbo.T3 (pk, c1)
SELECT pk, c1 FROM dbo.T1;

SELECT MAX(c1)
FROM dbo.V1;

The execution plan for this test depends on the version of SQL Server you are running. In SQL Server

2008 and 2008 R2, we get the following plan:

The plan properties show that cost-based optimization still ended early for the same reason as before.

The estimated cost is higher than before at 0.41375 units but that is expected due to the higher

cardinality of the base tables.

Test 3 – 50,000 rows, SQL Server 2005 and 2012

The same query run on 2005 or 2012 produces a different execution plan:

Optimization ended early again, but the estimated plan cost for 50,000 rows per base table is down to

0.0098585 (from 0.41375 on SQL Server 2008 and 2008 R2).

Explanation

As you may know, the SQL Server query optimizer separates optimization effort into multiple stages,

with later stages adding more optimization techniques and allowing more time. The optimization stages

are:

 Trivial plan

 Cost-based optimization

o Transaction Processing (search 0)

o Quick Plan (search 1)

o Quick Plan with parallelism enabled

o Full Optimization (search 2)

None of the tests performed here qualify for a trivial plan because the aggregate and unions have

multiple implementation possibilities, requiring a cost-based decision.

Transaction Processing

The Transaction Processing (TP) stage requires that a query contains at least three table references,

otherwise cost-based optimization skips this stage and moves straight on to Quick Plan. The TP stage is

aimed at the low-cost navigational queries typical of OLTP workloads. It tries a limited number of

optimization techniques, and is limited to finding plans with Nested Loop Joins (unless a Hash Join is

needed to generate a valid plan).

In some respects it is surprising that the test query qualifies for a stage aimed at finding OLTP plans.

Although the query contains the required three table references, it does not contain any joins. The three

table requirement is just a heuristic, so I won’t labour the point.

Which Optimizer Stages Were Run?

There are a number of methods, the documented one being to compare the contents of

sys.dm_exec_query_optimizer_info before and after compilation. This is fine, but it records instance-

wide information so you need to be careful that yours is the only query compilation that happens

between snapshots.

An undocumented (but reasonably well-known) alternative that works on all currently supported

versions of SQL Server is to enable trace flags 8675 and 3604 while compiling the query.

Test 1

This test produces trace flag 8675 output similar to the following:

http://technet.microsoft.com/en-us/library/ms175002.aspx

The estimated cost of 0.101624 after the TP stage is low enough that the optimizer does not go on to

look for cheaper plans. The simple plan we end up with is quite reasonable given the relatively low

cardinality of the base tables, even if it is not truly optimal.

Test 2

With 50,000 rows in each base table, the trace flag reveals different information:

This time, the estimated cost after the TP stage is 0.428735 (more rows = higher cost). This is enough to

encourage the optimizer into the Quick Plan stage. With more optimization techniques available, this

stage finds a plan with a cost of 0.41375. This does not represent a huge improvement over the test 1

plan, but it is lower than the default cost threshold for parallelism, and not enough to enter Full

Optimization, so again optimization ends early.

Test 3

For the SQL Server 2005 and 2012 run, the trace flag output is:

There are minor differences in the number of tasks run between versions, but the important difference

is that on SQL Server 2005 and 2012, the Quick Plan stage finds a plan costing only0.0098543 units. This

is the plan that contains Top operators instead of the three Stream Aggregates below the Concatenation

operator seen in the SQL Server 2008 and 2008 R2 plans.

Bugs and Undocumented Fixes

SQL Server 2008 and 2008 R2 contain a regression bug (compared with 2005) that was fixed under trace

flag 4199, but not documented as far as I can tell. There is documentation for TF 4199 that lists fixes

made available under separate trace flags before becoming covered by 4199, but as that Knowledge

Base article says:

This one trace flag can be used to enable all the fixes that were previously made for the query processor

under many trace flags. In addition, all future query processor fixes will be controlled by using this

trace flag.

The bug in this case is one of those ‘future query processor fixes’. A particular optimization rule,

ScalarGbAggToTop, is not applied to the new aggregates seen in the test 2 plan. With trace flag 4199

enabled on suitable builds of SQL Server 2008 and 2008 R2, the bug is fixed and the optimal plan from

test 3 is obtained:

-- Trace flag 4199 required for 2008 and 2008 R2
SELECT MAX(c1)
FROM dbo.V1
OPTION (QUERYTRACEON 4199);

http://support.microsoft.com/kb/974006

Conclusion

Once you know that the optimizer can transform a scalar MIN or MAX aggregate to a TOP (1) on an

ordered stream, the plan shown in test 2 seems strange. The scalar aggregates above an index scan

(which can provide order if asked to do so) stand out as a missed optimization that would normally be

applied.

This is the point I was making in the introduction: once you get a feel for the sorts of things the

optimizer can do, it can help you recognize cases where something has gone wrong.

The answer will not always be to enable trace flag 4199, since you might come across issues that have

not yet been fixed. You also might not want the other QP fixes covered by the trace flag to apply in a

particular case – optimizer fixes do not always make things better. If they did, there would be no need to

protect against unfortunate plan regressions using this flag.

The solution in other cases might be to formulate the SQL query using different syntax, to break the

query up into more optimizer-friendly chunks, or something else entirely. Whatever the answer turns

out to be, it still pays to know a bit about optimizer internals so you can recognize that there was a

problem in the first place :)

Working Around Missed Optimizations
By Paul White

In my last post, we saw how a query featuring a scalar aggregate could be transformed by the optimizer

to a more efficient form. As a reminder, here’s the schema again:

CREATE TABLE dbo.T1 (pk integer PRIMARY KEY, c1 integer NOT NULL);
CREATE TABLE dbo.T2 (pk integer PRIMARY KEY, c1 integer NOT NULL);
CREATE TABLE dbo.T3 (pk integer PRIMARY KEY, c1 integer NOT NULL);
GO
INSERT dbo.T1 (pk, c1)
SELECT n, n
FROM dbo.Numbers AS N
WHERE n BETWEEN 1 AND 50000;
GO
INSERT dbo.T2 (pk, c1)
SELECT pk, c1 FROM dbo.T1;
GO
INSERT dbo.T3 (pk, c1)
SELECT pk, c1 FROM dbo.T1;
GO
CREATE INDEX nc1 ON dbo.T1 (c1);
CREATE INDEX nc1 ON dbo.T2 (c1);
CREATE INDEX nc1 ON dbo.T3 (c1);
GO
CREATE VIEW dbo.V1
AS
 SELECT c1 FROM dbo.T1
 UNION ALL
 SELECT c1 FROM dbo.T2
 UNION ALL
 SELECT c1 FROM dbo.T3;
GO
-- The test query
SELECT MAX(c1)
FROM dbo.V1;

Plan Choices

With 10,000 rows in each of the base tables, the optimizer comes up with a simple plan that computes

the maximum by reading all 30,000 rows into an aggregate:

http://www.sqlperformance.com/2013/06/sql-performance/recognizing-missed-optimizations

With 50,000 rows in each table, the optimizer spends a bit more time on the problem and finds a

smarter plan. It reads just the top row (in descending order) from each index and then computes the

maximum from just those 3 rows:

An Optimizer Bug

You might notice something a bit odd about that estimated plan. The Concatenation operator reads one

row from three tables and somehow produces twelve rows! This is an error is caused by a bug in

cardinality estimation that I reported in May 2011. It is still not fixed as of SQL Server 2014 CTP 1 (even if

the new cardinality estimator is used) but I hope it will be addressed for the final release.

To see how the error arises, recall that one of the plan alternatives considered by the optimizer for the

50,000 row case has partial aggregates below the Concatenation operator:

http://connect.microsoft.com/SQLServer/feedback/details/711685/costing-cardinality-errors-with-partial-aggregates-in-serial-execution-plans
http://connect.microsoft.com/SQLServer/feedback/details/711685/costing-cardinality-errors-with-partial-aggregates-in-serial-execution-plans

It is the cardinality estimation for these partial MAX aggregates that is at fault. They estimate four rows

where the result is guaranteed to be one row. You may see a number other than four – it depends on

how many logical processors are available to the optimizer at the time the plan is compiled (see the bug

link above for more details).

The optimizer later replaces the partial aggregates with Top (1) operators, which recalculate the

cardinality estimate correctly. Sadly, the Concatenation operator still reflects the estimates for the

replaced partial aggregates (3 * 4 = 12). As a result, we end up with a Concatenation that reads 3 rows

and produces 12.

Using TOP instead of MAX

Looking again at the 50,000 row plan, it seems the biggest improvement found by the optimizer is to use

Top (1) operators instead of reading all rows and calculating the maximum value using brute force. What

happens if we try something similar and rewrite the query using Top explicitly?

SELECT TOP (1) c1
FROM dbo.V1
ORDER BY c1 DESC;

The execution plan for the new query is:

This plan is quite different from the one chosen by the optimizer for the MAX query. It features three

ordered Index Scans, two Merge Joins running in Concatenation mode, and a single Top operator. This

new query plan has some interesting features that are worth examining in a bit of detail.

Plan Analysis

The first row (in descending index order) is read from each table’s nonclustered index, and a Merge Join

operating in Concatenation mode is used. Although the Merge Join operator is not performing a join in

the normal sense, this operator’s processing algorithm is easily adapted to concatenating its inputs

instead of applying join criteria.

The benefit of using this operator in the new plan is that Merge Concatenation preserves the sort order

across its inputs. By contrast, a regular Concatenation operator reads from its inputs in sequence. The

diagram below illustrates the difference:

The order-preserving behaviour of Merge Concatenation means that the first row produced by the

leftmost Merge operator in the new plan is guaranteed to be the row with the highest value in column

c1 across all three tables. More specifically, the plan operates as follows:

 One row is read from each table (in index descending order); and

 Each merge performs one test to see which of its input rows has the higher value

This seems a very efficient strategy, so it might seem odd that the optimizer’s MAX plan has an

estimated cost of less than half of the new plan. To a large extent, the reason is that order-preserving

Merge Concatenation is assumed to be more expensive than a simple Concatenation. The optimizer

does not realize that each Merge can only ever see a maximum of one row, and over-estimates its cost

as a result.

More Costing Issues

Strictly speaking we are not comparing apples with apples here, because the two plans are for different

queries. Comparing costs like that is generally not a valid thing to do, though SSMS does exactly that by

displaying cost percentages for different statements in a batch. But, I digress.

If you look at the new plan in SSMS instead of Plan Explorer you will see something like this:

One of the Merge Join Concatenation operators has an estimated cost of 73% while the second one

(operating on exactly the same number of rows) is shown as costing nothing at all. Another sign that

something is wrong here is that the operator cost percentages in this plan do not sum to 100%.

Optimizer versus Execution Engine

The problem lies in an incompatibility between the optimizer and execution engine. In the optimizer,

Union and Union All can have 2 or more inputs. In the execution engine, only the Concatenation

operator is able to accept 2 or more inputs; Merge Join requires exactly two inputs, even when

configured to perform a concatenation rather than a join.

To resolve this incompatibility, a post-optimization rewrite is applied to translate the optimizer’s output

tree into a form the execution engine can handle. Where a Union or Union All with more than two

inputs is implemented using Merge, a chain of operators is needed. With three inputs to the Union All in

the present case, two Merge Unions are needed:

https://connect.microsoft.com/SQLServer/feedback/details/788973/change-query-cost-relative-to-batch-to-something-more-meaningful
http://www.sqlsentry.net/plan-explorer/sql-server-query-view.asp
http://connect.microsoft.com/SQLServer/feedback/details/267530/ssms-execution-plan-sometimes-exceeds-100

We can see the optimizer’s output tree (with three inputs to a physical merge union) using trace flag

8607:

An incomplete fix

Unfortunately, the post-optimization rewrite isn’t perfectly implemented. It makes a bit of a mess of the

costing numbers. Rounding issues aside, the plan costs add up to 114% with the extra 14% coming from

the input to the extra Merge Join Concatenation generated by the rewrite:

The rightmost Merge in this plan is the original operator in the optimizer’s output tree. It is assigned the

full cost of the Union All operation. The other merge is added by the rewrite and receives a zero cost.

Whichever way we choose to look at it (and there are different issues that affect regular Concatenation)

the numbers look odd. Plan Explorer does its best to work around the broken information in the XML

plan by at least ensuring the numbers add up to 100%:

This particular costing issue is fixed in SQL Server 2014 CTP 1:

The costs of the Merge Concatenation are now evenly split between the two operators, and the

percentages add up to 100%. Because the underlying XML has been fixed, SSMS also manages to show

the same numbers.

Which Plan Is Better?

If we write the query using MAX, we have to rely on the optimizer choosing to perform the extra work

needed to find an efficient plan. If the optimizer finds an apparently good enough plan early on, it can

produce a relatively inefficient plan that reads every row from each of the base tables:

If you are running SQL Server 2008 or SQL Server 2008 R2, the optimizer will still choose an inefficient

plan regardless of the number of rows in the base tables. The following plan was produced on SQL

Server 2008 R2 with 50,000 rows:

Even with 50 million rows in each table, the 2008 and 2008 R2 optimizer just adds parallelism, it does

not introduce the Top operators:

As mentioned in my previous post, trace flag 4199 is required to get SQL Server 2008 and 2008 R2 to

produce the plan with Top operators. SQL Server 2005 and 2012 onward do not require the trace flag:

http://www.sqlperformance.com/2013/06/sql-performance/recognizing-missed-optimizations

TOP with ORDER BY

Once we understand what is going on in the previous execution plans, we can make a conscious (and

informed) choice to rewrite the query using an explicit TOP with ORDER BY:

SELECT TOP (1) c1
FROM dbo.V1
ORDER BY c1 DESC;

The resulting execution plan may have cost percentages that look odd in some versions of SQL Server,

but the underlying plan is sound. The post-optimization rewrite that causes the numbers to look odd is

applied after query optimization is complete, so we can be sure the optimizer’s plan selection was not

affected by this issue.

This plan does not change depending on the number of rows in the base table, and does not require any

trace flags to generate. A small extra advantage is that this plan is found by the optimizer during the first

phase of cost-based optimization (search 0):

The best plan selected by the optimizer for the MAX query required running two stages of cost-based

optimization (search 0 and search 1).

There is a small semantic difference between the TOP query and the original MAX form that I should

mention. If none of the tables contain a row, the original query would produce a singleNULL result. The

replacement TOP (1) query produces no output at all in the same circumstances. This difference is not

often important in real-world queries, but it is something to be aware of. We can replicate the

behaviour of TOP using MAX in SQL Server 2008 onward by adding an empty set GROUP BY:

SELECT MAX(c1)
FROM dbo.V1
GROUP BY ();

This change does not affect the execution plans generated for the MAX query in a way that is visible to

end users.

MAX with Merge Concatenation

Given the success of Merge Join Concatenation in the TOP (1) execution plan, it is natural to wonder

whether the same optimal plan could be generated for the original MAX query if we force the optimizer

to use Merge Concatenation instead of regular Concatenation for the UNION ALL operation.

There is a query hint for this purpose – MERGE UNION – but sadly it only works correctly in SQL Server

2012 onward. In prior versions, the UNION hint only affects UNION queries, not UNION ALL. In SQL

Server 2012 onward, we can try this:

SELECT MAX(c1)
FROM dbo.V1
OPTION (MERGE UNION)

We are rewarded with a plan that features Merge Concatenation. Unfortunately, it’s not quite

everything we might have hoped for:

http://connect.microsoft.com/SQLServer/feedback/details/730458/enhance-show-plan-to-distinguish-scalar-vector-aggregates
http://connect.microsoft.com/SQLServer/feedback/details/730458/enhance-show-plan-to-distinguish-scalar-vector-aggregates

The interesting operators in this plan are the sorts. Notice the 1 row input cardinality estimation, and

the 4 row estimation on the output. The cause should be familiar to you by now: it is the same partial

aggregate cardinality estimation error we discussed earlier.

The presence of the sorts reveals one more issue with the partial aggregates. Not only do they produce

an incorrect cardinality estimate, they also fail to preserve the index ordering that would make sorting

unnecessary (Merge Concatenation requires sorted inputs). The partial aggregates are

scalar MAX aggregates, guaranteed to produce one row so the issue of ordering ought to be moot

anyway (there is only one way to sort one row!)

This is a shame, because without the sorts this would be a decent execution plan. If the partial

aggregates were implemented properly, and the MAX written with a GROUP BY () clause, we might even

hope that the optimizer could spot that the three Tops and final Stream Aggregate could be replaced by

a single final Top operator, giving exactly the same plan as the explicit TOP (1) query. The optimizer

does not contain that transformation today, and I don’t suppose it would be useful enough often

enough to make its inclusion worthwhile in future.

Final Words

Using TOP will not always be preferable to MIN or MAX. In some cases it will produce a significantly less

optimal plan. The point of this post is that understanding the transformations applied by the optimizer

can suggest ways to rewrite the original query that may turn out to be helpful.

Parameter Sniffing, Embedding, and the RECOMPILE Options
By Paul White

Parameter Sniffing

Query parameterization promotes the reuse of cached execution plans, thereby avoiding unnecessary

compilations, and reducing the number of ad-hoc queries in the plan cache. These are all good things,

provided the query being parameterized really ought to use the same cached execution plan for

different parameter values. An execution plan that is efficient for one parameter value may not be a

good choice for other possible parameter values.

When parameter sniffing is enabled (the default), SQL Server chooses an execution plan based on the

particular parameter values that exist at compilation time. The implicit assumption is that

parameterized statements are most commonly executed with the most common parameter values. This

sounds reasonable enough (even obvious) and indeed it often works well.

A problem can occur when an automatic recompilation of the cached plan occurs. A recompilation may

be triggered for all sorts of reasons, for example because an index used by the cached plan has been

dropped (a correctness recompilation) or because statistical information has changed

(an optimality recompile). Whatever the exact cause of the plan recompilation, there is a chance that

an atypical value is being passed as a parameter at the time the new plan is generated.

This can result in a new cached plan (based on the sniffed atypical parameter value) that is not good for

the majority of executions for which it will be reused. It is not easy to predict when a particular

execution plan will be recompiled (for example, because statistics have changed sufficiently) resulting in

a situation where a good-quality reusable plan can be suddenly replaced by a quite different plan

optimized for atypical parameter values.

One such scenario occurs when the atypical value is highly selective, resulting in a plan optimized for a

small number of rows. Such plans will often use single-threaded execution, nested loops joins, and

lookups. Serious performance issues can arise when this plan is reused for different parameter values

that generate a much larger number of rows.

Disabling Parameter Sniffing

Parameter sniffing can be disabled using the documented and supported trace flag 4136. This trace flag

is also supported for per-query use via the QUERYTRACEON hint. Both apply from SQL Server 2005

Service Pack 4 onward (and slightly earlier if you are willing to apply cumulative updates to Service Pack

3).

When parameter sniffing is disabled, SQL Server uses average distribution statistics to choose an

execution plan. This also sounds like a reasonable approach (and can help avoid the situation where the

plan is optimized for an unusually selective parameter value) but it is not a perfect strategy either. A

plan optimized for an 'average' value might well end up being seriously sub-optimal for the commonly-

seen parameter values.

Consider an execution plan that contains memory-consuming operators like sorts and hashes. Because

memory is reserved before query execution starts, a parameterized plan based on average distribution

values can spill to tempdb for common parameter values that produce more data than the optimizer

http://support.microsoft.com/kb/980653
http://support.microsoft.com/kb/2801413/en-us

expected. Memory reservations cannot usually grow during query execution, regardless of how much

free memory the server may have.

Certain applications do benefit from turning parameter sniffing off (see this post by the Dynamics AX

Performance Team for an example). However, for most workloads, disabling parameter sniffing entirely

is the wrong solution, and may even be a disaster. Parameter sniffing is a heuristic optimization: it works

better than using average values on most systems, most of the time.

Query Hints

SQL Server provides a range of query hints and other options to tune the behaviour of parameter

sniffing:

 The OPTIMIZE FOR (@parameter = value) query hint builds a reusable plan based on a specific

value

 OPTIMIZE FOR (@parameter UNKNOWN) uses average distribution statistics for a particular

parameter

 OPTIMIZE FOR UNKNOWN uses average distribution for all parameters (same effect as trace flag

4136)

 The WITH RECOMPILE stored procedure option compiles a fresh procedure plan for every

execution

 The OPTION (RECOMPILE) query hint compiles a fresh plan for an individual statement

The old technique of "parameter hiding" (assigning procedure parameters to local variables, and

referencing the variables instead) has the same effect as specifying OPTIMIZE FOR UNKNOWN. It can be

useful on instances earlier than SQL Server 2008 (the OPTIMIZE FOR hint was new for 2008).

It could be argued that every parameterized statement should be checked for sensitivity to parameter

values, and either left alone (if the default behaviour works well) or explicitly hinted using one the

options above. This is rarely done in practice, partly because performing a comprehensive analysis for all

possible parameter values can be time-consuming and requires quite advanced skills.

Most often, no such analysis is performed and parameter-sensitivity problems are addressed as and

when they occur in production. This lack of prior analysis is probably one main reason parameter sniffing

has a poor reputation. It pays to be aware of the potential for problems to arise, and to perform at least

a quick analysis on statements that are likely to cause performance problems when recompiled with an

atypical parameter value.

What is a parameter?

Some would say that a SELECT statement referencing a local variable is a "parameterized statement" of

sorts, but that is not the definition SQL Server uses. A reasonable indication that a statement uses

parameters can be found by looking at the plan properties (see the Parameters tab in SQL Sentry Plan

Explorer, or click the query plan root node in SSMS, open the Properties window, and expand the

Parameter List node):

http://blogs.msdn.com/b/axperf/archive/2010/05/07/important-sql-server-change-parameter-sniffing-and-plan-caching.aspx
http://www.sqlsentry.net/plan-explorer/sql-server-query-view.asp
http://www.sqlsentry.net/plan-explorer/sql-server-query-view.asp

The 'compiled value' shows the sniffed value of the parameter used to compile the cached plan. The

'runtime value' shows the value of the parameter on the particular execution captured in the plan.

Either of these properties may be blank or missing in different circumstances. If a query is not

parameterized, the properties will simply all be missing.

Just because nothing is ever simple in SQL Server, there are situations where the parameter list can be

populated, but the statement is still not parameterized. This can occur when SQL Server attempts simple

parameterization (discussed later) but decides the attempt is "unsafe". In that case, parameter markers

will be shown but the execution plan is not in fact parameterized.

Sniffing is not just for Stored Procedures

Parameter sniffing also occurs when a batch is explicitly parameterized for reuse using sp_executesql.

For example:

EXECUTE sys.sp_executesql
 N'
 SELECT
 P.ProductID,
 P.Name,
 TotalQty = SUM(TH.Quantity)
 FROM Production.Product AS P
 JOIN Production.TransactionHistory AS TH
 ON TH.ProductID = P.ProductID
 WHERE
 P.Name LIKE @NameLike
 GROUP BY
 P.ProductID,
 P.Name;
 ',
 N'@NameLike nvarchar(50)',
 @NameLike = N'K%';

The optimizer chooses an execution plan based on the sniffed value of the @NameLike parameter. The

parameter value "K%" is estimated to match very few rows in the Product table, so the optimizer

chooses a nested loop join and key lookup strategy:

http://msdn.microsoft.com/en-us/library/ms188001.aspx

Executing the statement again with a parameter value of "[H-R]%" (which will match many more rows)

reuses the cached parameterized plan:

EXECUTE sys.sp_executesql
 N'
 SELECT
 P.ProductID,
 P.Name,
 TotalQty = SUM(TH.Quantity)
 FROM Production.Product AS P
 JOIN Production.TransactionHistory AS TH
 ON TH.ProductID = P.ProductID
 WHERE
 P.Name LIKE @NameLike
 GROUP BY
 P.ProductID,
 P.Name;
 ',
 N'@NameLike nvarchar(50)',
 @NameLike = N'[H-R]%';

The AdventureWorks sample database is too small to make this a performance disaster, but this plan is

certainly not optimal for the second parameter value. We can see the plan the optimizer would have

chosen by clearing the plan cache and executing the second query again:

With a larger number of matches expected, the optimizer determines that a hash join and hash

aggregation are better strategies.

T-SQL Functions

Parameter sniffing occurs with T-SQL functions as well, though the way execution plans are generated

can make this more difficult to see. There are good reasons to avoid T-SQL scalar and multi-statement

functions in general, so for educational purposes only, here is a T-SQL multi-statement table-valued

function version of our test query:

CREATE FUNCTION dbo.F
 (@NameLike nvarchar(50))
RETURNS @Result TABLE
(
 ProductID integer NOT NULL PRIMARY KEY,
 Name nvarchar(50) NOT NULL,
 TotalQty integer NOT NULL
)
WITH SCHEMABINDING
AS
BEGIN
 INSERT @Result
 SELECT

 P.ProductID,
 P.Name,
 TotalQty = SUM(TH.Quantity)
 FROM Production.Product AS P
 JOIN Production.TransactionHistory AS TH
 ON TH.ProductID = P.ProductID
 WHERE
 P.Name LIKE @NameLike
 GROUP BY
 P.ProductID,
 P.Name;

 RETURN;
END;

The following query uses the function to display information for product names starting with 'K':

SELECT
 Result.ProductID,
 Result.Name,
 Result.TotalQty
FROM dbo.F(N'K%') AS Result;

Seeing parameter sniffing with an embedded function is more difficult because SQL Server does not

return a separate post-execution (actual) query plan for each function invocation. The function could be

called many times within a single statement, and users would not be impressed if SSMS tried to display a

million function call plans for a single query. As a result of this design decision, the actual plan returned

by SQL Server for our test query is not very helpful:

Nevertheless, there are ways to see parameter sniffing in action with embedded functions. The method

I have chosen to use here is to inspect the plan cache:

SELECT
 DEQS.plan_generation_num,
 DEQS.execution_count,
 DEQS.last_logical_reads,
 DEQS.last_elapsed_time,
 DEQS.last_rows,
 DEQP.query_plan
FROM sys.dm_exec_query_stats AS DEQS

CROSS APPLY sys.dm_exec_sql_text(DEQS.plan_handle) AS DEST
CROSS APPLY sys.dm_exec_query_plan(DEQS.plan_handle) AS DEQP
WHERE
 DEST.objectid = OBJECT_ID(N'dbo.F', N'TF');

This result shows that the function plan has been executed once, at a cost of 201 logical reads with 2891

microseconds elapsed time, and the most recent execution returned one row. The XML plan returned

shows that the parameter value was sniffed:

Now run the statement again, with a different parameter:

SELECT
 Result.ProductID,
 Result.Name,
 Result.TotalQty
FROM dbo.F(N'[H-R]%') AS Result;

The post-execution plan just shows that 306 rows were returned by the function:

The plan cache query shows the cached execution plan for the function has been reused

(execution_count = 2):

It also shows a much higher number of logical reads, and a longer elapsed time compared with the

previous run. This is consistent with reusing a nested loops and lookup plan, but to be completely sure,

the post-execution function plan can be captured using Extended Events or the SQL Server Profiler tool:

Because parameter sniffing applies to functions, these modules can suffer from the same unexpected

changes in performance commonly associated with stored procedures. For example, the first time a

function is referenced, a plan might be cached that does not use parallelism. Subsequent executions

with parameter values that would benefit from parallelism (but reuse the cached serial plan) will show

unexpectedly poor performance.

This issue can be tricky to identify because SQL Server does not return separate post-execution plans for

function calls as we have seen. Using Extended Events or Profiler to routinely capture post-execution

plans is extremely resource-intensive in currently versions of SQL Server, so it only makes sense to use

that technique in a very targeted fashion. The difficulties around debugging function parameter-

sensitivity issues mean it is even more worthwhile doing an analysis (and coding defensively) before the

function hits production.

Parameter-sniffing works exactly the same way with embedded T-SQL scalar user-defined functions. In-

line table-valued functions do not generate a separate execution plan for each invocation, because (as

the name says) these are in-lined into the calling query before compilation.

Beware Sniffed NULLs

Clear the plan cache and request an estimated plan for the test query:

SELECT
 Result.ProductID,
 Result.Name,
 Result.TotalQty

FROM dbo.F(N'K%') AS Result;

You will see two execution plans, the second of which is for the function call:

A limitation of parameter sniffing with embedded functions in estimated plans means the parameter

value is sniffed as NULL (not "K%"):

In versions of SQL Server before 2012, this plan (optimized for a NULL parameter) is cached for reuse.

This is unfortunate, because NULL is unlikely to be a representative parameter value, and it was

certainly not the value specified in the query. SQL Server 2012 does not cache any plans resulting from

an "estimated plan" request, though it will still show a function plan optimized for a NULL parameter

value.

Simple and Forced Parameterization

An ad-hoc T-SQL statement containing constant literal values can be parameterized by SQL Server,

either because the query qualifies for simple parameterization or because the database option

for forced parameterization is enabled. A statement parameterized in this way is also subject to

parameter sniffing. The following query qualifies for simple parameterization:

SELECT
 A.AddressLine1,
 A.City,
 A.PostalCode
FROM Person.Address AS A
WHERE
 A.AddressLine1 = N'Heidestieg Straße 8664';

The estimated execution plan shows an estimate of 2.5 rows based on the sniffed parameter value:

http://technet.microsoft.com/en-us/library/ms186219(v=sql.105).aspx
http://technet.microsoft.com/en-us/library/ms175037(v=sql.105).aspx

In fact the query returns 7 rows (cardinality estimation is not perfect, even where values are sniffed):

At this point you may be wondering where the evidence is that this query was parameterized, and the

resulting parameter value sniffed. Run the query a second time with a different value:

SELECT
 A.AddressLine1,
 A.City,
 A.PostalCode
FROM Person.Address AS A
WHERE
 A.AddressLine1 = N'Winter der Böck 8550';

The query returns one row:

The execution plan shows the second execution reused the parameterized plan that was compiled using

a sniffed value:

Parameterization and sniffing are separate activities

An ad-hoc statement can be parameterized by SQL Server without parameter values being sniffed. To

demonstrate, we can use trace flag 4136 to disable parameter sniffing for a batch that will be

parameterized by the server:

DBCC FREEPROCCACHE;
DBCC TRACEON (4136);
GO
SELECT
 A.AddressLine1,
 A.City,
 A.PostalCode
FROM Person.Address AS A
WHERE
 A.AddressLine1 = N'Heidestieg Straße 8664';
GO
SELECT
 A.AddressLine1,
 A.City,
 A.PostalCode
FROM Person.Address AS A
WHERE
 A.AddressLine1 = N'Winter der Böck 8550';
GO
DBCC TRACEOFF (4136);

The script results in statements that are parameterized, but the parameter value is not sniffed for

cardinality estimation purposes. To see this, we can inspect the plan cache:

WITH XMLNAMESPACES
 (DEFAULT 'http://schemas.microsoft.com/sqlserver/2004/07/showplan')
SELECT
 DECP.cacheobjtype,
 DECP.objtype,
 DECP.usecounts,
 DECP.plan_handle,
 parameterized_plan_handle =
 DEQP.query_plan.value
 (
 '(//StmtSimple)[1]/@ParameterizedPlanHandle',
 'NVARCHAR(100)'
)
FROM sys.dm_exec_cached_plans AS DECP
CROSS APPLY sys.dm_exec_sql_text(DECP.plan_handle) AS DEST
CROSS APPLY sys.dm_exec_query_plan(DECP.plan_handle) AS DEQP
WHERE

 DEST.[text] LIKE N'%AddressLine1%'
 AND DEST.[text] NOT LIKE N'%XMLNAMESPACES%';

The results show two cache entries for the ad-hoc queries, linked to the parameterized (prepared) query

plan by the parameterized plan handle. The parameterized plan is used twice:

The execution plan shows a different cardinality estimate now that parameter sniffing is disabled:

Compare the estimate of 1.44571 rows with the 2.5 row estimate used when parameter sniffing was

enabled. With sniffing disabled, the 1.44571 estimate comes from average frequency information about

the AddressLine1 column. An extract of the DBCC SHOW_STATISTICS output for the index in question

shows how this number was calculated. Multiplying the number of rows in the table (19,614) by the

density (7.370826e-5) gives the 1.44571 row estimate.

It is widely believed that only integer comparisons using a unique index can qualify for simple

parameterization. I deliberately chose this example (a string comparison using a non-unique index) to

refute that.

WITH RECOMPILE and OPTION (RECOMPILE)

When a parameter-sensitivity problem is encountered, a common piece of advice on forums and Q&A

sites is to "use recompile" (assuming the other tuning options presented earlier are unsuitable).

Unfortunately, that advice is often misinterpreted to mean adding WITH RECOMPILE option to the

stored procedure.

Using WITH RECOMPILE effectively returns us to SQL Server 2000 behaviour, where the entire stored

procedure is recompiled on every execution. A better alternative, on SQL Server 2005 and later, is to use

the OPTION (RECOMPILE) query hint on just the statement that suffers from the parameter-sniffing

problem. This query hint results in a recompilation of the problematic statement only; execution plans

for other statements within the stored procedure are cached and reused as normal.

Using WITH RECOMPILE also means the compiled plan for the stored procedure is not cached. As a

result, no performance information is maintained in DMVs such as sys.dm_exec_query_stats. Using the

query hint instead means that a compiled plan can be cached, and performance information is available

in the DMVs (though it is limited to the most recent execution, for the affected statement only).

For instances running at least SQL Server 2008 build 2746 (Service Pack 1 with Cumulative Update 5),

using OPTION (RECOMPILE) has another significant advantage over WITH RECOMPILE: onlyOPTION

(RECOMPILE) enables the Parameter Embedding Optimization.

The Parameter Embedding Optimization

Sniffing parameter values allows the optimizer to use the parameter value to derive cardinality

estimates. Both WITH RECOMPILE and OPTION (RECOMPILE) result in query plans with estimates

calculated from the actual parameter values on each execution.

The Parameter Embedding Optimization takes this process a step further: query parameters are

replaced with literal constant values during query parsing. The parser is capable of surprisingly complex

simplifications, and subsequent query optimization may refine things even further. Consider the

following stored procedure, which features the WITH RECOMPILE option:

CREATE PROCEDURE dbo.P
 @NameLike nvarchar(50),
 @Sort tinyint
WITH RECOMPILE
AS
BEGIN
 SELECT TOP (5)
 ProductID,
 Name
 FROM Production.Product
 WHERE
 @NameLike IS NULL
 OR Name LIKE @NameLike
 ORDER BY
 CASE WHEN @Sort = 1 THEN ProductID ELSE NULL END ASC,
 CASE WHEN @Sort = 2 THEN ProductID ELSE NULL END DESC,
 CASE WHEN @Sort = 3 THEN Name ELSE NULL END ASC,
 CASE WHEN @Sort = 4 THEN Name ELSE NULL END DESC;
END;

The procedure is executed twice, with the following parameter values:

EXECUTE dbo.P
 @NameLike = N'K%',
 @Sort = 1;
GO
EXECUTE dbo.P
 @NameLike = N'[H-R]%',

http://msdn.microsoft.com/en-us/library/ms189741.aspx

 @Sort = 4;

Because WITH RECOMPILE is used, the procedure is fully recompiled on every execution. The parameter

values are sniffed each time and used by the optimizer to calculate cardinality estimates. The plan for

the first procedure execution is exactly correct, estimating 1 row:

The second execution estimates 360 rows, very close to the 366 seen at run time:

Both plans use the same general execution strategy: scan all rows in an index applying

the WHERE clause predicate as a residual; compute the CASE expression used in the ORDER BY clause;

and perform a Top N Sort on the result of the CASE expression.

Now re-create the stored procedure using an OPTION (RECOMPILE) query hint instead of WITH

RECOMPILE:

CREATE PROCEDURE dbo.P
 @NameLike nvarchar(50),
 @Sort tinyint
AS
BEGIN
 SELECT TOP (5)
 ProductID,
 Name
 FROM Production.Product
 WHERE
 @NameLike IS NULL
 OR Name LIKE @NameLike
 ORDER BY
 CASE WHEN @Sort = 1 THEN ProductID ELSE NULL END ASC,
 CASE WHEN @Sort = 2 THEN ProductID ELSE NULL END DESC,
 CASE WHEN @Sort = 3 THEN Name ELSE NULL END ASC,
 CASE WHEN @Sort = 4 THEN Name ELSE NULL END DESC
 OPTION (RECOMPILE);
END;

Executing the stored procedure twice with the same parameter values as before produces dramatically

different execution plans. This is the first execution plan (with parameters requesting names starting

with "K", ordered by ProductID ascending):

The parser embeds the parameter values in the query text, resulting in the following intermediate form:

SELECT TOP (5)
 ProductID,
 Name
FROM Production.Product
WHERE
 'K%' IS NULL
 OR Name LIKE 'K%'
ORDER BY
 CASE WHEN 1 = 1 THEN ProductID ELSE NULL END ASC,
 CASE WHEN 1 = 2 THEN ProductID ELSE NULL END DESC,
 CASE WHEN 1 = 3 THEN Name ELSE NULL END ASC,
 CASE WHEN 1 = 4 THEN Name ELSE NULL END DESC;

The parser then goes further, removing contradictions and fully evaluating the CASE expressions. This

results in:

SELECT TOP (5)
 ProductID,
 Name
FROM Production.Product
WHERE
 Name LIKE 'K%'
ORDER BY
 ProductID ASC,
 NULL DESC,
 NULL ASC,
 NULL DESC;

You will get an error message if you try to submit that query directly to SQL Server, because ordering by

a constant value is not allowed. Nevertheless, this is the form produced by the parser; it is allowed

internally because it arose as a result of applying the parameter embedding optimization. The simplified

query makes life a lot easier for the query optimizer:

The Clustered Index Scan applies the LIKE predicate as a residual; the Compute Scalar provides the

constant NULL values, and the Top returns the first 5 rows in the order provided by the Clustered Index

(avoiding a sort). In a perfect world, the query optimizer would also remove the Compute Scalar that

define the NULLs, as they are not used during query execution.

The second execution follows exactly the same process, resulting in a query plan (for names beginning

with letters "H" to "R", ordered by Name descending) like this:

This plan features a Nonclustered Index Seek that covers the LIKE range, a residual LIKE predicate, the

constant NULLs as before, and a Top (5). The query optimizer chooses to perform aBACKWARD range

scan in the Index Seek to once again avoid a sort. Compare the plan above with the one produced

using WITH RECOMPILE, which cannot use the parameter embedding optimization:

This simple example might have been better implemented as a series of IF statements in the procedure

(one for each combination of parameter values). This could provide similar query plan benefits, without

incurring a statement compilation each time. In more complex scenarios, the statement-level recompile

with parameter embedding provided by OPTION (RECOMPILE) can be an extremely useful optimization

technique.

An Embedding Restriction

There is one scenario where using OPTION (RECOMPILE) will not result in the parameter embedding

optimization being applied. If the statement assigns to a variable, parameter values are not embedded:

CREATE PROCEDURE dbo.P
 @NameLike nvarchar(50),
 @Sort tinyint
AS
BEGIN
 DECLARE
 @ProductID integer,
 @Name nvarchar(50);

 SELECT TOP (1)
 @ProductID = ProductID,
 @Name = Name
 FROM Production.Product
 WHERE
 @NameLike IS NULL
 OR Name LIKE @NameLike
 ORDER BY

 CASE WHEN @Sort = 1 THEN ProductID ELSE NULL END ASC,
 CASE WHEN @Sort = 2 THEN ProductID ELSE NULL END DESC,
 CASE WHEN @Sort = 3 THEN Name ELSE NULL END ASC,
 CASE WHEN @Sort = 4 THEN Name ELSE NULL END DESC
 OPTION (RECOMPILE);
END;

Because the SELECT statement now assigns to a variable, the query plans produced are the same as

when WITH RECOMPILE was used. Parameter values are still sniffed and used by the query optimizer for

cardinality estimation, and OPTION (RECOMPILE) still only compiles the single statement, only the

benefit of parameter value embedding is lost.

Parallel Execution Plans – Branches and Threads
By Paul White

One of the many execution plan improvements in SQL Server 2012 was the addition of thread

reservation and usage information for parallel execution plans. This post looks at exactly what these

numbers mean, and provides additional insights into understanding parallel execution.

Consider the following query run against an enlarged version of the AdventureWorks database:

SELECT
 BP.ProductID,
 cnt = COUNT_BIG(*)
FROM dbo.bigProduct AS BP
JOIN dbo.bigTransactionHistory AS BTH
 ON BTH.ProductID = BP.ProductID
GROUP BY BP.ProductID
ORDER BY BP.ProductID;

The query optimizer chooses a parallel execution plan:

Plan Explorer shows parallel thread usage details in the root node tooltip. To see the same information

in SSMS, click on the plan root node, open the Properties window, and expand theThreadStat node.

Using a machine with eight logical processors available for SQL Server to use, the thread usage

information from a typical run of this query is shown below, Plan Explorer on the left, SSMS view on the

right:

The screenshot shows the execution engine reserved 24 threads for this query, and would up using 16 of

them. It also shows that the query plan has three branches, though it does not say exactly what a branch

is. If you have read my Simple Talk article on parallel query execution, you will know that branches are

sections of a parallel query plan bounded by exchange operators. The diagram below draws the

boundaries, and numbers the branches:

http://sqlblog.com/blogs/adam_machanic/archive/2011/10/17/thinking-big-adventure.aspx
https://www.simple-talk.com/sql/learn-sql-server/understanding-and-using-parallelism-in-sql-server/

Branch Two (Orange)

Let's look at branch two in a bit more detail first:

At a degree of parallelism (DOP) of eight, there are eight threads running this branch of the query plan.

It is important to understand that this is the entire execution plan as far as these eight threads are

concerned – they have no knowledge of the wider plan.

In a serial execution plan, a single thread reads data from a data source, processes the rows through a

number of plan operators, and returns results to the destination (which might be an SSMS query results

window or a database table, for example).

In a branch of a parallel execution plan, the situation is very similar: each thread reads data from a

source, processes the rows through a number of plan operators, and returns results to the destination.

The differences are that the destination is an exchange (parallelism) operator, and the data source can

also be an exchange.

In the orange branch, the data source is a Clustered Index Scan, and the destination is the right-hand

side of a Repartition Streams exchange. The right-hand side of an exchange is known as the producer

side, because it connects to a branch that adds data to the exchange.

The eight threads in the orange branch co-operate to scan the table and add rows to the exchange. The

exchange assembles rows into page-sized packets. Once a packet is full it is pushed across the exchange

to the other side. If the exchange has another empty packet available to fill, the process continues until

all data source rows have been processed (or the exchange runs out of empty packets).

We can see the number of rows processed on each thread using the Plan Tree view in Plan Explorer:

http://technet.microsoft.com/en-us/library/ms188611.aspx

Plan Explorer makes it easy to see how rows are distributed across threads for all the physical

operations in the plan. In SSMS, you are limited to seeing row distribution for a single plan operator. To

do this, click an operator icon, open the Properties window, and then expand the Actual Number of

Rows node. The graphic below shows SSMS information for the Repartition Streams node at the border

between the orange and purple branches:

Branch Three (Green)

Branch three is similar to branch two, but it contains an extra Stream Aggregate operator. The green

branch also has eight threads, making a total of sixteen seen so far. The eight green-branch threads read

data from a Nonclustered Index Scan, perform some sort of aggregation, and pass the results to the

producer side of another Repartition Streams exchange.

The Plan Explorer tooltip for the Stream Aggregate shows it is grouping by product ID and computing an

expression labeled partialagg1005:

The Expressions tab shows the expression is the result of counting the rows in each group:

The Stream Aggregate is computing a partial (also known as 'local') aggregate. The partial (or local)

qualifier simply means that each thread computes the aggregate on the rows it sees. Rows from the

Index Scan are distributed between threads using a demand-based scheme: there is no fixed distribution

of rows ahead of time; threads receive a range of rows from the scan as they ask for them. Which rows

end up on which threads is essentially random because it depends on timing issues and other factors.

Each thread sees different rows from the scan, but rows with the same product ID may be seen by more

than one thread. The aggregate is 'partial' because subtotals for a particular product ID group can

appear on more than one thread; it is 'local' because each thread computes its result based only on the

rows it happens to receive. For example, say there are 1,000 rows for product ID #1 in the table. One

thread might happen to see 432 of those rows, while another might see 568. Both threads will have

a partial count of rows for product ID #1 (432 in one thread, 568 in the other).

Partial aggregation is a performance optimization because it reduces row counts earlier than would

otherwise be possible. In the green branch, early aggregation results in fewer rows being assembled into

packets and pushed across the Repartition Stream exchange.

Branch 1 (Purple)

The Stream Aggregate is computing a partial (also known as 'local') aggregate. The partial (or local)

qualifier simply means that each thread computes the aggregate on the rows it sees. Rows from the

Index Scan are distributed between threads using a demand-based scheme: there is no fixed distribution

of rows ahead of time; threads receive a range of rows from the scan as they ask for them. Which rows

end up on which threads is essentially random because it depends on timing issues and other factors.

Each thread sees different rows from the scan, but rows with the same product ID may be seen by more

than one thread. The aggregate is 'partial' because subtotals for a particular product ID group can

appear on more than one thread; it is 'local' because each thread computes its result based only on the

rows it happens to receive. For example, say there are 1,000 rows for product ID #1 in the table. One

thread might happen to see 432 of those rows, while another might see 568. Both threads will have

a partial count of rows for product ID #1 (432 in one thread, 568 in the other).

Partial aggregation is a performance optimization because it reduces row counts earlier than would

otherwise be possible. In the green branch, early aggregation results in fewer rows being assembled into

packets and pushed across the Repartition Stream exchange.

Branch 1 (Purple)

The correct global result per Product ID is computed by summing the partial aggregates, as the

Expressions tab illustrates:

To continue our (imaginary) example, the correct result of 1,000 rows for product ID #1 is obtained by

summing the two subtotals of 432 and 568.

Each of the eight purple branch threads reads data from the consumer side of the two Gather Streams

exchanges, computes the global aggregates, performs the Merge Join on product ID, and adds rows to

the Gather Streams exchange on the far left of the purple branch. The core process is not very much

different from an ordinary serial plan; the differences are in where rows are read from, where they are

sent to, and how rows are distributed between the threads…

Exchange Row Distribution

The alert reader will be wondering about a couple of details at this point. How does the purple branch

manage to compute correct results per product ID but the green branch could not (results for the same

product ID were spread across many threads)? Also, if there are eight separate merge joins (one per

thread) how does SQL Server guarantee that rows that will join end up at the same instance of the join?

Both of these questions can be answered by looking at the way the two Repartition Streams exchanges

route rows from the producer side (in the green and orange branches) to the consumer side (in the

purple branch). We will look at the Repartition Streams exchange bordering the orange and purple

branches first:

This exchange routes incoming rows (from the orange branch) using a hash function applied to the

product ID column. The effect is that all rows for a particular product ID are guaranteed to be routed to

the same purple-branch thread. The orange and purple threads know nothing of this routing; all this is

handled internally by the exchange.

All the orange threads know is that they are returning rows to the parent iterator that asked for them

(the producer side of the exchange). Equally, all the purple threads 'know' is that they are reading rows

from a data source. The exchange determines which packet an incoming orange-thread row will go into,

and it could be any one of eight candidate packets. Similarly, the exchange determines which packet to

read a row from to satisfy a read request from a purple thread.

Be careful not to acquire a mental image of a particular orange (producer) thread being linked directly to

a particular purple (consumer) thread. That is not how this query plan works. An orange

producer may end up sending rows to all purple consumers – the routing depends entirely on the value

of the product ID column in each row it processes.

Also note that a packet of rows at the exchange is only transferred when it is full (or when the producer

side runs out of data). Imagine the exchange filling packets a row at a time, where rows for a particular

packet may come from any of the producer-side (orange) threads. Once a packet is full, it is passed

across to the consumer side, where a particular consumer (purple) thread can start reading from it.

The Repartition Streams exchange bordering the green and purple branches works in a very similar way:

Rows are routed to packets in this exchange using the same hash function on the same partitioning

column as for the orange-purple exchange seen previously. This means that both Repartition Streams

exchanges route rows with the same product ID to the same purple-branch thread.

This explains how the Stream Aggregate in the purple branch is able to compute global aggregates – if

one row with a particular product ID is seen on a particular purple-branch thread, that thread is

guaranteed to see all rows for that product ID (and no other thread will).

The common exchange partitioning column is also the join key for the merge join, so all rows that can

possibly join are guaranteed to be processed by the same (purple) thread.

A final thing to note is that both exchanges are order-preserving (a.k.a 'merging') exchanges, as shown in

the Order By attribute in the tooltips. This meets the merge join requirement that input rows be sorted

on the join keys. Note that exchanges never sort rows themselves, they can just be configured

to preserve existing order.

Thread Zero

The final part of the execution plan lies to the left of the Gather Streams exchange. It always runs on a

single thread – the same one used to run the whole of a regular serial plan. This thread is always labelled

'Thread 0' in execution plans and is sometimes called the 'coordinator' thread (a designation I don't find

particularly helpful).

Thread zero reads rows from the consumer (left) side of the Gather Streams exchange and returns them

to the client. There are no thread zero iterators aside from the exchange in this example, but if there

were, they would all run on the same single thread. Note the Gather Streams is also a merging exchange

(it has an Order By attribute):

More complex parallel plans can include serial execution zones other than the one to the left of the final

Gather Streams exchange. These serial zones are not run in thread zero, but that is a detail to explore

another time.

Reserved and used threads revisited

We have seen that this parallel plan contains three branches. This explains why SQL Server reserved 24

threads (three branches at DOP 8). The question is why only 16 threads are reported as 'used' in the

screenshot above.

There are two parts to the answer. The first part does not apply to this plan, but it is important to know

about anyway. The number of branches reported is the maximum number that can be

executing concurrently.

As you may know, certain plan operators are 'blocking' – meaning they have to consume all of their

inputs rows before they can produce the first output row. The clearest example of a blocking (also

known as stop-and-go) operator is Sort. A sort cannot return the first row in sorted sequence before it

has seen every input row because the last input row might sort first.

Operators with multiple inputs (joins and unions, for example) can be blocking with respect to one

input, but non-blocking ('pipelined') with respect to the other. An example of this is hash join – the build

input is blocking, but the probe input is pipelined. The build input is blocking because it creates the hash

table against which probe rows are tested.

The presence of blocking operators means that one or more parallel branches might be guaranteed to

complete before others can start. Where this occurs, SQL Server can reuse the threads used to process a

completed branch for a later branch in the sequence. SQL Server is very conservative about thread

reservation, so only branches that are guaranteed to complete before another commences make use of

this thread-reservation optimization. Our query plan does not contain any blocking operators, so the

reported branch count is just the total number of branches.

The second part of the answer is that threads may still be reused if they happen to complete before a

thread in another branch starts up. The full number of threads is still reserved in this case, but the actual

usage may be lower. How many threads a parallel plan actually uses depends on timing issues among

other things, and can vary between executions.

Parallel threads do not all start executing at the same time, but again the details of that will have to wait

for another occasion. Let's look at the query plan again to see how threads might be reused, despite the

lack of blocking operators:

It is clear that threads in branch one cannot complete before threads in branches two or three start up,

so there is no chance of thread reuse there. Branch three is also unlikely to complete before either

branch one or branch two start up because it has so much work to do (almost 32 million rows to

aggregate).

Branch two is a different matter. The relatively small size of the product table means there is a decent

chance that the branch can complete its work before branch three starts up. If reading the product table

does not result in any physical I/O, it will not take very long for eight threads to read the 25,200 rows

and submit them to the orange-purple boundary Repartition Streams exchange.

This is exactly what happened in the test runs used for the screenshots seen so far in this post: the eight

orange branch threads completed quickly enough that they could be reused for the green branch. In

total, sixteen unique threads were used, so that is what the execution plan reports.

If the query is re-run with a cold cache, the delay introduced by the physical I/O is enough to ensure that

green branch threads start up before any orange branch threads have completed. No threads are

reused, so the execution plan reports that all 24 reserved threads were in fact utilized:

More generally, any number of 'used threads' between the two extremes (16 and 24 for this query plan)

is possible:

Finally, note that the thread that runs the serial part of the plan to the left of the final Gather Streams

is not counted in the parallel thread totals. It is not an extra thread added to accommodate parallel

execution.

Final Thoughts

The beauty of the exchange model used by SQL Server to implement parallel execution is that all the

complexity of buffering and moving rows between threads is hidden inside exchange (Parallelism)

operators. The rest of the plan is split into neat 'branches', bounded by exchanges. Within a branch,

each operator behaves the same as it does in a serial plan – in almost all cases, the branch operators

have no knowledge that the wider plan uses parallel execution at all.

The key to understanding parallel execution is to (mentally) break the parallel plan apart at the

exchange boundaries, and to picture each branch as DOP separate serial plans, all executing

concurrency on a distinct subset of rows. Remember in particular that each such serial plan runs all the

operators in that branch – SQL Server does not run each operator on its own thread!

Understanding the most detailed behaviour does require a bit of thought, particularly as to how rows

are routed within exchanges, and how the engine guarantees correct results, but then most things

worth knowing require a bit of thought, don't they?

StarJoinInfo in Execution Plans
By Paul White

From time to time, you might notice that one or more joins in an execution plan is annotated with

a StarJoinInfo structure. The official showplan schema has the following to say about this plan element:

The in-line documentation shown there ("additional information about Star Join structure") is not all

that enlightening, though the other details are quite intriguing – we will look at these in detail.

If you consult your favourite search engine for more information using terms like “SQL Server star join

optimization”, you are likely to see results describing optimized bitmap filters. This is a separate

Enterprise-only feature introduced in SQL Server 2008, and not related to the StarJoinInfo structure at

all.

Optimizations for Selective Star Queries

The presence of StarJoinInfo indicates that SQL Server applied one of a set of optimizations targeted at

selective star-schema queries. These optimizations are available from SQL Server 2005, in all editions

(not just Enterprise). Note that selective here refers to the number of rows fetched from the fact table.

The combination of dimensional predicates in a query may still be selective even where its individual

predicates qualify a large number of rows.

Ordinary Index Intersection

The query optimizer may consider combining multiple nonclustered indexes where a suitable single

index does not exist, as the following AdventureWorks query demonstrates:

SELECT COUNT_BIG(*)
FROM Sales.SalesOrderHeader
WHERE SalesPersonID = 276
AND CustomerID = 29522;

The optimizer determines that combining two nonclustered indexes (one on SalesPersonID and the

other on CustomerID) is the cheapest way to satisfy this query (there is no index on both columns):

http://schemas.microsoft.com/sqlserver/2004/07/showplan/
http://technet.microsoft.com/en-us/library/bb522541.aspx
http://msftdbprodsamples.codeplex.com/

Each index seek returns the clustered index key for rows that pass the predicate. The join matches the

returned keys to ensure that only rows that match both predicates are passed on.

If the table were a heap, each seek would return heap row identifiers (RIDs) instead of clustered index

keys, but the overall strategy is the same: find row identifiers for each predicate, then match them up.

Manual Star Join Index Intersection

The same idea can be extended to queries that select rows from a fact table using predicates applied to

dimension tables. To see how this works, consider the following query (using theContoso BI sample

database) to find the total sales amount for MP3 players sold in Contoso stores with exactly 50

employees:

SELECT
 SUM(FS.SalesAmount)
FROM dbo.FactSales AS FS
JOIN dbo.DimProduct AS DP
 ON DP.ProductKey = FS.ProductKey
JOIN dbo.DimStore AS DS
 ON DS.StoreKey = FS.StoreKey
WHERE
 DS.EmployeeCount = 50
 AND DP.ProductName LIKE N'%MP3%';

For comparison with later efforts, this (very selective) query produces a query plan like the following:

http://www.microsoft.com/en-nz/download/details.aspx?id=18279
http://www.microsoft.com/en-nz/download/details.aspx?id=18279

That execution plan has an estimated cost of just over 15.6 units. It features parallel execution with a

full scan of the fact table (albeit with a bitmap filter applied).

The fact tables in this sample database do not include nonclustered indexes on the fact table foreign

keys by default, so we need to add a couple:

CREATE INDEX ix_ProductKey ON dbo.FactSales (ProductKey);
CREATE INDEX ix_StoreKey ON dbo.FactSales (StoreKey);

With these indexes in place, we can start to see how index intersection can be used to improve

efficiency. The first step is to find fact table row identifiers for each separate predicate. The following

queries apply a single dimension predicate, then join back to the fact table to find row identifiers (fact

table clustered index keys):

-- Product dimension predicate
SELECT FS.SalesKey
FROM dbo.FactSales AS FS
JOIN dbo.DimProduct AS DP
 ON DP.ProductKey = FS.ProductKey
WHERE DP.ProductName LIKE N'%MP3%';

-- Store dimension predicate
SELECT FS.SalesKey
FROM dbo.FactSales AS FS
JOIN dbo.DimStore AS DS
 ON DS.StoreKey = FS.StoreKey
WHERE DS.EmployeeCount = 50;

The query plans show a scan of the small dimension table, followed by lookups using the fact table

nonclustered index to find row identifiers (remember nonclustered indexes always include the base

table clustering key or heap RID):

The intersection of these two sets of fact table clustered index keys identifies the rows that should be

returned by the original query. Once we have these row identifiers, we just need to look up the Sales

Amount in each fact table row, and compute the sum.

Manual Index Intersection Query

Putting all that together in a query gives the following:

SELECT SUM(FS.SalesAmount)
FROM
(
 SELECT FS.SalesKey
 FROM dbo.FactSales AS FS
 JOIN dbo.DimProduct AS DP
 ON DP.ProductKey = FS.ProductKey
 WHERE DP.ProductName LIKE N'%MP3%'
 INTERSECT
 -- Store dimension predicate
 SELECT FS.SalesKey
 FROM dbo.FactSales AS FS
 JOIN dbo.DimStore AS DS
 ON DS.StoreKey = FS.StoreKey
 WHERE DS.EmployeeCount = 50
) AS Keys
JOIN dbo.FactSales AS FS WITH (FORCESEEK)
 ON FS.SalesKey = Keys.SalesKey
OPTION (MAXDOP 1);

The FORCESEEK hint is there to ensure we get point lookups to the fact table. Without this, the

optimizer chooses to scan the fact table, which is exactly what we are looking to avoid. The MAXDOP

1 hint just helps keep the final plan to a fairly reasonable size for display purposes:

The component parts of the manual index intersection plan are quite easy to identify. The two fact table

nonclustered index lookups on the right hand side produce the two sets of fact table row identifiers. The

hash join finds the intersection of these two sets. The clustered index seek into the fact table finds the

Sales Amounts for these row identifiers. Finally, the Stream Aggregate computes the total amount.

This query plan performs relatively few lookups into the fact table nonclustered and clustered indexes. If

the query is selective enough, this might well be a cheaper execution strategy than scanning the fact

table completely. The Contoso BI sample database is relatively small, with only 3.4 million rows in the

sales fact table. For larger fact tables, the difference between a full scan and a few hundred lookups

could be very significant. Unfortunately, the manual rewrite introduces some serious cardinality errors,

resulting in a plan with an estimated cost of 46.5 units.

Automatic Star Join Index Intersection with Lookups

Luckily, we do not have to decide if the query we are writing is selective enough to justify this manual

rewrite. The star join optimizations for selective queries mean the query optimizer can explore this

option for us, using the more user-friendly original query syntax:

SELECT
 SUM(FS.SalesAmount)
FROM dbo.FactSales AS FS
JOIN dbo.DimProduct AS DP
 ON DP.ProductKey = FS.ProductKey
JOIN dbo.DimStore AS DS
 ON DS.StoreKey = FS.StoreKey
WHERE
 DS.EmployeeCount = 50

 AND DP.ProductName LIKE N'%MP3%';

The optimizer produces the following execution plan with an estimated cost of 1.64 units

The differences between this plan and the manual version are: the index intersection is an inner join

instead of a semi join; and the clustered index lookup is shown as a Key Lookup instead of a Clustered

Index Seek. At the risk of labouring the point, if the fact table were a heap, the Key Lookup would be an

RID Lookup.

The StarJoinInfo Properties

The joins in this plan all have a StarJoinInfo structure. To see it, click on a join iterator and look in the

SSMS Properties window. Click on the arrow to the left of the StarJoinInfo element to expand the node.

The nonclustered fact table joins on the right of the plan are Index Lookups built by the optimizer:

The hash join has a StarJoinInfo structure showing it is performing an Index Intersection (again,

manufactured by the optimizer):

The StarJoinInfo for the leftmost Nested Loops join shows it was generated to fetch fact table rows by

row identifier. It is at the root of the optimizer-generated star join subtree:

Cartesian Products and Multi-Column Index Lookup

The index intersection plans considered as part of the star join optimizations are useful for for selective

fact table queries where single-column nonclustered indexes exist on fact table foreign keys (a common

design practice).

It sometimes also makes sense to create multi-column indexes on fact table foreign keys, for frequently-

queried combinations. The built-in selective star query optimizations contain a rewrite for this scenario

too. To see how this works, add the following multi-column index to the fact table:

CREATE INDEX ix_ProductKey_StoreKey
ON dbo.FactSales (ProductKey, StoreKey);

Compile the test query again:

SELECT
 SUM(FS.SalesAmount)
FROM dbo.FactSales AS FS
JOIN dbo.DimProduct AS DP
 ON DP.ProductKey = FS.ProductKey
JOIN dbo.DimStore AS DS
 ON DS.StoreKey = FS.StoreKey
WHERE
 DS.EmployeeCount = 50
 AND DP.ProductName LIKE N'%MP3%';

The query plan no longer features index intersection:

The strategy chosen here is to apply each predicate to the dimension tables, take the cartesian product

of the results, and use that to seek into both keys of the multi-column index. The query plan then

performs a Key Lookup into the fact table using row identifiers exactly as seen previously.

The query plan is particularly interesting because it combines three features that are often regarded as

Bad Things (full scans, cartesian products, and key lookups) in a performanceoptimization. This is a valid

strategy when the product of the two dimensions is expected to be very small.

There is no StarJoinInfo for the cartesian product, but the other joins do have information:

Referring back to the showplan schema, there is one other StarJoinInfo operation we need to cover:

The Index Filter value is seen with joins that are considered selective enough to be worth performing

before the fact table fetch. Joins that are not selective enough will be performed after the fetch, and will

not have a StarJoinInfo structure.

To see an Index Filter using our test query, we need to add a third join table to the mix, remove the

nonclustered fact table indexes created so far, and add a new one:

CREATE INDEX ix_ProductKey_StoreKey_PromotionKey
ON dbo.FactSales (ProductKey, StoreKey, PromotionKey);

SELECT
 SUM(FS.SalesAmount)
FROM dbo.FactSales AS FS
JOIN dbo.DimProduct AS DP
 ON DP.ProductKey = FS.ProductKey
JOIN dbo.DimStore AS DS
 ON DS.StoreKey = FS.StoreKey
JOIN dbo.DimPromotion AS DPR
 ON DPR.PromotionKey = FS.PromotionKey
WHERE
 DS.EmployeeCount = 50
 AND DP.ProductName LIKE N'%MP3%'
 AND DPR.DiscountPercent <= 0.1;

The query plan is now:

A Heap Index Intersection Query Plan

For completeness, here is a script to create a heap copy of the fact table with the two nonclustered

indexes needed to enable the index intersection optimizer rewrite:

SELECT * INTO FS FROM dbo.FactSales;

CREATE INDEX i1 ON dbo.FS (ProductKey);
CREATE INDEX i2 ON dbo.FS (StoreKey);

SELECT SUM(FS.SalesAmount)
FROM FS AS FS
JOIN dbo.DimProduct AS DP
 ON DP.ProductKey = FS.ProductKey
JOIN dbo.DimStore AS DS
 ON DS.StoreKey = FS.StoreKey
WHERE DS.EmployeeCount <= 10
AND DP.ProductName LIKE N'%MP3%';

The execution plan for this query has the same features as before, but the index intersection is

performed using RIDs instead of fact table clustered index keys, and the final fetch is an RID Lookup:

Final Thoughts

The optimizer rewrites shown here are targeted at queries that return a relatively small number of

rows from a large fact table. These rewrites have been available in all editions of SQL Server since 2005.

Although intended to speed up selective star (and snowflake) schema queries in data warehousing, the

optimizer may apply these techniques wherever it detects a suitable set of tables and joins. The

heuristics used to detect star queries are quite broad, so you may encounter plan shapes

with StarJoinInfo structures in just about any type of database. Any table of a reasonable size (say 100

pages or more) with references to smaller (dimension-like) tables is a potential candidate for these

optimizations (note that explicit foreign keys are not required).

For those of you that enjoy such things, the optimizer rule responsible for generating selective star join

patterns from a logical n-table join is called StarJoinToIdxStrategy (star join to index strategy).

T-SQL Queries
Another argument for stored procedures
By Aaron Bertrand

This is one of those religious/political debates that has been raging for years: should I use stored

procedures, or should I put ad hoc queries in my application? I have always been a proponent of stored

procedures, for a few reasons:

1. I can't implement SQL injection protections if the query is constructed in the application code.

The developers may be aware of parameterized queries but nothing is forcing them to use them

properly.

2. I can't tune a query that's embedded in application source code, nor can I enforce any best

practices.

3. If I do find an opportunity for query tuning, in order to deploy it, I have to re-compile and re-

deploy the application code, as opposed to just changing the stored procedure.

4. If the query is used in multiple places in the application, or in multiple applications, and it

requires a change, I have to change it in multiple places, whereas with a stored procedure I only

have to change it once (deployment issues aside).

I also see that a lot of people are ditching stored procedures in favor of ORMs. For simple applications

this will probably go okay, but as your application gets more complex, you are likely to find that your

ORM of choice is simply incapable of performing certain query patterns, *forcing* you to use a stored

procedure. If it supports stored procedures, that is.

While I still find all of these arguments pretty compelling, they're not what I want to talk about today;

I want to talk about performance.

A lot of arguments out there will simply say, "stored procedures perform better!" That may have been

marginally true at some point, but since SQL Server added the ability to compile at the statement level

rather than the object level, and has acquired powerful functionality like optimize for ad hoc workloads,

this is no longer a very strong argument. Index tuning and sensible query patterns have a much greater

impact on performance than choosing to use a stored procedure ever will; on modern versions, I doubt

you will find many cases where the exact same query exhibits noticeable performance differences,

unless you are also introducing other variables (such as running a procedure locally vs. an application in

a different data center on a different continent).

That said, there is a performance aspect that is often overlooked when dealing with ad hoc queries: the

plan cache. We can use optimize for ad hoc workloads to prevent single-use plans from filling up our

cache (Kimberly Tripp (@KimberlyLTripp) of SQLskills.com has some great information about this here),

and that affects single-use plans regardless of whether the queries are run from within a stored

procedure or are run ad hoc. A different impact you might not notice, regardless of this setting, is when

identical plans take up multiple slots in the cache because of differences in SET options or minor deltas

in the actual query text. The whole "slow in the application, fast in SSMS" phenomenon has helped a lot

http://twitter.com/KimberlyLTripp
http://www.sqlskills.com/blogs/kimberly/plan-cache-and-optimizing-for-adhoc-workloads/
http://www.sommarskog.se/query-plan-mysteries.html

of people resolve issues involving settings like SET ARITHABORT. Today I wanted to talk about query text

differences and demonstrate something that surprises people every time I bring it up.

Cache to burn

Let's say we have a very simple system running AdventureWorks2012. And just to prove that it doesn't

help, we have enabled optimize for ad hoc workloads:

EXEC sp_configure 'show advanced options', 1;
GO
RECONFIGURE WITH OVERRIDE;
GO
EXEC sp_configure 'optimize for ad hoc workloads', 1;
GO
RECONFIGURE WITH OVERRIDE;

And then free the plan cache:

DBCC FREEPROCCACHE;

Now we generate a few simple variations to a query that is otherwise identical. These variations can

potentially represent coding styles for two different developers – slight differences in white space,

upper/lower case, etc.

SELECT TOP (1) SalesOrderID, OrderDate, SubTotal
FROM Sales.SalesOrderHeader
WHERE SalesOrderID >= 75120
ORDER BY OrderDate DESC;
GO

-- change >= 75120 to > 75119 (same logic since it's an INT)
GO

SELECT TOP (1) SalesOrderID, OrderDate, SubTotal
FROM Sales.SalesOrderHeader
WHERE SalesOrderID > 75119
ORDER BY OrderDate DESC;
GO

-- change the query to all lower case
GO

select top (1) salesorderid, orderdate, subtotal
from sales.salesorderheader
where salesorderid > 75119
order by orderdate desc;
GO

-- remove the parentheses around the argument for top
GO

select top 1 salesorderid, orderdate, subtotal
from sales.salesorderheader

http://msftdbprodsamples.codeplex.com/releases/view/55330

where salesorderid > 75119
order by orderdate desc;
GO

-- add a space after top 1
GO

select top 1 salesorderid, orderdate, subtotal
from sales.salesorderheader
where salesorderid > 75119
order by orderdate desc;
GO

-- remove the spaces between the commas
GO

select top 1 salesorderid,orderdate,subtotal
from sales.salesorderheader
where salesorderid > 75119
order by orderdate desc;
GO

If we run that batch once, and then check the plan cache, we see that we have 6 copies of, essentially,

the exact same execution plan. This is because the query text is binary hashed, meaning case and white

space do make a difference and can make otherwise identical queries look unique to SQL Server.

SELECT [text], size_in_bytes, usecounts, cacheobjtype
FROM sys.dm_exec_cached_plans AS p
CROSS APPLY sys.dm_exec_sql_text(p.plan_handle) AS t
WHERE LOWER(t.[text]) LIKE '%ales.sales'+'orderheader%';

Results:

text size_in_bytes usecounts cacheobjtype

select top 1 salesorderid,o… 272 1 Compiled Plan Stub

select top 1 salesorderid, … 272 1 Compiled Plan Stub

select top 1 salesorderid, o… 272 1 Compiled Plan Stub

select top (1) salesorderid,… 272 1 Compiled Plan Stub

SELECT TOP (1) SalesOrderID,… 272 1 Compiled Plan Stub

SELECT TOP (1) SalesOrderID,… 272 1 Compiled Plan Stub

Results after first execution of "identical" queries

So, this isn't altogether wasteful, since the ad hoc setting has allowed SQL Server to only store small

stubs on first execution. If we run the batch again though (without freeing the procedure cache), we see

a slightly more alarming result:

text size_in_bytes usecounts cacheobjtype

select top 1 salesorderid,o… 49,152 1 Compiled Plan

select top 1 salesorderid, … 49,152 1 Compiled Plan

select top 1 salesorderid, o… 49,152 1 Compiled Plan

select top (1) salesorderid,… 49,152 1 Compiled Plan

SELECT TOP (1) SalesOrderID,… 49,152 1 Compiled Plan

SELECT TOP (1) SalesOrderID,… 49,152 1 Compiled Plan

Results after second execution of "identical" queries

The same thing happens for parameterized queries, regardless of whether parameterization is simple or

forced. And the same thing happens when the ad hoc setting is not enabled, except that it happens

sooner.

The net result is that this can produce a lot of plan cache bloat, even for queries that look identical – all

the way down to two queries where one developer indents with a tab and the other indents with 4

spaces. I don't have to tell you that trying to enforce this type of consistency across a team can be

anywhere from tedious to impossible. So in my mind this gives a strong nod to modularizing, giving in to

DRY, and centralizing this type of query into a single stored procedure.

A caveat

Of course, if you place this query in a stored procedure, you're only going to have one copy of it, so you

entirely avoid the potential for having multiple versions of the query with slightly different query text.

Now, you could also argue that different users might create the same stored procedure with different

names, and in each stored procedure there is a slight variation of the query text. While possible, I think

that represents an entirely different problem. :-)

How expensive are column-side Implicit Conversions?
By Jonathan Kehayias

In the last month I’ve engaged with numerous customers that have had column-side implicit conversion

issues associated with their OLTP workloads. On two occasions, the accumulated effect of the column-

side implicit conversions was the underlying cause of the overall performance problem for the SQL

Server being reviewed, and unfortunately there isn’t a magic setting or configuration option that we can

tweak to improve the situation when this is the case. While we can offer suggestions to fix other, lower-

hanging fruit that might be affecting performance overall, the effect of the column-side implicit

conversions is something that requires either a schema design change to fix, or a code change to

prevent the column-side conversion from occurring against the current database schema completely.

Implicit conversions are the result of the database engine comparing values of differing data types

during query execution. A list of the possible implicit conversions that could occur inside of the database

engine can be found in the Books Online topic Data Type Conversion (Database Engine). Implicit

conversions always occur based on the data type precedence for the data types that are being

compared during the operation. The data type precedence order can be found in the Books Online topic

Data Type Precedence (Transact-SQL). I recently blogged about the implicit conversions that result in an

index scan, and provided charts that can be used to determine the most problematic implicit

conversions as well.

Setting up the Tests

To demonstrate the performance overhead associated with column-side implicit conversions that result in an

index scan, I’ve run a series of different tests against the AdventureWorks2012 database using the

Sales.SalesOrderDetail table to build test tables and data sets. The most common column-side implicit

conversion that I see as a consultant occurs when the column type is char or varchar, and the application

code passes a parameter that is nchar or nvarchar and filters on the char or varchar column. To simulate this

type of scenario, I created a copy of the SalesOrderDetail table (named SalesOrderDetail_ASCII) and changed

the CarrierTrackingNumber column from nvarchar to varchar. Additionally, I added a nonclustered index on

the CarrierTrackingNumber column to the original SalesOrderDetail table, as well as the new

SalesOrderDetail_ASCII table.

USE [AdventureWorks2012]
GO
-- Add CarrierTrackingNumber index to original Sales.SalesOrderDetail table
IF NOT EXISTS
(
 SELECT 1 FROM sys.indexes
 WHERE [object_id] = OBJECT_ID(N'Sales.SalesOrderDetail')
 AND name=N'IX_SalesOrderDetail_CarrierTrackingNumber'
)
BEGIN
 CREATE INDEX IX_SalesOrderDetail_CarrierTrackingNumber
 ON Sales.SalesOrderDetail (CarrierTrackingNumber);
END
GO

http://msdn.microsoft.com/en-US/library/ms191530(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms190309.aspx
http://www.sqlskills.com/blogs/jonathan/implicit-conversions-that-cause-index-scans/
http://www.sqlskills.com/blogs/jonathan/implicit-conversions-that-cause-index-scans/

IF OBJECT_ID('Sales.SalesOrderDetail_ASCII') IS NOT NULL
BEGIN
 DROP TABLE Sales.SalesOrderDetail_ASCII;
END
GO

CREATE TABLE Sales.SalesOrderDetail_ASCII
(
 SalesOrderID int NOT NULL,
 SalesOrderDetailID int NOT NULL IDENTITY (1, 1),
 CarrierTrackingNumber varchar(25) NULL,
 OrderQty smallint NOT NULL,
 ProductID int NOT NULL,
 SpecialOfferID int NOT NULL,
 UnitPrice money NOT NULL,
 UnitPriceDiscount money NOT NULL,
 LineTotal AS (isnull(([UnitPrice]*((1.0)-[UnitPriceDiscount]))*[OrderQty],(0.0))),
 rowguid uniqueidentifier NOT NULL ROWGUIDCOL,
 ModifiedDate datetime NOT NULL
);
GO

SET IDENTITY_INSERT Sales.SalesOrderDetail_ASCII ON;
GO

INSERT INTO Sales.SalesOrderDetail_ASCII
(
 SalesOrderID, SalesOrderDetailID, CarrierTrackingNumber,
 OrderQty, ProductID, SpecialOfferID, UnitPrice,
 UnitPriceDiscount, rowguid, ModifiedDate
)
SELECT
 SalesOrderID, SalesOrderDetailID, CONVERT(varchar(25), CarrierTrackingNumber),
 OrderQty, ProductID, SpecialOfferID, UnitPrice,
 UnitPriceDiscount, rowguid, ModifiedDate
FROM Sales.SalesOrderDetail WITH (HOLDLOCK TABLOCKX);
GO

SET IDENTITY_INSERT Sales.SalesOrderDetail_ASCII OFF;
GO

ALTER TABLE Sales.SalesOrderDetail_ASCII ADD CONSTRAINT
 PK_SalesOrderDetail_ASCII_SalesOrderID_SalesOrderDetailID
 PRIMARY KEY CLUSTERED (SalesOrderID, SalesOrderDetailID);

CREATE UNIQUE NONCLUSTERED INDEX AK_SalesOrderDetail_ASCII_rowguid
 ON Sales.SalesOrderDetail_ASCII (rowguid);

CREATE NONCLUSTERED INDEX IX_SalesOrderDetail_ASCII_ProductID
 ON Sales.SalesOrderDetail_ASCII (ProductID);

CREATE INDEX IX_SalesOrderDetail_ASCII_CarrierTrackingNumber
 ON Sales.SalesOrderDetail_ASCII (CarrierTrackingNumber);
GO

The new SalesOrderDetail_ASCII table has 121,317 rows and is 17.5MB in size, and will be used to

evaluate the overhead of a small table. I also created a table that is ten times larger, using a modified

version of the Enlarging the AdventureWorks Sample Databases script from my blog, that contains

1,334,487 rows and is 190MB in size. The test server for this is the same 4 vCPU VM with 4GB RAM,

running Windows Server 2008 R2 and SQL Server 2012, with Service Pack 1 and Cumulative Update 3,

that I have used in previous articles, so the tables will fit entirely in memory, eliminating disk I/O

overhead from affecting the tests being run.

The test workload was generated using a series of PowerShell scripts which select the list of

CarrierTrackingNumbers from the SalesOrderDetail table building an ArrayList, and then randomly select

a CarrierTrackingNumber from the ArrayList to query the SalesOrderDetail_ASCII table using a varchar

parameter and then an nvarchar parameter, and then to query the SalesOrderDetail table using an

nvarchar parameter to provide a comparison for where the column and parameter both are nvarchar.

Each of the individual tests runs the statement 10,000 times to allow measuring the performance

overhead over a sustained workload.

#No Implicit Conversions
$loop = 10000;
Write-Host "Small table no conversion start time:"
[DateTime]::Now
$query = @"SELECT * FROM Sales.SalesOrderDetail_ASCII "
 "WHERE CarrierTrackingNumber = @CTNumber;";
while($loop -gt 0)
{
 $Value = Get-Random -InputObject $Results;
 $SqlCmd = $SqlConn.CreateCommand();
 $SqlCmd.CommandText = $query;
 $SqlCmd.CommandType = [System.Data.CommandType]::Text;

 $SqlParameter = $SqlCmd.Parameters.AddWithValue("@CTNumber", $Value);
 $SqlParameter.SqlDbType = [System.Data.SqlDbType]::VarChar;
 $SqlParameter.Size = 30;

 $SqlCmd.ExecuteNonQuery() | Out-Null;
 $loop--;
}
Write-Host "Small table no conversion end time:"
[DateTime]::Now

Sleep -Seconds 10;

#Small table implicit conversions
$loop = 10000;
Write-Host "Small table implicit conversions start time:"
[DateTime]::Now
$query = @"SELECT * FROM Sales.SalesOrderDetail_ASCII "
 "WHERE CarrierTrackingNumber = @CTNumber;";
while($loop -gt 0)
{
 $Value = Get-Random -InputObject $Results;
 $SqlCmd = $SqlConn.CreateCommand();
 $SqlCmd.CommandText = $query;
 $SqlCmd.CommandType = [System.Data.CommandType]::Text;

http://www.sqlskills.com/blogs/jonathan/enlarging-the-adventureworks-sample-databases/

 $SqlParameter = $SqlCmd.Parameters.AddWithValue("@CTNumber", $Value);
 $SqlParameter.SqlDbType = [System.Data.SqlDbType]::NVarChar;
 $SqlParameter.Size = 30;

 $SqlCmd.ExecuteNonQuery() | Out-Null;
 $loop--;
}
Write-Host "Small table implicit conversions end time:"
[DateTime]::Now

Sleep -Seconds 10;

#Small table unicode no implicit conversions
$loop = 10000;
Write-Host "Small table unicode no implicit conversion start time:"
[DateTime]::Now
$query = @"SELECT * FROM Sales.SalesOrderDetail "
 "WHERE CarrierTrackingNumber = @CTNumber;"
while($loop -gt 0)
{
 $Value = Get-Random -InputObject $Results;
 $SqlCmd = $SqlConn.CreateCommand();
 $SqlCmd.CommandText = $query;
 $SqlCmd.CommandType = [System.Data.CommandType]::Text;

 $SqlParameter = $SqlCmd.Parameters.AddWithValue("@CTNumber", $Value);
 $SqlParameter.SqlDbType = [System.Data.SqlDbType]::NVarChar;
 $SqlParameter.Size = 30;

 $SqlCmd.ExecuteNonQuery() | Out-Null;
 $loop--;
}
Write-Host "Small table unicode no implicit conversion end time:"
[DateTime]::Now

A second set of tests were run against the SalesOrderDetailEnlarged_ASCII and

SalesOrderDetailEnlarged tables using the same parameterization as the first set of tests to show the

overhead difference as the size of the data stored in the table increases over time. A final set of tests

was also run against the SalesOrderDetail table using the ProductID column as a filter column with

parameter types of int, bigint, and then smallint to provide a comparison of the overhead of implicit

conversions that don’t result in an index scan for comparision.

Note: All of the scripts are attached to this article to allow reproduction of the implicit conversion tests

for further evaluation and comparison.

Test Results

During each of the test executions, Performance Monitor was configured to run a Data Collector Set that

included the Processor\% Processor Time and SQL Server:SQLStatistics\Batch Requests/sec counters to

track the performance overhead for each of the tests. Additionally, Extended Events has been

configured to track the rpc_completed event to allow tracking the average duration, cpu_time, and

logical reads for each of the tests.

http://www.sqlperformance.com/wp-content/uploads/2013/04/Implicit_Conversion_Tests.zip

Small Table CarrierTrackingNumber Results

Figure 1 – Performance Monitor Chart of counters

TestID
Column

Data Type

Parameter

Data Type

Avg %

Processor

Time

Avg Batch

Requests/sec

Duration

h:mm:ss

1 Varchar Varchar 2.5 192.3 0:00:51

2 Varchar Nvarchar 19.4 46.7 0:03:33

3 Nvarchar Nvarchar 2.6 192.3 0:00:51

Table 2 – Performance Monitor data averages

From the results, we can see that the column-side implicit conversion from varchar to nvarchar and the

resulting index scan has a significant impact on the performance of the workload. The average %

Processor Time for the column-side implicit conversion test (TestID = 2) is nearly ten times as much as

the other tests where the column-side implicit conversion, resulting in an index scan, did not occur.

Additionally, the average Batch Requests/sec for the column-side implicit conversion test was just under

25% of the other tests. The duration of the tests where implicit conversions did not occur both took 51

seconds, even though the data was stored as nvarchar in test number 3 using an nvarchar data type,

requiring twice the storage space. This is expected because the table is still smaller than the buffer pool.

TestID Avg cpu_time (µs) Avg duration (µs) Avg logical_reads

1 40.7 154.9 51.6

2 15,640.8 15,760.0 385.6

3 45.3 169.7 52.7

Table 3 – Extended Events averages

The data collected by the rpc_completed event in Extended Events shows that the average cpu_time,

duration, and logical reads associated with the queries that do not perform a column-side implicit

conversion are roughly equivalent, where the column-side implicit conversion incurs a significant CPU

overhead, as well as a longer average duration with significantly more logical reads.

Enlarged Table CarrierTrackingNumber Results

Figure 4 – Performance Monitor Chart of counters

TestID
Column

Data Type

Parameter

Data Type

Avg %

Processor

Time

Avg Batch

Requests/sec

Duration

h:mm:ss

1 Varchar Varchar 7.2 164.0 0:01:00

2 Varchar Nvarchar 83.8 15.4 0:10:49

3 Nvarchar Nvarchar 7.0 166.7 0:01:00

Table 5 – Performance Monitor data averages

As the size of the data increases, the performance overhead of the column-side implicit conversion also

increases. The average % Processor Time for the column-side implicit conversion test (TestID = 2) is,

again, nearly ten times as much as the other tests where the column-side implicit conversion resulting in

an index scan, did not occur. Additionally, the average Batch Requests/sec for the column-side implicit

conversion test was just under 10% of the other tests. The duration of the tests where implicit

conversions did not occur both took one minute, whereas the column-side implicit conversion test

required close to eleven minutes to execute.

TestID Avg cpu_time (µs) Avg duration (µs) Avg logical_reads

1 728.5 1,036.5 569.6

2 214,174.6 59,519.1 4,358.2

3 821.5 1,032.4 553.5

Table 6 – Extended Events averages

The Extended Events results really begin to show the performance overhead caused by the column-side

implicit conversions for the workload. The average cpu_time per execution jumps to over 214ms and is

over 200 times the cpu_time for the statements that do not have the column-side implicit conversions.

The duration is also nearly 60 times that of the statements that do not have the column-side implicit

conversions.

Summary

As the size of the data continues to increase, the overhead associated with column-side implicit

conversions that result in an index scan for the workload will also continue to grow, and the important

thing to remember is that at some point, no amount of hardware will be able to cope with the

performance overhead. Implicit conversions are an easy thing to prevent when a good database schema

design exists, and developers follow good application coding techniques. In situations where the

application coding practices result in parameterization that leverages nvarchar parameterization, it is

better to match the database schema design to the query parameterization than to use varchar columns

in the database design and incur the performance overhead from the column-side implicit conversion.

Download the demo scripts: Implicit_Conversion_Tests.zip (5 KB)

http://www.sqlperformance.com/wp-content/uploads/2013/04/Implicit_Conversion_Tests.zip

Incorrect Results with Merge Join
By Paul White

Every product has bugs, and SQL Server is no exception. Using product features in a slightly unusual way

(or combining relatively new features together) is a great way to find them. Bugs can be interesting, and

even educational, but perhaps some of the joys are lost when the discovery results in your pager going

off at 4am, perhaps after a particularly social night out with friends…

The bug that is the subject of this post is probably reasonably rare in the wild, but it is not a classic edge

case. I know of at least one consultant that has encountered it in a production system. On a completely

unrelated subject, I should take this opportunity to say "hello" to the Grumpy Old DBA (blog).

I will start with some relevant background on merge joins. If you are certain you already know

everything there is to know about merge join, or just want to cut to the chase, feel free to scroll down to

the section titled, "The Bug."

Merge Join

Merge join is not a terribly complicated thing, and can be very efficient in the right circumstances. It

requires that its inputs are sorted on the join keys, and performs best in one-to-many mode (where at

least of its inputs is unique on the join keys). For moderately-sized one-to-many joins, serial merge join

is not a bad choice at all, provided the input sorting requirements can be met without performing an

explicit sort.

Avoiding a sort is most commonly achieved by exploiting the ordering provided by an index. Merge join

can also take advantage of preserved sort order from an earlier, unavoidable sort. A cool thing about

merge join is that it can stop processing input rows as soon as either input runs out of rows. One last

thing: merge join does not care whether the input sort order is ascending or descending (though both

inputs must be the same). The following example uses a standard Numbers table to illustrate most of

the points above:

CREATE TABLE #T1 (col1 integer CONSTRAINT PK1 PRIMARY KEY (col1 DESC));
CREATE TABLE #T2 (col1 integer CONSTRAINT PK2 PRIMARY KEY (col1 DESC));

INSERT #T1 SELECT n FROM dbo.Numbers WHERE n BETWEEN 10000 AND 19999;
INSERT #T2 SELECT n FROM dbo.Numbers WHERE n BETWEEN 18000 AND 21999;

Notice that the indexes enforcing the primary keys on those two tables are defined as descending. The

query plan for the INSERT has a number of interesting features:

http://sqlblogcasts.com/blogs/grumpyolddba/
http://sqlperformance.com/2013/08/t-sql-queries/incorrect-results-with-merge-join#thebug
http://sqlperformance.com/2013/08/t-sql-queries/incorrect-results-with-merge-join#thebug
http://sqlblog.com/blogs/adam_machanic/archive/2006/07/12/you-require-a-numbers-table.aspx

Reading left to right (as is only sensible!) the Clustered Index Insert has the "DML Request Sort" property

set. This means the operator requires rows in Clustered Index key order. The clustered index (enforcing

the primary key in this case) is defined as DESC, so rows with higher values are required to arrive first.

The clustered index on my Numbers table is ASC, so the query optimizer avoids an explicit sort by

seeking to the highest match in the Numbers table (21,999) first, then scanning toward the lowest

match (18,000) in reverse index order. The "Plan Tree" view in SQL Sentry Plan Explorer shows the

reverse (backward) scan clearly:

Backward scanning reverses the natural order of the index. A backward scan of an ASC index key returns

rows in descending key order; a backward scan of a DESC index key returns rows in ascending key order.

The "scan direction" does not indicate returned key order by itself – you have to know whether the

index is ASC or DESC to make that determination.

Using these test tables and data (T1 has 10,000 rows numbered from 10,000 to 19,999 inclusive; T2 has

4,000 rows numbered from 18,000 to 21,999) the following query joins the two tables together and

returns results in descending order of both keys:

http://www.sqlsentry.net/plan-explorer/sql-server-query-view.asp

SELECT
 T1.col1,
 T2.col1
FROM #T1 AS T1
JOIN #T2 AS T2
 ON T2.col1 = T1.col1
ORDER BY
 T1.col1 DESC,
 T2.col1 DESC;

The query returns the correct matching 2,000 rows as you would expect. The post-execution plan is as

follows:

The Merge Join is not running in many-to-many mode (the top input is unique on the join keys) and the

2,000 row cardinality estimate is exactly correct. The Clustered Index Scan of table T2 is ordered (though

we have to wait a moment to discover whether that order is forward or backward) and the cardinality

estimate of 4,000 rows is also exactly right. The Clustered Index Scan of table T1 is also ordered, but only

2,001 rows were read whereas 10,000 were estimated. The plan tree view shows both Clustered Index

Scans are ordered forward:

Recall that reading a DESC index FORWARD will produce rows in reverse key order. This is exactly what is

required by the ORDER BY T1.col DESC, T2.col1 DESC clause, so no explicit sort is necessary. Pseudo-

code for one-to-many Merge Join (reproduced from Craig Freedman's Merge Join blog) is:

The descending order scan of T1 returns rows starting at 19,999 and working down towards 10,000. The

descending order scan of T2 returns rows starting at 21,999 and working down towards 18,000. All

4,000 rows in T2 are eventually read, but the iterative merge process stops when key value 17,999 is

read from T1, because T2 runs out of rows. Merge processing therefore completes without fully

reading T1. It reads rows from 19,999 down to 17,999 inclusive; a total of 2,001 rows as shown in the

execution plan above.

Feel free to re-run the test with ASC indexes instead, also changing the ORDER BY clause

from DESC to ASC. The execution plan produced will be very similar, and no sorts will be needed.

To summarize the points that will be important in a moment, Merge Join requires join-key sorted inputs,

but it does not matter whether the keys are sorted ascending or descending.

The Bug

To reproduce the bug, at least one of our tables needs to be partitioned. To keep the results

manageable, this example will use just a small number of rows, so the partitioning function needs small

boundaries as well:

CREATE PARTITION FUNCTION PF (integer)
AS RANGE RIGHT

http://blogs.msdn.com/b/craigfr/archive/2006/08/03/687584.aspx

FOR VALUES (5, 10, 15);

CREATE PARTITION SCHEME PS
AS PARTITION PF
ALL TO ([PRIMARY]);

The first table contains two columns, and is partitioned on the PRIMARY KEY:

CREATE TABLE dbo.T1
(
 T1ID integer IDENTITY (1,1) NOT NULL,
 SomeID integer NOT NULL,

 CONSTRAINT [PK dbo.T1 T1ID]
 PRIMARY KEY CLUSTERED (T1ID)
 ON PS (T1ID)
);

The second table is not partitioned. It contains a primary key and a column that will join to the first

table:

CREATE TABLE dbo.T2
(
 T2ID integer IDENTITY (1,1) NOT NULL,
 T1ID integer NOT NULL,

 CONSTRAINT [PK dbo.T2 T2ID]
 PRIMARY KEY CLUSTERED (T2ID)
 ON [PRIMARY]
);

The Sample Data

The first table has 14 rows, all with the same value in the SomeID column. SQL Server assigns

the IDENTITY column values, numbered 1 to 14.

INSERT dbo.T1
 (SomeID)
VALUES
 (123), (123), (123),
 (123), (123), (123),
 (123), (123), (123),
 (123), (123), (123),
 (123), (123);

The second table is simply populated with the IDENTITY values from table one:

INSERT dbo.T2 (T1ID)
SELECT T1ID
FROM dbo.T1;

The data in the two tables looks like this:

The Test Query

The first query simply joins both tables, applying a single WHERE clause predicate (which happens to

match all rows in this greatly simplified example):

SELECT
 T2.T2ID
FROM dbo.T1 AS T1
JOIN dbo.T2 AS T2
 ON T2.T1ID = T1.T1ID
WHERE
 T1.SomeID = 123;

The result contains all 14 rows, as expected:

Due to the small number of rows, the optimizer chooses a nested loops join plan for this query:

The results are the same (and still correct) if we force a hash or merge join:

SELECT
 T2.T2ID
FROM dbo.T1 AS T1
JOIN dbo.T2 AS T2
 ON T2.T1ID = T1.T1ID
WHERE
 T1.SomeID = 123
OPTION (HASH JOIN);

SELECT
 T2.T2ID
FROM dbo.T1 AS T1
JOIN dbo.T2 AS T2
 ON T2.T1ID = T1.T1ID
WHERE
 T1.SomeID = 123
OPTION (MERGE JOIN);

The Merge Join there is one-to-many, with an explicit sort on T1ID required for table T2.

The Descending Index Problem

All is well until one day (for good reasons that need not concern us here) another administrator adds a

descending index on the SomeID column of table 1:

CREATE NONCLUSTERED INDEX [dbo.T1 SomeID]
ON dbo.T1 (SomeID DESC);

Our query continues to produce correct results when the optimizer chooses a Nested Loops or Hash

Join, but it is a different story when a Merge Join is used. The following still uses a query hint to force

the Merge Join, but this is just a consequence of the low row counts in the example. The optimizer

would naturally choose the same Merge Join plan with different table data.

SELECT
 T2.T2ID
FROM dbo.T1 AS T1
JOIN dbo.T2 AS T2
 ON T2.T1ID = T1.T1ID
WHERE
 T1.SomeID = 123
OPTION (MERGE JOIN);

The execution plan is:

The optimizer has chosen to use the new index, but the query now produces only five rows of output:

What happened to the other 9 rows? To be clear, this result is incorrect. The data has not changed, so all

14 rows should be returned (as they still are with a Nested Loops or Hash Join plan).

Cause and Explanation

The new nonclustered index on SomeID is not declared as unique, so the clustered index key is silently

added to all nonclustered index levels. SQL Server adds the T1ID column (the clustered key) to the

nonclustered index just as if we had created the index like this:

CREATE NONCLUSTERED INDEX [dbo.T1 SomeID]
ON dbo.T1 (SomeID DESC, T1ID);

Notice the lack of a DESC qualifier on the silently-added T1ID key. Index keys are ASC by default. This is

not a problem in itself (though it contributes). The second thing that happens to our index automatically

is that it is partitioned in the same way the base table is. So, the full index specification, if we were to

write it out explicitly, would be:

CREATE NONCLUSTERED INDEX [dbo.T1 SomeID]
ON dbo.T1 (SomeID DESC, T1ID ASC)
ON PS (T1ID);

This is now quite a complex structure, with keys in all sorts of different orders. It is complex enough for

the query optimizer to get it wrong when reasoning about the sort order provided by the index. To

illustrate, consider the following simple query:

SELECT
 T1ID,
 PartitionID = $PARTITION.PF(T1ID)
FROM dbo.T1
WHERE
 SomeID = 123
ORDER BY
 T1ID ASC;

The extra column will just show us which partition the current row belongs in. Otherwise, it is just a

simple query that returns T1ID values in ascending order, WHERE SomeID = 123. Unfortunately, the

results are not what is specified by the query:

The query requires that T1ID values should be returned in ascending order, but that is not what we get.

We do get values in ascending order per partition, but the partitions themselves are returned in reverse

order! If the partitions were returned in ascending order (and the T1ID values remained sorted within

each partition as shown) the result would be correct.

The query plan shows that the optimizer was confused by the leading DESC key of the index, and

thought it needed to read the partitions in reverse order for correct results:

The partition seek starts at the right-most partition (4) and proceeds backwards to partition 1. You might

think we could fix the issue by explicitly sorting on partition number ASC in the ORDER BY clause:

SELECT
 T1ID,
 PartitionID = $PARTITION.PF(T1ID)
FROM dbo.T1
WHERE
 SomeID = 123
ORDER BY
 PartitionID ASC, -- New!
 T1ID ASC;

This query returns the same results (this is not a misprint or a copy/paste error):

The partition id is still in descending order (not ascending, as specified) and T1ID is only sorted

ascending within each partition. Such is the optimizer's confusion, it really does think (take a deep

breath now) that scanning the partitioned leading-descending-key index in a forward direction, but with

partitions reversed, will result in the order specified by the query.

I don't blame it to be frank, the various sort order considerations make my head hurt too.

As a final example, consider:

SELECT
 T1ID
FROM dbo.T1
WHERE
 SomeID = 123
ORDER BY
 T1ID DESC;

The results are:

Again, the T1ID sort order within each partition is correctly descending, but the partitions themselves are

listed backward (they go from 1 to 3 down the rows). If the partitions were returned in reverse order, the

results would correctly be 14, 13, 12, 11, 10, 9, … 5, 4, 3, 2, 1.

Back to the Merge Join

The cause of the incorrect results with the Merge Join query is now apparent:

SELECT
 T2.T2ID
FROM dbo.T1 AS T1
JOIN dbo.T2 AS T2
 ON T2.T1ID = T1.T1ID
WHERE
 T1.SomeID = 123
OPTION (MERGE JOIN);

The Merge Join requires sorted inputs. The input from T2 is explicitly sorted by T1TD so that is ok. The

optimizer incorrectly reasons that the index on T1 can provide rows in T1ID order. As we have seen, this

is not the case. The Index Seek produces the same output as a query we have already seen:

SELECT
 T1ID
FROM dbo.T1
WHERE

 SomeID = 123
ORDER BY
 T1ID ASC;

Only the first 5 rows are in T1ID order. The next value (5) is certainly not in ascending order, and the

Merge Join interprets this as end-of-stream rather than producing an error (personally I expected a

retail assertion here). Anyway, the effect is that the Merge Join incorrectly finishes processing early. As a

reminder, the (incomplete) results are:

Conclusion

This is a very serious bug in my view. A simple index seek can return results that do not respect

the ORDER BY clause. More to the point, the optimizer's internal reasoning is completely broken for

partitioned non-unique nonclustered indexes with a descending leading key.

Yes, this is a slightly unusual arrangement. But, as we have seen, correct results can be suddenly

replaced by incorrect results just because someone added a descending index. Remember the added

index looked innocent enough: no explicit ASC/DESC key mismatch, and no explicit partitioning.

The bug is not limited to Merge Joins. Potentially any query that involves a partitioned table and which

relies on index sort order (explicit or implicit) could fall victim. This bug exists in all versions of SQL

Server from 2008 to 2014 CTP 1 inclusive. Windows SQL Azure Database does not support partitioning,

so the issue does not arise. SQL Server 2005 used a different implementation model for partitioning

(based on APPLY) and does not suffer from this issue either.

If you have a moment, please consider voting on my Connect item for this bug.

Resolution

The fix for this issue is now available and documented in a Knowledge Base article. Please note the fix

requires a code update and trace flag 4199, which enables a range of other query processor changes. It

is unusual for an incorrect-results bug to be fixed under 4199. I asked for clarification on that and the

response was:

“Even though this problem involves incorrect results like other hotfixes involving the Query Processor we

have only enabled this fix under trace flag 4199 for SQL Server 2008, 2008 R2, and 2012. However, this

fix is “on” by default without the trace flag in SQL Server 2014 RTM.”

https://connect.microsoft.com/SQLServer/feedback/details/797837/incorrect-results-partitioned-nonclustered-index-with-descending-key
http://support.microsoft.com/kb/2892741

Performance Surprises and Assumptions : Arbitrary TOP 1
By Aaron Bertrand

In a recent thread on StackExchange, a user had the following issue:

“I want a query that returns the first person in the table with a GroupID = 2. If nobody with a GroupID = 2

exists, I want the first person with a RoleID = 2.”

Let's discard, for now, the fact that "first" is terribly defined. In actuality, the user didn't care which

person they got, whether it came randomly, arbitrarily, or through some explicit logic in addition to their

main criteria. Ignoring that, let's say you have a basic table:

CREATE TABLE dbo.Users
(
 UserID INT PRIMARY KEY,
 GroupID INT,
 RoleID INT
);

In the real world there are probably other columns, additional constraints, maybe foreign keys to other

tables, and certainly other indexes. But let's keep this simple, and come up with a query.

Likely Solutions

With that table design, solving the problem seems straightforward, right? The first attempt you would

probably make is:

SELECT TOP (1) UserID, GroupID, RoleID
 FROM dbo.Users
 WHERE GroupID = 2 OR RoleID = 2
 ORDER BY CASE GroupID WHEN 2 THEN 1 ELSE 2 END;

This uses TOP and a conditional ORDER BY to treat those users with a GroupID = 2 as higher priority. The

plan for this query is pretty simple, with most of the cost happening in a sort operation. Here are

runtime metrics against an empty table:

This looks to be about as good as you can do – a simple plan that only scans the table once, and other

than a pesky sort that you should be able to live with, no problem, right?

Well, another answer in the thread offered up this more complex variation:

SELECT TOP (1) UserID, GroupID, RoleID FROM
(
 SELECT TOP (1) UserID, GroupID, RoleID, o = 1
 FROM dbo.Users
 WHERE GroupId = 2

 UNION ALL

 SELECT TOP (1) UserID, GroupID, RoleID, o = 2
 FROM dbo.Users
 WHERE RoleID = 2
)
AS x ORDER BY o;

On first glance, you would probably think that this query is extremely less efficient, as it requires two

clustered index scans. You'd definitely be right about that; here is the plan and runtime metrics against

an empty table:

But now, let's add data

In order to test these queries, I wanted to use some realistic data. So first I populated 1,000 rows from

sys.all_objects, with modulo operations against the object_id to get some decent distribution:

INSERT dbo.Users(UserID, GroupID, RoleID)
SELECT TOP (1000) ABS([object_id]), ABS([object_id]) % 7, ABS([object_id]) % 4
FROM sys.all_objects
ORDER BY [object_id];

SELECT COUNT(*) FROM dbo.Users WHERE GroupID = 2; -- 126
SELECT COUNT(*) FROM dbo.Users WHERE RoleID = 2; -- 248
SELECT COUNT(*) FROM dbo.Users WHERE GroupID = 2 AND RoleID = 2; -- 26 overlap

Now when I run the two queries, here are the runtime metrics:

The UNION ALL version comes in with slightly less I/O (4 reads vs. 5), lower duration, and lower

estimated overall cost, while the conditional ORDER BY version has lower estimated CPU cost. The data

here is pretty small to make any conclusions about; I just wanted it as a stake in the ground. Now, let's

change the distribution so that most rows meet at least one of the criteria (and sometimes both):

DROP TABLE dbo.Users;
GO

CREATE TABLE dbo.Users
(
 UserID INT PRIMARY KEY,
 GroupID INT,
 RoleID INT
);
GO

INSERT dbo.Users(UserID, GroupID, RoleID)
SELECT TOP (1000) ABS([object_id]), ABS([object_id]) % 2 + 1,
 SUBSTRING(RTRIM([object_id]),7,1) % 2 + 1
FROM sys.all_objects
WHERE ABS([object_id]) > 9999999
ORDER BY [object_id];

SELECT COUNT(*) FROM dbo.Users WHERE GroupID = 2; -- 500
SELECT COUNT(*) FROM dbo.Users WHERE RoleID = 2; -- 475
SELECT COUNT(*) FROM dbo.Users WHERE GroupID = 2 AND RoleID = 2; -- 221 overlap

This time, the conditional order by has the highest estimated costs in both CPU and I/O:

But again, at this data size, there is relatively inconsequential impact to duration and reads, and aside

from the estimated costs (which are largely made up anyway), it is hard to declare a winner here.

So, let's add a lot more data

While I rather enjoy building sample data from the catalog views, since everybody has those, this time

I'm going to draw on the table Sales.SalesOrderHeaderEnlarged from AdventureWorks2012, expanded

using this script from Jonathan Kehayias. On my system, this table has 1,258,600 rows. The following

script will insert a million of those rows into our dbo.Users table:

-- DROP and CREATE, as before

INSERT dbo.Users(UserID, GroupID, RoleID)
SELECT TOP (1000000) SalesOrderID, SalesOrderID % 7, SalesOrderID % 4
FROM Sales.SalesOrderHeaderEnlarged;

SELECT COUNT(*) FROM dbo.Users WHERE GroupID = 2; -- 142,857
SELECT COUNT(*) FROM dbo.Users WHERE RoleID = 2; -- 250,000
SELECT COUNT(*) FROM dbo.Users WHERE GroupID = 2 AND RoleID = 2; -- 35,714 overlap

http://www.sqlskills.com/blogs/jonathan/enlarging-the-adventureworks-sample-databases/

Okay, now when we run the queries, we see a problem: the ORDER BY variation has gone parallel and

has obliterated both reads and CPU, yielding a nearly 120X difference in duration:

Eliminating parallelism (using MAXDOP) did not help:

(The UNION ALL plan still looks the same.)

And if we change the skew to be even, where 95% of the rows meet at least one criteria:

-- DROP and CREATE, as before

INSERT dbo.Users(UserID, GroupID, RoleID)
SELECT TOP (475000) SalesOrderID, 2, SalesOrderID % 7
FROM Sales.SalesOrderHeaderEnlarged
WHERE SalesOrderID % 2 = 1
UNION ALL
SELECT TOP (475000) SalesOrderID, SalesOrderID % 7, 2
FROM Sales.SalesOrderHeaderEnlarged
WHERE SalesOrderID % 2 = 0;

INSERT dbo.Users(UserID, GroupID, RoleID)
SELECT TOP (50000) SalesOrderID, 1, 1
FROM Sales.SalesOrderHeaderEnlarged AS h
WHERE NOT EXISTS (SELECT 1 FROM dbo.Users
 WHERE UserID = h.SalesOrderID);

SELECT COUNT(*) FROM dbo.Users WHERE GroupID = 2; -- 542,851
SELECT COUNT(*) FROM dbo.Users WHERE RoleID = 2; -- 542,851
SELECT COUNT(*) FROM dbo.Users WHERE GroupID = 2 AND RoleID = 2; -- 135,702 overlap

The queries still show that the sort is prohibitively expensive:

And with MAXDOP = 1 it was much worse (just look at duration):

Finally, how about 95% skew in either direction (e.g. most rows satisfy the GroupID criteria, or most

rows satisfy the RoleID criteria)? This script will ensure at least 95% of the data has GroupID = 2:

-- DROP and CREATE, as before

INSERT dbo.Users(UserID, GroupID, RoleID)
SELECT TOP (950000) SalesOrderID, 2, SalesOrderID % 7
FROM Sales.SalesOrderHeaderEnlarged;

INSERT dbo.Users(UserID, GroupID, RoleID)
SELECT TOP (50000) SalesOrderID, SalesOrderID % 7, 2
FROM Sales.SalesOrderHeaderEnlarged AS h
WHERE NOT EXISTS (SELECT 1 FROM dbo.Users
 WHERE UserID = h.SalesOrderID);

SELECT COUNT(*) FROM dbo.Users WHERE GroupID = 2; -- 957,143
SELECT COUNT(*) FROM dbo.Users WHERE RoleID = 2; -- 185,714
SELECT COUNT(*) FROM dbo.Users WHERE GroupID = 2 AND RoleID = 2; -- 142,857 overlap

Results are quite similar (I'm just going to stop trying the MAXDOP thing from now on):

And then if we skew the other way, where at least 95% of the data has RoleID = 2:

-- DROP and CREATE, as before

INSERT dbo.Users(UserID, GroupID, RoleID)
SELECT TOP (950000) SalesOrderID, 2, SalesOrderID % 7
FROM Sales.SalesOrderHeaderEnlarged;

INSERT dbo.Users(UserID, GroupID, RoleID)
SELECT TOP (50000) SalesOrderID, SalesOrderID % 7, 2
FROM Sales.SalesOrderHeaderEnlarged AS h
WHERE NOT EXISTS (SELECT 1 FROM dbo.Users
 WHERE UserID = h.SalesOrderID);

SELECT COUNT(*) FROM dbo.Users WHERE GroupID = 2; -- 185,714
SELECT COUNT(*) FROM dbo.Users WHERE RoleID = 2; -- 957,143
SELECT COUNT(*) FROM dbo.Users WHERE GroupID = 2 AND RoleID = 2; -- 142,857 overlap

Results:

Conclusion

In not one single case that I could manufacture did the "simpler" ORDER BY query – even with one less

clustered index scan – outperform the more complex UNION ALL query. Sometimes you have to be very

wary about what SQL Server has to do when you introduce operations like sorts into your query

semantics, and not rely on simplicity of the plan alone (never mind any bias you might have based on

previous scenarios).

Your first instinct might often be correct, but I bet there are times when there is a better option that

looks, on the surface, like it couldn't possibly work out better. As in this example. I'm getting quite a bit

better about questioning assumptions I've made from observations, and not making blanket statements

like "scans never perform well" and "simpler queries always run faster." If you eliminate the words

never and always from your vocabulary, you may find yourself putting more of those assumptions and

blanket statements to the test, and ending up much better off.

Performance Surprises and Assumptions : DATEDIFF
By Aaron Bertrand

It is very easy to prove that the following two expressions yield the exact same result: the first day of the

current month.

SELECT DATEADD(MONTH, DATEDIFF(MONTH, 0, GETDATE()), 0),
 CONVERT(DATE, DATEADD(DAY, 1 - DAY(GETDATE()), GETDATE()));

And they take about the same amount of time to compute:

SELECT SYSDATETIME();
GO
DECLARE @d DATE = DATEADD(MONTH, DATEDIFF(MONTH, 0, GETDATE()), 0);
GO 1000000
GO
SELECT SYSDATETIME();
GO
DECLARE @d DATE = DATEADD(DAY, 1 - DAY(GETDATE()), GETDATE());
GO 1000000
SELECT SYSDATETIME();

On my system, both batches took about 175 seconds to complete.

So, why would you prefer one method over the other? When one of them really messes with
cardinality estimations.

As a quick primer, let's compare these two values:

SELECT DATEADD(MONTH, DATEDIFF(MONTH, 0, GETDATE()), 0), -- today: 2013-09-01
 DATEADD(MONTH, DATEDIFF(MONTH, GETDATE(), 0), 0); -- today: 1786-05-01
--------------------------------------^^^^^^^^^^^^ notice how these are swapped

(Note that the actual values represented here will change, depending on when you are reading this post
– "today" referenced in the comment is September 5, 2013, the day this post was written. In October
2013, for example, the output will be 2013-10-01 and 1786-04-01.)

With that out of the way, let me show you what I mean…

A repro

Let's create a very simple table, with only a clustered DATE column, and load 15,000 rows with the
value 1786-05-01 and 50 rows with the value 2013-09-01:

CREATE TABLE dbo.DateTest
(
 CreateDate DATE
);

CREATE CLUSTERED INDEX x ON dbo.DateTest(CreateDate);

INSERT dbo.DateTest(CreateDate)
SELECT TOP (15000) DATEADD(MONTH, DATEDIFF(MONTH, GETDATE(), 0), 0)
FROM sys.all_objects AS s1
CROSS JOIN sys.all_objects AS s2
UNION ALL
SELECT TOP (50) DATEADD(MONTH, DATEDIFF(MONTH, 0, GETDATE()), 0)
FROM sys.all_objects;

And then let's look at the actual plans for these two queries:

SELECT /* Query 1 */ COUNT(*) FROM dbo.DateTest

 WHERE CreateDate = DATEADD(MONTH, DATEDIFF(MONTH, 0, GETDATE()), 0);

SELECT /* Query 2 */ COUNT(*) FROM dbo.DateTest

 WHERE CreateDate = DATEADD(MONTH, DATEDIFF(MONTH, GETDATE(), 0), 0);

The graphical plans look right:

Graphical plan for DATEDIFF(MONTH, 0, GETDATE()) query

Graphical plan for DATEDIFF(MONTH, GETDATE(), 0) query

But the estimated costs are out of whack – note how much higher the estimated costs are for the first
query, which only returns 50 rows, compared to the second query, which returns 15,000 rows!

Statement grid showing estimated costs

And the Top Operations tab shows that the first query (looking for 2013-09-01) estimated that it would
find 15,000 rows, when in actuality it only found 50; the second query shows the opposite: it expected
to find 50 rows matching 1786-05-01, but found 15,000. Based on incorrect cardinality estimates like
this, I'm sure you can imagine what kind of drastic effect this could have on more complex queries
against much larger data sets.

Top Operations tab for first query [DATEDIFF(MONTH, 0, GETDATE())

]
Top Operations tab for second query [DATEDIFF(MONTH, 0, GETDATE())]

A slightly different variation of the query, using a different expression to calculate the beginning of the

month (alluded to at the beginning of the post), does not exhibit this symptom:

SELECT /* Query 3 */ COUNT(*) FROM dbo.DateTest
 WHERE CreateDate = CONVERT(DATE, DATEADD(DAY, 1 - DAY(GETDATE()), GETDATE()));

The plan is very similar to query 1 above, and if you didn't look closer you would think these plans are

equivalent:

Graphical plan for non-DATEDIFF query

When you look at the Top Operations tab here, though, you see that the estimate is bang on:

Top Operations tab showing accurate estimates

On this particular data size and query, the net performance impact (most notably duration and reads) is

largely irrelevant. And it is important to note that the queries themselves still return correct data; it is

just that the estimates that are wrong (and could lead to a worse plan than I've demonstrated here).

That said, if you are deriving constants using DATEDIFF within your queries this way, you really should

test this impact in your environment.

So why does this happen?

To put it simply, SQL Server has a bug where it swaps the second and third arguments to DATEDIFF when

evaluating the expression for cardinality estimation. This appears to involve constant folding, at least

peripherally; there are a lot more details on constant folding in this Books Online article but,

unfortunately, the article does not reveal any information about this particular bug.

There is a fix - or is there?

There is a knowledge base article (KB #2481274) that claims to address the problem, but it has a few

problems of its own:

1. The KB article claims that the issue has been fixed in various service packs or cumulative updates

for SQL Server 2005, 2008 and 2008 R2. However, the symptom is still present in branches that

aren't explicitly mentioned there, even though they have seen many additional CUs since the

article was published. I can still reproduce this issue on SQL Server 2008 SP3 CU #8 (10.0.5828)

and SQL Server 2012 SP1 CU #5 (11.0.3373).

2. It neglects to mention that, in order to benefit from the fix, you need to turn on trace flag 4199

(and "benefit" from all of the other ways that specific trace flag can affect the optimizer). The

fact that this trace flag is required for the fix is mentioned in a related Connect item, #630583,

but this information hasn't made it back to the KB article. Neither the KB article nor the Connect

item give any insight into the cause (that the arguments to DATEDIFF have been swapped during

evaluation). On the plus side, running the above queries with the trace flag on (using OPTION

(QUERYTRACEON 4199)) yields plans that do not have the incorrect estimate issue.

3. It suggests you use dynamic SQL to work around the issue. In my tests, using a different

expression (such as the one above that doesn't use DATEDIFF) overcame the issue in modern

builds of both SQL Server 2008 and SQL Server 2012. Recommending dynamic SQL here is

unnecessarily complex and probably overkill, given that a different expression could solve the

problem. But if you were to use dynamic SQL, I would do it this way instead of the way they

recommend in the KB article, most importantly to minimize SQL injection risks:

DECLARE
 @date DATE = DATEADD(MONTH, DATEDIFF(MONTH, 0, GETDATE()), 0),
 @sql NVARCHAR(MAX) = N'SELECT COUNT(*) FROM dbo.DateTest
 WHERE CreateDate = @date;';

EXEC sp_executesql @sql, N'@date DATE', @date;

(And you can add OPTION (RECOMPILE) there, depending on how you want SQL Server to handle

parameter sniffing.)

This leads to the same plan as the earlier query that doesn't use DATEDIFF, with proper estimates and

99.1% of the cost in the clustered index seek.

http://msdn.microsoft.com/en-us/library/ms175933.aspx
http://support.microsoft.com/kb/2481274
http://connect.microsoft.com/SQLServer/feedback/details/630583/incorrect-estimate-with-condition-that-includes-datediff

Another approach that might tempt you (and by you, I mean me, when I first started investigating) is to

use a variable to calculate the value beforehand:

DECLARE @d DATE = DATEADD(MONTH, DATEDIFF(MONTH, 0, GETDATE()), 0);

SELECT COUNT(*) FROM dbo.DateTest WHERE CreateDate = @d;

The problem with this approach is that, with a variable, you are going to end up with a stable plan, but

the cardinality is going to be based on a guess (and the type of guess will depend on the presence or

absence of statistics). In this case, here are the estimated vs. actual:

Top Operations tab for query that uses a variable

This is clearly not right; it seems SQL Server has guessed that the variable would match 50% of the rows

in the table.

SQL Server 2014

I found a slightly different issue in SQL Server 2014. The first two queries are fixed (by changes to the

cardinality estimator or other fixes), meaning that the DATEDIFF arguments are no longer switched. Yay!

However, a regression seems to have been introduced to the workaround of using a different expression

- now it suffers from an inaccurate estimate (based on the same 50% guess as using a variable). These

are the queries I ran:

SELECT /* 0, GETDATE() (2013) */ COUNT(*) FROM dbo.DateTest
 WHERE CreateDate = DATEADD(MONTH, DATEDIFF(MONTH, 0, GETDATE()), 0);

SELECT /* GETDATE(), 0 (1786) */ COUNT(*) FROM dbo.DateTest
 WHERE CreateDate = DATEADD(MONTH, DATEDIFF(MONTH, GETDATE(), 0), 0);

SELECT /* Non-DATEDIFF */ COUNT(*) FROM dbo.DateTest
 WHERE CreateDate = CONVERT(DATE, DATEADD(DAY, 1 - DAY(GETDATE()), GETDATE()));

DECLARE @d DATE = DATEADD(DAY, 1 - DAY(GETDATE()), GETDATE());

SELECT /* Variable */ COUNT(*) FROM dbo.DateTest WHERE CreateDate = @d;

DECLARE
 @date DATE = DATEADD(MONTH, DATEDIFF(MONTH, 0, GETDATE()), 0),
 @sql NVARCHAR(MAX) = N'SELECT /* Dynamic SQL */ COUNT(*) FROM dbo.DateTest
 WHERE CreateDate = @date;';

EXEC sp_executesql @sql, N'@date DATE', @date;

Here is the statement grid comparing the estimated costs and actual runtime metrics:

Estimated costs for the 5 specimen queries on SQL Server 2014

And these are their estimated and actual row counts (assembled using Photoshop):

Estimated and actual row counts for the 5 queries on SQL Server 2014

It is clear from this output that the expression that previously solved the issue has now introduced a

different one. I am not sure if this is a symptom of running in a CTP (e.g. something that will be fixed) or

if this truly is a regression.

In this case, trace flag 4199 (on its own) has no effect; the new cardinality estimator is making guesses

and simply isn't correct. Whether it leads to an actual performance issue depends a lot on many other

factors beyond the scope of this post.

If you come across this issue, you can - at least in current CTPs - restore the old behavior using OPTION

(QUERYTRACEON 9481, QUERYTRACEON 4199). Trace flag 9481 disables the new cardinality estimator,

as described in these release notes (which will certainly disappear or at least move at some point). This

in turn restores the correct estimates for the non-DATEDIFF version of the query, but unfortunately still

does not solve the issue where a guess is made based on a variable (and using TF9481 alone, without

TF4199, forces the first two queries to regress to the old argument-swapping behavior).

Conclusion

I will admit this was a huge surprise to me. Kudos to Martin Smith and t-clausen.dk for persevering and

convincing me that this was a real and not an imagined issue. Also a big thanks to Paul White

(@SQL_Kiwi) who helped me keep my sanity and reminded me of the things I shouldn't say. :-)

Being unaware of this bug, I was adamant that the better query plan was generated simply by changing

the query text at all, not due to the specific change. As it turns out, sometimes a change to a query that

you would assume will make no difference, actually will. So I recommend that if you have any similar

query patterns in your environment, you test them and make sure cardinality estimates are coming out

right. And make a note to test them again when you upgrade.

http://msdn.microsoft.com/en-us/library/dn169381(v=sql.15).aspx
http://stackoverflow.com/questions/18241977/query-runs-slow-with-date-expression-but-fast-with-string-literal
http://twitter.com/SQL_Kiwi

For the last time, NO, you can’t trust IDENT_CURRENT()
By Aaron Bertrand

I had a discussion yesterday with Kendal Van Dyke (@SQLDBA) about IDENT_CURRENT(). Basically,

Kendal had this code, which he had tested and trusted on its own, and wanted to know if he could rely

on IDENT_CURRENT() being accurate in a high-scale, concurrent environment:

BEGIN TRANSACTION;
INSERT dbo.TableName(ColumnName) VALUES('Value');
SELECT IDENT_CURRENT('dbo.TableName');
COMMIT TRANSACTION;

The reason he had to do this is because he needs to return the generated IDENTITY value to the client.

The typical ways we do this are:

 SCOPE_IDENTITY()

 OUTPUT clause

 @@IDENTITY

 IDENT_CURRENT()

Some of these are better than others, but that's been done to death, and I'm not going to get into it

here. In Kendal's case, IDENT_CURRENT was his last and only resort, because:

 TableName had an INSTEAD OF INSERT trigger, making both SCOPE_IDENTITY() and the OUTPUT

clause useless from the caller, because:

o SCOPE_IDENTITY() returns NULL, since the insert actually happened in a different scope

o the OUTPUT clause generates error Msg 334 because of the trigger

 He eliminated @@IDENTITY; consider that the INSTEAD OF INSERT trigger could now (or might

later be changed to) insert into other tables that have their own IDENTITY columns, which would

mess up the returned value. This would also thwart SCOPE_IDENTITY(), if it were possible.

 And finally, he couldn't use the OUTPUT clause (or a resultset from a second query of the

inserted pseudo-table after the eventual insert) within the trigger, because this capability

requires a global setting, and has been deprecated since SQL Server 2005. Understandably,

Kendal's code needs to be forward compatible and, when possible, not rely completely on

certain database or server settings.

So, back to Kendal's reality. His code seems safe enough – it's in a transaction, after all; what could go

wrong? Well, let's take a look at a few important sentences from the IDENT_CURRENT

documentation (emphasis mine, because these warnings are there for good reason):

Returns the last identity value generated for a specified table or view. The last
identity value generated can be for any session and any scope.
…

http://twitter.com/SQLDBA
http://technet.microsoft.com/en-us/library/ms143729(v=sql.90).aspx
http://technet.microsoft.com/en-us/library/ms175098.aspx
http://technet.microsoft.com/en-us/library/ms175098.aspx

Be cautious about using IDENT_CURRENT to predict the next generated identity value.

The actual generated value may be different from IDENT_CURRENT plus

IDENT_INCR because of insertions performed by other sessions.

Transactions are barely mentioned in the body of the document (only in the context of failure, not

concurrency), and no transactions are used in any of the samples. So, let's test out what Kendal was

doing, and see if we can get it to fail when multiple sessions are running concurrently. I'm going to

create a log table to keep track of the values generated by each session – both the identity value that

was actually generated (using an after trigger), and the value claimed to be generated according to

IDENT_CURRENT().

First, the tables and triggers:

-- the destination table:

CREATE TABLE dbo.TableName
(
 ID INT IDENTITY(1,1),
 seq INT
);

-- the log table:

CREATE TABLE dbo.IdentityLog
(
 SPID INT,
 seq INT,
 src VARCHAR(20), -- trigger or ident_current
 id INT
);
GO

-- the trigger, adding my logging:

CREATE TRIGGER dbo.InsteadOf_TableName
ON dbo.TableName
INSTEAD OF INSERT
AS
BEGIN
 INSERT dbo.TableName(seq) SELECT seq FROM inserted;

 -- this is just for our logging purposes here:
 INSERT dbo.IdentityLog(SPID,seq,src,id)
 SELECT @@SPID, seq, 'trigger', SCOPE_IDENTITY()
 FROM inserted;
END
GO

Now, open a handful of query windows, and paste this code, executing them as close together as

possible to ensure the most overlap:

SET NOCOUNT ON;

DECLARE @seq INT = 0;

WHILE @seq <= 100000
BEGIN
 BEGIN TRANSACTION;

 INSERT dbo.TableName(seq) SELECT @seq;
 INSERT dbo.IdentityLog(SPID,seq,src,id)
 SELECT @@SPID,@seq,'ident_current',IDENT_CURRENT('dbo.TableName');

 COMMIT TRANSACTION;
 SET @seq += 1;
END

Once all of the query windows have completed, run this query to see a few random rows where

IDENT_CURRENT returned the wrong value, and a count of how many rows in total were affected by this

misreported number:

SELECT TOP (10)
 id_cur.SPID,
 [ident_current] = id_cur.id,
 [actual id] = tr.id,
 total_bad_results = COUNT(*) OVER()
FROM dbo.IdentityLog AS id_cur
INNER JOIN dbo.IdentityLog AS tr
 ON id_cur.SPID = tr.SPID
 AND id_cur.seq = tr.seq
 AND id_cur.id <> tr.id
WHERE id_cur.src = 'ident_current'
 AND tr.src = 'trigger'
ORDER BY NEWID();

Here are my 10 rows for one test:

I found it surprising that almost a third of the rows were off. Your results will certainly vary, and may

depend on the speed of your drives, recovery model, log file settings, or other factors. On two different

machines, I had vastly different failure rates – by a factor of 10 (a slower machine only had in the

neighborhood of 10,000 failures, or roughly 3%).

Immediately it's clear that a transaction isn't enough to prevent IDENT_CURRENT from pulling the

IDENTITY values generated by other sessions. How about a SERIALIZABLE transaction? First, clear the

two tables:

TRUNCATE TABLE dbo.TableName;
TRUNCATE TABLE dbo.IdentityLog;

Then, add this code to the beginning of the script in multiple query windows, and run them again as

concurrently as possible:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

This time, when I run the query against the IdentityLog table, it shows that SERIALIZABLE may have

helped a little bit, but it hasn't solved the problem:

And while wrong is wrong, it looks from my sample results that the IDENT_CURRENT value is usually

only off by one or two. However, this query should yield that it can be *way* off. In my test runs, this

result was as high as 236:

SELECT MAX(ABS(id_cur.id - tr.id))
FROM dbo.IdentityLog AS id_cur
INNER JOIN dbo.IdentityLog AS tr
 ON id_cur.SPID = tr.SPID
 AND id_cur.seq = tr.seq
 AND id_cur.id <> tr.id
WHERE id_cur.src = 'ident_current'
 AND tr.src = 'trigger';

Through this evidence we can conclude that IDENT_CURRENT is not transaction-safe. It seems

reminiscent of a similar but almost opposite problem, where metadata functions like OBJECT_NAME()

get blocked – even when the isolation level is READ UNCOMMITTED – because they don't obey

surrounding isolation semantics. (See Connect Item #432497 for more details.)

On the surface, and without knowing a lot more about the architecture and application(s), I don't have a

really good suggestion for Kendal; I just know that IDENT_CURRENT is *not* the answer. :-) Just don't

use it. For anything. Ever. By the time you read the value, it could already be wrong.

http://connect.microsoft.com/SQL/feedback/ViewFeedback.aspx?FeedbackID=432497

Best approaches for grouped running totals
By Aaron Bertrand

The very first blog post on this site, way back in July of 2012, talked about best approaches for running

totals. Since then, I've been asked on multiple occasions how I would approach the problem if the

running totals were more complex – specifically, if I needed to calculate running totals for multiple

entities – say, each customer's orders.

The original example used a fictitious case of a city issuing speeding tickets; the running total was simply

aggregating and keeping a running count of the number of speeding tickets by day (regardless of who

the ticket was issued to or how much it was for). A more complex (but practical) example might be

aggregating the running total value of speeding tickets, grouped by driver's license, per day. Let's

imagine the following table:

CREATE TABLE dbo.SpeedingTickets
(
 IncidentID INT IDENTITY(1,1) PRIMARY KEY,
 LicenseNumber INT NOT NULL,
 IncidentDate DATE NOT NULL,
 TicketAmount DECIMAL(7,2) NOT NULL
);

CREATE UNIQUE INDEX x
 ON dbo.SpeedingTickets(LicenseNumber, IncidentDate)
 INCLUDE(TicketAmount);

You might ask, DECIMAL(7,2), really? How fast are these people going? Well, in Canada, for example,

it's not all that hard to get a $10,000 speeding fine.

Now, let's populate the table with some sample data. I won't get into all of the specifics here, but this

should produce about 6,000 rows representing multiple drivers and multiple ticket amounts over a

month-long period:

;WITH TicketAmounts(ID,Value) AS
(
 -- 10 arbitrary ticket amounts
 SELECT i,p FROM
 (
 VALUES(1,32.75),(2,75), (3,109),(4,175),(5,295),
 (6,68.50),(7,125),(8,145),(9,199),(10,250)
) AS v(i,p)
),
LicenseNumbers(LicenseNumber,[newid]) AS
(
 -- 1000 random license numbers
 SELECT TOP (1000) 7000000 + number, n = NEWID()
 FROM [master].dbo.spt_values
 WHERE number BETWEEN 1 AND 999999
 ORDER BY n
),
JanuaryDates([day]) AS
(

http://www.sqlperformance.com/2012/07/t-sql-queries/running-totals
http://www.sqlperformance.com/2012/07/t-sql-queries/running-totals
http://www.flickr.com/photos/10675410@N08/4302706704/

 -- every day in January 2014
 SELECT TOP (31) DATEADD(DAY, number, '20140101')
 FROM [master].dbo.spt_values
 WHERE [type] = N'P'
 ORDER BY number
),
Tickets(LicenseNumber,[day],s) AS
(
 -- match *some* licenses to days they got tickets
 SELECT DISTINCT l.LicenseNumber, d.[day], s = RTRIM(l.LicenseNumber)
 FROM LicenseNumbers AS l CROSS JOIN JanuaryDates AS d
 WHERE CHECKSUM(NEWID()) % 100 = l.LicenseNumber % 100
 AND (RTRIM(l.LicenseNumber) LIKE '%' + RIGHT(CONVERT(CHAR(8), d.[day], 112),1) +
'%')
 OR (RTRIM(l.LicenseNumber+1) LIKE '%' + RIGHT(CONVERT(CHAR(8), d.[day], 112),1)
+ '%')
)
INSERT dbo.SpeedingTickets(LicenseNumber,IncidentDate,TicketAmount)
SELECT t.LicenseNumber, t.[day], ta.Value
 FROM Tickets AS t
 INNER JOIN TicketAmounts AS ta
 ON ta.ID = CONVERT(INT,RIGHT(t.s,1))-CONVERT(INT,LEFT(RIGHT(t.s,2),1))
 ORDER BY t.[day], t.LicenseNumber;

This might seem a little too involved, but one of the biggest challenges I often have when composing

these blog posts is constructing a suitable amount of realistic "random" / arbitrary data. If you have a

better method for arbitrary data population, by all means, don't use my mumblings as an example –

they're peripheral to the point of this post.

Approaches

There are various ways to solve this problem in T-SQL. Here are seven approaches, along with their

associated plans. I've left out techniques like cursors (because they will be undeniably slower) and date-

based recursive CTEs (because they depend on contiguous days).

Subquery #1

SELECT LicenseNumber, IncidentDate, TicketAmount,
 RunningTotal = TicketAmount + COALESCE(
 (
 SELECT SUM(TicketAmount)
 FROM dbo.SpeedingTickets AS s
 WHERE s.LicenseNumber = o.LicenseNumber
 AND s.IncidentDate < o.IncidentDate
), 0)
FROM dbo.SpeedingTickets AS o
ORDER BY LicenseNumber, IncidentDate;

Plan for subquery #1

Subquery #2

SELECT LicenseNumber, IncidentDate, TicketAmount,
 RunningTotal =
 (
 SELECT SUM(TicketAmount) FROM dbo.SpeedingTickets
 WHERE LicenseNumber = t.LicenseNumber
 AND IncidentDate <= t.IncidentDate
)
FROM dbo.SpeedingTickets AS t
ORDER BY LicenseNumber, IncidentDate;

Plan for subquery #2

Self-join

SELECT t1.LicenseNumber, t1.IncidentDate, t1.TicketAmount,
 RunningTotal = SUM(t2.TicketAmount)
FROM dbo.SpeedingTickets AS t1
INNER JOIN dbo.SpeedingTickets AS t2
 ON t1.LicenseNumber = t2.LicenseNumber
 AND t1.IncidentDate >= t2.IncidentDate
GROUP BY t1.LicenseNumber, t1.IncidentDate, t1.TicketAmount
ORDER BY t1.LicenseNumber, t1.IncidentDate;

Plan for self-join

Outer apply

SELECT t1.LicenseNumber, t1.IncidentDate, t1.TicketAmount,
 RunningTotal = SUM(t2.TicketAmount)
FROM dbo.SpeedingTickets AS t1
OUTER APPLY
(
 SELECT TicketAmount
 FROM dbo.SpeedingTickets
 WHERE LicenseNumber = t1.LicenseNumber
 AND IncidentDate <= t1.IncidentDate
) AS t2
GROUP BY t1.LicenseNumber, t1.IncidentDate, t1.TicketAmount
ORDER BY t1.LicenseNumber, t1.IncidentDate;

Plan for outer apply

SUM OVER() using RANGE (2012+ only)

SELECT LicenseNumber, IncidentDate, TicketAmount,
 RunningTotal = SUM(TicketAmount) OVER
 (
 PARTITION BY LicenseNumber
 ORDER BY IncidentDate RANGE UNBOUNDED PRECEDING
)
 FROM dbo.SpeedingTickets
 ORDER BY LicenseNumber, IncidentDate;

Plan for SUM OVER() using RANGE

SUM OVER() using ROWS (2012+ only)

SELECT LicenseNumber, IncidentDate, TicketAmount,
 RunningTotal = SUM(TicketAmount) OVER
 (
 PARTITION BY LicenseNumber
 ORDER BY IncidentDate ROWS UNBOUNDED PRECEDING
)
 FROM dbo.SpeedingTickets
 ORDER BY LicenseNumber, IncidentDate;

Plan for SUM OVER() using ROWS

Set-based iteration

With credit to Hugo Kornelis (@Hugo_Kornelis) for Chapter #4 in SQL Server MVP Deep Dives Volume

#1, this approach combines a set-based approach and a cursor approach.

DECLARE @x TABLE
(
 LicenseNumber INT NOT NULL,
 IncidentDate DATE NOT NULL,
 TicketAmount DECIMAL(7,2) NOT NULL,
 RunningTotal DECIMAL(7,2) NOT NULL,
 rn INT NOT NULL,
 PRIMARY KEY(LicenseNumber, IncidentDate)
);

INSERT @x(LicenseNumber, IncidentDate, TicketAmount, RunningTotal, rn)
SELECT LicenseNumber, IncidentDate, TicketAmount, TicketAmount,
 ROW_NUMBER() OVER (PARTITION BY LicenseNumber ORDER BY IncidentDate)
 FROM dbo.SpeedingTickets;

DECLARE @rn INT = 1, @rc INT = 1;

WHILE @rc > 0
BEGIN
 SET @rn += 1;

 UPDATE [current]
 SET RunningTotal = [last].RunningTotal + [current].TicketAmount
 FROM @x AS [current]
 INNER JOIN @x AS [last]

http://twitter.com/Hugo_Kornelis
http://manning.com/nielsen/
http://manning.com/nielsen/

 ON [current].LicenseNumber = [last].LicenseNumber
 AND [last].rn = @rn - 1
 WHERE [current].rn = @rn;

 SET @rc = @@ROWCOUNT;
END

SELECT LicenseNumber, IncidentDate, TicketAmount, RunningTotal
 FROM @x
 ORDER BY LicenseNumber, IncidentDate;

Due to its nature, this approach produces many identical plans in the process of updating the table

variable, all of which are similar to the self-join and outer apply plans, but are able to use a seek:

One of many UPDATE plans produced through set-based iteration

The only difference between each plan in each iteration is the row count. Through each successive

iteration, the number of rows affected should stay the same or go down, since the number of rows

affected at each iteration represents the number of drivers with tickets on that number of days (or,

more precisely, the number of days at that "rank").

Performance Results

Here are how the approaches stacked up, as shown by SQL Sentry Plan Explorer, with the exception of

the set-based iteration approach which, because it consists of many individual statements, does not

represent well when compared to the rest.

Plan Explorer runtime metrics for six of the seven approaches

In addition to reviewing the plans and comparing runtime metrics in Plan Explorer, I also measured raw

runtime in Management Studio. Here are the results of running each query 10 times, keeping in mind

that this also includes render time in SSMS:

http://sqlsentry.net/plan-explorer

Runtime duration, in milliseconds, for all seven approaches (10 iterations)

So, if you are on SQL Server 2012 or better, the best approach seems to be SUM OVER() using ROWS

UNBOUNDED PRECEDING. If you are not on SQL Server 2012, the second subquery approach seemed to

be optimal in terms of runtime, in spite of the high number of reads compared to, say, the OUTER

APPLY query. In all cases, of course, you should test these approaches, adapted to your schema, against

your own system. Your data, indexes, and other factors may lead to a different solution being most

optimal in your environment.

Other Complexities

Now, the unique index signifies that any LicenseNumber + IncidentDate combination will contain a

single cumulative total, in the event where a specific driver gets multiple tickets on any given day. This

business rule helps simplify our logic a little bit, avoiding the need for a tie-breaker to produce

deterministic running totals.

If you do have cases where you may have multiple rows for any given LicenseNumber + IncidentDate

combination, you can break the tie using another column that helps make the combination unique

(obviously the source table would no longer have a unique constraint on those two columns). Note that

this is possible even in cases where the DATE column is actually DATETIME – many people assume that

date/time values are unique, but this is certainly not always guaranteed, regardless of granularity.

In my case, I could use the IDENTITY column, IncidentID; here is how I would adjust each solution

(acknowledging that there may be better ways; just throwing out ideas):

/* --------- subquery #1 --------- */

SELECT LicenseNumber, IncidentDate, TicketAmount,
 RunningTotal = TicketAmount + COALESCE(
 (

 SELECT SUM(TicketAmount)
 FROM dbo.SpeedingTickets AS s
 WHERE s.LicenseNumber = o.LicenseNumber
 AND (s.IncidentDate < o.IncidentDate
 -- added this line:
 OR (s.IncidentDate = o.IncidentDate AND s.IncidentID < o.IncidentID))
), 0)
 FROM dbo.SpeedingTickets AS o
 ORDER BY LicenseNumber, IncidentDate;

/* --------- subquery #2 --------- */

SELECT LicenseNumber, IncidentDate, TicketAmount,
 RunningTotal =
 (
 SELECT SUM(TicketAmount) FROM dbo.SpeedingTickets
 WHERE LicenseNumber = t.LicenseNumber
 AND IncidentDate <= t.IncidentDate
 -- added this line:
 AND IncidentID <= t.IncidentID
)
 FROM dbo.SpeedingTickets AS t
 ORDER BY LicenseNumber, IncidentDate;

/* --------- self-join --------- */

SELECT t1.LicenseNumber, t1.IncidentDate, t1.TicketAmount,
 RunningTotal = SUM(t2.TicketAmount)
FROM dbo.SpeedingTickets AS t1
INNER JOIN dbo.SpeedingTickets AS t2
 ON t1.LicenseNumber = t2.LicenseNumber
 AND t1.IncidentDate >= t2.IncidentDate
 -- added this line:
 AND t1.IncidentID >= t2.IncidentID
GROUP BY t1.LicenseNumber, t1.IncidentDate, t1.TicketAmount
ORDER BY t1.LicenseNumber, t1.IncidentDate;

/* --------- outer apply --------- */

SELECT t1.LicenseNumber, t1.IncidentDate, t1.TicketAmount,
 RunningTotal = SUM(t2.TicketAmount)
FROM dbo.SpeedingTickets AS t1
OUTER APPLY
(
 SELECT TicketAmount
 FROM dbo.SpeedingTickets
 WHERE LicenseNumber = t1.LicenseNumber
 AND IncidentDate <= t1.IncidentDate
 -- added this line:
 AND IncidentID <= t1.IncidentID
) AS t2
GROUP BY t1.LicenseNumber, t1.IncidentDate, t1.TicketAmount
ORDER BY t1.LicenseNumber, t1.IncidentDate;

/* --------- SUM() OVER using RANGE --------- */

SELECT LicenseNumber, IncidentDate, TicketAmount,
 RunningTotal = SUM(TicketAmount) OVER
 (
 PARTITION BY LicenseNumber
 ORDER BY IncidentDate, IncidentID RANGE UNBOUNDED PRECEDING
 -- added this column ^^^^^^^^^^^^
)
 FROM dbo.SpeedingTickets
 ORDER BY LicenseNumber, IncidentDate;

/* --------- SUM() OVER using ROWS --------- */

SELECT LicenseNumber, IncidentDate, TicketAmount,
 RunningTotal = SUM(TicketAmount) OVER
 (
 PARTITION BY LicenseNumber
 ORDER BY IncidentDate, IncidentID ROWS UNBOUNDED PRECEDING
 -- added this column ^^^^^^^^^^^^
)
 FROM dbo.SpeedingTickets
 ORDER BY LicenseNumber, IncidentDate;

/* --------- set-based iteration --------- */

DECLARE @x TABLE
(
 -- added this column, and made it the PK:
 IncidentID INT PRIMARY KEY,
 LicenseNumber INT NOT NULL,
 IncidentDate DATE NOT NULL,
 TicketAmount DECIMAL(7,2) NOT NULL,
 RunningTotal DECIMAL(7,2) NOT NULL,
 rn INT NOT NULL
);

-- added the additional column to the INSERT/SELECT:
INSERT @x(IncidentID, LicenseNumber, IncidentDate, TicketAmount, RunningTotal, rn)
SELECT IncidentID, LicenseNumber, IncidentDate, TicketAmount, TicketAmount,
 ROW_NUMBER() OVER (PARTITION BY LicenseNumber ORDER BY IncidentDate, IncidentID)
 -- and added this tie-breaker column ------------------------------^^^^^^^^^^^^
 FROM dbo.SpeedingTickets;

-- the rest of the set-based iteration solution remained unchanged

Another complication you may come across is when you're not after the whole table, but rather a subset

(say, in this case, the first week of January). You'll have to make adjustments by addingWHERE clauses,

and keep those predicates in mind when you have correlated subqueries as well.

Best approaches for grouped median
By Aaron Bertrand

Back in 2012, I wrote a blog post here highlighting approaches for calculating a median. In that post, I

dealt with the very simple case: we wanted to find the median of a column across an entire table. It has

been mentioned to me multiple times since then that a more practical requirement is to calculate

a partitioned median. Like with the basic case, there are multiple ways to solve this in various versions of

SQL Server; not surprisingly, some perform much better than others.

In the previous example, we just had generic columns id and val. Let's make this more realistic and say

we have sales people and the number of sales they have made in some period. To test our queries, let's

first create a simple heap with 17 rows, and verify that they all produce the results we expect

(SalesPerson 1 has a median of 7.5, and SalesPerson 2 has a median of 6.0):

CREATE TABLE dbo.Sales(SalesPerson INT, Amount INT);
GO

INSERT dbo.Sales WITH (TABLOCKX)
(SalesPerson, Amount) VALUES
(1, 6),(1, 11),(1, 4),(1, 4),
(1, 15),(1, 14),(1, 4),(1, 9),
(2, 6),(2, 11),(2, 4),(2, 4),
(2, 15),(2, 14),(2, 4);

Here are the queries, which we are going to test (with a lot more data!) against the heap above, as well

as with supporting indexes. I've discarded a couple of queries from the previous test, which either didn't

scale at all or didn't map very well to partitioned medians (namely, 2000_B, which used a #temp table,

and 2005_A, which used opposing row numbers). I have, though, added a few interesting ideas from a

recent article by Dwain Camps (@DwainCSQL), which built on my previous post.

SQL Server 2000+

The only method from the previous approach that worked well enough on SQL Server 2000 to even

include it in this test was the "min of one half, max of the other" approach:

SELECT DISTINCT s.SalesPerson, Median = (
 (SELECT MAX(Amount) FROM
 (SELECT TOP 50 PERCENT Amount FROM dbo.Sales
 WHERE SalesPerson = s.SalesPerson ORDER BY Amount) AS t)
 + (SELECT MIN(Amount) FROM
 (SELECT TOP 50 PERCENT Amount FROM dbo.Sales
 WHERE SalesPerson = s.SalesPerson ORDER BY Amount DESC) AS b)
) / 2.0
FROM dbo.Sales AS s;

I did honestly try to mimic the #temp table version that I used in the simpler example, but it did not

scale well at all. At 20 or 200 rows it worked fine; at 2000 it took nearly a minute; at 1,000,000 I gave up

after an hour. I've included it here for posterity.

http://www.sqlperformance.com/2012/08/t-sql-queries/median
http://www.simple-talk.com/sql/t-sql-programming/calculating-the-median-value-within-a-partitioned-set-using-t-sql/
http://www.simple-talk.com/sql/t-sql-programming/calculating-the-median-value-within-a-partitioned-set-using-t-sql/
http://twitter.com/DwainCSQL

CREATE TABLE #x
(
 i INT IDENTITY(1,1),
 SalesPerson INT,
 Amount INT,
 i2 INT
);

CREATE CLUSTERED INDEX v ON #x(SalesPerson, Amount);

INSERT #x(SalesPerson, Amount)
 SELECT SalesPerson, Amount
 FROM dbo.Sales
 ORDER BY SalesPerson,Amount OPTION (MAXDOP 1);

UPDATE x SET i2 = i-
(
 SELECT COUNT(*) FROM #x WHERE i <= x.i
 AND SalesPerson < x.SalesPerson
)
FROM #x AS x;

SELECT SalesPerson, Median = AVG(0. + Amount)
 FROM #x AS x
 WHERE EXISTS
 (
 SELECT 1
 FROM #x
 WHERE SalesPerson = x.SalesPerson
 AND x.i2 - (SELECT MAX(i2) / 2.0 FROM #x WHERE SalesPerson = x.SalesPerson)
 IN (0, 0.5, 1)
)
 GROUP BY SalesPerson;
GO
DROP TABLE #x;

SQL Server 2005+ 1

This uses two different windowing functions to derive a sequence and overall count of amounts per

sales person.

SELECT SalesPerson, Median = AVG(1.0*Amount)
FROM
(
 SELECT SalesPerson, Amount, rn = ROW_NUMBER() OVER
 (PARTITION BY SalesPerson ORDER BY Amount),
 c = COUNT(*) OVER (PARTITION BY SalesPerson)
 FROM dbo.Sales
)
AS x
WHERE rn IN ((c + 1)/2, (c + 2)/2)
GROUP BY SalesPerson;

SQL Server 2005+ 2

This came from Dwain Camps' article, which does the same as above, in a slightly more elaborate way.

This basically unpivots the interesting row(s) in each group.

;WITH Counts AS
(
 SELECT SalesPerson, c
 FROM
 (
 SELECT SalesPerson, c1 = (c+1)/2,
 c2 = CASE c%2 WHEN 0 THEN 1+c/2 ELSE 0 END
 FROM
 (
 SELECT SalesPerson, c=COUNT(*)
 FROM dbo.Sales
 GROUP BY SalesPerson
) a
) a
 CROSS APPLY (VALUES(c1),(c2)) b(c)
)
SELECT a.SalesPerson, Median=AVG(0.+b.Amount)
FROM
(
 SELECT SalesPerson, Amount, rn = ROW_NUMBER() OVER
 (PARTITION BY SalesPerson ORDER BY Amount)
 FROM dbo.Sales a
) a
CROSS APPLY
(
 SELECT Amount FROM Counts b
 WHERE a.SalesPerson = b.SalesPerson AND a.rn = b.c
) b
GROUP BY a.SalesPerson;

SQL Server 2005+ 3

This was based on a suggestion from Adam Machanic in the comments on my previous post, and also

enhanced by Dwain in his article above.

;WITH Counts AS
(
 SELECT SalesPerson, c = COUNT(*)
 FROM dbo.Sales
 GROUP BY SalesPerson
)
SELECT a.SalesPerson, Median = AVG(0.+Amount)
FROM Counts a
CROSS APPLY
(
 SELECT TOP (((a.c - 1) / 2) + (1 + (1 - a.c % 2)))
 b.Amount, r = ROW_NUMBER() OVER (ORDER BY b.Amount)

 FROM dbo.Sales b
 WHERE a.SalesPerson = b.SalesPerson
 ORDER BY b.Amount
) p
WHERE r BETWEEN ((a.c - 1) / 2) + 1 AND (((a.c - 1) / 2) + (1 + (1 - a.c % 2)))
GROUP BY a.SalesPerson;

SQL Server 2005+ 4

This is similar to "2005+ 1" above, but instead of using COUNT(*) OVER() to derive the counts, it

performs a self-join against an isolated aggregate in a derived table.

SELECT SalesPerson, Median = AVG(1.0 * Amount)
FROM
(
 SELECT s.SalesPerson, s.Amount, rn = ROW_NUMBER() OVER
 (PARTITION BY s.SalesPerson ORDER BY s.Amount), c.c
 FROM dbo.Sales AS s
 INNER JOIN
 (
 SELECT SalesPerson, c = COUNT(*)
 FROM dbo.Sales GROUP BY SalesPerson
) AS c
 ON s.SalesPerson = c.SalesPerson
) AS x
WHERE rn IN ((c + 1)/2, (c + 2)/2)
GROUP BY SalesPerson;

SQL Server 2012+ 1

This was a very interesting contribution from fellow SQL Server MVP Peter "Peso" Larsson (@SwePeso)

in the comments on Dwain's article; it uses CROSS APPLY and the new OFFSET / FETCHfunctionality in an

even more interesting and surprising way than Itzik's solution to the simpler median calculation.

SELECT d.SalesPerson, w.Median
FROM
(
 SELECT SalesPerson, COUNT(*) AS y
 FROM dbo.Sales
 GROUP BY SalesPerson
) AS d
CROSS APPLY
(
 SELECT AVG(0E + Amount)
 FROM
 (
 SELECT z.Amount
 FROM dbo.Sales AS z
 WHERE z.SalesPerson = d.SalesPerson
 ORDER BY z.Amount
 OFFSET (d.y - 1) / 2 ROWS
 FETCH NEXT 2 - d.y % 2 ROWS ONLY
) AS f
) AS w(Median);

http://twitter.com/SwePeso

SQL Server 2012+ 2

Finally, we have the new PERCENTILE_CONT() function introduced in SQL Server 2012.

SELECT SalesPerson, Median = MAX(Median)
FROM
(
 SELECT SalesPerson,Median = PERCENTILE_CONT(0.5) WITHIN GROUP
 (ORDER BY Amount) OVER (PARTITION BY SalesPerson)
 FROM dbo.Sales
)
AS x
GROUP BY SalesPerson;

The Real Tests

To test the performance of the above queries, we're going to build a much more substantial table. We're

going to have 100 unique salespeople, with 10,000 sales amount figures each, for a total of 1,000,000

rows. We're also going to run each query against the heap as it is, with an added non-clustered index

on (SalesPerson, Amount), and with a clustered index on the same columns. Here is the setup:

CREATE TABLE dbo.Sales(SalesPerson INT, Amount INT);
GO

--CREATE CLUSTERED INDEX x ON dbo.Sales(SalesPerson, Amount);
--CREATE NONCLUSTERED INDEX x ON dbo.Sales(SalesPerson, Amount);
--DROP INDEX x ON dbo.sales;

;WITH x AS
(
 SELECT TOP (100) number FROM master.dbo.spt_values GROUP BY number
)
INSERT dbo.Sales WITH (TABLOCKX) (SalesPerson, Amount)
 SELECT x.number, ABS(CHECKSUM(NEWID())) % 99
 FROM x CROSS JOIN x AS x2 CROSS JOIN x AS x3;

And here are the results of the above queries, against the heap, the non-clustered index, and the

clustered index:

Duration, in milliseconds, of various grouped median approaches (against a heap)

Duration, in milliseconds, of various grouped median approaches (against a heap with a non-clustered index)

Duration, in milliseconds, of various grouped median approaches (against a clustered index)

What about Hekaton?

Naturally, I was curious if this new feature in SQL Server 2014 could help out with any of these queries.

So I created an In-Memory database, two In-Memory versions of the Sales table (one with a hash index

on (SalesPerson, Amount), and the other on just (SalesPerson)), and re-ran the same tests:

CREATE DATABASE Hekaton;
GO
ALTER DATABASE Hekaton ADD FILEGROUP xtp CONTAINS MEMORY_OPTIMIZED_DATA;
GO
ALTER DATABASE Hekaton ADD FILE (name = 'xtp', filename = 'c:\temp\hek.mod') TO
FILEGROUP xtp;
GO
ALTER DATABASE Hekaton SET MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT ON;
GO

USE Hekaton;
GO

CREATE TABLE dbo.Sales1
(
 ID INT IDENTITY(1,1) PRIMARY KEY NONCLUSTERED,
 SalesPerson INT NOT NULL,
 Amount INT NOT NULL,
 INDEX x NONCLUSTERED HASH (SalesPerson, Amount) WITH (BUCKET_COUNT = 256)
)
WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA);
GO

CREATE TABLE dbo.Sales2

(
 ID INT IDENTITY(1,1) PRIMARY KEY NONCLUSTERED,
 SalesPerson INT NOT NULL,
 Amount INT NOT NULL,
 INDEX x NONCLUSTERED HASH (SalesPerson) WITH (BUCKET_COUNT = 256)
)
WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA);
GO

;WITH x AS
(
 SELECT TOP (100) number FROM master.dbo.spt_values GROUP BY number
)
INSERT dbo.Sales1 (SalesPerson, Amount) -- TABLOCK/TABLOCKX not allowed here
 SELECT x.number, ABS(CHECKSUM(NEWID())) % 99
 FROM x CROSS JOIN x AS x2 CROSS JOIN x AS x3;

INSERT dbo.Sales2 (SalesPerson, Amount)
 SELECT SalesPerson, Amount
 FROM dbo.Sales1;

The results:

Duration, in milliseconds, for various median calculations against In-Memory tables

Even with the right hash index, we don't really see significant improvements over a traditional table.

Further to that, trying to solve the median problem using a natively-compiled stored procedure is not

going to be an easy task, as many of the language constructs used above are not valid (I was surprised

about a few of these, too). Trying to compile all of the above query variations yielded this parade of

errors; some occurred multiple times within each procedure, and even after removing duplicates, this is

still kind of comical:

Msg 10794, Level 16, State 47, Procedure GroupedMedian_2000

The option 'DISTINCT' is not supported with natively compiled stored procedures.

Msg 12311, Level 16, State 37, Procedure GroupedMedian_2000

Subqueries (queries nested inside another query) are not supported with natively

compiled stored procedures.

Msg 10794, Level 16, State 48, Procedure GroupedMedian_2000

The option 'PERCENT' is not supported with natively compiled stored procedures.

Msg 12311, Level 16, State 37, Procedure GroupedMedian_2005_1

Subqueries (queries nested inside another query) are not supported with natively

compiled stored procedures.

Msg 10794, Level 16, State 91, Procedure GroupedMedian_2005_1

The aggregate function 'ROW_NUMBER' is not supported with natively compiled stored

procedures.

Msg 10794, Level 16, State 56, Procedure GroupedMedian_2005_1

The operator 'IN' is not supported with natively compiled stored procedures.

Msg 12310, Level 16, State 36, Procedure GroupedMedian_2005_2

Common Table Expressions (CTE) are not supported with natively compiled stored

procedures.

Msg 12309, Level 16, State 35, Procedure GroupedMedian_2005_2

Statements of the form INSERT…VALUES… that insert multiple rows are not supported

with natively compiled stored procedures.

Msg 10794, Level 16, State 53, Procedure GroupedMedian_2005_2

The operator 'APPLY' is not supported with natively compiled stored procedures.

Msg 12311, Level 16, State 37, Procedure GroupedMedian_2005_2

Subqueries (queries nested inside another query) are not supported with natively

compiled stored procedures.

Msg 10794, Level 16, State 91, Procedure GroupedMedian_2005_2

The aggregate function 'ROW_NUMBER' is not supported with natively compiled stored

procedures.

Msg 12310, Level 16, State 36, Procedure GroupedMedian_2005_3

Common Table Expressions (CTE) are not supported with natively compiled stored

procedures.

Msg 12311, Level 16, State 37, Procedure GroupedMedian_2005_3

Subqueries (queries nested inside another query) are not supported with natively

compiled stored procedures.

Msg 10794, Level 16, State 91, Procedure GroupedMedian_2005_3

The aggregate function 'ROW_NUMBER' is not supported with natively compiled stored

procedures.

Msg 10794, Level 16, State 53, Procedure GroupedMedian_2005_3

The operator 'APPLY' is not supported with natively compiled stored procedures.

Msg 12311, Level 16, State 37, Procedure GroupedMedian_2005_4

Subqueries (queries nested inside another query) are not supported with natively

compiled stored procedures.

Msg 10794, Level 16, State 91, Procedure GroupedMedian_2005_4

The aggregate function 'ROW_NUMBER' is not supported with natively compiled stored

procedures.

Msg 10794, Level 16, State 56, Procedure GroupedMedian_2005_4

The operator 'IN' is not supported with natively compiled stored procedures.

Msg 12311, Level 16, State 37, Procedure GroupedMedian_2012_1

Subqueries (queries nested inside another query) are not supported with natively

compiled stored procedures.

Msg 10794, Level 16, State 38, Procedure GroupedMedian_2012_1

The operator 'OFFSET' is not supported with natively compiled stored procedures.

Msg 10794, Level 16, State 53, Procedure GroupedMedian_2012_1

The operator 'APPLY' is not supported with natively compiled stored procedures.

Msg 12311, Level 16, State 37, Procedure GroupedMedian_2012_2

Subqueries (queries nested inside another query) are not supported with natively

compiled stored procedures.

Msg 10794, Level 16, State 90, Procedure GroupedMedian_2012_2

The aggregate function 'PERCENTILE_CONT' is not supported with natively compiled

stored procedures.

As currently written, not one of these queries could be ported to a natively-compiled stored procedure.

Perhaps something to look into for another follow-up post.

Conclusion

Discarding the Hekaton results, and when a supporting index is present, Peter Larsson's query ("2012+

1") using OFFSET/FETCH came out as the far-and-away winner in these tests. While a little more complex

than the equivalent query in the non-partitioned tests, this matched the results I observed last time.

In those same cases, the 2000 MIN/MAX approach and 2012's PERCENTILE_CONT() came out as real

dogs; again, just like my previous tests against the simpler case.

If you are not on SQL Server 2012 yet, then your next best option is "2005+ 3" (if you have a supporting

index) or "2005+ 2" if you are dealing with a heap. Sorry I had to come up with a new naming scheme for

these, mostly to avoid confusion with the methods in my previous post.

Of course, these are my results against a very specific schema and data set – as with all

recommendations, you should test these approaches against your schema and data, as other factors

may influence different results.

One other note

In addition to being a poor performer, and not being supported in natively-compiled stored procedures,

one other pain point of PERCENTILE_CONT() is that it can't be used in older compatibility modes. If you

try, you get this error:

Msg 10762, Level 15, State 1

The PERCENTILE_CONT function is not allowed in the current compatibility mode. It is

only allowed in 110 mode or higher.

Maintaining a grouped running MAX (or MIN)
By Aaron Bertrand

One requirement I see occasionally is to have a query returned with orders grouped by customer,

showing the max total due seen for any order to date. So imagine these sample rows:

SalesOrderID CustomerID OrderDate TotalDue

12 2 2014-01-01 37.55

23 1 2014-01-02 45.29

31 2 2014-01-03 24.56

32 2 2014-01-04 89.84

37 1 2014-01-05 32.56

44 2 2014-01-06 45.54

55 1 2014-01-07 99.24

62 2 2014-01-08 12.55

A few rows of sample data

The desired results from the stated requirements are as follows – in plain terms, sort each customer's

orders by date, and list each order. If that is the highest TotalDue value for all orders seen up until that

date, print that order's total, otherwise print the highest TotalDue value from all previous orders:

SalesOrderID CustomerID OrderDate TotalDue MaxTotalDue

12 1 2014-01-02 45.29 45.29

23 1 2014-01-05 32.56 45.29

31 1 2014-01-07 99.24 99.24

32 2 2014-01-01 37.55 37.55

37 2 2014-01-03 24.56 37.55

44 2 2014-01-04 89.84 89.84

55 2 2014-01-06 45.54 89.84

62 2 2014-01-08 12.55 89.84

Sample desired results

Many people would instinctively want to use a cursor or while loop to accomplish this, but there are

several approaches that don't involve these constructs.

Correlated Subquery

This approach seems to be the simplest and most straightforward approach to the problem, but it has

been proven time and time again to not scale, since the reads grow exponentially as the table gets

larger:

SELECT /* Correlated Subquery */ SalesOrderID, CustomerID, OrderDate, TotalDue,
 MaxTotalDue = (SELECT MAX(TotalDue)
 FROM Sales.SalesOrderHeader
 WHERE CustomerID = h.CustomerID
 AND SalesOrderID <= h.SalesOrderID)
 FROM Sales.SalesOrderHeader AS h
 ORDER BY CustomerID, SalesOrderID;

Here is the plan against AdventureWorks2012, using SQL Sentry Plan Explorer:

Self-referencing CROSS APPLY

This approach is nearly identical to the Correlated Subquery approach, in terms of syntax, plan shape

and performance at scale.

SELECT /* CROSS APPLY */ h.SalesOrderID, h.CustomerID, h.OrderDate, h.TotalDue,
x.MaxTotalDue
FROM Sales.SalesOrderHeader AS h
CROSS APPLY
(
 SELECT MaxTotalDue = MAX(TotalDue)
 FROM Sales.SalesOrderHeader AS i
 WHERE i.CustomerID = h.CustomerID
 AND i.SalesOrderID <= h.SalesOrderID
) AS x
ORDER BY h.CustomerID, h.SalesOrderID;

The plan is quite similar to the correlated subquery plan, the only difference being the location of a sort:

http://sqlsentry.com/plan-explorer

Recursive CTE

Behind the scenes, this uses loops, but until we actually run it, we can sort of pretend it doesn't (though

it is easily the most complicated piece of code I would ever want to write to solve this particular

problem):

;WITH /* Recursive CTE */ cte AS
(
 SELECT SalesOrderID, CustomerID, OrderDate, TotalDue, MaxTotalDue
 FROM
 (
 SELECT SalesOrderID, CustomerID, OrderDate, TotalDue, MaxTotalDue = TotalDue,
 rn = ROW_NUMBER() OVER (PARTITION BY CustomerID ORDER BY SalesOrderID)
 FROM Sales.SalesOrderHeader
) AS x
 WHERE rn = 1
 UNION ALL
 SELECT r.SalesOrderID, r.CustomerID, r.OrderDate, r.TotalDue,
 MaxTotalDue = CASE
 WHEN r.TotalDue > cte.MaxTotalDue THEN r.TotalDue
 ELSE cte.MaxTotalDue
 END
 FROM cte
 CROSS APPLY
 (
 SELECT SalesOrderID, CustomerID, OrderDate, TotalDue,
 rn = ROW_NUMBER() OVER (PARTITION BY CustomerID ORDER BY SalesOrderID)
 FROM Sales.SalesOrderHeader AS h
 WHERE h.CustomerID = cte.CustomerID
 AND h.SalesOrderID > cte.SalesOrderID
) AS r
 WHERE r.rn = 1
)
SELECT SalesOrderID, CustomerID, OrderDate, TotalDue, MaxTotalDue
FROM cte
ORDER BY CustomerID, SalesOrderID
OPTION (MAXRECURSION 0);

You can immediately see that the plan is more complex than the previous two, which is not surprising

given the more complex query:

Due to some bad estimates, we see an index seek with an accompanying key lookup that probably

should have both been replaced by a single scan, and we also get a sort operation that ultimately needs

to spill to tempdb:

MAX() OVER (ROWS UNBOUNDED)

This is a solution only available in SQL Server 2012 and higher, as it uses newly-introduced extensions to

window functions.

SELECT /* MAX() OVER() */ SalesOrderID, CustomerID, OrderDate, TotalDue,
 MaxTotalDue = MAX(TotalDue) OVER
 (
 PARTITION BY CustomerID ORDER BY SalesOrderID
 ROWS UNBOUNDED PRECEDING
)
FROM Sales.SalesOrderHeader

ORDER BY CustomerID, SalesOrderID;

The plan shows exactly why it scales better than all the others; it only has one clustered index scan

operation, as opposed to two (or the bad choice of a scan and a seek + lookup in the case of the

recursive CTE):

Performance Comparison

The plans certainly lead us to believe that the new MAX() OVER() capability in SQL Server 2012 is a real

winner, but how about tangible runtime metrics? Here are how the executions compared:

The first two queries were almost identical; while in this case the CROSS APPLY was better in terms of

overall duration by a small margin, the correlated subquery sometimes beats it out by a bit instead. The

recursive CTE is substantially slower every single time, and you can see the factors that contribute to

that – namely, the bad estimates, the massive amount of reads, the key lookup, and the additional sort

operation. And as I've demonstrated before with running totals, the SQL Server 2012 solution is better in

almost every aspect.

Conclusion

If you're on SQL Server 2012 or greater, you definitely want to become familiar with all of the extensions

to the windowing functions first introduced in SQL Server 2005 – they may give you some pretty serious

performance boosts when revisiting code that is still running "the old way." If you want to learn more

about some of these new capabilities, I highly recommend Itzik Ben-Gan's book, Microsoft SQL Server

2012 High-Performance T-SQL Using Window Functions.

If you're not on SQL Server 2012 yet, in this test at least, you could choose between CROSS APPLY and

the correlated subquery. As always, you should test various methods against your data on your

hardware.

http://sqlperformance.com/2014/01/t-sql-queries/grouped-running-totals
http://smile.amazon.com/Microsoft-High-Performance-Functions-Developer-Reference/dp/0735658366
http://smile.amazon.com/Microsoft-High-Performance-Functions-Developer-Reference/dp/0735658366

Follow-up on cursor options
By Aaron Bertrand

Two years ago, I wrote a post on cursor options in SQL Server, and why you should override the defaults:

 What impact can different cursor options have?

I wanted to post a follow-up to reiterate that – while you should never just accept the defaults – you

really should think about which options are most applicable to your scenario. I also wanted to clarify a

few items that came up in the comments on that post.

Andrew Kelly brought up a great point, and that is that a STATIC cursor makes a one-time copy of the

results, puts them into tempdb, and then avoids any concurrency issues that may impact

aDYNAMIC cursor. One option isn't a clear winner over the other in all cases; for example, you may have

a lot of cursors (or cursors with very large resultsets) and/or an already over-burdened tempdb and

don't want to offload any additional stress there. But it is something worthy of testing.

Fabiano also brought up a great point that both DYNAMIC and FAST_FORWARD cursors can be

vulnerable to the Hallowe'en problem (discussed by Paul White in a 4-part series, starting here). Paul

also commented that FAST_FORWARD might not be vulnerable to the problem, depending on whether

the optimizer chose a static or dynamic plan (Microsoft's Marc Friedman goes into great detail about

that here).

Finally, I wanted to point out that not all default cursors are created equal. I ran some tests and checked

how SQL Server decided to set cursor options under a variety of scenarios (validated

using thesys.dm_exec_cursors dynamic management function). The code is pretty simple:

DECLARE c CURSOR FOR [...blah blah...];

SELECT properties FROM sys.dm_exec_cursors(@@SPID);

Here are the results for the scenarios I tested:

Cursor query is based on… Type Concurrency Scope

a constant (FOR SELECT 1 or FOR SELECT SYSDATETIME()) Snapshot Read Only Global

a #temp / ##temp table Dynamic Optimistic Global

a user table / view Dynamic Optimistic Global

a catalog view / DMV Snapshot Read Only Global

a join #tmp -> user table / view Dynamic Optimistic Global

a join #tmp -> catalog view / DMV Snapshot Read Only Global

a join user table / view -> catalog view / DMV Snapshot Read Only Global

http://sqlperformance.com/2012/09/t-sql-queries/cursor-options
http://sqlperformance.com/2013/02/t-sql-queries/halloween-problem-part-1
http://blogs.msdn.com/b/sqlqueryprocessing/archive/2009/08/12/understanding-sql-server-fast-forward-server-cursors.aspx
http://blogs.msdn.com/b/sqlqueryprocessing/archive/2009/08/12/understanding-sql-server-fast-forward-server-cursors.aspx
http://msdn.microsoft.com/en-us/library/ms190346.aspx

Credit where credit is due – this investigation was triggered by an answer from Jeroen Mostert on Stack

Overflow.

So you should be aware that the default options for your cursor, if you don't override them, may be

different depending on the query underlying the cursor. If you are expecting a specific behavior in any or

all cases, get in the habit of explicitly specifying the options you want.

But really, the point is…

…stop using cursors. There really are very few problems today where the best solution is a cursor,

especially if you are on SQL Server 2012 or better – where just about every problem traditionally solved

by cursors can be solved using enhancements to window functions. If you still feel you need to use

cursors, please take the advice in this post and its predecessor to determine which options you should

use.

http://stackoverflow.com/a/27568744/61305
http://stackoverflow.com/a/27568744/61305
https://www.simple-talk.com/sql/t-sql-programming/sql-server-2012-window-function-basics/
http://sqlperformance.com/2012/09/t-sql-queries/cursor-options

High Availablity & Disaster Recovery
Troubleshooting AlwaysOn – Sometimes it takes many sets of eyes
By Aaron Bertrand

A few weeks ago, I started configuring a demo environment with multiple configurations of AlwaysOn

Availability Groups. I had a 5-node WSFC cluster – each node had a standalone named instance of SQL

Server 2012, and there were also two Failover Cluster Instances (FCIs) that were set up on top of these

nodes. A quick diagram:

So you can see there are 5 standalone named instances (.\AGDEMO on each node), and then two FCIs –

one with possible owners VM-AARON-1 and VM-AARON-2 (AGFCI1\AGFCI1), and then one with possible

owners VM-AARON-3, VM-AARON-4 and VM-AARON-5 (AGFCI2\AGFCI2). Now, manually diagramming

this out would have to get significantly more complex (more on that later), so I'm going to avoid it for

obvious reasons. Essentially the requirement was to have multiple types of AG configurations:

 Primary on an FCI with a replica on one or more standalone instances

 Primary on an FCI with a replica on a different FCI

 Primary on a standalone instance with a replica on one or more FCIs

 Primary on a standalone instance with a replica on one or more standalone instances

 Primary on a standalone instance with replicas on both standalone instances and FCIs

And then combinations (where possible) of synchronous vs. asynchronous commit, manual vs.

automatic failover, and read-only secondaries. There are some technical limitations that would limit the

permutations possible here, for example:

 Manual failover is necessary with any replica that is on an FCI

 No WSFC node can host – or even be possible owners of – multiple instances, whether

standalone or clustered, that are involved in the same Availability Group. You get this error

message:

Failed to create, join or add replica to availability group 'MyGroup', because node

'VM-AARON-1' is a possible owner for both replica 'AGFCI1\AGFCI1' and 'VM-AARON-

1\AGDEMO'. If one replica is failover cluster instance, remove the overlapped node

from its possible owners and try again. (Microsoft SQL Server, Error: 19405)

Most of the scenarios I was trying to represent are not practical in real-world scenarios, but they are

largely and theoretically possible. If you haven't guessed by now, this environment is being set up

explicitly to test new functionality around Availability Groups that we plan to offer in a future version of

SQL Sentry Power Suite for SQL Server. We gave a sneak peek of some of this technology during our

keynote with Fusion-io at the recent SQL Intersection conference in Las Vegas.

Obstacle #1

Setting up Availability Groups using the wizard in SSMS is pretty easy. Unless, for example, you have

heterogeneous file paths. The wizard has validation that ensures that the same data and log paths exist

on all replicas. This can be a pain if you're using the default data path for two different named instances,

or if you have different drive letter configurations (which will often happen when FCIs are involved).

Checking for compatibility of the database file location on the secondary replica
resulted in an error. (Microsoft.SqlServer.Management.HadrTasks)
The following folder locations do not exist on the server instance that hosts

secondary replica VM-AARON-1\AGDEMO:

P:\MSSQL11.AGFCI2\MSSQL\DATA;

(Microsoft.SqlServer.Management.HadrTasks)

Now it should go without saying that you don't want to set up this scenario in any kind of environment

that needs to stand the test of time. Things will go south very quickly if, for example, you later add a

new file to one of the databases. But for a test / demo environment, proof of concept, or an

environment you expect to be stable for a considerable time, don't fret: you can still do this without the

wizard.

Unfortunately, to add insult to injury, the wizard doesn't let you script it. You can't move past the

validation error and there is no Script button:

http://sqlsentry.net/solutions-sql-server.asp
http://www.fusionio.com/
http://devintersection.com/

So this means you need to code it yourself (since the DDL doesn't perform any "helpful" validation for

you). If you have other instances where the same paths exist, you can do this by following the same

wizard, getting past the validation screen, and then clicking Script instead of Finish, and change the

server name(s) and add with WITH MOVE options to the initial restore. Or you can just write your own

from scratch, something like this (the script assumes you already have the endpoints and permissions

configured, and have all instances have the Availability Groups feature enabled):

-- Use SQLCMD mode and uncomment the :CONNECT commands
-- or just run the two segments separately / change connection
-- :CONNECT Server1

CREATE AVAILABILITY GROUP [GroupName]
 WITH (AUTOMATED_BACKUP_PREFERENCE = SECONDARY)
 FOR DATABASE [Database1] --, ...
 REPLICA ON -- primary:
 N'Server1' WITH (ENDPOINT_URL = N'TCP://Server1:5022',
 FAILOVER_MODE = MANUAL, AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,
 BACKUP_PRIORITY = 50, SECONDARY_ROLE(ALLOW_CONNECTIONS = NO)),
 -- secondary:
 N'Server2' WITH (ENDPOINT_URL = N'TCP://Server2:5022',
 FAILOVER_MODE = MANUAL, AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,
 BACKUP_PRIORITY = 50, SECONDARY_ROLE(ALLOW_CONNECTIONS = NO));

ALTER AVAILABILITY GROUP [GroupName]
 ADD LISTENER N'ListenerName'
 (WITH IP ((N'10.x.x.x', N'255.255.255.0')), PORT=1433);

BACKUP DATABASE Database1 TO DISK = '\\Server1\Share\db1.bak'
 WITH INIT, COPY_ONLY, COMPRESSION;

BACKUP LOG Database1 TO DISK = '\\Server1\Share\db1.trn'
 WITH INIT, COMPRESSION;

-- :CONNECT Server2
ALTER AVAILABILITY GROUP [GroupName] JOIN;

RESTORE DATABASE Database1 FROM DISK = '\\Server1\Share\db1.bak'
 WITH REPLACE, NORECOVERY, NOUNLOAD,
 MOVE 'data_file_name' TO 'P:\path\file.mdf',
 MOVE 'log_file_name' TO 'P:\path\file.ldf';

RESTORE LOG Database1 FROM DISK = '\\Server1\Share\db1.trn'
 WITH NORECOVERY, NOUNLOAD;

ALTER DATABASE Database1 SET HADR AVAILABILITY GROUP = [GroupName];

Obstacle #2

If you have multiple instances on the same server, you may find that both instances can't share port

5022 for their database mirroring endpoint (which is the same endpoint that is used by Availability

Groups). This means you will have to drop and re-create the endpoint to set it to an available port

instead.

DROP ENDPOINT [Hadr_endpoint];
GO

CREATE ENDPOINT [Hadr_endpoint]
 STATE = STARTED
 AS TCP (LISTENER_PORT = 5023)
 FOR DATABASE_MIRRORING (ROLE = ALL);

Now I could specify an instance with an endpoint on ServerName:5023.

Obstacle #3

However, once I did this, when I would get to the last step in the script above, after exactly 48 seconds –

every time – I would get this unhelpful error message:

Msg 35250, Level 16, State 7, Line 2

The connection to the primary replica is not active. The command cannot be processed.

This had me chasing all kinds of potential issues – checking firewalls and SQL Server Configuration

Manager, for example, for anything that would be blocking the ports between instances. Nada. I found

various errors in SQL Server's error log:

Database Mirroring login attempt failed with error: 'Connection handshake failed.
There is no compatible encryption algorithm. State 22.'.

Database Mirroring login attempt failed with error: 'Connection handshake failed. An

OS call failed: (80090303) 0×80090303(The specified target is unknown or

unreachable). State 66.'.

A connection timeout has occurred while attempting to establish a connection to

availability replica 'VM-AARON-1\AGDEMO' with id [5AF5B58D-BBD5-40BB-BE69-

08AC50010BE0]. Either a networking or firewall issue exists, or the endpoint address

provided for the replica is not the database mirroring endpoint of the host server

instance.

It turns out (and thanks to Thomas Stringer (@SQLife)) that this problem was being caused by a

combination of symptoms: (a) Kerberos was not set up correctly, and (b) the encryption algorithm for

the hadr_endpoint I had created defaulted to RC4. This would be okay if all of the standalone instances

were also using RC4, but they weren't. Long story short, I dropped and re-created the endpoints again,

on all the instances. Since this was a lab environment and I didn't really need Kerberos support (and

because I had already invested enough time in these issues that I didn't want to chase down Kerberos

problems too), I set up all endpoints to use Negotiate with AES:

DROP ENDPOINT [Hadr_endpoint];
GO

CREATE ENDPOINT [Hadr_endpoint]
 STATE = STARTED
 AS TCP (LISTENER_PORT = 5023)
 FOR DATABASE_MIRRORING (
 AUTHENTICATION = WINDOWS NEGOTIATE,
 ENCRYPTION = REQUIRED ALGORITHM AES,
 ROLE = ALL);

(Ted Krueger (@onpnt) recently blogged about a similar issue as well.)

Now, finally, I was able to create Availability Groups with all of the various requirements I had, between

nodes with heterogeneous file paths, and utilizing multiple instances on the same node (just not in the

same group). Here is a peek at what one of our AlwaysOn Management views will look like:

http://twitter.com/SQLife
http://twitter.com/onpnt
http://blogs.lessthandot.com/index.php/DataMgmt/DBAdmin/setting-up-mirroring-to-sql

Now, that is just a bit of a tease, and it is fully intentional. I'll be blogging more about this functionality in

the coming weeks!

Conclusion

When you spend long enough looking at a problem, you can overlook some pretty obvious things. In this

case there were some obvious issues hidden by some downright unintuitive error messages. I want to

thank Joe Sack (@JosephSack), Allan Hirt (@SQLHA) and Thomas Stringer (@SQLife) for dropping

everything to help a fellow community member in need.

http://twitter.com/josephsack
http://twitter.com/SQLHA
http://twitter.com/SQLife

Avoid HA/DR Solution Self-Delusion
By Joe Sack

Planning and rolling out a high availability and disaster recovery plan that meets all service level

agreements is a non-trivial undertaking and requires a very clear understanding of SQL Server’s native

strengths and weaknesses. When matching up requirements against a combination of features, some of

the critical details may be glossed over, and in this post I’ll walk through a few common distortions and

bad assumptions that can creep into a solution – ultimately causing us to miss the mark on our recovery

point and recovery time objectives. Some of the examples of distortions or self-delusions I detail here

can be generalized across different features and some are feature-specific.

"We tested our disaster recovery plan when we first launched our project and we know it will work"

I’ve worked with clients who indeed got their disaster recovery approach “right” – one time. But once

everyone felt confident in the efficacy of the solution, no other disaster recovery exercises were

performed again. Of course – in the meantime the data tier and application keeps changing over time.

Those changes introduce new objects and processes that are critical to the application. And even if

everything remains static after launch, you still have to account for personnel turnover and varying skill

sets. Can today’s staff successfully perform a disaster recovery exercise? And even the best staff needs

ongoing practice.

"We will have no data loss because we are using synchronous database mirroring"

Let’s say you’re using synchronous database mirroring between two SQL Server instances, with each

instance in a separate data center. In this example, assume that the transaction latency is acceptable in

spite of this being a synchronous database mirroring session with a few miles between the data centers.

You don’t have a witness in the mix because you want to control database mirror failover manually.

Now let’s say your disaster recovery data center goes away – but your primary data center is still

available. Your principal database is disconnected from the mirror database, but it is still accepting

connections and data modifications. What about the “no data loss” requirement now? If transactions

ran against the disconnected principal for another hour, what is your plan if the primary data center is

also lost?

"Our business owner says we can lose up to 12 hours of data"

It is important to ask some questions more than once and to more than one individual in an

organization. If someone tells you that “12 hours of data loss is acceptable” – ask them again, or ask

them what the consequence of that data loss would be. Ask other people as well. They might give you a

much stricter requirement. I’ve found that recovery point objectives require some negotiation and more

than a few thoughtful, deliberate discussions.

"We’re using [database mirroring or availability groups] and so we’re covered for what we need in the

event of a disaster"

Database mirroring and availability groups can certainly be used to protect you at the database level,

but what about everything else? What about your logins? SSIS packages? Jobs? Non-FULL recovery

model databases? Linked servers?

"We’re using SQL Server feature XYZ, so we won’t lose any in-flight transactions"

Nope, sorry. While some features allow for transparent redirection, this isn’t the same as retaining and

persisting open transactions at the time of failover. No SQL Server feature provides this functionality

today.

"The team supporting the data tier for this application hates SQL Server feature XYZ, but we’re

moving forward with it because that’s what was recommended to us by an outside consultant"

While it would be nice if people didn’t develop specific biases around features in SQL Server, this often

isn’t the case. If you try to force solutions on a staff that isn’t on board with them, you’re running the

risk of pre-determined failure. As part of the HA/DR exercises I’ve helped out with in the past, I’m always

interested to hear about people’s past experiences with specific features. For example, some companies

leverage hundreds of Failover Cluster Instances very well – while others avoid them because of bad

experiences from previous versions. When planning a solution, you can’t ignore history or the

predispositions of the staff who will ultimately be responsible for deploying and supporting the

recommended solution.

"As the DBA, I decide which HA/DR technology to use for the data tier, so we’re going to use

availability groups moving forward"

A database administrator could potentially set up database mirroring with little or no involvement with

other teams. Now with availability groups, even if a database administrator could do it all on their own,

they might be unwise to do so. After all – if you’re deploying availability groups for disaster recovery

purposes, you’ll want everyone involved in a disaster recovery operation to be aware of your solution

and the requirements needed to successfully get back online and recover data. With availability groups

you’ll need to think about the Windows Server Failover Cluster, quorum configurations, node votes, the

availability group listener and more. If you’ll need other people to facilitate a solution, be sure they are

involved with the initial recommendation.

"We’re using availability groups so we can have read-only availability in the event of an outage of our

read-write replica"

This is just one example of a “what if” scenario. With any implementation of functionality, you’ll want to

imagine the various ways that failure can occur – and then be sure to test it to ensure your requirements

are still being met. For example – if you think that your SQL Server 2012 availability group asynchronous

read-only replicas will be available when the read-write replica is unavailable, you’ll be unpleasantly

surprised to see the Unable to access database 'XYZ' because its replica role is RESOLVING which does

not allow connections message in production.

"We tested SQL Server feature XYZ, and failover was fast, so we have established that we can meet

our recovery time objectives easily"

Let’s say you decide to use database mirroring for user-database level high availability. You want quick

failover (measured in seconds), and you indeed see quick failover during testing. But was it a realistic

test? Were you pushing a significant workload? In the example of database mirroring, the longest part of

your failover operation can be for the redo operations. If you aren’t driving realistic workloads, then you

cannot truly say that your failover will actually be “fast”.

"If we have a disaster and need to salvage and reconcile data, we’ll figure it out when the time

comes"

This is a tough one. Let’s say you have a disaster and need to make your secondary data center

operational. You decide to force service for the most critical databases in the secondary data center and

you now have a split in the lineage of data modifications (some unreconciled rows in the primary data

center, and now new modifications in the secondary data center). Eventually your primary data center is

brought online – but now you have data that needs to be salvaged and reconciled before you can re-

establish the overall HA/DR solution. What do you do? What can you do? This discussion is rarely an

easy one to have and may depend on several factors such as the software packages you’ve purchased,

the complexity of the data tier, and the data convergence tools at your disposal. In fact, the discussion is

usually so difficult that people don’t have it at all. But if the data is critical enough for you to have set up

a secondary data center, than a key part of the discussion should include how best to salvage data and

also reconcile it after a disaster has occurred.

Summary

This article included just a few examples of how we can delude ourselves into thinking that a solution is

fully meeting their requirements. While it is human nature to do this – when it comes to data loss and

business continuity, our jobs will depend on us being more aggressive in testing our own beliefs and

assumptions.

SQL Server Standard Edition High Availability Features
By Glenn Berry

Recently, there has been a lot of somewhat nervous speculation (here, here, and here) about what high

availability options will be available for SQL Server Standard Edition, once Database Mirroring (DBM) is

actually removed in a future release of SQL Server.

Database Mirroring (DBM) was deprecated in SQL Server 2012, with Microsoft suggesting that you

migrate to AlwaysOn Availability Groups (which requires SQL Server Enterprise Edition), and further

noting, “If your edition of SQL Server does not support AlwaysOn Availability Groups, use log shipping”.

The exact deprecation language was “The following SQL Server Database Engine features are supported

in the next version of SQL Server, but will be removed in a later version. The specific version of SQL

Server has not been determined. These features are scheduled to be removed in a future release of SQL

Server. Deprecated features should not be used in new applications.”

Does this mean that you should immediately stop using Database Mirroring for new applications? I

would say, “Of course not!” Database Mirroring continues to work just as it has in the past, and it will

not be removed from the product for quite some time. If it makes sense to use DBM to help meet your

Recovery Point Objective (RPO) and Recovery Time Objective (RTO) goals, then go ahead and use that

feature for new applications. Unlike a deprecated T-SQL language feature (that could be much more

difficult to rewrite, test and deploy), it will be much easier to switch from DBM to some other HA/DR

technique in the future.

Historically, a deprecated SQL Server feature has not actually been removed for three major versions

after the version when the deprecation was publicly announced. If Microsoft follows that pattern, then

Database Mirroring will not actually be removed until “SQL Server 2018” (given SQL Server 2014, a

speculative “SQL Server 2016” and an even more speculative “SQL Server 2018”).

According to Mary Jo Foley, SQL Server 2014 should be available in early 2014. Let us assume that “SQL

Server 2016” is available in January 2016, and “SQL Server 2018” is available in January 2018. If this

entirely speculative version timeline ended up being accurate, that would mean that a SQL Server

Standard Edition customer would still be able to use Database Mirroring in “SQL Server 2018”, which

would remain in mainstream support from Microsoft until January 2023, and would be in extended

support until January 2028. That is quite a long time away!

This gives Microsoft (and their Standard Edition customers) plenty of time to come up with a viable

replacement for Database Mirroring. Microsoft has several obvious choices here. First, they could

reverse the deprecation decision for DBM. That would require no development and testing work from

Microsoft, but it would extend the support burden for DBM further into the future. Second, they could

allow a limited version of Availability Groups in SQL Server Standard Edition (restricted to one or two

replicas). Third, it seems very likely that there will be some feature related to Azure that will be offered

as a replacement for DBM). There could also be some completely new HA/DR technology available by

then.

SQL Server Standard Edition customers have several obvious choices for what they will do as DBM gets

closer to being removed from the product. First, they could elect to simply stay on a version of SQL

Server that still uses Database Mirroring (which could be any version from SQL Server 2005 up to my

http://sqlblog.com/blogs/allen_white/archive/2013/06/10/are-we-losing-a-standard-edition-data-recovery-technology.aspx
http://itknowledgeexchange.techtarget.com/sql-server/sql-server-2014-standard-edition-high-availability/
http://joedantoni.wordpress.com/2013/06/10/sql-server-blogapalooza-disaster-recovery-in-sql-server-standard-edition/#comment-613
http://technet.microsoft.com/en-us/library/ms143729.aspx
http://www.zdnet.com/microsofts-blue-servers-whats-coming-when-7000016224/

imaginary “SQL Server 2018”). Currently, there are still a large number of SQL Server customers happily

using older versions of SQL Server, such as SQL Server 2000 and SQL Server 2005, and it is likely that

trend will continue. In my experience, organizations that choose or need to use SQL Server Standard

Edition for whatever reason, tend to also be slower to upgrade to new versions of SQL Server as they are

released by Microsoft.

Second, they could move up to SQL Server Enterprise Edition at some point over the next several years.

After all, there are plenty of compelling features in SQL Server Enterprise Edition that make very good

sense to use for a mission critical application that is actually key to your business. Many organizations

may find the means to afford SQL Server Enterprise Edition at some point in the future, for a number of

reasons.

Third, I am sure there will be many strong incentives from Microsoft for customers to simply move much

of their database infrastructure to Azure over the next several years. This could be a perfectly viable

alternative in many situations.

Of course, not everyone will be happy with any of these alternatives. If you are really concerned about

the deprecation of Database Mirroring (without a completely viable replacement being publicly

announced), you have a number of alternatives.

First, you might consider calming down, and waiting a little longer to see what happens as we learn

more about future versions of SQL Server as time goes by. It is very likely that Microsoft has not made

any final decisions in this area (but you can bet they have thought about it). You could also try reaching

out privately to people you know in the Product Group to make your case. The least effective strategy

(at least in my experience) would be to loudly and publicly complain about this issue, especially before

Microsoft has announced their intentions for the future. Being the public “squeaky wheel” is sometimes

counterproductive…

What do you think about this? Is the deprecation of Database Mirroring (with no announced, viable

replacement for Standard Edition) a major concern for you? Is this part of some grand design to force

you to use Enterprise Edition or Azure? I would love to hear your thoughts!

Configuring Availability Group connectivity
By Rick Pittser

Now that Availability Groups are becoming more widespread, I thought I would cover a topic which may

be overlooked during the initial planning and installation of SQL Server in this type of environment. In

order to truly have a fault tolerant configuration, some thought and planning must go into the setup of

database connectivity.

I won't go into the details of setting up your AlwaysOn environment in this post, but for some additional

help I suggest you take a look at Aaron Bertrand's post, "Troubleshooting AlwaysOn – Sometimes it

takes many sets of eyes." Once your environment is configured, the next step in providing database

connectivity is to create an Availability Group Listener using SQL Management Studio or T-SQL:

ALTER AVAILABILITY GROUP [GroupName]
 ADD LISTENER N'ListenerName'
 (WITH IP ((N'10.x.x.x', N'255.255.255.0')), PORT=1433);

AG Listener Connection Strings

Your Virtual Network Name (VNN) is registered in DNS and is always owned by the SQL Server instance

where the primary replica resides. All of the IP addresses that are supplied while configuring the AG

Listener are registered in DNS under the same virtual network name.

After you have created your AG Listener, you must make sure your clients can connect. Your application

connection operates in the same manner it always has, however, instead of pointing towards a specific

server in your connection string, you point towards the AG Listener.

AG Listeners can only be connected to using TCP, and are resolved by your local DNS to the list of IP

addresses and TCP ports that are mapped to the VNN. Your client will attempt to connect to each of the

IP addresses in turn until it either gets a connection or until it reaches a connection timeout. An

important connection string parameter to consider using is MultiSubnetFailover. If this parameter is set

to true, the client will attempt the connections in parallel enabling faster connectivity and if necessary,

faster client failovers:

Server=tcp:MyAgListener,1433;Database=Db1;IntegratedSecurity=SSPI;

MultiSubnetFailover=True

When a failover occurs, client connections are reset, and the ownership of the AG Listener moves to the

SQL Server instance that takes over the primary replica role. The VNN endpoint is then bound to the

new IP addresses and TCP ports of the new primary replica instance. Depending on the client, an

automatic reconnect to the AG will occur, or the user may have to manually restart the affected

application or connection.

Application Intent

One of the biggest reasons to implement Availability Groups is to provide the ability to leverage your

backup or disaster recovery environments to offload work from your production environment. These

http://www.sqlperformance.com/2013/04/system-configuration/troubleshooting-alwayson
http://www.sqlperformance.com/2013/04/system-configuration/troubleshooting-alwayson

servers can now be used for backups, analysis, ad-hoc queries and reporting, or any other operation in

which having a read-only copy of the database is sufficient.

To provide read-only access to your secondary replicas, the ApplicationIntent connection string

parameter is used. An optional read-only routing list of SQL Server endpoints can be configured on each

replica. This list is used to redirect client connection requests that use the ApplicationIntent=ReadOnly

parameter to the first available secondary replica which has been configured with an appropriate

application intent filter.

Server=tcp:MyAgListener,1433;Database=Db1;IntegratedSecurity=SSPI;

MultiSubnetFailover=True;ApplicationIntent=ReadOnly;

Application Intent Filtering

To facilitate Application Intent from the clients connecting to your Availability Group, each SQL Server

instance in the group should be configured with an appropriate Application Intent Filter. The filter

determines which types of connections each replica will accept.

A primary replica which is configured to have Connections in Primary Role of “Allow all connections” will

accept any connections made through the AG Listener. A primary replica configured as “Allow

read/write connections” will reject any connection that specifies “ApplicationIntent=ReadOnly.”

When configuring replicas, you must also define whether or not each will be a Readable Secondary. A

replica which is configured as “No” will refuse all connections. This replica is assumed to be used only for

failover in a disaster recovery situation. If the secondary replica is configured as “Yes”, all connections

will be allowed, but only for read access, even if “ApplicationIntent=ReadOnly” is not specified. Finally if

the secondary is configured as “Read-only intent”, only clients that specify

“ApplicationIntent=ReadOnly” will be allowed to connect.

Read-Only Routing

Now that we know how to configure Application Intent on the server instances, and create the

necessary connection strings, we have to configure Availability Group read-only routing. When you

connect to the AG Listener using the connection string as defined above the listener queries the primary

replica instance and determines if the connection should be made to the primary (read/write) or to a

read-only secondary. To accomplish this, a routing list must be created for EACH availability replica

which is used if and when the replica assumes the role of primary. Typically, the best practice is to

include every read-only routing URL for each read-only secondary replica with the local replica URL at

the end of the list. Read-intent connection requests are routed to the first available readable secondary

on the routing list, there is no load balancing between the secondaries.

First, modify each replica to provide the read-only routing URL:

ALTER AVAILABILITY GROUP [Group1] MODIFY REPLICA ON N'COMPUTER01' WITH
 (SECONDARY_ROLE (ALLOW_CONNECTIONS = READ_ONLY));

ALTER AVAILABILITY GROUP [Group1] MODIFY REPLICA ON N'COMPUTER01' WITH
 (SECONDARY_ROLE (READ_ONLY_ROUTING_URL = N'TCP://COMPUTER01.mydomain.com:1433'));

ALTER AVAILABILITY GROUP [Group1] MODIFY REPLICA ON N'COMPUTER02' WITH
(SECONDARY_ROLE (ALLOW_CONNECTIONS = READ_ONLY));

ALTER AVAILABILITY GROUP [Group1] MODIFY REPLICA ON N'COMPUTER02' WITH
(SECONDARY_ROLE (READ_ONLY_ROUTING_URL = N'TCP://COMPUTER02.mydomain.com:1433'));

Second, modify each replica to provide the read-only routing list to be used when the given replica is in

the primary role:

ALTER AVAILABILITY GROUP [Group1] MODIFY REPLICA ON N'COMPUTER01' WITH
(PRIMARY_ROLE (READ_ONLY_ROUTING_LIST=('COMPUTER02','COMPUTER01')));

ALTER AVAILABILITY GROUP [Group1] MODIFY REPLICA ON N'COMPUTER02' WITH
(PRIMARY_ROLE (READ_ONLY_ROUTING_LIST=('COMPUTER01','COMPUTER02')));

The routing URL should be in the form of “TCP://: ”. For help determining your URL, see this blog and

script created by Matt Neerincx.

Conclusion

With your read-only routing configured, AG Listener created and your client applications using the

correct connection strings, you should have a fully fault tolerant connection for your Availability Group.

Make sure you take some time to test your connectivity, and the ability of your applications to follow

your servers when they fail over.

http://blogs.msdn.com/b/mattn/archive/2012/04/25/calculating-read-only-routing-url-for-alwayson.aspx
http://blogs.msdn.com/b/mattn/archive/2012/04/25/calculating-read-only-routing-url-for-alwayson.aspx

Readable Secondaries on a Budget
By Aaron Bertrand

Availability Groups, introduced in SQL Server 2012, represent a fundamental shift in the way we think

about both high availability and disaster recovery for our databases. One of the great things made

possible here is offloading read-only operations to a secondary replica, so that the primary read/write

instance is not bothered by pesky things like end user reporting. Setting this up is not simple, but is a

whole lot easier and more maintainable than previous solutions (raise your hand if you liked setting up

mirroring and snapshots, and all the perpetual maintenance involved with that).

People get very excited when they hear about Availability Groups. Then reality hits: the feature requires

the Enterprise Edition of SQL Server. Enterprise Edition is expensive, especially if you have a lot of cores,

and especially since the elimination of CAL-based licensing (unless you were grandfathered in from 2008

R2, in which case you are limited to the first 20 cores). It also requires Windows Server Failover

Clustering (WSFC), a complication not just for demonstrating the technology on a laptop, but also

requiring the Enterprise Edition of Windows, a domain controller, and a whole bunch of configuration to

support clustering. And there are new requirements around Software Assurance, too; an added cost if

you want your standby instances to be compliant.

Some customers can't justify the price. Others see the value, but simply can't afford it. So what are these

users to do?

Your New Hero: Log Shipping

Log shipping has been around for ages. It's simple and it just works. Almost always. And aside from

bypassing the licensing costs and configuration hurdles presented by Availability Groups, it can also

avoid the 14-byte penalty that Paul Randal (@PaulRandal) talked about in this week's SQLskills Insider

newsletter (October 13, 2014).

One of the challenges people have with using the log shipped copy as a readable secondary, though, is

that you have to kick all the current users out in order to apply any new logs – so either you have users

getting annoyed because they are repeatedly disrupted from running queries, or you have users getting

annoyed because their data is stale. This is because people limit themselves to a single readable

secondary.

It doesn't have to be that way; I think there is a graceful solution here, and while it might require a lot

more leg work up front than, say, turning on Availability Groups, it will surely be an attractive option for

some.

Basically, we can set up a number of secondaries, where we will log ship and make just one of them the

"active" secondary, using a round-robin approach. The job that ships the logs knows which one is

currently active, so it only restores new logs to the "next" server using the WITH STANDBY option. The

reporting application uses the same information to determine at runtime what the connection string

should be for the next report the user runs. When the next log backup is ready, everything shifts by one,

and the instance that will now become the new readable secondary gets restored usingWITH STANDBY.

To keep the model uncomplicated, let's say we have four instances that serve as readable secondaries,

and we take log backups every 15 minutes. At any one time, we'll have one active secondary in standby

http://twitter.com/PaulRandal
http://www.sqlskills.com/past-insider-newsletters/
http://www.sqlskills.com/past-insider-newsletters/

mode, with data no older than 15 minutes old, and three secondaries in standby mode that aren't

servicing new queries (but may still be returning results for older queries).

This will work best if no queries are expected to last longer than 45 minutes. (You may need to adjust

these cycles depending on the nature of your read-only operations, how many concurrent users are

running longer queries, and whether it is ever possible to disrupt users by kicking everyone out.)

It will also work best if consecutive queries run by the same user can change their connection string (this

is logic that will need to be in the application, though you could use synonyms or views depending on

the architecture), and contain different data that has changed in the meantime (just like if they were

querying the live, constantly-changing database, or the live, constantly).

With all of these assumptions in mind, here is an illustrative sequence of events for the first 75 minutes

of our implementation:

Time Events Visual

12:00
(t0)

-Backup log t0
-Kick users out of instance A
-Restore log t0 to instance A
(STANDBY)
-New read-only queries will go
to instance A

12:15
(t1)

-Backup log t1
-Kick users out of instance B
-Restore log t0 to instance B
(NORECOVERY)
-Restore log t1 to instance B
(STANDBY)
-New read-only queries will go
to instance B
-Existing read-only queries to
instance A can continue
running, but ~15 minutes
behind

12:30
(t2)

-Backup log t2
-Kick users out of instance C
-Restore log t0 -> t1 to instance
C (NORECOVERY)
-Restore log t2 to instance C
(STANDBY)
-New read-only queries will go
to instance C
-Existing read-only queries to
instance A & B can continue
running (15-30 minutes behind)

12:45
(t3)

-Backup log t3
-Kick users out of instance D
-Restore log t0 -> t2 to instance
D (NORECOVERY)
-Restore log t3 to instance D
(STANDBY)
-New read-only queries will go
to instance D
-Existing read-only queries to
instance A, B & C can continue
running (15-45 minutes behind)

13:00
(t4)

-Backup log t4
-Kick users out of instance A
-Restore log t1 -> t3 to instance
A (NORECOVERY)
-Restore log t4 to instance A
(STANDBY)
-New read-only queries will go
to instance A
-Existing read-only queries to
instance B, C & D can continue
running (15-45 minutes behind)
-Queries still running on

instance A since t0 -> ~t1 (45-60

minutes) will be cancelled

That may seem simple enough; writing the code to handle all that is a little more daunting. A rough

outline:

1. On the primary server (I'll call it BOSS), create a database. Before even thinking about going any

further, turn on Trace Flag 3226 to prevent successful backup messages from littering SQL

Server's error log.

2. On BOSS, add a linked server for each secondary (I'll call them PEON1 -> PEON4).

3. Somewhere accessible to all servers, create a file share to store database/log backups, and

ensure the service accounts for each instance have read/write access. Also, each secondary

instance needs to have a location specified for the standby file.

4. In a separate utility database (or MSDB, if you prefer), create tables that will hold configuration

information about the database(s), all of the secondaries, and log backup and restore history.

5. Create stored procedures that will back up the database and restore to the secondaries WITH

NORECOVERY, and then apply one log WITH STANDBY, and mark one instance as the current

standby secondary. These procedures can also be used to re-initialize the whole log shipping

setup in the event anything goes wrong.

6. Create a job that will run every 15 minutes, to perform the tasks described above:

o backup the log

o determine which secondary to apply any unapplied log backups to

http://www.mssqltips.com/sqlservertip/1457/stop-logging-all-successful-backups-in-your-sql-server-error-logs/

o restore those logs with the appropriate settings

7. Create a stored procedure (and/or a view?) that will tell the calling application(s) which

secondary they should use for any new read-only queries.

8. Create a cleanup procedure to clear out log backup history for logs that have been applied to all

secondaries (and perhaps also to move or purge the files themselves).

9. Augment the solution with robust error handling and notifications.

Step 1 – create a database

My primary instance is Standard Edition, named .\BOSS. On that instance I create a simple database with

one table:

USE [master];

GO

CREATE DATABASE UserData;

GO

ALTER DATABASE UserData SET RECOVERY FULL;

GO

USE UserData;

GO

CREATE TABLE dbo.LastUpdate(EventTime DATETIME2);

INSERT dbo.LastUpdate(EventTime) SELECT SYSDATETIME();

Then I create a SQL Server Agent job that merely updates that timestamp every minute:

UPDATE UserData.dbo.LastUpdate SET EventTime = SYSDATETIME();

That just creates the initial database and simulates activity, allowing us to validate how the log shipping

task rotates through each of the readable secondaries. I want to state explicitly that the point of this

exercise is not to stress test log shipping or to prove how much volume we can punch through; that is a

different exercise altogether.

Step 2 – add linked servers

I have four secondary Express Edition instances named .\PEON1, .\PEON2, .\PEON3, and .\PEON4. So I

ran this code four times, changing @s each time:

USE [master];

GO

DECLARE @s NVARCHAR(128) = N'.\PEON1', -- repeat for .\PEON2, .\PEON3, .\PEON4

 @t NVARCHAR(128) = N'true';

EXEC [master].dbo.sp_addlinkedserver @server = @s, @srvproduct = N'SQL Server';

EXEC [master].dbo.sp_addlinkedsrvlogin @rmtsrvname = @s, @useself = @t;

EXEC [master].dbo.sp_serveroption @server = @s, @optname = N'collation compatible',

@optvalue = @t;

EXEC [master].dbo.sp_serveroption @server = @s, @optname = N'data access',

@optvalue = @t;

EXEC [master].dbo.sp_serveroption @server = @s, @optname = N'rpc',

@optvalue = @t;

EXEC [master].dbo.sp_serveroption @server = @s, @optname = N'rpc out',

@optvalue = @t;

Step 3 – validate file share(s)

In my case, all 5 instances are on the same server, so I just created a folder for each

instance: C:\temp\Peon1\, C:\temp\Peon2\, and so on. Remember that if your secondaries are on

different servers, the location should be relative to that server, but still be accessible from the primary

(so typically a UNC path would be used). You should validate that each instance can write to that share,

and you should also validate that each instance can write to the location specified for the standby file (I

used the same folders for standby). You can validate this by backing up a small database from each

instance to each of its specified locations – don't proceed until this works.

Step 4 – create tables

I decided to place this data in msdb, but I don't really have any strong feelings for or against creating a

separate database. The first table I need is the one that holds information about the database(s) I am

going to be log shipping:

CREATE TABLE dbo.PMAG_Databases

(

 DatabaseName SYSNAME,

 LogBackupFrequency_Minutes SMALLINT NOT NULL DEFAULT (15),

 CONSTRAINT PK_DBS PRIMARY KEY(DatabaseName)

);

GO

INSERT dbo.PMAG_Databases(DatabaseName) SELECT N'UserData';

(If you're curious about the naming scheme, PMAG stands for "Poor Man's Availability Groups.")

Another table required is one to hold information about the secondaries, including their individual

folders and their current status in the log shipping sequence.

CREATE TABLE dbo.PMAG_Secondaries

(

 DatabaseName SYSNAME,

 ServerInstance SYSNAME,

 CommonFolder VARCHAR(512) NOT NULL,

 DataFolder VARCHAR(512) NOT NULL,

 LogFolder VARCHAR(512) NOT NULL,

 StandByLocation VARCHAR(512) NOT NULL,

 IsCurrentStandby BIT NOT NULL DEFAULT 0,

 CONSTRAINT PK_Sec PRIMARY KEY(DatabaseName, ServerInstance),

 CONSTRAINT FK_Sec_DBs FOREIGN KEY(DatabaseName)

 REFERENCES dbo.PMAG_Databases(DatabaseName)

);

If you want to backup from the source server locally, and have the secondaries restore remotely, or vice

versa, you can split CommonFolder into two columns (BackupFolder and RestoreFolder), and make

relevant changes in the code (there won't be that many).

Since I can populate this table based at least partially on the information in sys.servers – taking

advantage of the fact that the data / log and other folders are named after the instance names:

INSERT dbo.PMAG_Secondaries

(

 DatabaseName,

 ServerInstance,

 CommonFolder,

 DataFolder,

 LogFolder,

 StandByLocation

)

SELECT

 DatabaseName = N'UserData',

 ServerInstance = name,

 CommonFolder = 'C:\temp\Peon' + RIGHT(name, 1) + '\',

 DataFolder = 'C:\Program Files\Microsoft SQL Server\MSSQL12.PEON'

 + RIGHT(name, 1) + '\MSSQL\DATA\',

 LogFolder = 'C:\Program Files\Microsoft SQL Server\MSSQL12.PEON'

 + RIGHT(name, 1) + '\MSSQL\DATA\',

 StandByLocation = 'C:\temp\Peon' + RIGHT(name, 1) + '\'

FROM sys.servers

WHERE name LIKE N'.\PEON[1-4]';

I also need a table to track individual log backups (not just the last one), because in many cases I'll need

to restore multiple log files in a sequence. I can get this information from msdb.dbo.backupset, but it is

much more complicated to get things like the location – and I may not have control over other jobs

which may clean up backup history.

CREATE TABLE dbo.PMAG_LogBackupHistory

(

 DatabaseName SYSNAME,

 ServerInstance SYSNAME,

 BackupSetID INT NOT NULL,

 Location VARCHAR(2000) NOT NULL,

 BackupTime DATETIME NOT NULL DEFAULT SYSDATETIME(),

 CONSTRAINT PK_LBH PRIMARY KEY(DatabaseName, ServerInstance, BackupSetID),

 CONSTRAINT FK_LBH_DBs FOREIGN KEY(DatabaseName)

 REFERENCES dbo.PMAG_Databases(DatabaseName),

 CONSTRAINT FK_LBH_Sec FOREIGN KEY(DatabaseName, ServerInstance)

 REFERENCES dbo.PMAG_Secondaries(DatabaseName, ServerInstance)

);

You might think it is wasteful to store a row for each secondary, and to store the location of every

backup, but this is for future-proofing – to handle the case where you move the CommonFolder for any

secondary.

And finally a history of log restores so, at any point, I can see which logs have been restored and where,

and the restore job can be sure to only restore logs that haven't already been restored:

CREATE TABLE dbo.PMAG_LogRestoreHistory

(

 DatabaseName SYSNAME,

 ServerInstance SYSNAME,

 BackupSetID INT,

 RestoreTime DATETIME,

 CONSTRAINT PK_LRH PRIMARY KEY(DatabaseName, ServerInstance, BackupSetID),

 CONSTRAINT FK_LRH_DBs FOREIGN KEY(DatabaseName)

 REFERENCES dbo.PMAG_Databases(DatabaseName),

 CONSTRAINT FK_LRH_Sec FOREIGN KEY(DatabaseName, ServerInstance)

 REFERENCES dbo.PMAG_Secondaries(DatabaseName, ServerInstance)

);

Step 5 – initialize secondaries

We need a stored procedure that will generate a backup file (and mirror it to any locations required by

different instances), and we will also restore one log to each secondary to put them all in standby. At

this point they will all be available for read-only queries, but only one will be the "current" standby at

any one time. This is the stored procedure that will handle both full and transaction log backups; when a

full backup is requested, and @init is set to 1, it automatically re-initializes log shipping.

CREATE PROCEDURE [dbo].[PMAG_Backup]

 @dbname SYSNAME,

 @type CHAR(3) = 'bak', -- or 'trn'

 @init BIT = 0 -- only used with 'bak'

AS

BEGIN

 SET NOCOUNT ON;

 -- generate a filename pattern

 DECLARE @now DATETIME = SYSDATETIME();

 DECLARE @fn NVARCHAR(256) = @dbname + N'_' + CONVERT(CHAR(8), @now, 112)

 + RIGHT(REPLICATE('0',6) + CONVERT(VARCHAR(32), DATEDIFF(SECOND,

 CONVERT(DATE, @now), @now)), 6) + N'.' + @type;

 -- generate a backup command with MIRROR TO for each distinct CommonFolder

 DECLARE @sql NVARCHAR(MAX) = N'BACKUP'

 + CASE @type WHEN 'bak' THEN N' DATABASE ' ELSE N' LOG ' END

 + QUOTENAME(@dbname) + '

 ' + STUFF(

 (SELECT DISTINCT CHAR(13) + CHAR(10) + N' MIRROR TO DISK = '''

 + s.CommonFolder + @fn + ''''

 FROM dbo.PMAG_Secondaries AS s

 WHERE s.DatabaseName = @dbname

 FOR XML PATH(''), TYPE).value(N'.[1]',N'nvarchar(max)'),1,9,N'') + N'

 WITH NAME = N''' + @dbname + CASE @type

 WHEN 'bak' THEN N'_PMAGFull' ELSE N'_PMAGLog' END

 + ''', INIT, FORMAT' + CASE WHEN LEFT(CONVERT(NVARCHAR(128),

 SERVERPROPERTY(N'Edition')), 3) IN (N'Dev', N'Ent')

 THEN N', COMPRESSION;' ELSE N';' END;

 EXEC [master].sys.sp_executesql @sql;

 IF @type = 'bak' AND @init = 1 -- initialize log shipping

 BEGIN

 EXEC dbo.PMAG_InitializeSecondaries @dbname = @dbname, @fn = @fn;

 END

 IF @type = 'trn'

 BEGIN

 -- record the fact that we backed up a log

 INSERT dbo.PMAG_LogBackupHistory

 (

 DatabaseName,

 ServerInstance,

 BackupSetID,

 Location

)

 SELECT

 DatabaseName = @dbname,

 ServerInstance = s.ServerInstance,

 BackupSetID = MAX(b.backup_set_id),

 Location = s.CommonFolder + @fn

 FROM msdb.dbo.backupset AS b

 CROSS JOIN dbo.PMAG_Secondaries AS s

 WHERE b.name = @dbname + N'_PMAGLog'

 AND s.DatabaseName = @dbname

 GROUP BY s.ServerInstance, s.CommonFolder + @fn;

 -- once we've backed up logs,

 -- restore them on the next secondary

 EXEC dbo.PMAG_RestoreLogs @dbname = @dbname;

 END

END

This in turn calls two procedures that you could call separately (but most likely will not). First, the

procedure that will initialize the secondaries on first run:

ALTER PROCEDURE dbo.PMAG_InitializeSecondaries

 @dbname SYSNAME,

 @fn VARCHAR(512)

AS

BEGIN

 SET NOCOUNT ON;

 -- clear out existing history/settings (since this may be a re-init)

 DELETE dbo.PMAG_LogBackupHistory WHERE DatabaseName = @dbname;

 DELETE dbo.PMAG_LogRestoreHistory WHERE DatabaseName = @dbname;

 UPDATE dbo.PMAG_Secondaries SET IsCurrentStandby = 0

 WHERE DatabaseName = @dbname;

 DECLARE @sql NVARCHAR(MAX) = N'',

 @files NVARCHAR(MAX) = N'';

 -- need to know the logical file names - may be more than two

 SET @sql = N'SELECT @files = (SELECT N'', MOVE N'''''' + name

 + '''''' TO N''''$'' + CASE [type] WHEN 0 THEN N''df''

 WHEN 1 THEN N''lf'' END + ''$''''''

 FROM ' + QUOTENAME(@dbname) + '.sys.database_files

 WHERE [type] IN (0,1)

 FOR XML PATH, TYPE).value(N''.[1]'',N''nvarchar(max)'');';

 EXEC master.sys.sp_executesql @sql,

 N'@files NVARCHAR(MAX) OUTPUT',

 @files = @files OUTPUT;

 SET @sql = N'';

 -- restore - need physical paths of data/log files for WITH MOVE

 -- this can fail, obviously, if those path+names already exist for another db

 SELECT @sql += N'EXEC ' + QUOTENAME(ServerInstance)

 + N'.master.sys.sp_executesql N''RESTORE DATABASE ' + QUOTENAME(@dbname)

 + N' FROM DISK = N''''' + CommonFolder + @fn + N'''''' + N' WITH REPLACE,

 NORECOVERY' + REPLACE(REPLACE(REPLACE(@files, N'df', DataFolder

 + @dbname + N'.mdf'), N'lf', LogFolder + @dbname + N'.ldf'), N'''', N'''''')

 + N';'';' + CHAR(13) + CHAR(10)

 FROM dbo.PMAG_Secondaries

 WHERE DatabaseName = @dbname;

 EXEC [master].sys.sp_executesql @sql;

 -- backup a log for this database

 EXEC dbo.PMAG_Backup @dbname = @dbname, @type = 'trn';

 -- restore logs

 EXEC dbo.PMAG_RestoreLogs @dbname = @dbname, @PrepareAll = 1;

END

And then the procedure that will restore the logs:

CREATE PROCEDURE dbo.PMAG_RestoreLogs

 @dbname SYSNAME,

 @PrepareAll BIT = 0

AS

BEGIN

 SET NOCOUNT ON;

 DECLARE @StandbyInstance SYSNAME,

 @CurrentInstance SYSNAME,

 @BackupSetID INT,

 @Location VARCHAR(512),

 @StandByLocation VARCHAR(512),

 @sql NVARCHAR(MAX),

 @rn INT;

 -- get the "next" standby instance

 SELECT @StandbyInstance = MIN(ServerInstance)

 FROM dbo.PMAG_Secondaries

 WHERE IsCurrentStandby = 0

 AND ServerInstance > (SELECT ServerInstance

 FROM dbo.PMAG_Secondaries

 WHERE IsCurrentStandBy = 1);

 IF @StandbyInstance IS NULL -- either it was last or a re-init

 BEGIN

 SELECT @StandbyInstance = MIN(ServerInstance)

 FROM dbo.PMAG_Secondaries;

 END

 -- get that instance up and into STANDBY

 -- for each log in logbackuphistory not in logrestorehistory:

 -- restore, and insert it into logrestorehistory

 -- mark the last one as STANDBY

 -- if @prepareAll is true, mark all others as NORECOVERY

 -- in this case there should be only one, but just in case

 DECLARE c CURSOR LOCAL FAST_FORWARD FOR

 SELECT bh.BackupSetID, s.ServerInstance, bh.Location, s.StandbyLocation,

 rn = ROW_NUMBER() OVER (PARTITION BY s.ServerInstance ORDER BY bh.BackupSetID DESC)

 FROM dbo.PMAG_LogBackupHistory AS bh

 INNER JOIN dbo.PMAG_Secondaries AS s

 ON bh.DatabaseName = s.DatabaseName

 AND bh.ServerInstance = s.ServerInstance

 WHERE s.DatabaseName = @dbname

 AND s.ServerInstance = CASE @PrepareAll

 WHEN 1 THEN s.ServerInstance ELSE @StandbyInstance END

 AND NOT EXISTS

 (

 SELECT 1 FROM dbo.PMAG_LogRestoreHistory AS rh

 WHERE DatabaseName = @dbname

 AND ServerInstance = s.ServerInstance

 AND BackupSetID = bh.BackupSetID

)

 ORDER BY CASE s.ServerInstance

 WHEN @StandbyInstance THEN 1 ELSE 2 END, bh.BackupSetID;

 OPEN c;

 FETCH c INTO @BackupSetID, @CurrentInstance, @Location, @StandbyLocation, @rn;

 WHILE @@FETCH_STATUS -1

 BEGIN

 -- kick users out - set to single_user then back to multi

 SET @sql = N'EXEC ' + QUOTENAME(@CurrentInstance) + N'.[master].sys.sp_executesql '

 + 'N''IF EXISTS (SELECT 1 FROM sys.databases WHERE name = N'''''

 + @dbname + ''''' AND [state] 1)

 BEGIN

 ALTER DATABASE ' + QUOTENAME(@dbname) + N' SET SINGLE_USER '

 + N'WITH ROLLBACK IMMEDIATE;

 ALTER DATABASE ' + QUOTENAME(@dbname) + N' SET MULTI_USER;

 END;'';';

 EXEC [master].sys.sp_executesql @sql;

 -- restore the log (in STANDBY if it's the last one):

 SET @sql = N'EXEC ' + QUOTENAME(@CurrentInstance)

 + N'.[master].sys.sp_executesql ' + N'N''RESTORE LOG ' + QUOTENAME(@dbname)

 + N' FROM DISK = N''''' + @Location + N''''' WITH ' + CASE WHEN @rn = 1

 AND (@CurrentInstance = @StandbyInstance OR @PrepareAll = 1) THEN

 N'STANDBY = N''''' + @StandbyLocation + @dbname + N'.standby''''' ELSE

 N'NORECOVERY' END + N';'';';

 EXEC [master].sys.sp_executesql @sql;

 -- record the fact that we've restored logs

 INSERT dbo.PMAG_LogRestoreHistory

 (DatabaseName, ServerInstance, BackupSetID, RestoreTime)

 SELECT @dbname, @CurrentInstance, @BackupSetID, SYSDATETIME();

 -- mark the new standby

 IF @rn = 1 AND @CurrentInstance = @StandbyInstance -- this is the new STANDBY

 BEGIN

 UPDATE dbo.PMAG_Secondaries

 SET IsCurrentStandby = CASE ServerInstance

 WHEN @StandbyInstance THEN 1 ELSE 0 END

 WHERE DatabaseName = @dbname;

 END

 FETCH c INTO @BackupSetID, @CurrentInstance, @Location, @StandbyLocation, @rn;

 END

 CLOSE c; DEALLOCATE c;

END

(I know it's a lot of code, and a lot of cryptic dynamic SQL. I tried to be very liberal with comments; if

there is a piece you're having trouble with, please let me know.)

So now, all you have to do to get the system up and running is make two procedure calls:

EXEC dbo.PMAG_Backup @dbname = N'UserData', @type = 'bak', @init = 1;

EXEC dbo.PMAG_Backup @dbname = N'UserData', @type = 'trn';

Now you should see each instance with a standby copy of the database:

And you can see which one should currently serve as the read-only standby:

SELECT ServerInstance, IsCurrentStandby

 FROM dbo.PMAG_Secondaries

 WHERE DatabaseName = N'UserData';

Step 6 – create a job that backs up / restores logs

You can put this command in a job you schedule for every 15 minutes:

EXEC dbo.PMAG_Backup @dbname = N'UserData', @type = 'trn';

This will shift the active secondary every 15 minutes, and its data will be 15 minutes fresher than the

previous active secondary. If you have multiple databases on different schedules, you can create

multiple jobs, or schedule the job more frequently and check the dbo.PMAG_Databases table for each

individual LogBackupFrequency_Minutes value to determine if you should run the backup/restore for

that database.

Step 7 – view and procedure to tell application which standby is active

CREATE VIEW dbo.PMAG_ActiveSecondaries

AS

 SELECT DatabaseName, ServerInstance

 FROM dbo.PMAG_Secondaries

 WHERE IsCurrentStandby = 1;

GO

CREATE PROCEDURE dbo.PMAG_GetActiveSecondary

 @dbname SYSNAME

AS

BEGIN

 SET NOCOUNT ON;

 SELECT ServerInstance

 FROM dbo.PMAG_ActiveSecondaries

 WHERE DatabaseName = @dbname;

END

GO

In my case, I also manually created a view unioning across all of the UserData databases so that I could

compare the recency of the data on the primary with each secondary.

CREATE VIEW dbo.PMAG_CompareRecency_UserData

AS

 WITH x(ServerInstance, EventTime)

 AS

 (

 SELECT @@SERVERNAME, EventTime FROM UserData.dbo.LastUpdate

 UNION ALL SELECT N'.\PEON1', EventTime FROM [.\PEON1].UserData.dbo.LastUpdate

 UNION ALL SELECT N'.\PEON2', EventTime FROM [.\PEON2].UserData.dbo.LastUpdate

 UNION ALL SELECT N'.\PEON3', EventTime FROM [.\PEON3].UserData.dbo.LastUpdate

 UNION ALL SELECT N'.\PEON4', EventTime FROM [.\PEON4].UserData.dbo.LastUpdate

)

 SELECT x.ServerInstance, s.IsCurrentStandby, x.EventTime,

 Age_Minutes = DATEDIFF(MINUTE, x.EventTime, SYSDATETIME()),

 Age_Seconds = DATEDIFF(SECOND, x.EventTime, SYSDATETIME())

 FROM x LEFT OUTER JOIN dbo.PMAG_Secondaries AS s

 ON s.ServerInstance = x.ServerInstance

 AND s.DatabaseName = N'UserData';

GO

Sample results from the weekend:

SELECT [Now] = SYSDATETIME();

SELECT ServerInstance, IsCurrentStandby, EventTime, Age_Minutes, Age_Seconds

 FROM dbo.PMAG_CompareRecency_UserData

 ORDER BY Age_Seconds DESC;

Step 8 – cleanup procedure

Cleaning up the log backup and restore history is pretty easy.

CREATE PROCEDURE dbo.PMAG_CleanupHistory

 @dbname SYSNAME,

 @DaysOld INT = 7

AS

BEGIN

 SET NOCOUNT ON;

 DECLARE @cutoff INT;

 -- this assumes that a log backup either

 -- succeeded or failed on all secondaries

 SELECT @cutoff = MAX(BackupSetID)

 FROM dbo.PMAG_LogBackupHistory AS bh

 WHERE DatabaseName = @dbname

 AND BackupTime < DATEADD(DAY, -@DaysOld, SYSDATETIME())

 AND EXISTS

 (

 SELECT 1

 FROM dbo.PMAG_LogRestoreHistory AS rh

 WHERE BackupSetID = bh.BackupSetID

 AND DatabaseName = @dbname

 AND ServerInstance = bh.ServerInstance

);

 DELETE dbo.PMAG_LogRestoreHistory

 WHERE DatabaseName = @dbname

 AND BackupSetID <= @cutoff;

 DELETE dbo.PMAG_LogBackupHistory

 WHERE DatabaseName = @dbname

 AND BackupSetID <= @cutoff;

END

GO

Now, you can add that as a step in the existing job, or you can schedule it completely separately or as

part of other cleanup routines.

I'll leave cleaning up the file system for another post (and probably a separate mechanism altogether,

such as PowerShell or C# – this isn't typically the kind of thing you want T-SQL to do).

Step 9 – augment the solution

It's true that there could be better error handling and other niceties here to make this solution more

complete. For now I will leave that as an exercise for the reader, but I plan to look at follow-up posts to

detail improvements and refinements to this solution.

Variables and limitations

Note that in my case I used Standard Edition as the primary, and Express Edition for all secondaries. You

could go a step further on the budget scale and even use Express Edition as the primary – a lot of people

think Express Edition doesn't support log shipping, when in fact it's merely the wizard that wasn't

present in versions of Management Studio Express before SQL Server 2012 Service Pack 1. That said,

since Express Edition does not support SQL Server Agent, it would be difficult to make it a publisher in

this scenario – you would have to configure your own scheduler to call the stored procedures (C#

command line app run by Windows Task Scheduler, PowerShell jobs, or SQL Server Agent jobs on yet

another instance). To use Express on either end, you would also have to be confident that your data file

won't exceed 10GB, and your queries will function fine with the memory, CPU, and feature limitations of

that edition. I am by no means suggesting that Express is ideal; I merely used it to demonstrate that it is

possible to have very flexible readable secondaries for free (or very close to it).

http://sqlperformance.com/2014/09/system-configuration/stop-making-sql-server-dirty-work

Also, these separate instances in my scenario all live on the same VM, but it doesn't have to work that

way at all – you can spread the instances out across multiple servers; or, you could go the other way,

and restore to different copies of the database, with different names, on the same instance. These

configurations would require minimal changes to what I've laid out above. And how many databases you

restore to, and how often, is completely up to you – though there will be a practical upper bound

(where [average query time] > [number of secondaries] x [log backup interval]).

Finally, there are definitely some limitations with this approach. A non-exhaustive list:

1. While you can continue to take full backups on your own schedule, the log backups must serve

as your only log backup mechanism. If you need to store the log backups for other purposes, you

won't be able to back up logs separately from this solution, since they will interfere with the log

chain. Instead, you can consider adding additional MIRROR TO arguments to the existing log

backup scripts, if you need to have copies of the logs used elsewhere.

2. While "Poor Man's Availability Groups" may seem like a clever name, it can also be a bit

misleading. This solution certainly lacks many of the HA/DR features of Availability Groups,

including failover, automatic page repair, and support in the UI, Extended Events and DMVs.

This was only meant to provide the ability for non-Enterprise customers to have an

infrastructure that supports multiple readable secondaries.

3. I tested this on a very isolated VM system with no concurrency. This is not a complete solution

and there are likely dozens of ways this code could be made tighter; as a first step, and to focus

on the scaffolding and to show you what's possible, I did not build in bulletproof resiliency. You

will need to test it at your scale and with your workload to discover your breaking points, and

you will also potentially need to deal with transactions over linked servers (always fun) and

automating the re-initialization in the event of a disaster.

The "Insurance Policy"

Log shipping also offers a distinct advantage over many other solutions, including Availability Groups,

mirroring and replication: a delayed "insurance policy" as I like to call it. At my previous job, I did this

with full backups, but you could easily use log shipping to accomplish the same thing: I simply delayed

the restores to one of the secondary instances by 24 hours. This way, I was protected from any client

"shooting themselves in the foot" going back to yesterday, and I could get to their data easily on the

delayed copy, because it was 24 hours behind. (I implemented this the first time a customer ran a delete

without a where clause, then called us in a panic, at which point we had to restore their database to a

point in time before the delete – which was both tedious and time consuming.) You could easily adapt

this solution to treat one of these instances not as a read-only secondary but rather as an insurance

policy. More on that perhaps in another post.

Performance Tuning and Troubleshooting
Knee-Jerk Wait Statistics: PAGEIOLATCH_SH
By Paul Randal

In my posts this year I've been discussing the knee-jerk reactions to various wait types, and in this post

I'm going to continue with the wait statistics theme and discuss the PAGEIOLATCH_XX wait. I say "wait"

but there are really multiple kinds of PAGEIOLATCH waits, which I've signified with the XX at the end.

The most common examples are:

 PAGEIOLATCH_SH – (SHare) waiting for a data file page to be brought from disk into the buffer

pool so its contents can be read

 PAGEIOLATCH_EX or PAGEIOLATCH_UP – (EXclusive or UPdate) waiting for a data file page to be

brought from disk into the buffer pool so its contents can be modified

Of these, by far the most common type is PAGEIOLATCH_SH.

When this wait type is the most prevalent on a server, the knee-jerk reaction is that the I/O subsystem

must have a problem and so that's where investigations should be focused.

The first thing to do is to compare the PAGEIOLATCH_SH wait count and duration against your baseline.

If the volume of waits is more or less the same, but the duration of each read wait has become much

longer, then I'd be concerned about an I/O subsystem problem, such as:

 A misconfiguration/malfunction at the I/O subsystem level

 Network latency

 Another I/O workload causing contention with our workload

 Configuration of synchronous I/O-subsystem replication/mirroring

In my experience, the pattern is often that the number of PAGEIOLATCH_SH waits has increased

substantially from the baseline (normal) amount and the wait duration has also increased (i.e. the time

for a read I/O has increased), because the large number of reads overloads the I/O subsystem. This isn't

an I/O subsystem problem – this is SQL Server driving more I/Os than it should be. The focus now needs

to switch to SQL Server to identify the cause of the extra I/Os.

Causes of Large Numbers of Read I/Os

SQL Server has two types of reads: logical I/Os and physical I/Os. When the Access Methods portion of

the Storage Engine needs to access a page, it asks the Buffer Pool for a pointer to the page in memory

(called a logical I/O) and the Buffer Pool checks through its metadata to see if that page is already in

memory.

If the page is in memory, the Buffer Pool gives the Access Methods the pointer, and the I/O remains a

logical I/O. If the page is not in memory, the Buffer Pool issues a "real" I/O (called a physical I/O) and the

thread has to wait for it to complete – incurring a PAGEIOLATCH_XX wait. Once the I/O completes and

the pointer is available, the thread is notified and can continue running.

In an ideal world your entire workload would fit in memory and so once the buffer pool has "warmed

up" and holds all the workload, no more reads are required, only writes of updated data. It's not an ideal

world though, and most of you don't have that luxury, so some reads are inevitable. As long as the

number of reads stays around your baseline amount, there's no problem.

When a large number of reads are required suddenly and unexpectedly, that's a sign that there's a

significant change in either the workload, the amount of buffer pool memory available for storing in-

memory copies of pages, or both.

Here are some possible root causes (not an exhaustive list):

 External Windows memory pressure on SQL Server causing the memory manager to reduce the

buffer pool size

 Plan cache bloat causing extra memory to be borrowed from the buffer pool

 A query plan doing a table/clustered index scan (instead of an index seek) because of:

o a workload volume increase

o a parameter sniffing problem

o a required nonclustered index that was dropped or changed

o an implicit conversion

One pattern to look for that would suggest a table/clustered index scan being the cause is also seeing a

large number of CXPACKET waits along with the PAGEIOLATCH_SH waits. This is a common pattern that

indicates large, parallel table/clustered index scans occurring.

In all cases, you could look at what query plan is causing the PAGEIOLATCH_SH waits using

the sys.dm_os_waiting_tasks and other DMVs, and you can get code to do that in my blog post here. If

you have a third-party monitoring tool available, it may be able to help you identify the culprit without

getting your hands dirty.

Example Workflow with Performance Advisor and Plan Explorer

In a simple (obviously contrived) example, let's assume that I'm on a client system using SQL Sentry's

suite of tools and see a spike in I/O waits in the dashboard view of Performance Advisor, as shown

below:

http://www.sqlskills.com/blogs/paul/advanced-performance-troubleshooting-waits-latches-spinlocks/
http://sqlsentry.com/products/solutions-sql-server?ad=sqlperf-sk-psp
http://sqlsentry.com/products/solutions-sql-server?ad=sqlperf-sk-psp
http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?ad=sqlperf-sk-pa

Spotting a spike in I/O waits in SQL Sentry Performance Advisor

I decide to investigate by right-clicking a selected time interval around the time of the spike, then

jumping over to the Top SQL view, which is going to show me the most expensive queries that have

executed:

Highlighting a time range and navigating to Top SQL

In this view, I can see which long-running or high I/O queries were running at the time the spike

occurred, and then choose to drill in to their query plans (in this case, there is just one long-running

query, which ran for nearly a minute):

Reviewing a long-running query in Top SQL

If I look at the plan in the SQL Sentry client or open it in SQL Sentry Plan Explorer, I immediately
see multiple problems. The number of reads required to return 7 rows seems far too high, the
delta between estimated and actual rows is large, and the plan shows an index scan occurring
where I would have expected a seek:

Seeing implicit conversion warnings in the query plan

http://www.sqlsentry.com/products/plan-explorer/sql-server-query-view?ad=sqlperf-sk-pe

The cause of all this is highlighted in the warning on the SELECT operator: It's an implicit conversion!

Implicit conversions are an insidious problem caused by a mismatch between the search predicate data
type and the data type of the column being searched, or a calculation being performed on the table
column rather than the search predicate. In either case, SQL Server cannot use an index seek on the
table column and must use a scan instead.

This can crop up in seemingly innocent code, and a common example is using a date calculation. If you
have a table that stores the age of customers, and you want to perform a calculation to see how many
are 21 years old or over today, you might write code like this:

WHERE DATEADD (YEAR, 21, [MyTable].[BirthDate]) <= @today;

With this code, the calculation is on the table column and so an index seek cannot be used, resulting in
an unseekable expression (technically known as a non-SARGable expression) and a table/clustered index
scan. This can be solved by moving the calculation to the other side of the operator:

WHERE [MyTable].[BirthDate] <= DATEADD (YEAR, -21, @today);

In terms of when a basic column comparison requires a data type conversion that can cause an
implicit conversion, my colleague Jonathan Kehayias wrote an excellent blog post that
compares every combination of data types and notes when an implicit conversion will be
required.

Summary

Don't fall into the trap of thinking that excessive PAGEIOLATCH_XX waits are caused by the I/O
subsystem. In my experience they're usually caused by something to do with SQL Server and
that's where I'd start troubleshooting.

As far as general wait statistics are concerned, you can find more information about using them
for performance troubleshooting in:

 My SQLskills blog post series, starting with Wait statistics, or please tell me where it
hurts

 My Pluralsight online training course SQL Server: Performance Troubleshooting Using
Wait Statistics

 SQL Sentry Performance Advisor

In the next article in the series, I'll discuss another wait type that is a common cause of knee-
jerk reactions. Until then, happy troubleshooting!

http://www.sqlskills.com/blogs/jonathan/implicit-conversions-that-cause-index-scans/
http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/
http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/
http://www.pluralsight.com/training/Courses/TableOfContents/sqlserver-waits
http://www.pluralsight.com/training/Courses/TableOfContents/sqlserver-waits
http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?ad=sqlperf-sk-pa

Knee-Jerk PerfMon Counters: Page Life Expectancy
By Paul Randal

All my posts this year have been about knee-jerk reactions to wait statistics, but in this post I’m

deviating from that theme to talk about a particular bug bear of mine: the page life expectancy

performance counter (which I’ll call PLE).

What Does PLE Mean?

There are all kinds of incorrect statements about page life expectancy out there on the Internet, and the

most egregious are those that specify that the value 300 is the threshold for where you should be

worried.

To understand why this statement is so misleading, you need to understand what PLE actually is.

The definition of PLE is the expected time, in seconds, that a data file page read into the buffer pool (the

in-memory cache of data files pages) will remain in memory before being pushed out of memory to

make room for a different data file page. Another way to think of PLE is an instantaneous measure of

the pressure on the buffer pool to make free space for pages being read from disk. For both of these

definitions, a higher number is better.

What’s A Good PLE Threshold?

A PLE of 300 means your entire buffer pool is being effectively flushed and re-read every five minutes.

When the threshold guidance for PLE of 300 was first given by Microsoft, around 2005/2006, that

number may have made more sense as the average amount of memory on a server was much lower.

Nowadays, where servers routinely have 64GB, 128GB, and higher amounts of memory, having roughly

that much data being read from disk every five minutes would likely be the cause of a crippling

performance issue

In reality then, by the time PLE is hovering at or below 300, your server is already in dire straits. You’d

start to be worried way, way before PLE is that low.

So what’s the threshold to use for when you should be worried?

Well, that’s just the point. I can’t give you a threshold, as that number’s going to vary for everyone. If

you really, really want a number to use, my colleague Jonathan Kehayias came up with a formula:

(Buffer pool memory in GB / 4) x 300

Even that number is somewhat arbitrary, and your mileage is going to vary.

I don’t like to recommend any numbers. My advice is for you to measure your PLE when performance is

at the desired level – that’s the threshold that you use.

So do you start to worry as soon as PLE drops below that threshold? No. You start to worry when PLE

drops below that threshold and stays below that threshold, or if it drops precipitously and you don’t

know why.

This is because there are some operations that will cause a PLE drop (e.g. running DBCC CHECKDB or

index rebuilds can do it sometimes) and aren’t cause for concern. But if you see a large PLE drop and you

don’t know what’s causing it, that’s when you should be concerned.

You might be wondering how DBCC CHECKDB can cause a PLE drop when it does disfavoring and tries

hard to avoid flushing the buffer pool with the data it uses (see this blog post for an explanation). It’s

because the query execution memory grant for DBCC CHECKDB is miscalculated by the Query Optimizer

and can cause a big reduction in the size of the buffer pool (the memory for the grant is stolen from the

buffer pool) and a consequent drop in PLE.

How Do You Monitor PLE?

This is the tricky bit. Most people will go straight to the Buffer Manager performance object in PerfMon

and monitor the Page life expectancy counter. Is this the right approach? Most likely not.

I’d say that a large majority of servers out there today are using NUMA architecture, and this has a

profound effect on how you monitor PLE.

When NUMA is involved, the buffer pool is split up into buffer nodes, with one buffer node per NUMA

node that SQL Server can ‘see’. Each buffer node tracks PLE separately and the Buffer Manager:Page life

expectancy counter is the average of the buffer node PLEs. If you’re just monitoring the overall buffer

pool PLE, then pressure on one of the buffer nodes may be masked by the averaging (I discuss this in a

blog post here).

So if your server is using NUMA, you need to monitor the individual Buffer Node:Page life

expectancy counters (there will be one Buffer Node performance object for each NUMA node),

otherwise you’re good monitoring the Buffer Manager:Page life expectancy counter.

Even better is to use a monitoring tool like SQL Sentry Performance Advisor, which will show this

counter as part of the dashboard, taking into account the NUMA nodes on the server, and allow you to

easily configure alerts.

Examples of Using Performance Advisor

Below is an example portion of a screen capture from Performance Advisor for a system with a single

NUMA node:

On the right-hand side of the capture, the pink-dashed line is the PLE between 10.30am and about

11.20am – it’s climbing steadily up to 5,000 or so, a really healthy number. Just before 11.20am there’s a

huge drop, and then it starts to climb again until 11.45am, where it drops again.

http://www.sqlskills.com/blogs/paul/buffer-pool-disfavoring/
http://www.sqlskills.com/blogs/paul/page-life-expectancy-isnt-what-you-think/
http://sqlsentry.com/products/performance-advisor/sql-server-performance?ad=sqlperf-sk-pa

This is typically what you would see if the buffer pool is full, with all the pages being used, and then a

query runs that causes a huge amount of different data to be read from disk, displacing much of what’s

already in memory and causing a precipitous drop in PLE. If you didn’t know what caused something like

this, you’d want to investigate, as I describe further down.

As a second example, the screen capture below is from one of our Remote DBA clients where the server

has two NUMA nodes (you can see that there are two purple PLE lines), and where we use Performance

Advisor extensively:

On this client’s server, every morning at around 5am, an index maintenance and consistency checking

job kicks off that cause the PLE to drop in both buffer nodes. This is expected behavior so there’s no

need to investigate as long as PLE rises up again during the day.

What Can You Do About PLE Dropping?

If the cause of the PLE drop isn’t known, you can do a number of things:

1. If the problem is happening now, investigate which queries are causing reads by using

the sys.dm_os_waiting_tasks DMV to see which threads that are waiting for pages to be read

from disk (i.e. those waiting for PAGEIOLATCH_SH), and then fix those queries.

2. If the problem happened in the past, look in the sys.dm_exec_query_stats DMV for queries with

high numbers of physical reads, or use a monitoring tool that can give you that information (e.g.

the Top SQL view in Performance Advisor), and then fix those queries.

3. Correlate the PLE drop with scheduled Agent jobs that perform database maintenance.

4. Look for queries with very large query execution memory memory grants using

the sys.dm_exec_query_memory_grants DMV, and then fix those queries.

My previous post here explains more about #1 and #2, and a script to investigate waits occurring on a

server and link to their query plans is here.

The "fix those queries" is beyond the scope of this post, so I’ll leave that for another time or as an

exercise for the reader ☺

Summary

Don’t fall into the trap of believing any recommended PLE threshold that you might read online. The

best way to react to PLE changes is when PLE drops below whatever your comfort level is and stays

there – that’s the indication of a performance problem that you should investigate.

http://sqlperformance.com/2014/06/io-subsystem/knee-jerk-waits-pageiolatch-sh
http://www.sqlskills.com/blogs/paul/advanced-performance-troubleshooting-waits-latches-spinlocks/

In the next article in the series, I’ll discuss another common cause of knee-jerk performance tuning.

Until then, happy troubleshooting!

Performance Tuning the Whole Query Plan
By Paul White

Execution plans provide a rich source of information that can help us identify ways to improve the

performance of important queries. People often look for things like large scans and lookups as a way to

identify potential data access path optimizations. These issues can often be quickly resolved by creating

a new index or extending an existing one with more included columns.

We can also use post-execution plans to compare actual with expected row counts between plan

operators. Where these are found to be significantly at variance, we can try to provide better statistical

information to the optimizer by updating existing statistics, creating new statistics objects, utilizing

statistics on computed columns, or perhaps by breaking a complex query up into less-complex

component parts.

Beyond that, we can also look at expensive operations in the plan, particularly memory-consuming ones

like sorting and hashing. Sorting can sometimes be avoided through indexing changes. Other times, we

might have to refactor the query using syntax that favours a plan that preserves a particular desired

ordering.

Sometimes, performance will still not be good enough even after all these performance tuning

techniques are applied. A possible next step is to think a bit more about the plan as a whole. This means

taking a step back, trying to understand the overall strategy chosen by the query optimizer, to see if we

can identify an algorithmic improvement.

This article explores this latter type of analysis, using a simple example problem of finding unique

column values in a moderately large data set. As is often the case in analogous real-world problems, the

column of interest will have relatively few unique values, compared with the number of rows in the

table. There are two parts to this analysis: creating the sample data, and writing the distinct-values

query itself.

Creating the Sample Data

To provide the simplest possible example, our test table has just a single column with a clustered index

(this column will hold duplicate values so the index cannot be declared unique):

CREATE TABLE dbo.Test

(

 data integer NOT NULL,

);

GO

CREATE CLUSTERED INDEX cx

ON dbo.Test (data);

To pick some numbers out of the air, we will choose to load ten million rows in total, with an even

distribution over a thousand distinct values. A common technique to generate data like this is to cross

join some system tables and apply the ROW_NUMBER function. We will also use the modulo operator to

limit the generated numbers to the desired distinct values:

http://sqlperformance.com/2014/09/sql-plan/rewriting-queries-improve-performance
http://sqlperformance.com/2014/09/sql-plan/rewriting-queries-improve-performance

INSERT dbo.Test WITH (TABLOCK)

 (data)

SELECT TOP (10000000)

 (ROW_NUMBER() OVER (ORDER BY (SELECT 0)) % 1000) + 1

FROM master.sys.columns AS C1 WITH (READUNCOMMITTED)

CROSS JOIN master.sys.columns AS C2 WITH (READUNCOMMITTED)

CROSS JOIN master.sys.columns C3 WITH (READUNCOMMITTED);

The estimated execution plan for that query is as follows:

This takes around 30 seconds to create the sample data on my laptop. That is not an enormous length of

time by any means, but it is still interesting to consider what we might do to make this process more

efficient…

Plan Analysis

We will start by understanding what each operation in the plan is there for.

The section of the execution plan to the right of the Segment operator is concerned with manufacturing

rows by cross joining system tables:

The Segment operator is there in case the window function had a PARTITION BY clause. That is not the

case here, but it features in the query plan anyway. The Sequence Project operator generates the row

numbers, and the Top limits the plan output to ten million rows:

The Compute Scalar defines the expression that applies the modulo function and adds one to the result:

We can see how the Sequence Project and Compute Scalar expression labels relate using Plan

Explorer's Expressions tab:

This gives us a more complete feel for the flow of this plan: the Sequence Project numbers the rows and

labels the expression Expr1050; the Compute Scalar labels the result of the modulo and plus-one

computation as Expr1052. Notice also the implicit conversion in the Compute Scalar expression. The

destination table column is of type integer, whereas the ROW_NUMBER function produces a bigint, so a

narrowing conversion is necessary.

The next operator in the plan is a Sort. According to the query optimizer's costing estimates, this is

expected to be the most expensive operation (88.1% estimated):

http://sqlsentry.com/products/plan-explorer/sql-server-query-view?ad=sqlperf-pw-pe
http://sqlsentry.com/products/plan-explorer/sql-server-query-view?ad=sqlperf-pw-pe

It might not be immediately obvious why this plan features sorting, since there is no explicit ordering

requirement in the query. The Sort is added to the plan to ensure rows arrive at the Clustered Index

Insert operator in clustered index order. This promotes sequential writes, avoids page splitting, and is

one of the pre-requisites for minimally-logged INSERT operations.

These are all potentially good things, but the Sort itself is rather expensive. Indeed, checking the post-

execution ("actual") execution plan reveals the Sort also ran out of memory at execution time and had

to spill to physical tempdb disk:

The Sort spill occurs despite the estimated number of rows being exactly right, and despite the fact the

query was granted all the memory it asked for (as seen in the plan properties for the rootINSERT node):

Sort spills are also indicated by the presence of IO_COMPLETION waits in the Plan Explorer PRO wait

stats tab:

http://sqlsentry.com/products/plan-explorer/sql-server-query-view?ad=sqlperf-pw-pe

Finally for this plan analysis section, notice the DML Request Sort property of the Clustered Index Insert

operator is set true:

This flag indicates that the optimizer requires the sub-tree below the Insert to provide rows in index key

sorted order (hence the need for the problematic Sort operator).

Avoiding the Sort

Now that we know why the Sort appears, we can test to see what happens if we remove it. There are

ways we could rewrite the query to "fool" the optimizer into thinking fewer rows would be inserted (so

sorting would not be worthwhile) but a quick way to avoid the sort directly (for experimental purposes

only) is to use undocumented trace flag 8795. This sets the DML Request Sortproperty to false, so rows

are no longer required to arrive at the Clustered Index Insert in clustered key order:

TRUNCATE TABLE dbo.Test;

GO

INSERT dbo.Test WITH (TABLOCK)

 (data)

SELECT TOP (10000000)

 ROW_NUMBER() OVER (ORDER BY (SELECT 0)) % 1000

FROM master.sys.columns AS C1 WITH (READUNCOMMITTED)

CROSS JOIN master.sys.columns AS C2 WITH (READUNCOMMITTED)

CROSS JOIN master.sys.columns C3 WITH (READUNCOMMITTED)

OPTION (QUERYTRACEON 8795);

The new post-execution query plan is as follows:

The Sort operator has gone, but the new query runs for over 50 seconds (compared with 30
seconds before). There are a couple of reasons for this. First, we lose any possibility of minimally-logged
inserts because these require sorted data (DML Request Sort = true). Second, a large number of "bad"
page splits will occur during the insert. In case that seems counter-intuitive, remember that although
the ROW_NUMBER function numbers rows sequentially, the effect of the modulo operator is to present
a repeating sequence of numbers 1…1000 to the Clustered Index Insert.

The same fundamental issue occurs if we use T-SQL tricks to lower the expected row count to avoid the
sort instead of using the unsupported trace flag.

Avoiding the Sort II

Looking at the plan as a whole, it seems clear we would like to generate rows in a way that avoids an
explicit sort, but which still reaps the benefits of minimal logging and bad page split avoidance. Put
simply: we want a plan that presents rows in clustered key order, but without sorting.

Armed with this new insight, we can express our query in a different way. The following query generates
each number from 1 to 1000 and cross joins that set with 10,000 rows to produce the required degree
of duplication. The idea is to generate an insert set that presents 10,000 rows numbered '1' then 10,000
numbered '2' … and so on.

TRUNCATE TABLE dbo.Test;

GO

INSERT dbo.Test WITH (TABLOCK)

 (data)

SELECT

 N.number

FROM

(

 SELECT SV.number

 FROM master.dbo.spt_values AS SV WITH (READUNCOMMITTED)

 WHERE SV.[type] = N'P'

 AND SV.number >= 1

 AND SV.number <= 1000

) AS N

CROSS JOIN

(

 SELECT TOP (10000)

 Dummy = NULL

 FROM master.sys.columns AS C1 WITH (READUNCOMMITTED)

 CROSS JOIN master.sys.columns AS C2 WITH (READUNCOMMITTED)

 CROSS JOIN master.sys.columns C3 WITH (READUNCOMMITTED)

) AS C;

Unfortunately, the optimizer still produces a plan with a sort:

There is not much to be said in the optimizer's defense here, this is just a daft plan. It has chosen to
generate 10,000 rows then cross join those with numbers from 1 to 1000. This does not allow the
natural order of the numbers to be preserved, so the sort cannot be avoided.

Avoiding the Sort – Finally!

The strategy the optimizer missed is to take the numbers 1…1000 first, and cross join each number with
10,000 rows (making 10,000 copies of each number in sequence). The expected plan would avoid a sort
by using a nested loops cross join that preserves the order of the rows on the outer input.

We can achieve this outcome by forcing the optimizer to access the derived tables in the order specified
in the query, using the FORCE ORDER query hint:

TRUNCATE TABLE dbo.Test;

GO

INSERT dbo.Test WITH (TABLOCK)

 (data)

SELECT

 N.number

FROM

(

 SELECT SV.number

 FROM master.dbo.spt_values AS SV WITH (READUNCOMMITTED)

 WHERE SV.[type] = N'P'

 AND SV.number >= 1

 AND SV.number <= 1000

) AS N

CROSS JOIN

(

 SELECT TOP (10000)

 Dummy = NULL

 FROM master.sys.columns AS C1 WITH (READUNCOMMITTED)

 CROSS JOIN master.sys.columns AS C2 WITH (READUNCOMMITTED)

 CROSS JOIN master.sys.columns C3 WITH (READUNCOMMITTED)

) AS C

OPTION (FORCE ORDER);

Finally, we get the plan we were after:

This plan avoids an explicit sort while still avoiding "bad" page splits and enabling minimally-logged
inserts to the clustered index (assuming the database is not using the FULL recovery model). It loads all
ten million rows in about 9 seconds on my laptop (with a single 7200 rpm SATA spinning disk). This
represents a marked efficiency gain over the 30-50 second elapsed time seen before the rewrite.

Finding the Distinct Values

Now we have the sample data created, we can turn our attention to writing a query to find the distinct
values in the table. A natural way to express this requirement in T-SQL is as follows:

SELECT DISTINCT data

FROM dbo.Test WITH (TABLOCK)

OPTION (MAXDOP 1);

The execution plan is very simple, as you would expect:

This takes around 2900 ms to run on my machine, and requires 43,406 logical reads:

Removing the MAXDOP (1) query hint generates a parallel plan:

This completes in about 1500 ms (but with 8,764 ms of CPU time consumed), and 43,804 logical reads:

The same plans and performance result if we use GROUP BY instead of DISTINCT.

A Better Algorithm

The query plans shown above read all values from the base table and process them through a Stream
Aggregate. Thinking of the task as a whole, it seems inefficient to scan all 10 million rows when we know
there are relatively few distinct values.

A better strategy might be to find the single lowest value in the table, then find the next highest, and so
on until we run out of values. Crucially, this approach lends itself to singleton-seeking into the index
rather than scanning every row.

We can implement this idea in a single query using a recursive CTE, where the anchor part finds
the lowest distinct value, then the recursive part finds the next distinct value and so on. A first attempt
at writing this query is:

WITH RecursiveCTE

AS

(

 -- Anchor

 SELECT data = MIN(T.data)

 FROM dbo.Test AS T

 UNION ALL

 -- Recursive

 SELECT MIN(T.data)

 FROM dbo.Test AS T

 JOIN RecursiveCTE AS R

 ON R.data < T.data

)

SELECT data

FROM RecursiveCTE

OPTION (MAXRECURSION 0);

Unfortunately, that syntax does not compile:

Ok, so aggregate functions are not allowed. Instead of using MIN, we can write the same logic using TOP
(1) with an ORDER BY:

WITH RecursiveCTE

AS

(

 -- Anchor

 SELECT TOP (1)

 T.data

 FROM dbo.Test AS T

 ORDER BY

 T.data

 UNION ALL

 -- Recursive

 SELECT TOP (1)

 T.data

 FROM dbo.Test AS T

 JOIN RecursiveCTE AS R

 ON R.data < T.data

 ORDER BY T.data

)

SELECT

 data

FROM RecursiveCTE

OPTION (MAXRECURSION 0);

Still no joy.

It turns out that we can get around these restrictions by rewriting the recursive part to number the
candidate rows in the required order, then filter for the row that is numbered 'one'. This might seem a
little circuitous, but the logic is exactly the same:

WITH RecursiveCTE

AS

(

 -- Anchor

 SELECT TOP (1)

 data

 FROM dbo.Test AS T

 ORDER BY

 T.data

 UNION ALL

 -- Recursive

 SELECT R.data

 FROM

 (

 -- Number the rows

 SELECT

 T.data,

 rn = ROW_NUMBER() OVER (

 ORDER BY T.data)

 FROM dbo.Test AS T

 JOIN RecursiveCTE AS R

 ON R.data < T.data

) AS R

 WHERE

 -- Only the row that sorts lowest

 R.rn = 1

)

SELECT

 data

FROM RecursiveCTE

OPTION (MAXRECURSION 0);

This query does compile, and produces the following post-execution plan:

Notice the Top operator in the recursive part of the execution plan (highlighted). We cannot write a T-
SQL TOP in the recursive part of a recursive common table expression, but that does not mean the
optimizer cannot use one! The optimizer introduces the Top based on reasoning about the number of
rows it will need to check to find the one numbered '1'.

The performance of this (non-parallel) plan is much better than the Stream Aggregate approach. It
completes in around 50 ms, with 3007 logical reads against the source table (and 6001 rows read from
the spool worktable), compared with the previous best of 1500ms (8764 ms CPU time at DOP 8)
and 43,804 logical reads:

Conclusion

It is not always possible to achieve breakthroughs in query performance by considering individual query
plan elements on their own. Sometimes, we need to analyse the strategy behind the whole execution
plan, then think laterally to find a more efficient algorithm and implementation.

Index
Berry, Glenn

SQL Server Standard Edition High Availability Features

Bertrand, Aaron
How filtered indexes could be a much more powerful feature

Troubleshooting AlwaysOn – Sometimes it takes many sets of eyes

T-SQL Tuesday #33 : Trick Shots : Schema Switch-A-Roo

Schema Switch-A-Roo : Part 2

Another argument for stored procedures

Don’t just blindly create those “missing” indexes!

Performance Surprises and Assumptions : Arbitrary TOP 1

Performance Surprises and Assumptions : DATEDIFF

Generate random integers without collisions

For the last time, NO, you can’t trust IDENT_CURRENT()

Best approaches for grouped running totals

Best approaches for grouped median

Making the Case for INSTEAD OF Triggers – Part 1

Maintaining a grouped running MAX (or MIN)

Follow-up on cursor options

Readable Secondaries on a Budget

Kehayias, Jonathan
How expensive are column-side Implicit Conversions?

Pittser, Rick
Configuring Availability Group connectivity

Randal, Paul
 Knee-Jerk Wait Statistics: PAGEIOLATCH_SH

Knee-Jerk PerfMon Counters: Page Life Expectancy

Sack, Joe
Avoid HA/DR Solution Self-Delusion

Stellato, Erin
The Price of Not Purging

Finding Performance Benefits with Partitioning

White, Paul
Optimizer Limitations with Filtered Indexes

Optimization Phases and Missed Opportunities

Working Around Missed Optimizations

Aggregates and Partitioning

Two Partitioning Peculiarities

Incorrect Results with Merge Join

Parameter Sniffing, Embedding, and the RECOMPILE Options

Parallel Execution Plans – Branches and Threads

StarJoinInfo in Execution Plans

An Unexpected Side-Effect of Adding a Filtered Index

Performance Tuning the Whole Query Plan

