

High Performance Techniques for Microsoft SQL Server Volume 2

Editor-in-chief:
Aaron Bertrand

Authors:

Aaron Bertrand
Benjamin Nevarez

Erin Stellato
Glenn Berry

Joe Sack
Jonathan Kehayias

Paul Randal
Paul White

eBook Lead:

Michael Kuras

Project Lead:
Kevin Kline

Copyright © 2014 SQL Sentry Inc
All Rights Reserved

Foreward
As Editor-in-Chief, I am quite happy to present to you another eBook, representing a carefully chosen
selection of posts from our performance-related blog site, SQLPerformance.com, as well as a few
exclusive articles that don’t appear anywhere else. The content is organized into high-level categories,
and contains material written by a variety of recognized SQL Server experts, including Erin Stellato, Paul
White, Jonathan Kehayias, and Paul Randal. Throughout these pages you will find tips, tricks and caveats
that will help you understand fundamental database issues and harness the performance of your SQL
Server instances.

I want to once again thank SQL Sentry for maintaining my role in the site, as the knowledge I have
gained just from rubbing shoulders with some of these greats - never mind serving as technical editor
for their amazing content - is immeasurable. I also want to thank Kevin Kline and Michael Kuras for
helping organize and perfect the content, and you, reader, for giving this book a reason to exist.

Aaron Bertrand

Table of Contents
Foreward

Table of Contents

Administration & System Configuration

Making the Case for Regular SQL Server Servicing

SQL Server Database Server Hardware Upgrade Case Study

How much RAM Does Your New Database Server Need?

General Database Server Build and Deployment Instructions

An Introduction to Asynchronous Processing with Service Broker

Configuring Service Broker for Asynchronous Processing

ACID & Isolation Levels

The ACID Properties of Statements & Transactions

The Serializable Isolation Level

The Repeatable Read Isolation Level

The Read Committed Isolation Level

Read Committed Snapshot Isolation

Data Modifications under Read Committed Snapshot Isolation

The SNAPSHOT Isolation Level

Statistics & Cardinality

The Case of the Cardinality Estimate Red Herring

Indexed Views and Statistics

Cardinality Estimation for Multiple Predicates

Understanding What sp_updatestats Really Updates

Sample Size and the Duration of UPDATE STATISTICS: Does It Matter?

Tracking Automatic Updates to Statistics

How Automatic Updates to Statistics Can Affect Query Performance

Interesting Things about INSTEAD OF Triggers

Measuring & Performance Troubleshooting

Impact of the query_post_execution_showplan Extended Event

Observer Overhead and Wait Type Symptoms

VMware CPU Hot Plug vNUMA Effects on SQL Server

Troubleshooting SQL Server CPU Performance Issues

Using Geekbench 3 to Evaluate Database Server Performance

What Virtual Filestats Do, and Do Not, Tell You About I/O Latency

Performance Issues: The First Encounter

Avoiding Knee-Jerk Performance Troubleshooting

Knee-Jerk Wait Statistics : SOS_SCHEDULER_YIELD

Performance Testing Methodologies: Discovering a New Way

Following a single-transaction deadlock across SQL Server versions

Dude, who owns that #temp table?

The overhead of #temp table creation tracking

The Myth that DROP and TRUNCATE TABLE are Non-Logged

Transaction Log Monitoring

Looking at Database Snapshot Performance

Comparing Windows Azure Virtual Machine Performance

SQL Server 2014

Prepare a new VM for SQL Server 2014

Exploring SQL Server 2014 SELECT INTO Parallelism

A First Look at the NEW SQL Server Cardinality Estimator

Exploring Partition-Level Online Index Operations in SQL Server 2014

Exploring Low Priority Lock Wait Options in SQL Server 2014

SQL Server 2014 : Native backup encryption

Hekaton with a twist: In-memory TVPs – Part 1

Hekaton with a twist: In-memory TVPs – Part 2

Hekaton with a twist: In-memory TVPs – Part 3

A couple of small issues with Hekaton samples

How not to call Hekaton natively compiled stored procedures

SQL Server 2014 Incremental Statistics

Some great news for Standard customers in SQL Server 2014

Delayed Durability in SQL Server 2014

Selecting a Processor for SQL Server 2014 – Part 1

Selecting a Processor for SQL Server 2014 – Part 2

Index

Administration & System Configuration
Making the Case for Regular SQL Server Servicing
By Glenn Berry

There has been some ongoing controversy in the SQL Server community about the wisdom of installing

Service Packs (SP) and Cumulative Updates (CU) for SQL Server. There are several different basic

positions that organizations typically tend to take on this subject, as listed below:

1. The Organization installs Service Packs and Cumulative Updates on a regular basis

2. The Organization installs Service Packs, but does not install Cumulative Updates

3. The Organization does not install Service Packs or Cumulative Updates

The first case is an organization that will try to stay reasonably current with both SQL Server Service

Packs and SQL Server Cumulative Updates using a thorough testing and implementation procedure. This

is the best policy in my opinion. My position is that your organization is much better served by staying

up-to-date with both Service Packs and Cumulative Updates (as long as you have the testing and

implementation procedures and the required infrastructure in place to support that policy).

The second case is an organization that will (perhaps after some delay), install SQL Server Service Packs,

but they will not install SQL Server Cumulative Updates for any reason. This is not as good as the first

case, but is much better than the third case.

In the third case, some organizations never install any SQL Server Service Packs or SQL Server

Cumulative Updates, for any reason whatsoever. In some cases, they actually stay on the original release

to manufacturing (RTM) build of the major version of SQL Server that they are running, for the life of the

instance. This is the least desirable policy, for a number of reasons.

Microsoft has a policy of retiring branches of code (either the RTM branch or a subsequent Service Pack

branch) for a particular version of SQL Server when it is two branches old. For example, when SQL Server

2008 R2 Service Pack 2 was released, the original RTM branch (regardless of the CU level) was retired,

and it became an “unsupported service pack”. This means that there will be no more hotfixes or

Cumulative Updates for that branch, and that you will only get limited troubleshooting support from

Microsoft CSS during a support case until you install a supported service pack on your instance.

Reasons that SQL Server maintenance is deferred

In some cases, an organization may not be aware of how SQL Server is normally serviced with a

combination of Service Packs, Cumulative Updates and Hotfixes. Many organizations have rigid, top-

down policies in place about how they maintain and service products like SQL Server, which preclude

the regular installation of SPs and/or CUs by database administrators. They may also be restricted from

servicing their SQL Server instances by the fact that they are using 3rd party databases that are only

vendor-supported with certain vendor-specified version and Service Pack levels of SQL Server.

Many organizations also have an understandable fear of “breaking” either a SQL Server instance or an

application that depends on that instance. They also may lack the time and resources to do an

appropriate level of application and system testing after installing an updated SQL Server build on an

instance in a test environment. In some cases, they may not have a dedicated test environment (which is

a separate, major problem).

Some organizations may not have a working high-availability solution (such as traditional fail-over

clustering, database mirroring, or availability groups) in place in their Production environment, so they

are much more hesitant to do any type of servicing that will possibly cause a database server reboot,

and cause a relatively long outage. They may actually have a high-availability solution in place, but they

seldom test it with a production fail-over, and they may have less confidence in its functioning and

reliability.

Reasons to regularly maintain SQL Server

After listing some of the common reasons why organizations may choose not to regularly service SQL Server,

it is time to address some of these arguments. First, ignorance about how SQL Server is normally serviced by

Microsoft is not really a valid excuse anymore. Microsoft has a SQL Release Services Blog, where they

announce both Service Packs and Cumulative Updates for SQL Server. Matthias Bernt explained the general

servicing strategy for SQL Server in his post: A changed approach to Service Packs, with more detail about the

SQL Server incremental servicing model approach available in this Microsoft knowledge base article.

The condensed version of the servicing model is that individual SQL Server issues are corrected with hotfixes.

You must contact Microsoft CSS and open a support case in order to get access to an individual hotfix (unless

it is a security-related hotfix, which is pushed out by Microsoft Update). Depending on your level of paid

support with Microsoft, this can be a relatively tedious and time-consuming process. There is also the issue

that most SQL Server customers are very unlikely to even be aware of existing hotfixes that have not been

released as part of a SQL Server Cumulative Update. This means that most customers are unlikely to obtain

and deploy individual hotfixes on a regular basis.

Cumulative Updates are rollups of a number of hotfixes (typically anywhere from about 10-50 hotfixes) that

are released every eight weeks. These Cumulative Updates are actually cumulative (as the name implies), so

you will get all of the previously released hotfixes for your version and branch (RTM, SP1, SP2, etc.) of the

code when you install a Cumulative Update. This means that the common statement about organizations

“only applying Cumulative Updates to correct specific issues that they are experiencing” is actually not

particularly valid in real life.

For example, if you were running the RTM build of SQL Server 2012 Service Pack 1 (11.0.3000), and you

decided to install SQL Server 2012 Service Pack 1 Cumulative Update 3 (11.0.3349) because it included a

hotfix for one specific issue that you were actually encountering, you would actually be getting all of the

hotfixes for SP1 CU1, SP1 CU2, and SP1 CU3, which would amount to well over 100 hotfixes.

As Microsoft states about Cumulative Updates: “Because the builds are cumulative, each new fix release

contains all the hotfixes and all the security fixes that were included with the previous SQL Server 2012 SP 1

fix release. We recommend that you consider applying the most recent fix release that contains this hotfix.”

Basically this means that if you spot a particular, relevant issue that was fixed in an earlier CU, you should go

ahead and deploy the latest relevant CU on the system (which will also include that hotfix).

One argument that I frequently hear about why organizations do not deploy Cumulative Updates is that,

"they are not fully regression tested like Service Packs are, so we don’t deploy them." There is some validity

in this point of view, but there is also a common misconception that Cumulative Updates are merely unit

tested, with no regression testing whatsoever. This is not the case.

Microsoft documentation about Cumulative Updates indicates that since they “apply incremental regression

testing throughout the development cycle followed by 2 weeks of focused testing within the 8 week release

window, the quality assurance processes associated with CUs exceeds those of individual hotfixes.” This

means that you are actually taking less risk by deploying a CU that has been incrementally regression tested

and has also had two weeks of focused testing than if you were to deploy a single hotfix that has only been

unit tested.

Over the past six to seven years, I have personally deployed many, many Cumulative Updates and Service

Packs on a large number of systems running SQL Server 2005 through SQL Server 2012, and I have yet to run

into any major problems. I have also not heard of any widespread issues doing this type of work being

reported in blogs, on Twitter, etc. It could be that I (and everyone I know) have just been lucky, or perhaps

Cumulative Updates and Service Packs are not quite as risky as some people believe (as long as you test and

deploy them properly).

The importance of a testing and implementation plan

Unless you never plan on doing any sort of server maintenance or application updates for the life of your

system (which seems like an unlikely proposition), you really need to develop some sort of testing and

implementation procedure and plan that you would follow as a part of making any sort of change to the

server.

This plan may start out relatively simple, but it will become more complex and complete as you become more

experienced with regularly servicing your SQL Server instances and apply the lessons you learn with each

deployment. Ideally, you would follow this plan anytime you make a change to the system, but that may not

be possible in every single case.

Here are a few initial steps and tests that should be included in this sort of plan.

1. Install the CU on a test virtual machine

a. Does the CU install without any issues or errors?

b. Does the CU installation require a system reboot?

c. Do all of the relevant SQL Server services restart after the installation?

d. Does SQL Server appear to work correctly after the installation?

2. Install the CU on several development systems

a. Does the CU install without any issues or errors?

b. Does SQL Server appear work correctly during normal daily usage?

c. Do your applications appear to work correctly during unit testing?

3. Install the CU in a shared QA or integration environment

a. Did you follow a specific implementation plan and checklist for the installation?

b. Do all of the applications that use SQL Server pass smoke testing?

c. Do all of the applications pass any automated testing that you have available?

d. Do all of the applications pass more detailed manual functional testing?

4. Install the CU in your Production environment

a. Use a rolling upgrade strategy where possible

b. Use a detailed, step-by-step checklist during the deployment

c. Update your checklist with missed items and lessons learned

Conclusion

What I am hoping to accomplish here is to get more database professionals to start moving towards a

mindset where they actually want to regularly maintain their SQL Server instances, rather than being hesitant

or afraid to do it. This can involve a significant amount of extra work in the beginning, as you may have to

convince other people in your organization to get on board with your plans. You may have to push other

parts of the organization to develop better test plans, and you will have to build an implementation checklist.

You will also have to get authorization from the business for maintenance windows (which should be

relatively short with rolling upgrades), so you can actually get updates deployed on your Production systems

on a regular basis.

In return for this extra work, you will have a better maintained system that is less likely to run into problems

in the future. You will be in a fully supported configuration from Microsoft, and you will have more

confidence in your high-availability technology(s), since you will actually exercise them on a regular basis. You

will also gain valuable experience as you do the planning and implementation of all of this that will improve

your troubleshooting skills in the future.

SQL Server Database Server Hardware Upgrade Case Study
By Glenn Berry

It is a fairly common scenario to want to compare the performance and capacity of an existing legacy

database server to a proposed new database server. Rather than just guessing about the relative

performance characteristics of different servers, it is much more useful to have some sort of

methodology for doing this.

One method is to use actual published TPC-E benchmark scores for similar systems as an initial basis for

comparison. There have been 63 published TPC-E benchmark scores (all for SQL Server) since 2007, so it

is usually possible to find a roughly comparable system to use for this purpose. In some cases, you

cannot find a comparable system in the TPC-E results, so you will have to use your knowledge of

processors and server hardware to make credible adjustments to compensate for the differences

between a published TPC-E benchmark result and a particular system you want to compare it to.

For this example, imagine that you have a very limited hardware and software license budget available

for a platform upgrade. You want to move to SQL Server 2012 Standard Edition, on a server with better

single-threaded performance (since you have an OLTP workload), and higher overall capacity, while

minimizing your hardware and SQL Server license costs.

The Legacy System

The existing legacy system is an HP DL380 G3, with two, single-core 130nm 3.06GHz Intel Xeon

“Prestonia” processors and 4GB of RAM. These were the Intel Xeon processors based on the old

Pentium 4 NetBurst architecture, and they actually had pretty decent single-threaded performance.

They were 32-bit only, using the old Symmetric Multi-Processing (SMP) architecture with a 533MHz

front-side bus. They also support the initial implementation of Intel hyper-threading (HT) that did not

work as well for many server workloads, such as SQL Server.

This system is running 32-bit SQL Server 2000 on 32-bit Windows Server 2003, so we have a situation

where the hardware is long out of warranty, the operating system is out of mainstream support and SQL

Server is out of extended support.

The oldest and lowest TPC-E benchmark score available is for a Dell PowerEdge 2900 system with one

quad-core, 65nm 2.66GHz Intel Xeon X5355 processor, with an actual TPC-E score of 144.88. I calculate

that a two-socket server with two 3.06GHz Intel Xeon Prestonia processors would have an estimated

TPC-E score of about 70. Having two total physical cores, with a higher clock speed on a much older

microarchitecture is how I justify this estimate.

We can compare this legacy system to five different possible replacement servers, using TPC-E scores as

a basis for comparison. In order to minimize our hardware and SQL Server 2012 license costs, we will use

a two-socket server with only one processor socket populated.

A Single Xeon X5570 System (Nehalem-EP)

There is a TPC-E result for an IBM x3650 M2 system with two, quad-core 45nm 2.93GHz Intel Xeon

X5570 processors, with an actual TPC-E score of 798.0. A two-socket system with only one Xeon X5570

processor would have an estimated TPC-E score of 420. SQL Server 2012 requires that you buy at least

four core licenses per physical processor. The Intel Nehalem microarchitecture is relatively old, since

http://www.tpc.org/tpce/default.asp
http://h18000.www1.hp.com/products/quickspecs/productbulletin.html#spectype=worldwide&type=html&docid=11473
http://ark.intel.com/products/27278/Intel-Xeon-Processor-3_06-GHz-512K-Cache-533-MHz-FSB
http://ark.intel.com/products/27278/Intel-Xeon-Processor-3_06-GHz-512K-Cache-533-MHz-FSB
http://www.anandtech.com/show/604
http://www.anandtech.com/show/604
http://www.tpc.org/tpce/results/tpce_result_detail.asp?id=107121101
http://ark.intel.com/products/28035/Intel-Xeon-Processor-X5355-8M-Cache-2_66-GHz-1333-MHz-FSB
http://www.tpc.org/tpce/results/tpce_result_detail.asp?id=109033003
http://ark.intel.com/products/37111/Intel-Xeon-Processor-X5570-(8M-Cache-2_93-GHz-6_40-GTs-Intel-QPI)
http://ark.intel.com/products/37111/Intel-Xeon-Processor-X5570-(8M-Cache-2_93-GHz-6_40-GTs-Intel-QPI)

Intel released it in the two-socket space in late 2008. The Nehalem architecture does use Non-Uniform

Memory Access (NUMA) instead of SMP. It also supports hyper-threading and Intel Turbo Boost.

A Single Xeon X5690 System (Westmere-EP)

There is a TPC-E result for an HP DL380 G7 system with two, six-core 32nm 3.46GHz Intel Xeon X5690

processors, with an actual TPC-E score of 1284.14. A two-socket system with only one Xeon X5690

processor would have an estimated TPC-E score of 675. This newer processor would also work in a

system that supported the older Xeon 5500 series processors, such as an HP DL380 G7 or a Dell

PowerEdge R710.

A Single Xeon E5-2690 System (Sandy Bridge-EP)

There is a TPC-E result for an HP DL380p G8 system with two, eight-core 32nm 2.9GHz Intel Xeon E5-

2690 processors with an actual TPC-E score of 1881.76. A two-socket system with only one Xeon E5-

2690 processor would have an estimated TPC-E score of 980. The Intel Sandy Bridge was a Tock release

with much better memory and I/O bandwidth compared to previous releases. This type of processor will

work in an HP DL380 G8 or a Dell PowerEdge R720 server.

A Single Xeon E5-2697 v2 System (Ivy Bridge-EP)

There is a TPC-E result for an IBM x3650 M2 system with two, twelve-core 22nm 2.7GHz Intel Xeon E5-

2697 v2 processors with an actual TPC-E score of 2590.93. This processor has a base clock speed of

2.7GHz, and a Turbo Boost speed of 3.5GHz. It has a 30MB L3 cache that is shared between twelve

physical cores. A two-socket system with only one Xeon E5-2697 v2 processor would have an estimated

TPC-E score of 1340.

A Single Xeon E5-2637 v2 System (Ivy Bridge-EP)

A less expensive, but faster alternative would be to use a two-socket system with only one, quad-core

22nm 3.5GHz Xeon E5-2637 v2 processor to get significantly better single-threaded performance and

lower SQL Server 2012 license costs compared to the higher core count model processors.

This processor has a base clock speed of 3.5GHz, and a Turbo Boost speed of 3.8GHz. It has a 15MB L3

cache that is only shared between four physical cores. Because of these differences, this processor will

have about 35% better single-threaded performance than the Intel Xeon E5-2697 v2 processor, but less

overall processor capacity. A two-socket system with only one Xeon E5-2637 v2 processor would have

an estimated TPC-E score of 603.

Analysis

Table 1 summarizes these systems, starting with the legacy system at the top:

Processor TPC-E Score Physical Cores Processor Cost License Cost

(2) 3.06GHz Xeon 70 2 ??? $7,172.00

(1) Xeon X5570 420 4 $1,386.00 $7,172.00

(1) Xeon X5690 675 6 $1,666.00 $10,752.00

http://www.tpc.org/tpce/results/tpce_result_detail.asp?id=111050403
http://ark.intel.com/products/52576/Intel-Xeon-Processor-X5690-(12M-Cache-3_46-GHz-6_40-GTs-Intel-QPI)
http://ark.intel.com/products/52576/Intel-Xeon-Processor-X5690-(12M-Cache-3_46-GHz-6_40-GTs-Intel-QPI)
http://www.tpc.org/tpce/results/tpce_result_detail.asp?id=112112101
http://ark.intel.com/products/64596/Intel-Xeon-Processor-E5-2690-(20M-Cache-2_90-GHz-8_00-GTs-Intel-QPI)
http://ark.intel.com/products/64596/Intel-Xeon-Processor-E5-2690-(20M-Cache-2_90-GHz-8_00-GTs-Intel-QPI)
http://www.tpc.org/tpce/results/tpce_result_detail.asp?id=113091002
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://ark.intel.com/products/75792/Intel-Xeon-Processor-E5-2637-v2-15M-Cache-3_50-GHz

(1) Xeon E5-2690 980 8 $2,061.00 $14,344.00

(1) Xeon E5-2697 v2 1340 12 $2,618.00 $21,504.00

(1) Xeon E5-2637 v2 603 4 $996.00 $7,172.00

Table 1: System Comparison Metrics

I estimate that you would have 5-6X the processor capacity of the legacy system with a single Xeon

X5570 processor, while you would have about 8-9X the processor capacity of the legacy system with a

single Xeon E5-2637 v2 processor.

You can divide the TPC-E score by the number of physical cores in the system to get a score per core to

get an idea of relative single-threaded processor performance. Table 2 shows the results of this

calculation.

Processor TPC-E Score Physical Cores Score/Core

(2) 3.06GHz Xeon 70 2 35

(1) Xeon X5570 420 4 105

(1) Xeon X5690 675 6 112.5

(1) Xeon E5-2690 980 8 122.5

(1) Xeon E5-2697 v2 1340 12 111.7

(1) Xeon E5-2637 v2 603 4 150.8

Table 2: System TPC-E Score/Core Results

This blog post talks in more detail about some of the best current processor choices for SQL Server 2012

from the latest Intel Xeon E5-2600 v2 processor family.

http://sqlserverperformance.wordpress.com/2013/09/17/selecting-an-appropriate-intel-xeon-e5-2600-v2-family-processor-for-sql-server-2012/

How much RAM Does Your New Database Server Need?
By Glenn Berry

One question that comes up quite frequently is how to determine how much physical RAM should be in

a database server running SQL Server 2012. One of the first pieces of information you need to determine

this is what version and edition of SQL Server you will be running on your new server.

Different versions and editions of 64-bit SQL Server have different license limits for how much physical

RAM they can use for different purposes, as shown in Table 1.

Version Edition Engine Limit SSAS Limit

SQL Server 2008
Standard OS Limit OS Limit

Enterprise OS Limit OS Limit

SQL Server 2008 R2

Standard 64GB 64GB

Enterprise 2 TB 2 TB

Data Center OS Limit OS Limit

SQL Server 2012

Standard 64GB 64GB

Business Intelligence 64GB OS Limit

Enterprise OS Limit OS Limit

Table 1: SQL Server RAM Limits by Version and Edition

As you can see from Table 1, SQL Server 2008 could use up to the operating system limit for physical

RAM for both Standard and Enterprise Editions. When Microsoft released SQL Server 2008 R2, they had

the bad idea (in my opinion) of introducing lower physical RAM limits for both Standard and Enterprise

Editions. They also introduced a new Data Center Edition of SQL Server 2008 R2, which had the old,

familiar operating system limit as its license limit for physical RAM.

SQL Server 2012 Memory Limits

When Microsoft released SQL Server 2012, they wisely got rid of the Data Center Edition SKU, but they

kept the same artificially low 64GB RAM limit for Standard Edition. I have written at length about why

this is a bad idea, so I won’t recap those arguments again here. Suffice it to say that is a little ridiculous

to be restricted to be using less than $800.00 worth of DDR3 ECC RAM (64GB times $12/GB) in a new

two-socket server that may have cost about $10-$15K for the server itself, plus about $29K for sixteen

SQL Server 2012 Standard Edition Core Licenses, not to mention your storage costs.

So far, there is no indication that Microsoft has any intention of changing this RAM limit for SQL Server

2014, so we may just have to continue to deal with it. One small positive aspect of this RAM limit is that

it is per SQL Server instance, not per server. That means that you could, with a little thought and

planning, decide to install two or three SQL Server 2012 Standard Edition instances on the same physical

http://www.sqlperformance.com/2013/08/sql-memory/common-sense-licensing-changes-for-sql-server-2014-standard-edition
http://www.sqlperformance.com/2013/08/sql-memory/common-sense-licensing-changes-for-sql-server-2014-standard-edition

machine to take advantage of all of the machine’s memory, processor, and storage resources, if you are

willing to deal with the extra resource usage and management overhead of named instances. This could

save you a significant amount of money in hardware and SQL Server 2012 licensing costs compared to

having two or three separate servers.

If you decide to just stick to a single default instance of SQL Server 2012 Standard Edition (which I prefer

if I am limited to Standard Edition), should you just get 64GB of RAM for the database server? I think the

answer is an emphatic no!

SQL Server 2012 Standard Edition Memory Configuration Example

Since server-class, DDR3 ECC RAM is so affordable; I think a reasonable minimum amount of RAM for a

new two-socket server is closer to 96GB of RAM. This will let you set the instance-level max server

memory setting to 65536MB, which is exactly 64GB of RAM, while leaving plenty of excess RAM for the

operating system, and any other applications that might be running on your database server.

The major server vendors have documentation and online memory configuration tools that help make

sure you are getting the best memory configuration possible for a desired amount of physical memory.

You can also use a tool like CPU-Z to check your system memory speed to make sure it is running at the

speed you expect.

For example, Dell has an online configuration tool here. This tool lets you pick the Dell server model you

want, including which processor family you will be using (when you have a choice), and the number of

physical processors that will actually be in the server. Then you enter how much physical RAM you want

in the server, and choose your desired memory reliability options (such as memory mirroring, rank

sparing, etc.), and then the tool will come up with three different possible memory configurations:

Nominal configuration, Maximum performance, and Balanced configuration. These configurations show

the type, number, and size of the memory modules you should use, and what memory channels and

slots you should populate to satisfy the chosen configuration option.

If you pick a Dell PowerEdge R720 two-socket server, with two of the new 22nm Intel Xeon E5-2600 v2

(Ivy Bridge-EP) processors and you select 96GB of RAM with no other memory reliability options, you

will get three suggested memory configuration options. The Maximum performance option suggests

twelve, 8GB 1866MHz 1R x4 RDIMMs, with Slot 0 on Channels 1-4 populated, and Slot 1 on Channels 1-2

populated for each processor. This gives you a system memory speed of 1866MHz, which is the

maximum supported by the new Intel Xeon E5-2600 v2 series of processors.

By the way, if you are going to be using SQL Server 2012 Standard Edition, the exact processor you want

in a Dell R720 is the Intel Xeon E5-2667 v2, which has eight physical cores with a base clock speed of

3.3GHz. Having a higher core-count model would run into the 16 physical core license limit for SQL

Server 2012 Standard Edition.

The Balanced configuration option suggests twelve, 8GB 1600MHz 1R x4 RDIMMs, with Slot 0 on

Channels 1-4 populated, and Slot 1 on Channels 1-2 populated for each processor. This gives you a

system memory speed of 1600MHz, which will use slightly less electrical power than the Maximum

performance option.

https://roianalyst.alinean.com/dell/AutoLogin.do?d=240493329964944458

The Nominal configuration option suggests twenty-four, 4GB 1333MHz 1R x8 RDIMMs with all Slots on

all channels populated for each processor. This gives you a system memory speed of 1333MHz, with all

of your slots populated with quite small 4GB RDIMMs. This is a less than optimal choice that is designed

to save some money on memory costs by using smaller capacity, lower speed DIMMs. Unfortunately,

there is little real monetary savings here, at a cost of giving up a decent amount of memory

performance and not having any empty memory slots.

With the Intel Xeon E5-2600 and E5-2600 v2 series processors, you will get the highest possible memory

bandwidth if you only populate one or two slots per memory channel. Populating the third memory slot

causes a decrease in system memory speed. The highest amount of memory you can use at maximum

system memory speed using economical 16GB RDIMMs is 256GB, which would be sixteen, 16GB

RDIMMs, populating all slots on Channels 1 and 2. There is no system memory speed benefit from

having less than 256GB of RAM in a two-socket server with two Xeon E5-2600 or E5-2600 v2 series

processors.

Even though it is better to try to come up with a memory configuration that yields the highest possible

system memory speed for a given amount of RAM, in my experience (and in most actual application

benchmarks that I have seen), the real world performance difference between different system memory

speeds is much smaller than you might expect, quite often in the 5-10% range or less. For SQL Server

Enterprise Edition usage, I would rather have enough RAM to fit my entire workload in the buffer pool

rather than picking a lower amount of RAM to get the highest possible memory speed at the cost of

having to pull data from the storage subsystem more often. Even “slow” RAM has orders of magnitude

less latency than any type of storage subsystem, including flash-based storage.

If my workload did not fit into 256GB of RAM, I would rather add more RAM and take the system

memory speed hit rather than taking the hit of having to access the much slower storage subsystem

more often. So to recap, I think the memory sweet spot for SQL Server 2012 Standard Edition for this

type of server is 96GB, rising to 256GB for SQL Server 2012 Enterprise Edition (unless your workload is

larger than 256GB).

General Database Server Build and Deployment Instructions
By Glenn Berry

Having a standardized build checklist for a new SQL Server instance can help ensure that you do not

forget any important steps or configuration settings as you install SQL Server, get it updated, and get it

properly configured. This is very important in order to make sure you get the best performance and

scalability out of your SQL Server instance.

My Pluralsight course, SQL Server 2012 Installation and Configuration, goes into even more detail about

this process. The general framework is below:

1. Rack and cable the server

a. Make sure each power supply is plugged into a different power circuit

b. Make sure network cables are plugged into different network switches if possible

2. Request a regular domain account for the SQL Server Service and for the SQL Server Agent

Service (along with any other SQL Server services you will be using, such as SSIS, SSRS, SSAS)

a. You will need to know the user name and password for these accounts during the SQL

Server 2012 installation

b. Try to have these accounts use passwords that do not expire

3. Check the main BIOS settings on the server

a. Hyper-threading and turbo-boost should be enabled

b. Power management should be set to OS control

c. Memory testing should be disabled

4. Install Windows Server 2012 R2 Standard Edition on the server

a. Use two internal drives in RAID 1 with the integrated RAID controller

i. Consider using SSDs for this purpose, if possible

ii. If you use SSDs, you do not need to defragment them

b. Create a single partition, C: drive that uses all of the space

c. Change the windows page file size to 16GB, using the C: drive

d. Change the Windows power plan to “High Performance”

i. Run CPU-Z on the server to confirm that the processors are running at full speed

e. Change the drive letter for the optical drive to Z:

5. Change the NETBIOS name on the server to the desired permanent name of the server

6. Install the .NET 3.51 feature from Windows Server 2012 R2

http://pluralsight.com/training/Courses/TableOfContents/sqlserver-2012ic
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://support.microsoft.com/kb/2207548
http://www.cpuid.com/softwares/cpu-z/versions-history.html

7. Install Microsoft Update on the server

a. This is a superset of Windows Update

8. Install all Microsoft and Windows Updates on the server

a. This may require several rounds to get all of the required updates

9. Manually defragment the C: drive

a. Enable automatic defragmentation of the C: drive using the default weekly schedule

b. Do not allow new drives to be automatically added to the schedule

10. Create a static IP address with the correct DNS and default gateway information

11. Join the server to the appropriate Windows domain

12. Activate Windows on the server

13. Install the latest version of Dell OMSA on the server

14. Download the latest version of the Dell Server Update Utility (SUU)

a. Mount the .iso for the SUU, and run the SUU

b. This will ensure that you have the latest firmware and drivers for the server

15. Use Dell OMSA to create RAID arrays for LUNs

a. Create one LUN at a time, then go to Logical Disk Manager to create/format the drive

i. This way you won’t get confused about which one is which

ii. Create the arrays and LUNs in the order shown below

b. General PERC Settings in Dell OMSA

i. Use intelligent Mirroring for RAID 10 arrays

ii. No Read Ahead Cache

iii. Enable Write-Back Cache

iv. Cache Policy should be enabled

v. Use 64K allocation unit

16. Use the Windows Logical Disk Manager to create Logical Disks

a. After you create an array with OMSA, open Disk Manager

b. You will see the Initialize Disk dialog

i. Make sure to use the GPT partition style

http://en.community.dell.com/techcenter/systems-management/w/wiki/1760.openmanage-server-administrator-omsa.aspx
http://en.community.dell.com/techcenter/systems-management/w/wiki/1764.openmanage-server-update-utility-suu.aspx

c. After you initialize the disk, right click on it and choose Create Simple Volume

d. Accept the default and click Next

e. Assign the appropriate drive letter and click next

f. Change the allocation unit size to 64K, and change the Volume label to the correct name

i. Click Next

ii. Click Finish

17. The new logical drive should appear in Windows Explorer

18. All logical drives that are needed for SQL Server usage need to be created before you install SQL

Server 2012

19. Test the performance of each logical drive with CrystalDiskMark

20. Test the performance of each logical drive with SQLIO

21. Create this standard directory structure on each drive

a. Data drives: SQLData

b. Log drives: SQLLogs

c. TempDB drives: TempDB

d. Backup drives: SQLBackups

22. Use Group Policy Editor (GPEDIT.MSC) to grant these Windows rights to the SQL Server Service

Account

a. Perform Volume Maintenance Tasks

i. YourDomain\SQLServerServiceAcct

b. Lock Pages in Memory

i. YourDomain\SQLServerServiceAcct

23. Install SQL Server 2012 Enterprise Edition

a. Make sure there are no pending reboots or else SQL Server 2012 will not install

b. Only install the SQL Server 2012 components that are required for this instance

http://crystalmark.info/download/index-e.html#CrystalDiskMark
http://www.microsoft.com/en-us/download/details.aspx?id=20163
http://www.sqlskills.com/blogs/kimberly/instant-initialization-what-why-and-how/

c. Use Mixed Mode authentication

i. Set the sa password to a strong password

ii. Add yourself as a SQL Administrator

iii. Add any other DBAs who need to be administrators

d. Use YourDomain\SQLServerServiceAcct for the SQL Server Service account

i. The password is: xxxxxxxxx

e. Use YourDomain\SQLServerAgentAcct for the SQL Server Agent account

i. The password is: xxxxxxxxx

f. Set the SQL Server Agent Service to Automatic startup

g. Set the default directories to the appropriate drive letters and paths

i. User database directory: P:\SQLData

ii. User database log directory: L:\SQLLogs

iii. Temp DB directory: T:\TempDB

iv. Temp DB log directory: T:\TempDB

v. Backup directory: N:\SQLBackups

24. Install SQL Server 2012 Service Pack 1

a. Or the latest released Service Pack for SQL Server 2012

25. Install SQL Server 2012 Service Pack 1 Cumulative Update 6

a. The cumulative update is available from this location:

i. http://support.microsoft.com/kb/2874879/en-us

ii. Make sure to get the x64 version of the update package

b. Manually defragment the C: drive after installation

i. This is not necessary if you are using SSDs

26. Change SQL Server 2012 Instance Level Properties

a. Enable optimize for ad hoc workloads

i. This will allow SQL Server to use less memory to store ad hoc query plans the first

time they are executed

b. Set Max Degree of Parallelism to the number of physical cores in a NUMA node on your

server

c. Enable Default Backup Compression

http://www.microsoft.com/en-us/download/details.aspx?id=35575
http://support.microsoft.com/kb/2874879/en-us
http://www.sqlskills.com/blogs/kimberly/plan-cache-and-optimizing-for-adhoc-workloads/

i. This will use SQL Server backup compression by default for all database backups

d. Add trace flag 3226 as a startup option in SQL Server Configuration Manager

i. This will suppress logging of successful database backup messages in the SQL Server

error log

e. Add trace flag 1118 as a startup option in SQL Server Configuration Manager

i. This will help alleviate allocation contention in tempdb

f. Enable Database Mail on the instance

i. This will help allow SQL Server to send e-mail notifications for SQL Server Agent

Alerts and when SQL Server Agent jobs fail

g. Set Max Server Memory to an appropriate, non-default value

i. This value depends on how much physical memory is available in the server

1. It also depends on what SQL Server components are installed

ii. Here are some example values:

1. 96GB Total RAM: Set Max Server Memory to 87000

2. 64GB Total RAM: Set Max Server Memory to 56000

3. 32GB Total RAM: Set Max Server Memory to 27000

h. Create three additional TempDB data files in the T:\TempDB directory

i. All TempDB data files should be 4096MB in size

1. Set Autogrow to 1024MB

ii. The TempDB log file should be 1024MB

27. Confirm that you can ping the SQL Server machine from another machine on the domain

28. Using SQL Server 2012 Configuration Manager, confirm that TCP/IP is enabled for the instance

29. Confirm that you can connect to the SQL Server instance remotely using SSMS on another machine

30. Create a SQL Server Operator on the instance

a. Use DBAdmin with an e-mail address of dbadmin@yourcompany.com

31. Confirm that Database Mail is operating correctly

a. Right-click on Database Mail and send a test message

32. Configure SQL Server Agent Mail to use Database Mail

33. Create SQL Server Agent Alerts for the following errors:

a. YourServerName Alert – Sev 19 Error: Fatal Error in Resource

http://www.sqlskills.com/blogs/paul/fed-up-with-backup-success-messages-bloating-your-error-logs/
http://www.sqlskills.com/blogs/paul/misconceptions-around-tf-1118/
http://technet.microsoft.com/en-us/library/ms191189.aspx
http://technet.microsoft.com/en-us/library/ms175962.aspx
mailto:dbadmin@yourcompany.com
http://technet.microsoft.com/en-us/library/ms189635.aspx
http://technet.microsoft.com/en-us/library/ms186358.aspx
http://technet.microsoft.com/en-us/library/ms180982.aspx

b. YourServerName Alert – Sev 20 Error: Fatal Error in Current Process

c. YourServerName Alert – Sev 21 Error: Fatal Error in Database Process

d. YourServerName Alert – Sev 22 Error Fatal Error: Table Integrity Suspect

e. YourServerName Alert – Sev 23 Error: Fatal Error Database Integrity Suspect

f. YourServerName Alert – Sev 24 Error: Fatal Hardware Error

g. YourServerName Alert – Sev 25 Error: Fatal Error

h. YourServerName Alert – Error 825: Read-Retry Required

i. YourServerName Alert – Error 832: Constant page has changed

j. YourServerName Alert – Error 855: Uncorrectable hardware memory corruption detected

k. YourServerName Alert – Error 856: SQL Server has detected hardware memory corruption,

but has recovered the page

34. A generic script to create these SQL Server Agent Alerts is available here:

a. Make sure each agent alert has a response to notify the DBAdmin operator

35. Create a SQL Server Agent job called Nightly Free System Cache that runs this command:

a. DBCC FREESYSTEMCACHE ('SQL Plans');

b. Runs every night at 12:00AM

36. Download the latest version of Ola Hallengren’s SQL Server Maintenance Solution script:

a. http://ola.hallengren.com/

b. Open the MaintenanceSolution.sql script while connected to the instance

i. Modify the @BackupDirectory variable to N:\SQLBackups

ii. Run the script to create eleven new SQL Server Agent jobs

iii. For each job, go to the Notifications property window and have the job e-mail the

DBAdmin group if the job fails

iv. For each job, create a schedule for when it will run.

v. Here is a suggested schedule for the jobs:

1. CommandLogCleanup Sunday at 12:00AM

2. DatabaseBackup – SYSTEM_DATABASES – FULL Daily at 11:55PM

3. DatabaseBackup – USER_DATABASES – DIFF Daily at 12:00PM

4. DatabaseBackup – USER_DATABASES – FULL Daily at 12:00AM

5. DatabaseBackup – USER_DATABASES – LOG Hourly

https://dl.dropboxusercontent.com/u/13748067/Add%20SQL%20Server%20Agent%20Alerts.sql
http://ola.hallengren.com/

6. DatabaseIntegrityCheck – SYSTEM_DATABASES Saturday at 7:55AM

7. DatabaseIntegrityCheck – USER_DATABASES Saturday at 8:00AM

8. IndexOptimize – USER_DATABASES Sunday at 8:00PM

9. Output File Cleanup Sunday at 12:00AM

10. sp_delete_backuphistory Sunday at 12:00AM

11. sp_purge_jobhistory Sunday at 12:00AM

An Introduction to Asynchronous Processing with Service Broker
By Jonathan Kehayias

I love modifying SQL Server code to improve performance, but there are occasionally scenarios where

even after tuning the code, indexes and design a user task from the application takes longer to complete

than the expected end-user experience. When this happens the user interface either has to wait for the

process to complete or we have to come up with an alternate way of handling the task. The

asynchronous processing provided by Service Broker is a good fit for many of these scenarios and allows

background processing of the long running task to be performed separately from the user interface,

allowing the user to continue working immediately without waiting for the task to actually be

performed. Over my next few articles, I hope to create a series on how you can leverage Service Broker

with the appropriate explanations and code examples along the way to make it easier to leverage

Service Broker's capabilities without implementation problems.

Methods of Performing Asynchronous Processing

There are a number of ways to deal with a long running, but already tuned process. The application code

can also be rewritten to use a BackgroundWorker, the background ThreadPool, or a manually written

Thread based solution in .NET that performs the operation asynchronously. However, this allows for an

unlimited number of these long running processes to be submitted by the application, unless additional

coding work is done to track and limit the number of active processes. This means that the application

will have a potential performance impact, or under load will hit a limit and return to the previous

waiting we were trying to prevent originally.

I've also seen these type of processes turned into SQL Agent jobs tied to a table that is used to store the

information to process. Then the job is either scheduled to run periodically, or is started by the

application using sp_start_job when a change is stored for processing. However, this only allows for a

serial execution of the long running processes, since SQL Agent doesn't allow a job to be run multiple

times concurrently. The job would also have to be designed to handle scenarios where multiple rows

enter the processing table so that the correct order of processing occurs and subsequent submissions

are processed separately.

Leveraging Service Broker for asynchronous processing in SQL Server actually addresses the limitations

with the previously mentioned methods for handling the asynchronous processing. The broker

implementation allows new tasks to be queued for asynchronous processing in the background, and also

allows for parallel processing of the tasks that have been queued up to a configured limit. However,

unlike the application tier having to wait when the limit is hit, the broker solution simply queues the

new message being received and allows it to be processed when one of the current processing tasks

completes — this allows the application to continue without waiting.

Single Database Service Broker Configuration

While Service Broker configurations can become complex, for simple asynchronous processing you only

need to know the basic concepts to build single database configuration. A single database configuration

only requires:

1. Creating two message types

o One for requesting the asynchronous processing

o One for the return message when the processing completes

2. A contract using the message types

o Defines which message type is sent by the initiator service and which message type is

returned by the target service

3. A queue, service, and activation procedure for the target

o The queue provides the storage of messages sent to the target service by the initiator

service

o The activation procedure automates the processing of messages from the queue

 Returns a completed message to the initiator service when it completes

processing a requested task

 Handles the http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog and

http://schemas.microsoft.com/SQL/ServiceBroker/Error system message types

4. A queue, service, and activation procedure for the initiator

o The queue provides the storage of messages sent to the service

o The activation procedure is optional but automates the processing of messages from the

queue

 Processes the completed message to the target service and ends the

conversation

 Handles the http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog and

http://schemas.microsoft.com/SQL/ServiceBroker/Error system message types

In addition to these basic components, I prefer to use a wrapper stored procedure for creating a

conversation and sending messages between broker services to keep the code clean, and make it easier

to scale as necessary by implementing conversation reuse or the 150 conversation trick explained in the

SQLCAT team whitepaper. For many of the simple asynchronous processing configurations, these

performance tuning techniques might not need to be implemented. However, by using a wrapper

stored procedure, it becomes much easier to change a single point in code, instead of changing every

procedure that sends a message in the future, should it become necessary.

If you haven't given Service Broker a look, it might provide an alternate method of performing

decoupled processing asynchronously to solve a number of possible scenarios. In my next postwe'll walk

through the source code for an example implementation and explain where specific changes would

need to be made to leverage the code for asynchronous processing.

http://rusanu.com/2007/04/25/reusing-conversations/
http://msdn.microsoft.com/en-us/library/dd576261.aspx
http://www.sqlperformance.com/2014/03/sql-performance/configuring-service-broker

Configuring Service Broker for Asynchronous Processing
By Jonathan Kehayias

In my last article, I talked about the benefits of implementing asynchronous processing using Service

Broker in SQL Server over the other methods that exist for decoupled processing of long tasks. In this

article, we'll go through all the components that need to be configured for a basic Service Broker

configuration in a single database, and the important considerations for the conversation management

between broker services. To get started, we'll need to create a database and enable the database for

Service Broker usage:

CREATE DATABASE AsyncProcessingDemo;
GO

IF (SELECT is_broker_enabled FROM sys.databases WHERE name = N'AsyncProcessingDemo') =
0
BEGIN
 ALTER DATABASE AsyncProcessingDemo SET ENABLE_BROKER;
END
GO

USE AsyncProcessingDemo;
GO

Configuring broker components

The basic objects that need to be created in the database are the message types for the messages, a

contract that defines how the messages will be sent between the services, a queue and the initiator

service, and a queue and the target service. Many examples online for service broker show complex

object naming for the message types, contracts and services for Service Broker. However, there isn't a

requirement for the names to be complex, and simple object names can be used for any of the objects.

For the messages, we will need to create a message type for the request, which will be

called AsyncRequest, and a message type for the result, which will be called AsyncResult. Both will use

XML that will be validated as correctly formed by the broker services to send and receive the data

required by the services.

-- Create the message types
CREATE MESSAGE TYPE [AsyncRequest] VALIDATION = WELL_FORMED_XML;
CREATE MESSAGE TYPE [AsyncResult] VALIDATION = WELL_FORMED_XML;

The contract specifies that the AsyncRequest will be sent by the initiating service to the target service

and that the target service will return an AsyncResult message back to the initiating service. The

contract can also specify multiple message types for the initiator and target, or that a specific message

type can be sent by any service, if the specific processing requires it.

-- Create the contract
CREATE CONTRACT [AsyncContract]
(

http://www.sqlperformance.com/2014/03/sql-performance/intro-to-service-broker

 [AsyncRequest] SENT BY INITIATOR,
 [AsyncResult] SENT BY TARGET
);

For each of the services, a queue must be created to provide storage of the messages received by the

service. The target service where the request will be sent needs to be created specifying

the AsyncContract to allow messages to be sent to the service. In this case the service is

named ProcessingService and will be created on the ProcessingQueue within the database. The initiating

service does not require a contract to be specified, which makes it only able to receive messages in

response to a conversation that was initiated from it.

-- Create the processing queue and service - specify the contract to allow sending to
the service
CREATE QUEUE ProcessingQueue;
CREATE SERVICE [ProcessingService] ON QUEUE ProcessingQueue ([AsyncContract]);

-- Create the request queue and service
CREATE QUEUE RequestQueue;
CREATE SERVICE [RequestService] ON QUEUE RequestQueue;

Sending a Message for Processing

As I explained in the previous article, I prefer to implement a wrapper stored procedure for sending a

new message to a broker service, so that it can be modified once to scale performance if required. This

procedure is a simple wrapper around creating a new conversation and sending the message to

the ProcessingService.

-- Create the wrapper procedure for sending messages
CREATE PROCEDURE dbo.SendBrokerMessage
 @FromService SYSNAME,
 @ToService SYSNAME,
 @Contract SYSNAME,
 @MessageType SYSNAME,
 @MessageBody XML
AS
BEGIN
 SET NOCOUNT ON;

 DECLARE @conversation_handle UNIQUEIDENTIFIER;

 BEGIN TRANSACTION;

 BEGIN DIALOG CONVERSATION @conversation_handle
 FROM SERVICE @FromService
 TO SERVICE @ToService
 ON CONTRACT @Contract
 WITH ENCRYPTION = OFF;

 SEND ON CONVERSATION @conversation_handle
 MESSAGE TYPE @MessageType(@MessageBody);

 COMMIT TRANSACTION;

END
GO

Using the wrapper stored procedure we can now send a test message to the ProcessingService to

validate that we have set up the broker services correctly.

-- Send a request
EXECUTE dbo.SendBrokerMessage
 @FromService = N'RequestService',
 @ToService = N'ProcessingService',
 @Contract = N'AsyncContract',
 @MessageType = N'AsyncRequest',
 @MessageBody = N'<AsyncRequest><AccountNumber>12345</AccountNumber></AsyncRequest>';

-- Check for message on processing queue
SELECT CAST(message_body AS XML) FROM ProcessingQueue;
GO

Processing Messages

While we could manually process the messages from the ProcessingQueue, we'll probably want the

messages to be processed automatically as they are sent to the ProcessingService. To do this a

activation stored procedure needs to be created that we'll test and then later bind to the queue to

automate the processing upon queue activation. To process a message we need toRECEIVE the message

from the queue within a transaction, along with the message type and conversation handle for the

message. The message type ensures that the appropriate logic is applied to the message being

processed, and the conversation handle allows a response to be sent back to the initiating service when

the message has been processed.

The RECEIVE command allows a single message or multiple messages within the same conversation

handle or group to be processed in a single transaction. To process multiple messages, a table variable

must be used, or to do single message processing, a local variable can be used. The activation procedure

below retrieves a single message from the queue, checks the message type to determine if it is

an AsyncRequest message, and then performs the long running process based on the message

information received. If it doesn't receive a message within the loop, it will wait up to 5000ms, or 5

seconds, for another message to enter the queue before exiting the loop and terminating its execution.

After processing a message, it builds an AsyncResultmessage and sends it back to the initiator on the

same conversation handle that the message was received from. The procedure also checks the message

type to determine if an EndDialog orError message has been received to clean up the conversation by

ending it.

-- Create processing procedure for processing queue
CREATE PROCEDURE dbo.ProcessingQueueActivation
AS
BEGIN
 SET NOCOUNT ON;

 DECLARE @conversation_handle UNIQUEIDENTIFIER;

 DECLARE @message_body XML;
 DECLARE @message_type_name sysname;

 WHILE (1=1)
 BEGIN
 BEGIN TRANSACTION;

 WAITFOR
 (
 RECEIVE TOP (1)
 @conversation_handle = conversation_handle,
 @message_body = CAST(message_body AS XML),
 @message_type_name = message_type_name
 FROM ProcessingQueue
), TIMEOUT 5000;

 IF (@@ROWCOUNT = 0)
 BEGIN
 ROLLBACK TRANSACTION;
 BREAK;
 END

 IF @message_type_name = N'AsyncRequest'
 BEGIN
 -- Handle complex long processing here
 -- For demonstration we'll pull the account number and send a reply back only

 DECLARE @AccountNumber INT = @message_body.value('(AsyncRequest/AccountNumber)[1]',
'INT');

 -- Build reply message and send back
 DECLARE @reply_message_body XML = N'
 ' + CAST(@AccountNumber AS NVARCHAR(11)) + '
 ';

 SEND ON CONVERSATION @conversation_handle
 MESSAGE TYPE [AsyncResult] (@reply_message_body);
 END

 -- If end dialog message, end the dialog
 ELSE IF @message_type_name =
N'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog'
 BEGIN
 END CONVERSATION @conversation_handle;
 END

 -- If error message, log and end conversation
 ELSE IF @message_type_name = N'http://schemas.microsoft.com/SQL/ServiceBroker/Error'
 BEGIN
 -- Log the error code and perform any required handling here
 -- End the conversation for the error
 END CONVERSATION @conversation_handle;
 END

 COMMIT TRANSACTION;
 END

END
GO

The RequestQueue will also need to process the messages that are sent to it, so an additional procedure

for processing the AsyncResult messages returned by the ProcessingQueueActivation procedure needs

to be created. Since we know that the AsnycResult message means that all of the processing work has

completed, the conversation can be ended once we process that message, which will send a EndDialog

message to the ProcessingService, which will then be processed by it's activation procedure to end the

conversation cleaning everything up and avoiding the fire and forget problems that happen when

conversations are ended properly.

-- Create procedure for processing replies to the request queue
CREATE PROCEDURE dbo.RequestQueueActivation
AS
BEGIN
 SET NOCOUNT ON;

 DECLARE @conversation_handle UNIQUEIDENTIFIER;
 DECLARE @message_body XML;
 DECLARE @message_type_name sysname;

 WHILE (1=1)
 BEGIN
 BEGIN TRANSACTION;

 WAITFOR
 (
 RECEIVE TOP (1)
 @conversation_handle = conversation_handle,
 @message_body = CAST(message_body AS XML),
 @message_type_name = message_type_name
 FROM RequestQueue
), TIMEOUT 5000;

 IF (@@ROWCOUNT = 0)
 BEGIN
 ROLLBACK TRANSACTION;
 BREAK;
 END

 IF @message_type_name = N'AsyncResult'
 BEGIN
 -- If necessary handle the reply message here
 DECLARE @AccountNumber INT =
@message_body.value('(AsyncResult/AccountNumber)[1]', 'INT');

 -- Since this is all the work being done, end the conversation to send the
EndDialog message
 END CONVERSATION @conversation_handle;
 END

 -- If end dialog message, end the dialog
 ELSE IF @message_type_name =
N'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog'
 BEGIN
 END CONVERSATION @conversation_handle;

 END

 -- If error message, log and end conversation
 ELSE IF @message_type_name =
N'http://schemas.microsoft.com/SQL/ServiceBroker/Error'
 BEGIN
 END CONVERSATION @conversation_handle;
 END

 COMMIT TRANSACTION;
 END
END
GO

Testing the Procedures

Prior to automating the queue processing for our services, it is important to test the activation

procedures to ensure that they process the messages appropriately, and to prevent a queue from being

disabled should an error occur that isn't handled properly. Since there is already a message on

the ProcessingQueue the ProcessingQueueActivation procedure can be executed to process that

message. Keep in mind that the WAITFOR will cause the procedure to take 5 seconds to terminate, even

though the message is processed immediately from the queue. After processing the message, we can

verify the procedure worked correctly by querying the RequestQueue to see if an AsyncResult message

exists, and then we can verify that theRequestQueueActivation procedure functions correctly by

executing it.

-- Process the message from the processing queue
EXECUTE dbo.ProcessingQueueActivation;
GO

-- Check for reply message on request queue
SELECT CAST(message_body AS XML) FROM RequestQueue;
GO

-- Process the message from the request queue
EXECUTE dbo.RequestQueueActivation;
GO

Automating the Processing

At this point, all of the components are complete to fully automate our processing. The only thing

remaining is to bind the activation procedures to their appropriate queues, and then send another test

message to validate it gets processed and nothing remains in the queues afterwards.

-- Alter the processing queue to specify internal activation
ALTER QUEUE ProcessingQueue
 WITH ACTIVATION
 (
 STATUS = ON,
 PROCEDURE_NAME = dbo.ProcessingQueueActivation,
 MAX_QUEUE_READERS = 10,
 EXECUTE AS SELF

);
GO

-- Alter the request queue to specify internal activation
ALTER QUEUE RequestQueue
 WITH ACTIVATION
 (
 STATUS = ON,
 PROCEDURE_NAME = dbo.RequestQueueActivation,
 MAX_QUEUE_READERS = 10,
 EXECUTE AS SELF
);
GO

-- Test automated activation
-- Send a request

EXECUTE dbo.SendBrokerMessage
 @FromService = N'RequestService',
 @ToService = N'ProcessingService',
 @Contract = N'AsyncContract',
 @MessageType = N'AsyncRequest',
 @MessageBody =
N'<AsyncRequest><AccountNumber>12345</AccountNumber></AsyncRequest>';

-- Check for message on processing queue
-- nothing is there because it was automatically processed
SELECT CAST(message_body AS XML) FROM ProcessingQueue;
GO

-- Check for reply message on request queue
-- nothing is there because it was automatically processed
SELECT CAST(message_body AS XML) FROM RequestQueue;
GO

Summary

The basic components for automated asynchronous processing in SQL Server Service Broker can be

configured in a single database setup to allow for decoupled processing of long running tasks. This can

be a powerful tool for improving application performance, from an end user's experience, by decoupling

the processing from the end user's interactions with the application.

ACID & Isolation Levels
The ACID Properties of Statements & Transactions
By Paul White

Any programmer will tell you that writing safe multi-threaded code can be hard. It requires great care

and a good understanding of the technical issues involved. As a database person, you might think that

these sorts of difficulties and complications do not apply when writing T-SQL. So, it may come as a bit of

a shock to realize that T-SQL code is also vulnerable to the kind of race conditions and other data

integrity risks most commonly associated with multi-threaded programming. This is true whether we are

talking about a single T-SQL statement, or a group of statements enclosed in an explicit transaction.

At the heart of the issue is the fact that database systems allow multiple transactions to execute at the

same time. This is a well-known (and very desirable) state of affairs, yet a great deal of production T-SQL

code still quietly assumes that the underlying data does not change during the execution of a

transaction or a single DML statement like SELECT, INSERT, UPDATE, DELETE, orMERGE.

Even where the code author is aware of the possible effects of concurrent data changes, the use of

explicit transactions is too often assumed to provide more protection than is actually justified. These

assumptions and misconceptions can be subtle, and are certainly capable of misleading even

experienced database practitioners.

Now, there are cases where these issues will not matter much in a practical sense. For example, the

database might be read-only, or there might be some other genuine guarantee that no one else will

change the underlying data while we are working with it. Equally, the operation in question may

not require results that are exactly correct; our data consumers might be perfectly happy with an

approximate result (even one that does not represent the committed state of the database at any point

in time).

Concurrency Problems

The question of interference between concurrently-executing tasks is a familiar problem to application

developers working in programming languages like C# or Java. The solutions are many and varied, but

generally involve using atomic operations or obtaining a mutually-exclusive resource (such as a lock)

while a sensitive operation is in progress. Where proper precautions are not taken, the likely results are

corrupted data, an error, or perhaps even a complete crash.

Many of the same concepts (e.g. atomic operations and locks) exist in the database world, but

unfortunately they often have crucial differences in meaning. Most database people are aware of the

ACID properties of database transactions, where the A stands for atomic. SQL Server also

uses locks (and other mutual-exclusion devices internally). Neither of these terms mean quite what an

experienced C# or Java programmer would reasonably expect, and many database professionals have a

confused understanding of these topics as well (as a quick search using your favourite search engine will

testify).

To reiterate, sometimes these issues will not be a practical concern. If you write a query to count the

number of active orders in a database system, how important is it if the count is a bit off? Or if it reflects

the state of the database at some other point in time?

It is common for real systems to make a trade-off between concurrency and consistency (even if the

designer was not conscious of it at the time – informed trade-offs are perhaps a rarer animal). Real

systems often work well enough, with any anomalies short-lived or regarded as unimportant. A user

seeing an inconsistent state on a web page will often resolve the issue by refreshing the page. If the

issue is reported, it will most likely be closed as Not Reproducible. I am not saying this is a desirable

state of affairs, just recognising that it happens.

Nevertheless, it is tremendously useful to understand concurrency issues at a fundamental level. Being

aware of them enables us to write correct (or informed correct-enough) T-SQL as the circumstances

require. More importantly, it allows us to avoid writing T-SQL that could compromise the logical

integrity of our data.

But, SQL Server provides ACID guarantees!

Yes, it does, but they are not always what you would expect, and they do not protect everything. More

often than not, humans read far more into ACID than is justified.

The most frequently misunderstood components of the ACID acronym are the words Atomic,

Consistent, and Isolated – we will come to those in a moment. The other one, Durable, is intuitive

enough so long as you remember it applies only to persistent (recoverable) user data.

With all that said, SQL Server 2014 begins to blur the boundaries of the Durable property somewhat

with the introduction of general delayed durability and in-memory OLTP schema-only durability. I

mention them only for completeness, we will not discuss these new features further. Let us move on to

the more problematic ACID properties:

The Atomic Property

Many programming languages provide atomic operations that can be used to protect against race

conditions and other undesirable concurrency effects, where multiple threads of execution may access

or modify shared data structures. For the application developer, an atomic operation comes with

an explicit guarantee of complete isolation from the effects of other concurrent processing in a multi-

threaded program.

An analogous situation arises in the database world, where multiple T-SQL queries concurrently access

and modify shared data (i.e. the database) from different threads. Note that we are not talking about

parallel queries here; ordinary single-threaded queries are routinely scheduled to run concurrently

within SQL Server on separate worker threads.

Unfortunately, the atomic property of SQL transactions only guarantees that data modifications

performed within a transaction succeed or fail as a unit. Nothing more than that. There is certainly no

guarantee of complete isolation from the effects of other concurrent processing. Notice also in passing

that the atomic transaction property says nothing about any guarantees aboutreading data.

Single Statements

There is also nothing special about a single statement in SQL Server. Where an explicit containing

transaction (BEGIN TRAN...COMMIT TRAN) does not exist, a single DML statement still executes within

an autocommit transaction. The same ACID guarantees apply to a single statement, and the same

http://msdn.microsoft.com/en-us/library/dn449490(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn553122(v=sql.120).aspx
http://technet.microsoft.com/en-us/library/ms187878.aspx

limitations as well. In particular, a single statement comes with no special guarantees that data will not

change while it is in progress.

Consider the following toy AdventureWorks query:

SELECT
 TH.TransactionID,
 TH.ProductID,
 TH.ReferenceOrderID,
 TH.ReferenceOrderLineID,
 TH.TransactionDate,
 TH.TransactionType,
 TH.Quantity,
 TH.ActualCost
FROM Production.TransactionHistory AS TH
WHERE TH.ReferenceOrderID =
(
 SELECT TOP (1)
 TH2.ReferenceOrderID
 FROM Production.TransactionHistory AS TH2
 WHERE TH2.TransactionType = N'P'
 ORDER BY
 TH2.Quantity DESC,
 TH2.ReferenceOrderID ASC
);

The query is intended to display information about the Order that is ranked first by Quantity. The

execution plan is as follows:

The main operations in this plan are:

1. Scan the table to find rows with the required transaction type

2. Find the Order ID that sorts highest according to the specification in the subquery

3. Find the rows (in the same table) with the selected Order ID using a nonclustered index

4. Look up the remaining column data using the clustered index

Now imagine that a concurrent user modifies Order 495, changing its Transaction Type from P to W, and

commits that change to the database. As luck would have it, this modification goes through while our

query is performing the sort operation (step 2).

When the sort completes, the index seek at step 3 finds the rows with the selected Order ID (which

happens to be 495) and the Key Lookup at step 4 fetches the remaining columns from the base table

(where the Transaction Type is now W).

This sequence of events means our query produces an apparently impossible result:

Instead of finding orders with transaction type P as the query specified, the results show transaction

type W.

The root cause is clear: our query implicitly assumed the data could not change while our single-

statement query was in progress. The window of opportunity in this case was relatively large due to the

blocking sort, but the same sort of race condition can occur at any stage of query execution, generally

speaking. Naturally, the risks are usually higher with increased levels of concurrent modifications, larger

tables, and where blocking operators appear in the query plan.

Another persistent myth in the same general area is that MERGE is to be preferred over

separate INSERT, UPDATE and DELETE statements because the single-statement MERGE is atomic. That

is nonsense, of course. We will come back to this sort of reasoning later on in the series.

The general message at this point is that unless explicit steps are taken to ensure otherwise, data rows

and index entries can change, move position, or disappear entirely at any time during the execution

process. A mental picture of constant and random change in the database is a good one to bear in mind

while writing T-SQL queries.

The Consistency Property

The second word from the ACID acronym also has a range of possible interpretations. In a SQL Server

database, Consistency means only that a transaction leaves the database in a state that does not violate

any active constraints. It is important to fully appreciate how limited that statement is: The only ACID

guarantees of data integrity and logical consistency are those provided by active constraints.

SQL Server provides a limited range of constraints to enforce logical integrity, including PRIMARY

KEY, FOREIGN KEY, CHECK, UNIQUE, and NOT NULL. These are all guaranteed to be satisfied at the time

a transaction commits. In addition, SQL Server guarantees the physical integrity of the database at all

times, of course.

The built-in constraints are not always sufficient to enforce all the business and data-integrity rules we

would like. It is certainly possible to be creative with the standard facilities, but these quickly become

complex and may result in the storage of duplicated data.

As a consequence, most real databases contain at least some T-SQL routines written to enforce

additional rules, for example in stored procedures and triggers. The responsibility for ensuring this code

works correctly lies entirely with the author – the Consistency property provides no specific protections.

To emphasise the point, pseudo-constraints written in T-SQL have to perform correctly no matter what

concurrent modifications might be occurring. An application developer might protect a sensitive

operation like that with a lock statement. The closest thing T-SQL programmers have to that facility for

at-risk stored procedure and trigger code is the comparatively rarely-usedsp_getapplock system stored

procedure. That is not to say it is the only, or even preferred option, just that it exists and can be the

right choice in some circumstances.

The Isolation Property

This is easily the most often misunderstood of the ACID transaction properties.

In principle, a completely isolated transaction executes as the only task executing against the database

during its lifetime. Other transactions can only start once the current transaction has completely

finished (i.e. committed or rolled back). Executed this way, a transaction would truly be an atomic

operation, in the strict sense that a non-database person would ascribe to the phrase.

In practice, database transactions operate instead with a degree of isolation specified by the currently

effective transaction isolation level (which applies equally to stand-alone statements, remember). This

compromise (the degree of isolation) is the practical consequence of the trade-offs between

concurrency and correctness mentioned earlier. A system that literally processed transactions one-by-

one, with no overlap in time, would provide complete isolation but overall system throughput would

likely be poor.

Next Time

The next part in this series will continue the examination of concurrency issues, ACID properties, and

transaction isolation with a detailed look at the serializable isolation level, another example of

something that may not mean what you think it does.

http://technet.microsoft.com/en-us/library/ms173763.aspx

The Serializable Isolation Level
By Paul White

Much production T-SQL code is written with the implicit assumption that the underlying data will not

change during execution. As we saw in the previous article in this series, this is an unsafe assumption

because data and index entries can move around underneath us, even during the execution of a single

statement.

Where the T-SQL programmer is aware of the kinds of correctness and data integrity issues that can

arise due to concurrent data modifications by other processes, the solution most commonly offered is to

wrap the vulnerable statements in a transaction. It is not clear how the same sort of reasoning would be

applied to the single-statement case, which is already wrapped in an auto-commit transaction by

default.

Leaving that aside for a second, the idea of protecting an important area of T-SQL code with a

transaction seems to be based on a misunderstanding of the protections offered by the ACID transaction

properties. The important element of that acronym for the present discussion is the Isolation property.

The idea is that using a transaction automatically provides complete isolation from the effects of other

concurrent activities.

The truth of the matter is that transactions below SERIALIZABLE only provide a degree of isolation,

which depends on the currently effective transaction isolation level. To understand what all this means

for our everyday TSQL coding practices, we will first take a detailed look at the serializable isolation

level.

Serializable Isolation

Serializable is the most isolated of the standard transaction isolation levels. It is also the default isolation

level specified by the SQL standard, though SQL Server (like most commercial database systems) differs

from the standard in this respect. The default isolation level in SQL Server is read committed, a lower

isolation level that we will explore later in the series.

The definition of the serializable isolation level in the SQL-92 standard contains the following text

(emphasis mine):

“A serializable execution is defined to be an execution of the operations of concurrently

executing SQL-transactions that produces the same effect as some serial execution of those

same SQL-transactions. A serial execution is one in which each SQL-transaction executes to

completion before the next SQL-transaction begins.”

There is an important distinction to be made here between truly serialized execution (where each

transaction actually runs exclusively to completion before the next one starts) and serializableisolation,

where transactions are only required to have the same effects as if they were executed serially (in some

unspecified order).

To put it another way, a real database system is allowed to physically overlap the execution of

serializable transactions in time (thereby increasing concurrency) so long as the effects of those

transactions still correspond to some possible order of serial execution. In other words, serializable

transactions are potentially serializable rather than being actually serialized.

http://www.sqlperformance.com/2014/02/t-sql-queries/confusion-caused-by-trusting-acid
http://technet.microsoft.com/en-us/library/ms187878.aspx
http://technet.microsoft.com/en-us/library/ms173763.aspx

Logically Serializable Transactions

Leave aside all physical considerations (like locking) for a moment, and think only about the logical

processing of two concurrent serializable transactions.

Consider a table that contains a large number of rows, five of which happen to satisfy some interesting

query predicate. A serializable transaction T1 starts counting the number of rows in the table that match

this predicate. Some time after T1 begins, but before it commits, a second serializable transaction

T2 starts. Transaction T2 adds four new rows that also satisfy the query predicate to the table, and

commits. The diagram below shows the time sequence of events:

The question is, how many rows should the query in serializable transaction T1 count? Remember we are

thinking purely about the logical requirements here, so avoid thinking about which locks might be taken

and so on.

The two transactions physically overlap in time, which is fine. Serializable isolation only requires that the

results of these two transactions correspond to some possible serial execution. There are clearly two

possibilities for a logical serial schedule of transactions T1 and T2:

Using the first possible serial schedule (T1 then T2) the T1 counting query would see five rows, because

the second transaction does not start until the first one completes. Using the second possible logical

schedule, the T1 query would count nine rows, because the four-row insert logically completed before

the counting transaction began.

Both answers are logically correct under serializable isolation. In addition, no other answer is possible

(so transaction T1 could not count seven rows, for example). Which of the two possible results is actually

observed depends on precise timing and a number of implementation details specific to the database

engine in use.

Note that we are not concluding that the transactions are actually somehow reordered in time. The

physical execution is free to overlap as shown in the first diagram, so long as the database engine

ensures the results reflect what would have happened had they executed in one of the two possible

serial sequences.

Serializable and the Concurrency Phenomena

In addition to logical serialization, the SQL standard also mentions that a transaction operating at the

serializable isolation level must not experience certain concurrency phenomena. It must not read

uncommitted data (no dirty reads); and once data has been read, a repeat of the same operation must

return exactly the same set of data (repeatable reads with no phantoms).

The standard makes a point of saying that those concurrency phenomena are excluded at the

serializable isolation level as a direct consequence of requiring the transaction to be logically

serializable. In other words, the serializability requirement is sufficient on its own to avoid the dirty

read, non-repeatable read, and phantom concurrency phenomena. By contrast, avoiding the three

concurrency phenomena alone is not sufficient to guarantee serializability, as we will see shortly.

Intuitively, serializable transactions avoid all concurrency-related phenomena because they are required

to act as if they had executed in complete isolation. In that sense, the serializable transaction isolation

level matches the common expectations of T-SQL programmers quite closely.

Serializable Implementations

SQL Server happens to use a locking implementation of the serializable isolation level, where physical

locks are acquired and held to the end of the transaction (hence the deprecated table hintHOLDLOCK as

a synonym for SERIALIZABLE).

This strategy is not quite enough to provide a technical guarantee of full serializability, because new or

changed data could appear in a range of rows previously processed by the transaction. This concurrency

phenomenon is known as a phantom, and can result in effects which could not have occurred in any

serial schedule.

To ensure protection against the phantom concurrency phenomenon, locks taken by SQL Server at the

serializable isolation level may also incorporate key-range locking to prevent new or changed rows from

appearing between previously-examined index key values. Range locks are not always acquired under

the serializable isolation level; all we can say in general is that SQL Server always acquires sufficient locks

to meet the logical requirements of the serializable isolation level. In fact, locking implementations quite

often acquire more, and stricter, locks than are really needed to guarantee serializability, but I digress.

Locking is just one of the possible physical implementations of the serializable isolation level. We should

be careful to mentally separate the specific behaviours of the SQL Server locking implementation from

the logical definition of serializable.

As an example of an alternative physical strategy, see the PostgreSQL implementation of serializable

snapshot isolation, though this is just one alternative. Each different physical implementation has its

own strengths and weaknesses of course. As an aside, note that Oracle still does not provide a fully

compliant implementation of the serializable isolation level. It has an isolation level named serializable,

but it does not truly guarantee that transactions will execute according to some possible serial schedule.

http://wiki.postgresql.org/wiki/SSI
http://wiki.postgresql.org/wiki/SSI

Oracle instead provides snapshot isolation when serializable is requested, in much the same way

PostgreSQL did before serializable snapshot isolation (SSI) was implemented.

Snapshot isolation does not prevent concurrency anomalies like write skew, which is not possible under

truly serializable isolation. If you are interested, you can find examples of write skew and other

concurrency effects allowed by snapshot isolation at the SSI link above. We will also discuss the SQL

Server implementation of snapshot isolation level later in the series.

A point-in-time view?

One reason I have spent time talking about the differences between logical serializability and physically

serialized execution is that it is otherwise easy to infer guarantees that might not actually exist. For

example, if you think of serializable transactions as actually executing one after the other, you might

infer that a serializable transaction will necessarily see the database as it existed at the start of the

transaction, providing a point-in-time view.

In fact, this is an implementation-specific detail. Recall the previous example, where serializable

transaction T1 might legitimately count five or nine rows. If a count of nine is returned, the first

transaction clearly sees rows that did not exist at the moment the transaction started. This result is

possible in SQL Server but not in PostgreSQL SSI, though both implementations comply with the logical

behaviours specified for the serializable isolation level.

In SQL Server, serializable transactions do not necessarily see the data as it existed at the start of the

transaction. Rather, the details of the SQL Server implementation mean that a serializable transaction

sees the latest committed data, as of the moment that the data was first locked for access. In addition,

the set of latest-committed data ultimately read is guaranteed not to change its membership before the

transaction ends.

Next Time

The next part in this series examines the repeatable read isolation level, which provides weaker

transaction isolation guarantees than serializable.

The Repeatable Read Isolation Level
By Paul White

The serializable isolation level provides complete protection from concurrency effects that can threaten

data integrity and lead to incorrect query results. Using serializable isolation means that if a transaction

that can be shown to produce correct results with no concurrent activity, it will continue to perform

correctly when competing with any combination of concurrent transactions.

This is a very powerful guarantee, and one that probably matches the intuitive transaction isolation

expectations of many T-SQL programmers (though in truth, relatively few of these will routinely use

serializable isolation in production).

The SQL standard defines three additional isolation levels that offer far weaker ACID isolation

guarantees than serializable, in return for potentially higher concurrency and fewer potential side-

effects like blocking, deadlocking, and commit-time aborts.

Unlike serializable isolation, the other isolation levels are defined solely in terms of certain concurrency

phenomena that might be observed. The next-strongest of the standard isolation levels after serializable

is named repeatable read. The SQL standard specifies that transactions at this level allow a single

concurrency phenomenon known as a phantom.

Just as we have previously seen important differences between the common intuitive meaning of ACID

transaction properties and reality, the phantom phenomenon encompasses a wider range of behaviours

than is often appreciated.

This post in the series looks at the actual guarantees provided by the repeatable read isolation level,

and shows some of the phantom-related behaviours that can be encountered. To illustrate some points,

we will refer to the following simple example query, where the simple task is to count the total number

of rows in a table:

SELECT COUNT_BIG(*)
FROM dbo.SomeTable;

Repeatable Read

One odd thing about the repeatable read isolation level is it does not actually guarantee that reads

are repeatable, at least in one commonly-understood sense. This is another example where intuitive

meaning alone can be misleading. Executing the same query twice within the same repeatable read

transaction can indeed return different results.

In addition to that, the SQL Server implementation of repeatable read means that a single read of a set

of data might miss some rows that logically ought to be considered in the query result. While

undeniably implementation-specific, this behaviour is fully in line with the definition of repeatable read

contained in the SQL standard.

The last thing I want to note quickly before delving into details, is that repeatable read in SQL Server

does not provide a point-in-time view of the data.

http://www.sqlperformance.com/2014/02/t-sql-queries/confusion-caused-by-trusting-acid

Non-repeatable Reads

The repeatable read isolation level provides a guarantee that data will not change for the life of the

transaction once it has been read for the first time.

There are a couple of subtleties contained in that definition. First, it allows data to change after the

transaction starts but before the data is first accessed. Second, there is no guarantee that the

transaction will actually encounter all the data that logically qualifies. We will see examples of both of

these shortly.

There is one other preliminary we need to get out of the way quickly, that has to do with the example

query we will be using. In fairness, the semantics of this query are a little fuzzy. At the risk of sounding

slightly philosophical, what does it mean to count the number of rows in the table? Should the result

reflect the state of the table as it was at some particular point in time? Should this point in time be the

start or end of the transaction, or something else?

This might seem a bit nit-picky, but the question is a valid one in any database that supports concurrent

data reads and modifications. Executing our example query could take an arbitrarily long length of time

(given a large enough table, or resource constraints for example) so concurrent changes are not only

possible, they might be unavoidable.

The fundamental issue here is the potential for the concurrency phenomenon referred to as

a phantom in the SQL standard. While we are counting rows in the table, another concurrent

transaction might insert new rows in a place we have already checked, or change a row we have not

checked yet in such a way that it moves to a place we have already looked. People often think of

phantoms as rows that might magically appear when read for a second time, in a separate statement,

but the effects can be much more subtle than that.

Concurrent Insert Example

This first example shows how concurrent inserts can produce a non-repeatable read and/or result in

rows being skipped. Imagine that our test table initially contains five rows with the values shown below:

We now set the isolation level to repeatable read, start a transaction, and run our counting query. As

you would expect, the result is five. No great mystery so far.

Still executing inside the same repeatable read transaction, we run the counting query again, but this

time while a second concurrent transaction is inserting new rows into the same table. The diagram

below shows the sequence of events, with the second transaction adding rows with values 2 and 6 (you

might have noticed these values were conspicuous by their absence just above):

If our counting query were running at the serializable isolation level, it would be guaranteed to count

either five or seven rows (see the previous article in this series if you need a refresher on why that is the

case). How does running at the less isolated repeatable read level affect things?

Well, repeatable read isolation guarantees that the second run of the counting query will see all the

previously-read rows, and they will be in the same state as before. The catch is that repeatable read

isolation says nothing about how the transaction should treat the new rows (the phantoms).

Imagine that our row-counting transaction (T1) has a physical execution strategy where rows are

searched in an ascending index order. This is a common case, for instance when a forward-ordered b-

tree index scan is employed by the execution engine. Now, just after transaction T1 counts rows 1 and 3

in ascending order, transaction T2 might sneak in, insert new rows 2 and 6, and then commit its

transaction.

Though we are primarily thinking of logical behaviours at this point, I should mention that there is

nothing in the SQL Server locking implementation of repeatable read to prevent transaction T2from

doing this. Shared locks taken by transaction T1 on previously-read rows prevent those rows from being

changed, but they do not prevent new rows from being inserted into the range of values tested by our

counting query (unlike the key-range locks in locking serializable isolation would).

Anyway, with the two new rows committed, transaction T1 continues its ascending-order search,

eventually encountering rows 4, 5, 6, and 7. Note that T1 sees new row 6 in this scenario, but notnew

row 2 (due to the ordered search, and its position when the insert occurred).

The outcome is that the repeatable read counting query reports that the table contains six rows (values

1, 3, 4, 5, 6 and 7). This result is inconsistent with the previous result of five rows obtained inside

the same transaction. The second read counted phantom row 6 but missed phantom row 2. So much for

the intuitive meaning of a repeatable read!

Concurrent Update Example

A similar situation can arise with a concurrent update instead of an insert. Imagine our test table is reset

to contain the same five rows as before:

http://www.sqlperformance.com/2014/04/t-sql-queries/the-serializable-isolation-level

This time, we will only run our counting query once at the repeatable read isolation level, while a second

concurrent transaction updates the row with value 5 to have a value of 2:

Transaction T1 again starts counting rows, (in ascending order) encountering rows 1 and 3 first. Now,

transaction T2 slips in, changes the value of row 5 to 2 and commits:

I have shown the updated row in the same position as before to make the change clear, but the b-tree

index we are scanning maintains the data in logical order, so the real picture is closer to this:

The point is that transaction T1 is concurrently scanning this same structure in forward order, being

currently positioned just after the entry for value 3. The counting query continues scanning forward

from that point, finding rows 4 and 7 (but not row 5 of course).

To summarize, the counting query saw rows 1, 3, 4, and 7 in this scenario. It reports a count of four

rows – which is strange, because the table seems to have contained five rows throughout!

A second run of the counting query within the same repeatable read transaction would report five rows,

for similar reasons as before. As a final note, in case you are wondering, concurrent deletions do not

provide an opportunity for a phantom-based anomaly under repeatable read isolation.

Final Thoughts

The preceding examples both used ascending-order scans of an index structure to present a simple view

of the sort of effects phantoms can have on a repeatable-read query. It is important to understand that

these illustrations do not rely in any important way on the scan direction or the fact that a b-tree index

was used. Please do not form the view that ordered scans are somehow responsible and therefore to be

avoided!

The same concurrency effects can be seen with a descending-order scan of an index structure, or in a

variety of other physical data access scenarios. The broad point is that phantom phenomena are

specifically allowed (though not required) by the SQL standard for transactions at the repeatable read

level of isolation.

Not all transactions require the complete isolation guarantee provided by serializable isolation, and not

many systems could tolerate the side effects if they did. Nevertheless, it pays to have a good

understanding of exactly which guarantees the various isolation levels provide.

Next Time

The next part in this series looks at the even weaker isolation guarantees offered by SQL Server's default

isolation level, read committed.

The Read Committed Isolation Level
By Paul White

Read committed is the second weakest of the four isolation levels defined by the SQL standard.

Nevertheless, it is the default isolation level for many database engines, including SQL Server. This post

in a series about isolation levels and the ACID properties of transactions looks at the logical and physical

guarantees actually provided by read committed isolation.

Logical Guarantees

The SQL standard requires that a transaction running under read committed isolation reads

only committed data. It expresses this requirement by forbidding the concurrency phenomenon known

as a dirty read. A dirty read occurs where a transaction reads data that has been written by another

transaction, before that second transaction completes. Another way of expressing this is to say that a

dirty read occurs when a transaction reads uncommitted data.

The standard also mentions that a transaction running at read committed isolation might encounter the

concurrency phenomena known as non-repeatable reads and phantoms. Though many books explain

these phenomena in terms of a transaction being able to see changed or new data items if data is

subsequently re-read, this explanation can reinforce the misconception that concurrency phenomena

can only occur inside an explicit transaction that contains multiple statements. This is not so. A single

statement without an explicit transaction is just as vulnerable to the non-repeatable read and phantom

phenomena, as we we will see shortly.

That is pretty much all the standard has to say on the subject of read committed isolation. At first sight,

reading only committed data seems like a pretty good guarantee of sensible behaviour, but as always

the devil is in the detail. As soon as you start to look for potential loopholes in this definition, it becomes

only too easy to find instances where our read committed transactions might not produce the results we

might expect. Again, we will discuss these in more detail in a moment or two.

Differing Physical Implementations

There are at least two things that mean the observed behaviour of the read committed isolation level

might be quite different on different database engines. First, the SQL standard requirement to read only

committed data does not necessarily mean that the committed data read by a transaction will be

the most-recently committed data.

A database engine is allowed to read a committed version of a row from any point in the past, and still

comply with the SQL standard definition. Several popular database products implement read committed

isolation this way. Query results obtained under this implementation of read committed isolation might

be arbitrarily out-of-date, when compared with the current committed state of the database. We will

cover this topic as it applies to SQL Server in the next post in the series.

The second thing I want to draw your attention to is that the SQL standard definition does not preclude

a particular implementation from providing additional concurrency-effect protections beyond

preventing dirty reads. The standard only specifies that dirty reads are not allowed, it does not require

that other concurrency phenomena must be allowed at any given isolation level.

To be clear about this second point, a standards-compliant database engine could implement all

isolation levels using serializable behaviour if it so chose. Some major commercial database engines also

provide an implementation of read committed that goes well beyond simply preventing dirty reads

(though none go as far as providing complete Isolation in the ACID sense of the word).

In addition to that, for several popular products, read committed isolation is the lowest isolation level

available; their implementations of read uncommitted isolation are exactly the same as read committed.

This is allowed by the standard, but these sorts of differences do add complexity to the already difficult

task of migrating code from one platform to another. When talking about the behaviours of an isolation

level, it is usually important to specify the particular platform as well.

As far as I know, SQL Server is unique among the major commercial database engines in

providing two implementations of the read committed isolation level, each with very different physical

behaviours. This post covers the first of these, locking read committed.

SQL Server Locking Read Committed

If the database option READ_COMMITTED_SNAPSHOT is OFF, SQL Server uses a locking implementation

of the read committed isolation level, where shared locks are taken to prevent a concurrent transaction

from concurrently modifying the data, because modification would require an exclusive lock, which is

not compatible with the shared lock.

The key difference between SQL Server locking read committed and locking repeatable read (which also

takes shared locks when reading data) is that read committed releases the shared lock as soon as

possible, whereas repeatable read holds these locks to the end of the enclosing transaction.

When locking read committed acquires locks at row granularity, the shared lock taken on a row

is released when a shared lock is taken on the next row. At page granularity, the shared page lock is

released when the first row on the next page is read, and so on. Unless a lock-granularity hint is supplied

with the query, the database engine decides what level of granularity to start with. Note that granularity

hints are only treated as suggestions by the engine, a less granular lock than requested might still be

taken initially. Locks might also be escalated during execution from row or page level to partition or

table level depending on system configuration.

The important point here is that shared locks are typically held for only a very short time while the

statement is executing. To address one common misconception explicitly, locking read committed does

not hold shared locks to the end of the statement.

Locking Read Committed Behaviours

The short-term shared locks used by the SQL Server locking read committed implementation provide

very few of the guarantees commonly expected of a database transaction by T-SQL programmers. In

particular, a statement running under locking read committed isolation:

 Can encounter the same row multiple times;

 Can miss some rows completely; and

 Does not provide a point-in-time view of the data

That list might seem more like a description of the weird behaviours you might associate more with the

use of NOLOCK hints, but all these things really can, and do happen when using locking read committed

isolation.

Example

Consider the simple task of counting the rows in a table, using the obvious single-statement query.

Under locking read committed isolation with row-locking granularity, our query will take a shared lock

on the first row, read it, release the shared lock, move on to the next row, and so on until it reaches the

end of the structure it is reading. For the sake of this example, assume our query is reading an index b-

tree in ascending key order (though it could just as well use a descending order, or any other strategy).

Since only a single row is share-locked at any given moment in time, it is clearly possible for concurrent

transactions to modify the unlocked rows in the index our query is traversing. If these concurrent

modifications change index key values, they will cause rows to move around within the index structure.

With that possibility in mind, the diagram below illustrates two problematic scenarios that can occur:

The uppermost arrow shows a row we have already counted having its index key concurrently modified

so that the row moves ahead of the current scan position in the index, meaning the row will be counted

twice. The second arrow shows a row our scan has not encountered yet moving behind the scan

position, meaning the row will not be counted at all.

Not a point-in-time view

The previous section showed how locking read committed can miss data completely, or count the same

item multiple times (more than twice, if we are unlucky). The third bullet point in the list of unexpected

behaviours stated that locking read committed does not provide a point-in-time view of the data either.

The reasoning behind that statement should now be easy to see. Our counting query, for example, could

easily read data that was inserted by concurrent transactions after our query started executing. Equally,

data that our query sees might be modified by concurrent activity after our query starts and before it

completes. Finally, data we have read and counted might be deleted by a concurrent transaction before

our query completes.

Clearly, the data seen by a statement or transaction running under locking read committed isolation

corresponds to no single state of the database at any particular point in time. The data we encounter

might well be from a variety of different points in time, with the only common factor being that each

item represented the latest committed value of that data at the time it was read(though it might well

have changed or disappeared since).

How serious are these problems?

This all might seem like a pretty woolly state of affairs if you are used to thinking of your single-

statement queries and explicit transactions as logically executing instantaneously, or as running against

a single committed point-in-time state of the database when using the default SQL Server isolation level.

It certainly does not fit well with the concept of isolation in the ACID sense.

Given the apparent weakness of the guarantees provided by locking read committed isolation, you

might start to wonder how any of your production T-SQL code has ever worked properly! Of course, we

can accept that using an isolation level below serializable means we give up full ACID transaction

isolation in return for other potential benefits, but just how serious can we expect these issues to be in

practice?

Missing and double-counted rows

These first two issues essentially rely on concurrent activity changing keys in an index structure that we

are currently scanning. Note that scanning here includes the partial range scan portion of an index seek,

as well as the familiar unrestricted index or table scan.

If we are (range) scanning an index structure whose keys are not typically modified by any concurrent

activity, these first two issues should not be much of a practical problem. It is difficult to be certain

about this though, because query plans can change to use a different access method, and the new

searched index might incorporate volatile keys.

We also have to bear in mind that many production queries only really need an approximate or best-

effort answer to some types of question anyway. The fact that some rows are missing or double-

counted might not matter much in the broader scheme of things. On a system with many concurrent

changes, it might even be difficult to be sure that the result was inaccurate, given that the data changes

so frequently. In that sort of situation, a roughly-correct answer might be good enough for the purposes

of the data consumer.

No point-in-time view

The third issue (the question of a so-called 'consistent' point-in-time view of the data) also comes down

to the same sort of considerations. For reporting purposes, where inconsistencies tend to result in

awkward questions from the data consumers, a snapshot view is frequently preferable. In other cases,

the sort of inconsistencies arising from the lack of a point-in-time view of the data may well be tolerable.

Problematic scenarios

There are also plenty of cases where the listed concerns will be important. For example, if you write

code that enforces business rules in T-SQL, you need to be careful to select an isolation level (or take

other suitable action) to guarantee correctness. Many business rules can be enforced using foreign keys

or constraints, where the intricacies of isolation level selection are handled automatically for you by the

database engine. As a general rule of thumb, using the built-in set of declarative integrity features is

preferable to building your own rules in T-SQL.

There is another broad class of query that does not quite enforce a business rule per se, but which

nevertheless might have unfortunate consequences when run at the default locking read committed

isolation level. These scenarios are not always as obvious as the often-quoted examples of transferring

money between bank accounts, or ensuring that the balance over a number of linked accounts never

drops below zero. For example, consider the following query that identifies overdue invoices as an input

to some process that sends out sternly-worded reminder letters:

INSERT dbo.OverdueInvoices
SELECT I.InvoiceNumber
FROM dbo.Invoices AS INV
WHERE INV.TotalDue>
(
 SELECT SUM(P.Amount)
 FROM dbo.Payments AS P
 WHERE P.InvoiceNumber = I.InvoiceNumber
);

Clearly we would not want to send a letter to someone who had fully paid their invoice in instalments,

simply because concurrent database activity at the time our query ran meant we calculated an incorrect

sum of payments received. Real queries on real production systems are frequently much more complex

than the simple example above, of course.

To finish up for today, take a look at the following query and see if you can spot how many opportunities

there are for something unintended to occur, if several such queries are run concurrently at the locking

read committed isolation level (perhaps while other unrelated transactions are also modifying the Cases

table):

-- Allocate the oldest unallocated case ID to
-- the current case worker, while ensuring
-- the worker never has more than three
-- active cases at once.
UPDATE dbo.Cases
SET WorkerID = @WorkerID
WHERE
 CaseID =
 (
 -- Find the oldest unallocated case ID
 SELECT TOP (1)
 C2.CaseID
 FROM dbo.Cases AS C2
 WHERE
 C2.WorkerID IS NULL

 ORDER BY
 C2.DateCreated DESC
)
 AND
 (
 SELECT COUNT_BIG(*)
 FROM dbo.Cases AS C3
 WHERE C3.WorkerID = @WorkerID
) <3;

Once you start looking for all the little ways a query can go wrong at this isolation level, it can be hard to

stop. Bear in mind the caveats noted previously around the real need for completely isolated and point-

in-time accurate results. It is perfectly fine to have queries that return good enough results, so long as

you are aware of the trade-offs you are making by using read committed.

Next Time

The next part in this series looks at the second physical implementation of read committed isolation

available in SQL Server, read committed snapshot isolation.

Read Committed Snapshot Isolation
By Paul White

SQL Server provides two physical implementations of the read committed isolation level defined by the

SQL standard, locking read committed and read committed snapshot isolation (RCSI). While both

implementations meet the requirements laid down in the SQL standard for read committed isolation

behaviours, RCSI has quite different physical behaviours from the locking implementation we looked at

in the previous post in this series.

Logical Guarantees

The SQL standard requires that a transaction operating at the read committed isolation level not

experience any dirty reads. Another way to express this requirement is to say a read committed

transaction must only encounter committed data.

The standard also says that read committed transactions might experience the concurrency phenomena

known as non-repeatable reads and phantoms (though they are not actually required to do so). As it

happens, both physical implementations of read committed isolation in SQL Server can experience non-

repeatable reads and phantom rows, though the precise details are quite different.

A point-in-time view of committed data

If the database option READ_COMMITTED_SNAPSHOT in ON, SQL Server uses a row-versioning

implementation of the read committed isolation level. When this is enabled, transactions requesting

read committed isolation automatically use the RCSI implementation; no changes to existing T-SQL code

is required to use RCSI. Note carefully though that this is not the same as saying that code will behave

the same under RCSI as when using the locking implementation of read committed, in fact this is quite

generally not the case.

There is nothing in the SQL standard that requires the data read by a read committed transaction to be

the most-recently committed data. The SQL Server RCSI implementation takes advantage of this to

provide transactions with a point-in-time view of committed data, where that point in time is the

moment the current statement began execution (not the moment any containing transaction started).

This is quite different from the behaviour of the SQL Server locking implementation of read committed,

where the statement sees the most-recently committed data as of the moment each item is physically

read. Locking read committed releases shared locks as quickly as possible, so the set of data

encountered may come from very different points in time.

To summarize, locking read committed sees each row as it was at the time it was briefly locked and

physically read; RCSI sees all rows as they were at the time the statement began. Both implementations

are guaranteed to never see uncommitted data, but the data they encounter can be very different.

The implications of a point-in-time view

Seeing a point-in-time view of committed data might seem self-evidently superior to the more complex

behaviour of the locking implementation. It is clear, for example, that a point-in-time view cannot suffer

from the problems of missing rows or encountering the same row multiple times, which are both

possible under locking read committed isolation.

http://sqlperformance.com/2014/04/t-sql-queries/the-read-committed-isolation-level
http://msdn.microsoft.com/en-us/library/ms177404.aspx
http://msdn.microsoft.com/en-us/library/ms177404.aspx

A second important advantage of RCSI is that it does not acquire shared locks when reading data,

because the data comes from the row version store rather than being accessed directly. The lack of

shared locks can dramatically improve concurrency by eliminating conflicts with concurrent transactions

looking to acquire incompatible locks. This advantage is commonly summarized by saying that readers

do not block writers under RCSI, and vice-versa. As a further consequence of reducing blocking due to

incompatible lock requests, the opportunity for deadlocks is usually greatly reduced when running

under RCSI.

However, these benefits do not come without costs and caveats. For one thing, maintaining versions of

committed rows consumes system resources, so it is important that the physical environment is

configured to cope with this, primarily in terms of tempdb performance and memory/disk space

requirements.

The second caveat is a little more subtle: RCSI provides a snapshot view of committed data as it was at

the start of the statement, but there is nothing to prevent the real data from being changed (and those

changes committed) while the RCSI statement is executing. There are no shared locks, remember. An

immediate consequence of this second point is that T-SQL code running under RCSI might make

decisions based on out of date information, as compared with the current committed state of the

database. We will talk more about this shortly.

There is one last (implementation-specific) observation I want to make about RCSI before we move

on. Scalar and multi-statement functions execute using a different internal T-SQL context from the

containing statement. This means that the point-in-time view seen inside a scalar or multi-statement

function invocation can be later than the point-in-time view seen by the rest of the statement. This can

result in unexpected inconsistencies, as different parts of the same statement see data from different

points in time. This weird and confusing behaviour does not apply to in-line functions, which see the

same snapshot as the statement they appear in.

Non-repeatable reads and phantoms

Given a statement-level point-in-time view of the committed state of the database, it might not be

immediately apparent how a read committed transaction under RCSI might experience the non-

repeatable read or phantom row phenomena. Indeed, if we limit our thinking to the scope of a single

statement, neither of these phenomena are possible under RCSI.

Reading the same data multiple times within the same statement under RCSI will always return the

same data values, no data will disappear between those reads, and no new data will appear either. If

you are wondering what sort of statement might read the same data more than once, think about

queries that reference the same table more than once, perhaps in a subquery.

Statement-level read consistency is an obvious consequence of the reads being issued against a fixed

snapshot of the data. The reason that RCSI does not provide protection from non-repeatable reads and

phantoms is that these SQL standard phenomena are defined at the transaction level. Multiple

statements within a transaction running at RCSI may see different data, because each statement sees a

point-in-time view as of the moment that particular statement started.

To summarize, each statement within an RCSI transaction sees a static committed data set, but that set

can change between statements inside the same transaction.

Out-of-date data

The possibility of our T-SQL code making an important decision based on out-of-date information is

more than a little unsettling. Consider for a moment that the point-in-time snapshot used by a single

statement running under RCSI might be arbitrarily old.

A statement that runs for a considerable period a time will continue to see the committed state of the

database as it was when the statement began. Meanwhile, the statement is missing all the committed

changes that occurred in the database since that time.

This is not to say that problems associated with accessing stale data under RCSI are limited to long-

running statements, but the issues certainly might be more pronounced in such cases.

A question of timing

This issue of out-of-date data applies to all RCSI statements in principle, no matter how quickly they

might complete. How ever small the time window is, there is always a chance that a concurrent

operation might modify the data set we are working with, without us being aware of that change. Let us

look again at one of the simple examples we used before when exploring the behaviour of locking read

committed:

INSERT dbo.OverdueInvoices
SELECT I.InvoiceNumber
FROM dbo.Invoices AS I
WHERE I.TotalDue >
(
 SELECT SUM(P.Amount)
 FROM dbo.Payments AS P
 WHERE P.InvoiceNumber = I.InvoiceNumber
);

When run under RCSI, this statement cannot see any committed database modifications that occur after

the statement starts executing. While we will not encounter the problems of missed or multiply-

encountered rows possible under the locking implementation, a concurrent transaction might add a

payment that ought to prevent a customer from being sent a stern warning letter about an overdue

payment after the statement above starts executing.

You can probably think of many other potential problems that might occur in this scenario, or in others

that are conceptually similar. The longer the statement runs for, the more out-of-date its view of the

database becomes, and the greater the scope for possibly-unintended consequences.

Of course, there are plenty of mitigating factors in this specific example. The behaviour might well be

seen as perfectly acceptable. After all, sending a reminder letter because a payment arrived a few

seconds too late is an easily defended action. The principle remains however.

Business Rule Failures and Integrity Risks

More serious issues can arise from the use of out-of-date information than sending a warning letter a

few seconds early. A good example of this class of weakness can be seen with trigger codeused to

enforce an integrity rule that is perhaps too complex to enforce with declarative referential integrity

constraints. To illustrate, consider the following code, which uses a trigger to enforce a variation of a

foreign key constraint, but one that enforces the relationship for only certain child table rows:

ALTER DATABASE Sandpit
SET READ_COMMITTED_SNAPSHOT ON
WITH ROLLBACK IMMEDIATE;
GO
SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
GO
CREATE TABLE dbo.Parent (ParentID integer PRIMARY KEY);
GO
CREATE TABLE dbo.Child
(
 ChildID integer IDENTITY PRIMARY KEY,
 ParentID integer NOT NULL,
 CheckMe bit NOT NULL
);
GO
CREATE TRIGGER dbo.Child_AI
ON dbo.Child
AFTER INSERT
AS
BEGIN
 -- Child rows with CheckMe = true
 -- must have an associated parent row
 IF EXISTS
 (
 SELECT ins.ParentID
 FROM inserted AS ins
 WHERE ins.CheckMe = 1
 EXCEPT
 SELECT P.ParentID
 FROM dbo.Parent AS P
)
 BEGIN
 RAISERROR ('Integrity violation!', 16, 1);
 ROLLBACK TRANSACTION;
 END
END;
GO
-- Insert parent row #1
INSERT dbo.Parent (ParentID) VALUES (1);

Now consider a transaction running in another session (use another SSMS window for this if you are

following along) which deletes parent row #1, but does not commit yet:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
BEGIN TRANSACTION;
DELETE FROM dbo.Parent
WHERE ParentID = 1;

Back in our original session, we try to insert a (checked) child row that references this parent:

INSERT dbo.Child (ParentID, CheckMe)
VALUES (1, 1);

The the trigger code executes, but because RCSI sees only committed data as of the time the statement

started, it still sees the parent row (not the uncommitted deletion) and the insert succeeds!

The transaction that deleted the parent row can now commit its change successfully, leaving the

database in an inconsistent state in terms of our trigger logic:

COMMIT TRANSACTION;
SELECT P.* FROM dbo.Parent AS P;
SELECT C.* FROM dbo.Child AS C;

This is a simplified example of course, and one which could easily be circumvented using the built-in

constraint facilities. Much more complex business rules and pseudo-integrity constraints can be written

inside and outside of triggers. The potential for incorrect behaviour under RCSI should be obvious.

Blocking behaviour and latest-committed data

I mentioned earlier that T-SQL code is not guaranteed to behave in the same way under RCSI read

committed as it did using the locking implementation. The preceding trigger code example is a good

illustration of that, but I need to emphasise that the general problem is not limited to triggers.

RCSI is typically not a good choice for any T-SQL code whose correctness depends on blocking if a

concurrent uncommitted change exists. RCSI might also not be the right choice if the code depends on

reading current committed data, rather than the latest committed data as at the time the statement

started. These two considerations are related, but they are not the same thing.

Locking read committed under RCSI

SQL Server provides one way to request locking read committed when RCSI is enabled, using the table

hint READCOMMITTEDLOCK. We can modify our trigger to avoid the problems shown above by adding

this hint to the table that needs blocking behaviour to perform correctly:

ALTER TRIGGER dbo.Child_AI
ON dbo.Child
AFTER INSERT
AS

BEGIN
 -- Child rows with CheckMe = true
 -- must have an associated parent row
 IF EXISTS
 (
 SELECT ins.ParentID
 FROM inserted AS ins
 WHERE ins.CheckMe = 1
 EXCEPT
 SELECT P.ParentID
 FROM dbo.Parent AS P WITH (READCOMMITTEDLOCK) -- NEW!!
)
 BEGIN
 RAISERROR ('Integrity violation!', 16, 1);
 ROLLBACK TRANSACTION;
 END
END;

With this change in place, the attempt to insert the potentially-orphaned child row blocks until the

deleting transaction commits (or aborts). If the delete commits, the trigger code detects the integrity

violation and raises the expected error.

Identifying queries that might not perform correctly under RCSI is a non-trivial task that may

require extensive testing to get right (and please remember these issues are quite general and not

confined to trigger code!) Also, adding the READCOMMITTEDLOCK hint to every table that needs it can

be a tedious and error-prone process. Until SQL Server provides a more broadly-scoped option to

request the locking implementation where needed, we are stuck with using the table hints.

Next Time

The next post in this series continues our examination of read committed snapshot isolation, with a look

at the surprising behaviour of data modification statements under RCSI.

Data Modifications under Read Committed Snapshot Isolation
By Paul White

The previous post in this series showed how a T-SQL statement running under read committed snapshot

isolation (RCSI) normally sees a snapshot view of the committed state of the database as it was when

the statement started execution. That is a good description of how things work for statements that read

data, but there are important differences for statements running under RCSI that modify existing rows.

I emphasise the modification of existing rows above, because the following considerations apply only

to UPDATE and DELETE operations (and the corresponding actions of a MERGE statement). To be

clear, INSERT statements are specifically excluded from the behaviour I am about to describe because

inserts do not modify existing data.

Update locks and row versions

The first difference is that update and delete statements do not read row versions under RCSI when

searching for the source rows to modify. Update and delete statements under RCSI instead

acquire update locks when searching for qualifying rows. Using update locks ensures that the search

operation finds rows to modify using the most recent committed data.

Without update locks, the search would be based on a possibly out-of-date version of the data set

(committed data as it was when the data modification statement started). This might remind you of the

trigger example we saw last time, where a READCOMMITTEDLOCK hint was used to revert from RCSI to

the locking implementation of read committed isolation. That hint was required in that example to avoid

basing an important action on out-of-date information. The same kind of reasoning is being used here.

One difference is that the READCOMMITTEDLOCK hint acquires shared locks instead of update locks. In

addition, SQL Server automatically acquires update locks to protect data modifications under RCSI

without requiring us to add an explicit hint.

Taking update locks also ensures that the update or delete statement will block if it encounters an

incompatible lock, for example an exclusive lock protecting an in-flight data modification performed by

another concurrent transaction.

An additional complication is that the modified behaviour only applies to the table that is the target of

the update or delete operation. Other tables in the same delete or update statement,

including additional references to the target table, continue to use row versions.

Some examples are probably required to make these confusing behaviours a bit clearer…

Test Setup

The following script ensures we are all set up to use RCSI, creates a simple table, and adds two example

rows to it:

ALTER DATABASE Sandpit
SET READ_COMMITTED_SNAPSHOT ON
WITH ROLLBACK IMMEDIATE;
GO
SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

http://sqlperformance.com/2014/05/t-sql-queries/read-committed-snapshot-isolation

GO
CREATE TABLE dbo.Test
(
 RowID integer PRIMARY KEY,
 Data integer NOT NULL
);
GO
INSERT dbo.Test
 (RowID, Data)
VALUES
 (1, 1234),
 (2, 2345);

The next step needs to run in a separate session. It starts a transaction and deletes both rows from the

test table (seems odd, but this will all make sense shortly):

BEGIN TRANSACTION;
DELETE dbo.Test
WHERE RowID IN (1, 2);

Note that the transaction is deliberately left open. This maintains exclusive locks on both rows being

deleted (along with the usual intent-exclusive locks on the containing page and the table itself) as the

query below can be used to show:

SELECT
 resource_type,
 resource_description,
 resource_associated_entity_id,
 request_mode,
 request_status
FROM sys.dm_tran_locks
WHERE
 request_session_id = @@SPID;

The Select Test

Switching back to the original session, the first thing I want to show is that regular select statements

using RCSI still see the two rows being deleted. The select query below uses row versions to return the

latest committed data as at the time the statement begins:

SELECT *
FROM dbo.Test;

In case that seems surprising, remember that showing the rows as deleted would mean displaying an

uncommitted view of the data, which is not allowed at read committed isolation.

The Delete Test

Despite the success of the select test, an attempt to delete these same rows from the current session

will be blocked. You might imagine this blocking occurs when the operation tries to

acquireexclusive locks, but that is not the case.

The delete does not use row versioning to locate the rows to delete; it tries to acquire update locks

instead. Update locks are incompatible with the exclusive row locks held by the session with the open

transaction, so the query blocks:

DELETE dbo.Test
WHERE RowID IN (1, 2);

The estimated query plan for this statement shows that the rows to be deleted are identified by a

regular seeking operation before a separate operator performs the actual deletion:

We can see the locks held at this stage by running the same locking query as before (from another

session) remembering to change the SPID reference to that used by the blocked query. The results look

like this:

Our delete query is blocked at the Clustered Index Seek operator, which is waiting to acquire an update

lock to read data. This shows that locating the rows to delete under RCSI acquires update locks rather

than reading potentially-stale versioned data. It also shows that the blocking is not due to the delete

part of the operation waiting to acquire an exclusive lock.

The Update Test

Cancel the blocked query and try the following update instead:

UPDATE dbo.Test
SET Data = Data + 1000
WHERE RowID IN (1, 2);

The estimated execution plan is similar to the one seen in the delete test:

The Compute Scalar is there to determine the result of adding 1000 to the current value of the Data

column in each row, which is read by the Clustered Index Seek. This statement will alsoblock when

executed, due to the update lock requested by the read operation. The screenshot below shows the

locks held when the query blocks:

As before, the query is blocked at the seek, waiting for the incompatible exclusive lock to be released so

an update lock can be acquired.

The Insert Test

The next test features a statement that inserts a new row into our test table, using the Data column

value from the existing row with ID 1 in the table. Recall that this row is still exclusively locked by

session with the open transaction:

INSERT dbo.Test
 (RowID, Data)
SELECT 3, Data
FROM dbo.Test
WHERE RowID = 1;

The execution plan is again similar to the previous tests:

This time, the query is not blocked. This shows that update locks were not acquired when reading data

for the insert. This query instead used row-versioning to acquire the Data column value for the newly-

inserted row. Update locks were not acquired because this statement did not locate any rows to modify,

it merely read data to use in the insert.

We can see this new row in the table using the select test query from before:

Note that we are able to update and delete the new row (which will require update locks) because there

is no conflicting exclusive lock. The session with the open transaction only has exclusive locks on rows 1

and 2:

-- Update the new row
UPDATE dbo.Test
SET Data = 9999
WHERE RowID = 3;
-- Show the data
SELECT * FROM dbo.Test;
-- Delete the new row
DELETE dbo.Test
WHERE RowID = 3;

This test confirms that insert statements do not acquire update locks when reading, because unlike

updates and deletes they do not modify an existing row. The reading portion of an insertstatement uses

the normal RCSI row versioning behaviour.

Multiple reference test

I mentioned before that only the single table reference used to locate rows to modify acquires update

locks; other tables in the same update or delete statement still read row versions. As a special case of

that general principle, a data modification statement with multiple references to the same table only

applies update locks on the one instance used to locate rows to modify. This final test illustrates this

more complex behaviour, step by step.

The first thing we will need is a new third row for our test table, this time with a zero in the Data

column:

INSERT dbo.Test
 (RowID, Data)
VALUES
 (3, 0);

As expected, this insert proceeds without blocking, resulting in a table that looks like this:

Remember, the second session still holds exclusive locks on rows 1 and 2 at this point. We are free to

acquire locks on row 3 if we need to. The following query is the one we will use to show the behaviour

with multiple references to the target table:

-- Multi-reference update test
UPDATE WriteRef
SET Data = ReadRef.Data * 2
OUTPUT
 ReadRef.RowID,
 ReadRef.Data,
 INSERTED.RowID AS UpdatedRowID,
 INSERTED.Data AS NewDataValue
FROM dbo.Test AS ReadRef
JOIN dbo.Test AS WriteRef
 ON WriteRef.RowID = ReadRef.RowID + 2
WHERE
 ReadRef.RowID = 1;

This is a more complex query, but its operation is relatively simple. There are two references to the test

table, one I have aliased as ReadRef, and the other as WriteRef. The idea is to read from row 1 (using a

row version) via ReadRef, and to update the third row (which will need an update lock) using WriteRef.

The query specifies row 1 explicitly in the where clause for the reading table reference. It joins to the

writing reference to the same table by adding 2 to that RowID (so identifying row 3). The update

statement also uses an output clause to return a result set showing the values read from the source

table and the resulting changes made to row 3.

The estimated query plan for this statement is as follows:

The properties of the seek labelled (1) show that this seek is on the ReadRef alias, reading data from the

row with RowID 1:

This seek operation does not locate a row that will be updated, so update locks are not taken; the read

is performed using versioned data. The read is not blocked by the exclusive locks held by the other

session.

The compute scalar labelled (2) defines an expression labelled 1004 that calculates the updated Data

column value. Expression 1009 calculates the row ID to be updated (1 + 2 = row ID 3):

The second seek is a reference to the same table (3). This seek locates the row that will be updated (row

3) using expression 1009:

Because this seek locates a row to be changed, an update lock is taken instead of using row versions.

There is no conflicting exclusive lock on row ID 3, so the lock request is granted immediately.

The final highlighted operator (4) is the update operation itself. The update lock on row 3 is upgraded to

an exclusive lock at this point, just before the modification is actually performed. This operator also

returns the data specified in the output clause of the update statement:

The result of the update statement (generated by the output clause) is shown below:

The final state of the table is as shown below:

We can confirm the locks taken during execution using a Profiler trace:

This shows that only a single update row key lock is acquired. When this row reaches the update

operator, the lock is converted to an exclusive lock. At the end of the statement, the lock is released.

You may be able to see from the trace output that the lock hash value for the update-locked row

is (98ec012aa510) in my test database. The following query shows that this lock hash is indeed

associated with the in the clustered index with RowID 3:

SELECT RowID, %%LockRes%%
FROM dbo.Test;

Note that the update locks taken in these examples are shorter-lived than the update locks taken if we

specify an UPDLOCK hint. These internal update locks are released at the end of the statement,

whereas UPDLOCK locks are held to the end of the transaction.

This concludes the demonstration of cases where RCSI acquires update locks to read current committed

data instead of using row versioning.

Shared and Key-Range Locks under RCSI

There are a number of other scenarios where the database engine may still acquire locks under RCSI.

These situations all relate to the need to preserve correctness that would be threatened by relying on

potentially out-of-date versioned data.

Shared Locks taken for Foreign Key Validation

For two tables in a straightforward foreign key relationship, the database engine needs to take steps to

ensure constraints are not violated by relying on potentially-stale versioned reads. The current

implementation does this by switching to locking read committed when accessing data as part of an

automatic foreign key check.

Taking shared locks ensures the integrity check reads the very latest committed data (not an old

version), or blocks due to a concurrent in-flight modification. The switch to locking read committed only

applies to the particular access method used to check foreign key data; other data access in the same

statement continues to use row versions.

This behaviour only applies to statements that change data, where the change directly affects a foreign

key relationship. For modifications to the referenced (parent) table, this means updates that affect the

referenced value (unless it is set to NULL) and all deletions. For the referencing (child) table, this means

all inserts and updates (again, unless the key reference is NULL). The same considerations apply to the

component effects of a MERGE.

An example execution plan showing a foreign key lookup that takes shared locks is shown below:

Serializable for cascading foreign keys

Where the foreign key relationship has a cascading action, correctness requires a local escalation to

serializable isolation semantics. This means you will see key-range locks taken for a cascading referential

action. As was the case for the update locks seen previously, these key-range locks are scoped to the

statement, not the transaction. An example execution plan showing where the internal serializable locks

are taken under RCSI is shown below:

http://blogs.msdn.com/b/conor_cunningham_msft/archive/2009/03/13/conor-vs-isolation-level-upgrade-on-update-delete-cascading-ri.aspx

Other scenarios

There are many other specific cases where the engine automatically extends the lifetime of locks, or

locally escalates the isolation level to ensure correctness. These include the serializable semantics used

when maintaining a related indexed view, or when maintaining an index that has

the IGNORE_DUP_KEY option set.

The takeaway message is that RCSI reduces the amount of locking, but cannot always eliminate it

entirely.

Next Time

The next post in this series looks at the snapshot isolation level.

The SNAPSHOT Isolation Level
By Paul White

Concurrency problems are hard in the same way that multi-threaded programming is hard.

Unless serializable isolation is used, it can be tough to code T-SQL transactions that will always function

correctly when other users are making changes to the database at the same time.

The potential problems can be non-trivial even if the 'transaction' in question is a simple

single SELECT statement. For complex multi-statement transactions that read and write data, the

potential for unexpected results and errors under high concurrency can quickly become overwhelming.

Attempting to resolve subtle and hard-to-reproduce concurrency problems by applying random locking

hints or other trial-and-error methods can be an extremely frustrating experience.

In many respects, the snapshot isolation level seems like a perfect solution to these concurrency

problems. The basic idea is that each snapshot transaction behaves as if it were executed against its own

private copy of the committed state of the database, taken at the moment the transaction started.

Providing the whole transaction with an unchanging view of committed data obviously guarantees

consistent results for read-only operations, but what about transactions that change data?

Snapshot isolation handles data changes optimistically, implicitly assuming that conflicts between

concurrent writers will be relatively rare. Where a write conflict does occur, the first committer wins and

the losing transaction has its changes rolled back. It is unfortunate for the rolled-back transaction, of

course, but if this is a rare enough occurrence the benefits of snapshot isolation can easily outweigh the

costs of an occasional failure and retry.

The relatively simple and clean semantics of snapshot isolation (when compared with the alternatives)

can be a significant advantage, particularly for people who do not work exclusively in the database

world and therefore don't know the various isolation levels well. Even for seasoned database

professionals, a relatively 'intuitive' isolation level can be a welcome relief.

Of course, things are rarely as simple as they first appear, and snapshot isolation is no exception.

The official documentation does a pretty good job of describing the major advantages and

disadvantages of snapshot isolation, so the bulk of this article concentrates on exploring some of the

less well-known and surprising issues you may encounter. First, though, a quick look at the logical

properties of this isolation level:

ACID Properties and Snapshot Isolation

Snapshot isolation is not one of the isolation levels defined in the SQL Standard, but it is still often

compared using the 'concurrency phenomena' defined there. For example, the following comparison

table is reproduced from the SQL Server Technical Article, "SQL Server 2005 Row Versioning-Based

Transaction Isolation" by Kimberly L. Tripp and Neal Graves:

http://sqlperformance.com/2014/04/t-sql-queries/the-serializable-isolation-level
http://msdn.microsoft.com/en-us/library/ms188277.aspx
http://msdn.microsoft.com/en-us/library/ms345124.aspx
http://msdn.microsoft.com/en-us/library/ms345124.aspx

By providing a point-in-time view of committed data, snapshot isolation provides protection against all

three concurrency phenomena shown there. Dirty reads are prevented because only committed data is

visible, and the static nature of the snapshot prevents both non-repeatable reads and phantoms from

being encountered.

However, this comparison (and the highlighted section in particular) only shows that the snapshot and

serializable isolation levels prevent the same three specific phenomena. It does not mean they are

equivalent in all respects. Importantly, the SQL-92 standard does not define serializable isolation in

terms of the three phenomena alone. Section 4.28 of the standard gives the full definition:

The execution of concurrent SQL-transactions at isolation level SERIALIZABLE is guaranteed to be

serializable. A serializable execution is defined to be an execution of the operations of concurrently

executing SQL-transactions that produces the same effect as some serial execution of those same SQL-

transactions. A serial execution is one in which each SQL-transaction executes to completion before the

next SQL-transaction begins.

The extent and importance of the implied guarantees here are often missed. To state it in simple

language:

Any serializable transaction that executes correctly when run alone will continue to execute correctly

with any combination of concurrent transactions, or it will be rolled back with an error message

(typically a deadlock in SQL Server's implementation).

Non-serializable isolation levels, including snapshot isolation, do not provide the same strong

guarantees of correctness.

Stale Data

Snapshot isolation seems almost seductively simple. Reads always come from committed data as of a

single point in time, and write conflicts are automatically detected and handled. How is this not a

perfect solution for all concurrency-related difficulties?

One potential issue is that snapshot reads do not necessarily reflect the current committed state of the

database. A snapshot transaction completely ignores any committed changes made by other concurrent

transactions after the snapshot transaction begins. Another way to put that is to say a snapshot

transaction sees stale, out-of-date data. While this behaviour might be exactly what is needed to

generate an accurate point-in-time report, it might not be quite so suitable in other circumstances (for

example, when used to enforce a rule in a trigger).

Write Skew

Snapshot isolation is also vulnerable to a somewhat-related phenomenon known as write skew. Reading

state data plays a part in this, but this issue also helps clarify what snapshot 'write conflict detection'

does and does not do.

Write skew occurs when two concurrent transactions each read data that the other transaction

modifies. No write conflict occurs because the two transactions modify different rows. Neither

transaction sees the changes made by the other, because both are reading from a point in time before

those changes were made.

A classic example of write skew is the white and black marble problem, but I want to show another

simple example here:

-- Create two empty tables
CREATE TABLE A (x integer NOT NULL);
CREATE TABLE B (x integer NOT NULL);

-- Connection 1
SET TRANSACTION ISOLATION LEVEL SNAPSHOT;
BEGIN TRANSACTION;
INSERT A (x) SELECT COUNT_BIG(*) FROM B;

-- Connection 2
SET TRANSACTION ISOLATION LEVEL SNAPSHOT;
BEGIN TRANSACTION;
INSERT B (x) SELECT COUNT_BIG(*) FROM A;
COMMIT TRANSACTION;

-- Connection 1
COMMIT TRANSACTION;

Under snapshot isolation, both tables in that script end up with a single row containing a zero value. This

is a correct result, but it is not a serializable one: it does not correspond to any possible serial

transaction execution order. In any truly serial schedule, one transaction must complete before the

other starts, so the second transaction would count the row inserted by the first. This might sound like a

technicality, but remember the powerful serializable guarantees only apply when transactions are truly

serializable.

http://sqlblog.com/blogs/hugo_kornelis/archive/2006/07/26/134.aspx
http://blogs.msdn.com/b/craigfr/archive/2007/05/16/serializable-vs-snapshot-isolation-level.aspx

A Conflict Detection Subtlety

A snapshot write conflict occurs whenever a snapshot transaction attempts to modify a row that has

been modified by another transaction that committed after the snapshot transaction began. There are

two subtleties here:

1. The transactions do not actually have to change any data values; and

2. The transactions do not have to modify any common columns.

The following script demonstrates both points:

-- Test table
CREATE TABLE dbo.Conflict
(
 ID1 integer UNIQUE,
 Value1 integer NOT NULL,
 ID2 integer UNIQUE,
 Value2 integer NOT NULL
);

-- Insert one row
INSERT dbo.Conflict
 (ID1, ID2, Value1, Value2)
VALUES
 (1, 1, 1, 1);

-- Connection 1
BEGIN TRANSACTION;

UPDATE dbo.Conflict
SET Value1 = 1
WHERE ID1 = 1;

-- Connection 2
SET TRANSACTION ISOLATION LEVEL SNAPSHOT;
BEGIN TRANSACTION;

UPDATE dbo.Conflict
SET Value2 = 1
WHERE ID2 = 1;

-- Connection 1
COMMIT TRANSACTION;

Notice the following:

Each transaction locates the same row using a different index

Neither update results in a change to the data already stored

The two transactions 'update' different columns in the row.

In spite of all that, when the first transaction commits the second transaction terminates with an update

conflict error:

Summary: Conflict detection always operates at the level of an entire row, and an 'update' does not

have to actually change any data. (In case you were wondering, changes to off-row LOB or SLOB data

also count as a change to the row for conflict detection purposes).

The Foreign Key Problem

Conflict detection also applies to the parent row in a foreign key relationship. When modifying a child

row under snapshot isolation, a change to the parent row in another transaction can trigger a conflict.

As before, this logic applies to the whole parent row – the parent update does not have to affect the

foreign key column itself. Any operation on the child table that requires an automatic foreign key check

in the execution plan can result in an unexpected conflict.

To demonstrate this, first create the following tables and sample data:

CREATE TABLE dbo.Dummy
(
 x integer NULL
);

CREATE TABLE dbo.Parent
(
 ParentID integer PRIMARY KEY,
 ParentValue integer NOT NULL
);

CREATE TABLE dbo.Child
(
 ChildID integer PRIMARY KEY,
 ChildValue integer NOT NULL,
 ParentID integer NULL FOREIGN KEY REFERENCES dbo.Parent
);

INSERT dbo.Parent
 (ParentID, ParentValue)
VALUES (1, 1);

INSERT dbo.Child
 (ChildID, ChildValue, ParentID)
VALUES (1, 1, 1);

Now execute the following from two separate connections as indicated in the comments:

-- Connection 1
SET TRANSACTION ISOLATION LEVEL SNAPSHOT;

BEGIN TRANSACTION;
SELECT COUNT_BIG(*) FROM dbo.Dummy;

-- Connection 2 (any isolation level)
UPDATE dbo.Parent SET ParentValue = 1 WHERE ParentID = 1;

-- Connection 1
UPDATE dbo.Child SET ParentID = NULL WHERE ChildID = 1;
UPDATE dbo.Child SET ParentID = 1 WHERE ChildID = 1;

The read from the dummy table is there to ensure the snapshot transaction has officially started.

Issuing BEGIN TRANSACTION is not enough to do this; we have to perform some sort of data access on a

user table.

The first update to the Child table does not cause a conflict because setting the referencing column

to NULL does not require a parent table check in the execution plan (there is nothing to check). The

query processor does not touch the parent row in the execution plan, so no conflict arises.

The second update to the Child table does trigger a conflict because a foreign key check is automatically

performed. When the Parent row is accessed by the query processor, it is also checked for an update

conflict. An error is raised in this case because the referenced Parent row has experienced a committed

modification after the snapshot transaction started. Note that the Parent table modification did not

affect the foreign key column itself.

An unexpected conflict can also occur if a change to the Child table references a Parent row that

was created by a concurrent transaction (and that transaction committed after the snapshot transaction

started).

Summary: A query plan that includes an automatic foreign key check can throw a conflict error if the

referenced row has experienced any sort of modification (including creation!) since the snapshot

transaction started.

The Truncate Table Issue

A snapshot transaction will fail with an error if any table it accesses has been truncated since the

transaction began. This applies even if the truncated table had no rows to begin with, as the script

below demonstrates:

CREATE TABLE dbo.AccessMe
(
 x integer NULL
);

CREATE TABLE dbo.TruncateMe
(
 x integer NULL
);

-- Connection 1
SET TRANSACTION ISOLATION LEVEL SNAPSHOT;
BEGIN TRANSACTION;
SELECT COUNT_BIG(*) FROM dbo.AccessMe;

-- Connection 2
TRUNCATE TABLE dbo.TruncateMe;

-- Connection 1
SELECT COUNT_BIG(*) FROM dbo.TruncateMe;

The final SELECT fails with the an error:

This is another subtle side-effect to check for before enabling snapshot isolation on an existing

database.

Statistics & Cardinality
The Case of the Cardinality Estimate Red Herring
By Joe Sack

You are working with a developer who is reporting slow performance for the following stored procedure

call:

EXEC [dbo].[charge_by_date] '2/28/2013';

You ask what issue the developer is seeing, but the only additional information you hear back is that it is

“running slowly.” So you jump on the SQL Server instance and take a look at the actual execution plan.

You do this because you are interested in not only what the execution plan looks like but also what the

estimated versus actual number of rows are for the plan:

Looking first just at the plan operators, you can see a few noteworthy details:

 There is a warning in the root operator

 There is a table scan for both tables referenced at the leaf level (charge_jan and charge_feb)

and you wonder why these are both still heaps and don’t have clustered indexes

 You see that there are only rows flowing through the charge_feb table and not the charge_jan

table

 You see parallel zones in the plan

As for the warning in the root iterator, you hover over it and see that there are missing index warnings

with a recommendation for the following indexes:

CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]
ON [dbo].[charge_feb] ([charge_dt])
INCLUDE ([charge_no])
GO

CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]
ON [dbo].[charge_jan] ([charge_dt])

INCLUDE ([charge_no])
GO

You ask the original database developer why there isn’t a clustered index, and the reply is “I don’t

know.”

Continuing the investigation before making any changes, you look at the Plan Tree tab in SQL Sentry

Plan Explorer and you do indeed see that there are significant skews between the estimated versus

actual rows for one of the tables:

There seems to be two issues:

 An under-estimate for rows in the charge_jan table scan

 An over-estimate for rows in the charge_feb table scan

So the cardinality estimates are skewed, and you wonder if this is related to parameter sniffing. You

decide to check the parameter compiled value and compare it to the parameter runtime value, which

you can see on the Parameters tab:

Indeed there are differences between the runtime value and the compiled value. You copy over the

database to a prod-like testing environment and then test execution of the stored procedure with the

runtime value of 2/28/2013 first and then 1/31/2013 afterwards.

The 2/28/2013 and 1/31/2013 plans have identical shapes but different actual data flows. The

2/28/2013 plan and cardinality estimates were as follows:

http://sqlsentry.net/plan-explorer/
http://sqlsentry.net/plan-explorer/

And while the 2/28/2013 plan shows no cardinality estimation issue, the 1/31/2013 plan does:

So the second plan shows the same over and under-estimates, just reversed from the original plan you

looked at.

You decide to add the suggested indexes to the prod-like test environment for both the charge_jan and

charge_feb tables and see if that helps at all. Executing the stored procedures in January / February

order, you see the following new plan shapes and associated cardinality estimates:

The new plan uses an Index Seek operation from each table, but you still see zero rows flowing from one

table and not the other, and you still see cardinality estimate skews based on parameter sniffing when

the runtime value is in a different month from the compile time value.

Your team has a policy of not adding indexes without proof of sufficient benefit and associated

regression testing. You decide, for the time being, to remove the nonclustered indexes you just

created. While you don’t immediately address the missing clustered index, you decide you’ll take care

of it later.

At this point you realize you need to look further into the stored procedure definition, which is as

follows:

CREATE PROCEDURE dbo.charge_by_date
 @charge_dt datetime
AS
 SELECT charge_no
 FROM dbo.charge_view
 WHERE charge_dt = @charge_dt
GO

Next you look at the charge_view object definition:

CREATE VIEW charge_view
AS
 SELECT *

 FROM [charge_jan]
 UNION ALL
 SELECT *
 FROM [charge_feb]
GO

The view references charge data that is separated into different tables by date. And then you wonder if

the second query execution plan skew can be prevented through changing the stored procedure

definition.

Perhaps if the optimizer knows at runtime what the value is, the cardinality estimate issue will go away

and improve overall performance?

You go ahead and redefine the stored procedure call as follows, adding a RECOMPILE hint (knowing that

you’ve also heard that this can increase CPU usage, but since this is a test environment, you feel safe

giving it a try):

ALTER PROCEDURE charge_by_date
 @charge_dt datetime
AS
 SELECT charge_no
 FROM dbo.charge_view
 WHERE charge_dt = @charge_dt
 OPTION (RECOMPILE);
GO

You then re-execute the stored procedure using the 1/31/2013 value and then the 2/28/2013 value.

The plan shape stays the same, but now the cardinality estimate issue is removed.

The 1/31/2013 cardinality estimate data shows:

And the 2/28/2013 cardinality estimate data shows:

That makes you happy for a moment, but then you realize the duration of the overall query execution

seems relatively the same as it was before. You begin to have doubt that the developer will be happy

with your results. You’ve solved the cardinality estimate skew, but without the expected performance

boost, you’re unsure if you’ve helped in any meaningful way.

It’s at this point that you realize that the query execution plan is just a subset of the information you

might need, and so you expand your exploration further by looking at the Table I/O tab. You see the

following output for the 1/31/2013 execution:

And for the 2/28/2013 execution you see similar data:

It’s at that point that you wonder if the data access operations for both tables are necessary in each

plan. If the optimizer knows you only need January rows, why access February at all, and vice versa?

You also remember that the query optimizer has no guarantees that there aren’t actual rows from the

other months in the “wrong” table unless such guarantees were made explicitly via constraints on the

table itself.

You check the table definitions via sp_help for each table and you don’t see any constraints defined for

either table.

So as a test, you add the following two constraints:

ALTER TABLE [dbo].[charge_jan]
 ADD CONSTRAINT charge_jan_chk CHECK
 (charge_dt >= '1/1/2013' AND charge_dt < '2/1/2013');
GO

ALTER TABLE [dbo].[charge_feb]
 ADD CONSTRAINT charge_feb_chk CHECK
 (charge_dt >= '2/1/2013' AND charge_dt < '3/1/2013');
GO

You re-execute the stored procedures and see the following plan shapes and cardinality estimates.

1/31/2013 execution:

2/28/2013 execution:

Looking at Table I/O again, you see the following output for the 1/31/2013 execution:

And for the 2/28/2013 execution you see similar data, but for the charge_feb table:

Remembering that you have the RECOMPILE still in the stored procedure definition, you try removing it

and seeing if you see the same effect. After doing this, you see the two-table access return, but with no

actual logical reads for the table that has no rows in it (compared to the original plan without the

constraints). For example, the 1/31/2013 execution showed the following Table I/O output:

You decide to move forward with load-testing the new CHECK constraints and RECOMPILE solution,

removing the table access entirely from the plan (and the associated plan operators). You also prepare

yourself for a debate about the clustered index key and a suitable supporting nonclustered index that

will accommodate a broader set of workloads that currently access the associated tables.

Indexed Views and Statistics
By Paul White

Indexed views can be created in any edition of SQL Server, but there are a number of behaviours to be

aware of if you want to make the most of them.

Automatic statistics require a NOEXPAND hint

SQL Server can create statistics automatically to assist with cardinality estimation and cost-based

decision-making during query optimization. This feature works with indexed views as well as base tables,

but only if the view is explicitly named in the query and the NOEXPAND hint is specified. (There is always

a statistics object associated with each index on a view, it is the automatic generation and maintenance

of statistics not associated with an index that we are talking about here.)

If you are used to working with non-Enterprise editions of SQL Server, you may never have noticed this

behaviour before. Lower editions of SQL Server require the NOEXPAND hint to produce a query plan

that accesses an indexed view. When NOEXPAND is specified, automatic statistics are created on

indexed views exactly as happens with ordinary tables.

Example – Standard Edition with NOEXPAND

Using SQL Server 2012 Standard Edition and the Adventure Works sample database, we first create a

view that joins two sales tables and computes total order quantity per customer and product:

CREATE VIEW dbo.CustomerOrders
WITH SCHEMABINDING AS
SELECT
 SOH.CustomerID,
 SOD.ProductID,
 OrderQty = SUM(SOD.OrderQty),
 NumRows = COUNT_BIG(*)
FROM Sales.SalesOrderDetail AS SOD
JOIN Sales.SalesOrderHeader AS SOH
 ON SOH.SalesOrderID = SOD.SalesOrderID
GROUP BY
 SOH.CustomerID,
 SOD.ProductID;

For this view to support statistics, we need to materialize it by adding a unique clustered index. The

combination of Customer and Product ID is guaranteed to be unique in the view (by definition) so we

will use that as the key. We could specify the two columns either way round in the index, but assuming

we expect more queries to filter by product, we make Product ID the leading column. This action also

creates index statistics, with a histogram built from Product ID values.

CREATE UNIQUE CLUSTERED INDEX cuq
ON dbo.CustomerOrders (ProductID, CustomerID);

We are now asked to write a query that shows the total quantity of orders per customer, for a particular

range of products. We expect that an execution plan using the indexed view will be an effective strategy,

because it will avoid a join and operate on data that is already partially aggregated. Since we are using

SQL Server Standard Edition, we must specify the view explicitly and use a NOEXPAND hint to produce a

query plan that accesses the indexed view:

SELECT
 CO.CustomerID,
 SUM(CO.OrderQty)
FROM dbo.CustomerOrders AS CO WITH (NOEXPAND)
WHERE
 CO.ProductID BETWEEN 711 AND 718
GROUP BY
 CO.CustomerID;

The execution plan produced shows a seek on the indexed view to find rows for the products of interest

followed by an aggregation to compute the total quantity per customer:

The Plan Tree view of SQL Sentry Plan Explorer shows cardinality estimation is exactly correct for the

indexed view seek, and very good for the result of the aggregate:

As part of the compilation and optimization process for this query, SQL Server created an additional

statistics object on the Customer ID column of the indexed view. This statistic is built because the

expected number and distribution of Customer IDs might be important, for example in choosing an

aggregation strategy. We can see the new statistic using Management Studio Object Explorer:

Double-clicking the statistics object confirms it was built from the Customer ID column on the view (not

a base table):

Indexed Views can improve Cardinality Estimation

Still using Standard Edition, we now drop and recreate the indexed view (which also drops the view

statistics) and execute the query again, this time with the NOEXPAND hint commented out:

SELECT
 CO.CustomerID,
 SUM(CO.OrderQty)
FROM dbo.CustomerOrders AS CO --WITH (NOEXPAND)
WHERE
 CO.ProductID BETWEEN 711 AND 718
GROUP BY
 CO.CustomerID;

As expected when using Standard Edition without NOEXPAND, the resulting query plan operates on the

base tables rather than the view directly:

The warning triangle on the root operator in the plan above is alerting us to a potentially useful index on

the Sales Order Detail table, which is not important for our present purposes. This compilation does not

create any statistics on the indexed view. The only statistic on the view after query compilation is the

one associated with the clustered index:

The Plan Tree view for the query shows that cardinality estimation is correct for the two table scans and

the join, but quite a bit worse for the other plan operators:

Using the indexed view with a NOEXPAND hint resulted in more accurate estimates for our test query

because better quality information was available from statistics on the view – in particular, the statistics

associated with the view index.

As a general rule, the accuracy of statistical information degrades quite quickly as it passes through and

is modified by query plan operators. Simple joins are often not too bad in this regard, but information

about the result of an aggregation is often no better than an educated guess. Providing the query

optimizer with more accurate information using statistics on indexed views can be a useful technique to

increase plan quality and robustness.

A view without NOEXPAND may produce an inferior plan

The query plan shown above (Standard Edition, without NOEXPAND) is actually less optimal than if we

had written the query against the base tables ourselves, rather than allowing the query optimizer to

expand the view. The query below expresses the same logical requirement, but does not reference the

view:

SELECT
 SOH.CustomerID,
 SUM(OrderQty)
FROM Sales.SalesOrderHeader AS SOH
JOIN Sales.SalesOrderDetail AS SOD
 ON SOD.SalesOrderID = SOH.SalesOrderID
WHERE
 SOD.ProductID BETWEEN 711 AND 718
GROUP BY
 SOH.CustomerID;

This query produces the following execution plan:

This plan features one less aggregation operation than before. When view expansion was used, the

query optimizer was unfortunately unable to remove a redundant aggregation operation, resulting in a

less efficient execution plan. The final cardinality estimate for the new query is also slightly better than

when the indexed view was referenced without NOEXPAND:

Nevertheless, the best estimates are still those produced when referencing the indexed view

with NOEXPAND (repeated below for convenience):

Enterprise Edition and View Matching

On an Enterprise Edition instance, the query optimizer may be able to use an indexed view even if the

query does not mention the view explicitly. If the optimizer is able to match part of the query tree to an

indexed view, it can choose to do so, based on its estimation of the costs of using the view or not. The

view-matching logic is reasonably clever, but it does have limits that are pretty easy to hit in practice.

Even where view matching is successful, the optimizer can still be misled by inaccurate cost estimations.

The EXPAND VIEWS query hint

Starting with the rarer of the possibilities, there may be occasions where a query references an indexed

view, but a better plan would be obtained by accessing the base tables instead. In these circumstances,

the query hint EXPAND VIEWS can be used:

SELECT
 CO.CustomerID,
 SUM(CO.OrderQty)
FROM dbo.CustomerOrders AS CO
WHERE
 CO.ProductID BETWEEN 711 AND 718
GROUP BY
 CO.CustomerID
OPTION (EXPAND VIEWS);

On Enterprise Edition, this query produces the same plan as seen on Standard Edition when

the NOEXPAND hint was omitted (including the redundant aggregation operation):

As an aside, the EXPAND VIEWS hint is poorly named, in my opinion. SQL Server always expands view

definitions in a query unless the NOEXPAND hint is specified. The EXPAND VIEWS hint disables rules in

the optimizer that can match parts of the expanded tree back to indexed views. In the absence of either

hint, SQL Server first expands a view to its base table definition, then later considers matching back to

indexed views. A better name for the EXPAND VIEWS hint might have been DISABLE INDEXED VIEW

MATCHING, because that is what it does.

The EXPAND VIEWS hint is probably most often used to prevent a query against base tables from being

matched to an indexed view:

SELECT
 SOH.CustomerID,
 SUM(OrderQty)
FROM Sales.SalesOrderHeader AS SOH
JOIN Sales.SalesOrderDetail AS SOD
 ON SOD.SalesOrderID = SOH.SalesOrderID
WHERE
 SOD.ProductID BETWEEN 711 AND 718
GROUP BY
 SOH.CustomerID
OPTION (EXPAND VIEWS);

The query hint results in the same execution plan and estimates seen when we were using Standard

Edition and the same base-table-only query:

Enterprise View Matching and Statistics

Even in Enterprise Edition, non-index view statistics are still only created if the NOEXPAND hint is used.

To be absolutely clear about it, the Enterprise-only view-matching feature never results in view statistics

being created or updated. This unintuitive behaviour is worth exploring a little, as it can have surprising

side-effects.

We now execute our basic query against the view on an Enterprise Edition instance, without any hints:

SELECT
 CO.CustomerID,
 SUM(CO.OrderQty)
FROM dbo.CustomerOrders AS CO
WHERE
 CO.ProductID BETWEEN 711 AND 718
GROUP BY
 CO.CustomerID;

A new thing there is the warning triangle on the View Clustered Index Seek. The tooltip shows the

details:

We did not use a NOEXPAND hint, so statistics on the Customer ID column of the indexed view were not

automatically created. The statistics on Customer ID are not actually terribly important in this simplified

example, but that will not always be the case.

Curious Cardinality Estimates

The second thing of interest is that the cardinality estimates appear to be worse than any case we have

encountered so far, including the Standard Edition examples.

It is initially difficult to see where the cardinality estimate for the View Clustered Index Seek (11,267)

came from. We would expect the estimate to be based on Product ID histogram information from the

statistics associated with the view clustered index. The relevant part of this histogram is shown below:

DBCC SHOW_STATISTICS
 ('dbo.CustomerOrders', 'cuq')
WITH HISTOGRAM;

Given that the table has not been modified since the statistics were created, we would expect the

estimate to be a simple sum of RANGE_ROWS and EQ_ROWS for Product ID values between 711 and

718 (note the estimate should exclude the 28 RANGE_ROWS shown against the 711 entry since those

rows exist below the 711 key value). The sum of the EQ_ROWS shown is 7,301. This is exactly the

number of rows actually returned by the view – so where did the 11,267 estimate come from?

The answer lies in the way view matching currently works. Our query did not specify

the NOEXPAND hint, so initial cardinality estimations are based on the view-expanded query tree. This is

easiest to see by looking again at the estimated plan for the same query with EXPAND VIEWS specified:

The red shaded area represents the part of the tree that is replaced by view matching activity. The

output cardinality from this area is 11,267. The unshaded part with the 11,220 estimate is unaffected by

view matching. These are exactly the estimates we were looking to explain:

View matching simply replaced the red shaded area with a logically-equivalent seek on the indexed

view. It did not use statistical information from the view to recompute the cardinality estimate.

To some extent, you can probably appreciate why it might work this way: in general, there is little

reason to expect that an estimate computed from one set of statistical information is any better than

another. A case could be made that indexed view statistics are more likely to be accurate here,

compared with the post-join derived statistics in the red shaded area, but it might be tricky to generalize

that, or to correctly account for how quickly various sources of statistical information might go out of

date as the underlying data changes.

One could also argue that if we were so sure the indexed view information was better, we would have

used a NOEXPAND hint.

Even More Curious Cardinality Estimates

An even more interesting situation arises with Enterprise Edition if we write the query against the base

tables and rely on automated view matching:

SELECT
 SOH.CustomerID,
 SUM(OrderQty)
FROM Sales.SalesOrderHeader AS SOH
JOIN Sales.SalesOrderDetail AS SOD
 ON SOD.SalesOrderID = SOH.SalesOrderID
WHERE
 SOD.ProductID BETWEEN 711 AND 718
GROUP BY
 SOH.CustomerID;

The missing statistics warning is the same as before, and has the same explanation. The more interesting

feature is that we now have a lower estimate for the number of rows produced by the View Clustered

Index Seek (7,149) and an increased estimate for the number of rows returned from the aggregation

(8,226).

To emphasise the point, this query plan seems to be based on the idea that 7,149 source rows can be

aggregated to produce 8,226 rows!

Part of the explanation is the same as before. The EXPAND VIEWS query plan, showing the red region

which will be replaced by view matching is shown below:

This explains where the final estimate of 8,226 comes from, but what about the 7,149 row estimate?

Following the logic seen previously, it appears the view ought to show an estimate of 11,267 rows?

The answer is that the 7,149 estimate is a guess. Yes, really. The indexed view contains 79,433 rows in

total. The magic guess percentage for the Product ID BETWEEN predicate is 9% – giving 0.09 * 79433 =

7148.97 rows. The SSMS query plan shows this calculation is exactly correct, even before rounding:

In this situation, the SQL Server optimizer seems to have preferred a guess based on indexed view

cardinality over the post-join cardinality estimate from the replaced subtree. Curious.

Summary

Using the NOEXPAND hint guarantees that an indexed view will be used in the final query plan, and

enables non-index statistics to be automatically created, maintained, and used by the query optimizer.

Using NOEXPAND also ensures the initial cardinality estimates are based on indexed view information

rather than being derived from base tables.

If NOEXPAND is not specified, view references are always replaced with their base table definitions

before query compilation begins (and therefore before initial cardinality estimation). In Enterprise SKUs

only, indexed views may be substituted back into the query tree later in the optimization process.

The EXPAND VIEWS query hint prevents the optimizer from performing Enterprise Edition indexed view

matching. This applies whether the query originally referenced an indexed view or not. When view

matching is performed, an existing cardinality estimate may be replaced with a guess in some

circumstances.

Statistics shown as missing on an indexed view can be created manually, but the optimizer will generally

not use them for queries that do not use a NOEXPAND hint.

Using indexed views can improve cardinality estimation, particularly if the view contains joins or

aggregations. Queries stand the best chance of benefiting from more accurate view statistics if

NOEXPAND is specified.

Cardinality Estimation for Multiple Predicates
By Paul White

Single Predicates

Estimating the number of rows qualified by a single query predicate is often straightforward. When a

predicate makes a simple comparison between a column and a scalar value, the chances are good that

the cardinality estimator will be able to derive a good quality estimate from the statistics histogram. For

example, the following AdventureWorks query produces an exactly correct estimate of 203 rows

(assuming no changes have been made to the data since the statistics were built):

SELECT COUNT_BIG(*)
FROM Production.TransactionHistory AS TH
WHERE TH.TransactionDate = '20070903';

Looking at the statistics histogram for the TransactionDate column, it is clear to see where this estimate

came from:

DBCC SHOW_STATISTICS (
 'Production.TransactionHistory',
 'TransactionDate')
WITH HISTOGRAM;

If we change the query to specify a date that falls within a histogram bucket, the cardinality estimator

assumes the values are evenly distributed. Using a date of 2007-09-02 produces an estimate of 227 rows

(from the RANGE_ROWS entry). As an interesting side-note, the estimate remains at 227 rows

regardless of any time portion we might add to the date value (theTransactionDate column is

a datetime data type).

If we try the query again with a date of 2007-09-05 or 2007-09-06 (both of which fall between the 2007-

09-04 and 2007-09-07 histogram steps), the cardinality estimator assumes the 466RANGE_ROWS are

evenly split between the two values, estimating 233 rows in both cases.

There are many other details to cardinality estimation for simple predicates, but the foregoing will do as

a refresher for our present purposes.

The Problems of Multiple Predicates

When a query contains more than one column predicate, cardinality estimation becomes more difficult.

Consider the following query with two simple predicates (each of which is easy to estimate alone):

SELECT
 COUNT_BIG(*)
FROM Production.TransactionHistory AS TH
WHERE
 TH.TransactionID BETWEEN 100000 AND 168412
 AND TH.TransactionDate BETWEEN '20070901' AND '20080313';

The specific ranges of values in the query are deliberately chosen so that both predicates identify exactly

the same rows. We could easily modify the query values to result in any amount of overlap, including no

overlap at all. Imagine now that you are the cardinality estimator: how would you derive a cardinality

estimate for this query?

The problem is harder than it might at first sound. By default, SQL Server automatically creates single-

column statistics on both predicate columns. We can also create multi-column statistics manually. Does

this give us enough information to produce a good estimate for these specific values? What about the

more general case where there might be any degree of overlap?

Using the two single-column statistic objects, we can easily derive an estimate for each predicate using

the histogram method described in the previous section. For the specific values in the query above, the

histograms show that the TransactionID range is expected to match 68412.4 rows, and

the TransactionDate range is expected to match 68,413 rows. (If the histograms were perfect, these two

numbers would be exactly the same.)

What the histograms cannot tell us is how many from these two sets of rows will be the same rows. All

we can say based on the histogram information is that our estimate should be somewhere between zero

(for no overlap at all) and 68412.4 rows (complete overlap).

Creating multi-column statistics provides no assistance for this query (or for range queries in general).

Multi-column statistics still only create a histogram over the first named column, essentially duplicating

the histogram associated with one of the automatically-created statistics. The

additional density information provided by the multi-column statistic can be useful to provide average-

case information for queries that contain multiple equality predicates, but they are of no help to us

here.

To produce an estimate with a high degree of confidence, we would need SQL Server to provide better

information about the data distribution – something like a multi-dimensional statistics histogram. As far

as I know, no commercial database engine currently offers a facility like this, though several technical

papers have been published on the subject (including a Microsoft Research one that used an internal

development of SQL Server 2000).

Without knowing anything about data correlations and overlaps for particular value ranges, it is not

clear how we should proceed to produce a good estimate for our query. So, what does SQL Server do

here?

SQL Server 7 – 2012

The cardinality estimator in these versions of SQL Server generally assumes that values of different

attributes in a table are distributed completely independently of each other. Thisindependency

assumption is rarely an accurate refection of the real data, but it does have the advantage of making for

simpler calculations.

AND Selectivity

Using the independency assumption, two predicates connected by AND (known as a conjunction) with

selectivities S1 and S2, result in a combined selectivity of:

(S1 * S2)

In case the term is unfamiliar to you, selectivity is a number between 0 and 1, representing the fraction

of rows in the table that pass the predicate. For example, if a predicate selects 12 rows from a table of

100 rows, the selectivity is (12/100) = 0.12.

In our example, the TransactionHistory table contains 113,443 rows in total. The predicate

on TransactionID is estimated (from the histogram) to qualify 68,412.4 rows, so the selectivity is

(68,412.4 / 113,443) or roughly 0.603055. The predicate on TransactionDate is similarly estimated to

have a selectivity of (68,413 / 113,443) = roughly 0.603061.

Multiplying the two selectivities (using the formula above) gives a combined selectivity estimate

of 0.363679. Multiplying this selectivity by the cardinality of the table (113,443) gives the final estimate

of 41,256.8 rows:

OR Selectivity

Two predicates connected by OR (a disjunction) with selectivities S1 and S2, results in a combined

selectivity of:

(S1 + S2) – (S1 * S2)

The intuition behind the formula is to add the two selectivities, then subtract the estimate for their

conjunction (using the previous formula). Clearly we could have two predicates, each of selectivity 0.8,

but simply adding them together would produce an impossible combined selectivity of 1.6. Despite the

independency assumption, we must recognize that the two predicates may have an overlap, so to avoid

double-counting, the estimated selectivity of the conjunction is subtracted.

We can easily modify our running example to use OR:

SELECT COUNT_BIG(*)
FROM Production.TransactionHistory AS TH
WHERE
 TH.TransactionID BETWEEN 100000 AND 168412
 OR TH.TransactionDate BETWEEN '20070901' AND '20080313';

Substituting the predicate selectivities into the OR formula gives a combined selectivity of:

(0.603055 + 0.603061) - (0.603055 * 0.603061) = 0.842437

Multiplied by the number of rows in the table, this selectivity gives us the final cardinality estimate

of 95,568.6:

Neither estimate (41,257 for the AND query; 95,569 for the OR query) is particularly good because both

are based on a modelling assumption that does not match the data distribution very well. Both queries

actually return 68,413 rows (because the predicates identify exactly the same rows).

Trace Flag 4137 – Minimum Selectivity

For SQL Server 2008 (R1) to 2012 inclusive, Microsoft released a fix that changes the way selectivity is

computed for the AND case (conjunctive predicates) only. The Knowledge Base article in that link does

not contain many details, but it turns out the fix changes the selectivity formula used. Instead of

multiplying the individual selectivities, cardinality estimation for conjunctive predicates now uses the

lowest selectivity alone.

To activate the changed behaviour, supported trace flag 4137 is required. A separate Knowledge Base

article documents that this trace flag is also supported for per-query use via theQUERYTRACEON hint:

SELECT COUNT_BIG(*)
FROM Production.TransactionHistory AS TH
WHERE
 TH.TransactionID BETWEEN 100000 AND 168412
 AND TH.TransactionDate BETWEEN '20070901' AND '20080313'
OPTION (QUERYTRACEON 4137);

With this flag active, cardinality estimation uses the minimum selectivity of the two predicates, resulting

in an estimate of 68,412.4 rows:

http://support.microsoft.com/kb/2658214
http://support.microsoft.com/kb/2801413/en-us
http://support.microsoft.com/kb/2801413/en-us

This happens to be just about perfect for our query because our test predicates are exactly correlated

(and the estimates derived from the base histograms are also very good).

It is reasonably rare for predicates to be perfectly correlated like this with real data, but the trace flag

may nevertheless help in some cases. Note that the minimum selectivity behaviour will apply to all

conjunctive (AND) predicates in the query; there is no way to specify the behaviour at a more granular

level.

There is no corresponding trace flag to estimate disjunctive (OR) predicates using minimum selectivity.

SQL Server 2014

Selectivity computation in SQL Server 2014 behaves the same as previous versions (and trace flag 4137

works as before) if the database compatibility level is set lower than 120, or if trace flag9481 is active.

Setting the database compatibility level is the official way to use the pre-2014 cardinality estimator in

SQL Server 2014. Trace flag 9481 is effective to do the same thing as at the time of writing, and also

works with QUERYTRACEON, though it is not documented to do so. There is no way to know what the

RTM behaviour of this flag will be.

If the new cardinality estimator is active, SQL Server 2014 uses a different default formula for combining

conjunctive and disjunctive predicates. Although undocumented, the selectivity formula for

conjunctions has been discovered and documented several times now. The first one I remember seeing

is in this Portuguese blog post and the follow-up part two issued a couple of weeks later. To summarize,

the 2014 approach to conjunctive predicates is to use exponential backoff: given a table with cardinality

C, and predicate selectivities S1, S2, S3 … Sn, where S1 is the most selective and Sn the least:

Estimate = C * S1 * SQRT(S2) * SQRT(SQRT(S3)) * SQRT(SQRT(SQRT(S4))) …

The estimate is computed the most selective predicate multiplied by the table cardinality, multiplied by

the square root of the next most selective predicate, and so on with each new selectivity gaining an

additional square root.

Recalling that selectivity is a number between 0 and 1, it is clear that applying a square root moves the

number closer to 1. The effect is to take account of all predicates in the final estimate, but to reduce the

impact of the less selective predicates exponentially. There is arguably more logic to this idea than

under the independency assumption, but it is still a fixed formula – it does not change based on the

actual degree of data correlation.

The 2014 cardinality estimator uses an exponential backoff formula for both conjunctive and disjunctive

predicates, though the formula used in the disjunctive (OR) case has not yet been documented (officially

or otherwise).

http://www.sql.pt/2013/07/sql-2014-ctp1-internals-do-cardinality.html
http://www.sql.pt/2013/07/sql-2014-ctp1-internals-do-cardinality_29.html

SQL Server 2014 Selectivity Trace Flags

Trace flag 4137 (to use minimum selectivity) does not work in SQL Server 2014, if the new cardinality

estimator is used when compiling a query. Instead, there is a new trace flag 9471. When this flag is

active, minimum selectivity is used to estimate multiple conjunctive and disjunctive predicates. This is a

change from the 4137 behaviour, which only affected conjunctive predicates.

Similarly, trace flag 9472 can be specified to assume independence for multiple predicates, as previous

versions did. This flag is different from 9481 (to use the pre-2014 cardinality estimator) because under

9472 the new cardinality estimator will still be used, only the selectivity formula for multiple predicates

is affected.

Neither 9471 nor 9472 is documented at the time of writing (though they may be at RTM).

A convenient way to see which selectivity assumption is being used in SQL Server 2014 (with the new

cardinality estimator active) is to examine the selectivity computation debug output produced when

trace flags 2363 and 3604 are active. The section to look for relates to the selectivity calculator that

combines filters, where you will see one of the following, depending on which assumption is being used:

There is no realistic prospect that 2363 will be documented or supported.

Final Thoughts

There is nothing magic about exponential backoff, minimum selectivity, or independence. Each

approach represents a (hugely) simplifying assumption that may or may not produce an acceptable

estimates for any particular query or data distribution.

In some respects, exponential backoff represents a compromise between the two extremes

of independence and minimum selectivity. Even so, it is important not to have unreasonable

expectations of it. Until a more accurate way is found to estimate selectivity for multiple predicates

(with reasonable performance characteristics) it remains important to be aware of the model limitations

and watch out for (potential) estimation errors accordingly.

The various trace flags provide some control over which assumption is used, but the situation is far from

perfect. For one thing, the finest granularity at which a flag may be applied is a single query – estimation

behaviour cannot be specified at the predicate level. If you have a query where some predicates are

correlated and others independent, the trace flags may not help you much without refactoring the

query in one way or another. Equally, a problematic query may have predicate correlations that are not

modelled well by any of the available options.

Ad-hoc use of the trace flags requires the same permissions as DBCC TRACEON – namely sysadmin. That

is probably fine for personal testing, but for production use a plan guide using theQUERYTRACEON hint

is a better option. With a plan guide, no additional permissions are required to execute the query

(though elevated permissions are required to create the plan guide, of course).

Understanding What sp_updatestats Really Updates
By Aaron Stellato

When I was in Chicago a few weeks ago for one of our Immersion Events, an attendee had a statistics

question. I won't go into all the details around the issue, but the attendee mentioned that stats were

updated using sp_updatestats. This is a method to update statistics that I've never recommended; I have

always recommended a combination of index rebuilds and UPDATE STATISTICS to keep statistics up to

date. If you’re not familiar with sp_updatestats, it’s a command that is run for the entire database to

update statistics. But as Kimberly pointed out to the attendee, sp_updatestats will update a statistic as

long as it has had one row modified. Whoa. I immediately opened up Books Online, and for

sp_updatestats you'll see this:

sp_updatestats updates only the statistics that require updating based on the

rowmodctr information in the sys.sysindexes catalog view, thus avoiding

unnecessary updates of statistics on unchanged rows

Now, I admit, I made an assumption on what "…require updating based on the rowmodctr information

in the sys.sysindexes catalog view…" meant. I assumed that the update decision would follow the same

logic that the Auto Update Statistics option follows, which is:

 The table size has gone from 0 to >0 rows (test 1).

 The number of rows in the table when the statistics were gathered was 500 or less, and the

colmodctr of the leading column of the statistics object has changed by more than 500 since

then (test 2).

 The table had more than 500 rows when the statistics were gathered, and the colmodctr of the

leading column of the statistics object has changed by more than 500 + 20% of the number of

rows in the table when the statistics were gathered (test 3).

This logic is not followed for sp_updatestats. In fact, the logic is so incredibly simple, it's scary: If one row

is modified, the statistic is updated. One row. ONE ROW. What’s my concern? I’m worried about the

overhead of updating statistics for a bunch of statistics that don't truly need to be updated. Let's take a

closer look at sp_updatestats.

We'll start off with a fresh copy of the AdventureWorks2012 database which you can download from

Codeplex. I’m going to first update rows in a three different tables:

USE [AdventureWorks2012];
GO
SET NOCOUNT ON;
GO

UPDATE [Production].[Product]
SET [Name] = 'Bike Chain'
WHERE [ProductID] = 952;

UPDATE [Person].[Person]
SET [LastName] = 'Cameron'
WHERE [LastName] = 'Diaz';

http://msdn.microsoft.com/en-us/library/ms173804%28v=sql.110%29.aspx
http://msdn.microsoft.com/en-us/library/dd535534%28v=sql.100%29.aspx
http://msftdbprodsamples.codeplex.com/releases/view/55330

GO

INSERT INTO Sales.SalesReason
(Name, ReasonType, ModifiedDate)
VALUES('Stats', 'Test', GETDATE());
GO 10000

We modified one row in Production.Product, 211 rows in Person.Person, and we added 10,000 rows to

Sales.SalesReason. If the sp_updatestats procedure followed the same logic for updates as the Auto

Update Statistics option, then only Sales.SalesReason would update because it had 10 rows to start

(whereas the 211 rows updated in Person.Person represent about one percent of the table). However, if

we dig into sp_updatestats, we can see that the logic used is different. Note that I’m only extracting the

statements from within sp_updatestats that are used to determine what statistics get updated.

A cursor iterates through all user-defined tables and internal tables in the database:

declare ms_crs_tnames cursor local fast_forward read_only for
select name, object_id, schema_id, type from sys.objects o
where o.type = 'U' or o.type = 'IT'
open ms_crs_tnames
fetch next from ms_crs_tnames into @table_name, @table_id, @sch_id, @table_type

Another cursor loops through the statistics for each table, and excludes heaps and hypothetical indexes

and statistics. Note that sys.sysindexes is used in sp_helpstats. Sysindexes is a SQL Server 2000 system

table and is scheduled to be removed in a future version of SQL Server. This is interesting, as the other

method to determine rows updated is thesys.dm_db_stats_properties DMF, which is only available in

SQL 2008 R2 SP2 and SQL 2012 SP1.

set @index_names = cursor local fast_forward read_only for
select name, indid, rowmodctr
from sys.sysindexes
where id = @table_id
and indid > 0
and indexproperty(id, name, 'ishypothetical') = 0
order by indid

After a bit of preparation and additional logic, we get to an IF statement which reveals

that sp_updatestats filters out statistics that haven’t had any rows updated… confirming that even if

only one row has been modified, the statistic will be updated. There’s also a check for @is_ver_current,

which is determined by a built-in, internal function.

if ((@ind_rowmodctr <> 0) or ((@is_ver_current is not null) and (@is_ver_current = 0)))

A couple more checks related to sampling and compatibility level, and then the UPDATE statement

executes for the statistic. Before we actually run sp_updatestats, we can querysys.sysindexes to see

what statistics will update:

SELECT [o].[name], [si].[indid], [si].[name], [si].[rowmodctr], [si].[rowcnt],
[o].[type]
FROM [sys].[objects] [o]
JOIN [sys].[sysindexes] [si] ON [o].[object_id] = [si].[id]
WHERE ([o].[type] = 'U' OR [o].[type] = 'IT')
AND [si].[indid] > 0
AND [si].[rowmodctr] <> 0
ORDER BY [o].[type] DESC, [o].[name];

In addition to the three tables that we modified, there’s another statistic for a user table
(dbo.DatabaseLog) and three internal statistics that will be updated:

If we run sp_updatestats for the AdventureWorks database, the output lists every table and the
statistic(s) updated. The output below is modified to only show updated statistics:

…

Updating [sys].[fulltext_avdl_1589580701]

[clust] has been updated…

1 index(es)/statistic(s) have been updated, 0 did not require update.

…

Updating [dbo].[DatabaseLog]

[PK_DatabaseLog_DatabaseLogID] has been updated…

1 index(es)/statistic(s) have been updated, 0 did not require update.

…

Updating [sys].[fulltext_avdl_1077578877]

[clust] has been updated…

1 index(es)/statistic(s) have been updated, 0 did not require update.

…

Updating [Person].[Person]

[PK_Person_BusinessEntityID], update is not necessary…

[IX_Person_LastName_FirstName_MiddleName] has been updated…

[AK_Person_rowguid], update is not necessary…

1 index(es)/statistic(s) have been updated, 2 did not require update.

…

Updating [Sales].[SalesReason]

[PK_SalesReason_SalesReasonID] has been updated…

1 index(es)/statistic(s) have been updated, 0 did not require update.

…

Updating [Production].[Product]

[PK_Product_ProductID], update is not necessary…

[AK_Product_ProductNumber], update is not necessary…

[AK_Product_Name] has been updated…

[AK_Product_rowguid], update is not necessary…

[_WA_Sys_00000013_75A278F5], update is not necessary…

[_WA_Sys_00000014_75A278F5], update is not necessary…

[_WA_Sys_0000000D_75A278F5], update is not necessary…

[_WA_Sys_0000000C_75A278F5], update is not necessary…

1 index(es)/statistic(s) have been updated, 7 did not require update.

…

Statistics for all tables have been updated.

The last line of the output is a bit misleading – statistics for all tables haven’t been updated, only the
statistics that have had one row or more modified have been updated. And again, the drawback of that
is that maybe resources were used that didn’t need to be. If a statistic only has one row modified,
should it be updated? No. If it has 10,000 rows updated, should it be updated? Well, that depends. If the
table only has 5,000 rows, then absolutely; if the table has 1 million rows, then no, as only one percent
of the table has been modified.

The take-away here is that if you’re using sp_updatestats to update your statistics, you are most likely
wasting resources, including CPU, I/O, and tempdb. Further, it takes time to update each statistic, and if
you have a tight maintenance window you probably have other maintenance tasks that can execute in
that time, instead of unnecessary updates. Finally, you’re probably not providing any performance
benefits by updating statistics when so few rows have changed. The distribution change is likely
insignificant if only a small percentage of rows have been modified, so the histogram and density values
don’t end up changing that much. In addition, remember that updating statistics invalidates query plans
that use those statistics. When those queries execute, plans be re-generated, and the plan will probably
be exactly the same as it was before, because there was no significant change in the histogram. There’s
a cost to re-compiling query plans – it’s not always easy to measure, but it shouldn’t be ignored.

A better method to manage statistics – because you do need to manage statistics – is to implement a
scheduled job that updates based on the percentages of rows that have been modified. You can use the
aforementioned query that interrogates sys.sysindexes, or you can use the query below that takes
advantage of the new DMF added in SQL Server 2008 R2 SP2 and SQL Server 2012 SP1:

SELECT [sch].[name] + '.' + [so].[name] AS [TableName] ,
[ss].[name] AS [Statistic],
[sp].[last_updated] AS [StatsLastUpdated] ,
[sp].[rows] AS [RowsInTable] ,
[sp].[rows_sampled] AS [RowsSampled] ,
[sp].[modification_counter] AS [RowModifications]
FROM [sys].[stats] [ss]
JOIN [sys].[objects] [so] ON [ss].[object_id] = [so].[object_id]
JOIN [sys].[schemas] [sch] ON [so].[schema_id] = [sch].[schema_id]
OUTER APPLY [sys].[dm_db_stats_properties]([so].[object_id],
[ss].[stats_id]) sp
WHERE [so].[type] = 'U'
AND [sp].[modification_counter] > 0
ORDER BY [sp].[last_updated] DESC;

Realize that different tables may have different thresholds and you will need to tweak the query above
for your databases. For some tables, waiting until 15% or 20% of the rows have been modified may be
ok. But for others, you may need to update at 10% or even 5%, depending on the actual values and their
skew. There is no silver bullet. As much as we love absolutes, they rarely exist in SQL Server and
statistics is no exception. You still want to leave Auto Update Statistics enabled – it’s a safety that will
kick in if you miss something, just like Auto Growth for your database files. But your best bet is to know
your data, and implement a methodology that allows you to update statistics based on the percentage
of rows changed.

Sample Size and the Duration of UPDATE STATISTICS: Does It Matter?
By Erin Stellato

For any new database created in SQL Server, the default value for the Auto Update Statistics option is

enabled. I suspect that most DBAs leave the option enabled, as it allows the optimizer to automatically

update statistics when they are invalidated, and it’s generally recommend to leave it enabled. Statistics

are also updated when indexes are rebuilt, and while it’s not uncommon for statistics to be well

managed via the auto update statistics option and through index rebuilds, from time to time a DBA may

find it necessary to set up a regular job to update a statistic, or set of statistics.

Custom management of statistics often involves the UPDATE STATISTICS command, which seems fairly

benign. It can be run for all statistics for a table or indexed view, or for a specific statistic. The default

sample can be used, a specific sample rate or number of rows to sample can be specified, or you can use

the same sample value that was used previously. If statistics are updated for a table or indexed view,

you can choose to update all statistics, only index statistics, or only column statistics. And finally, you

can disable the auto update statistics option for a statistic.

For most DBAs, the biggest consideration may be when to run the UPDATE STATISTICS statement. But

DBAs also decide, consciously or not, the sample size for the update. The sample size selected can affect

the performance of the actual update, as well as the performance of queries.

Understanding the Effects of Sample Size

The default sample size for the UPDATE STATISTICS comes from a non-linear algorithm, and the sample

size decreases as the table size gets larger, as Joe Sack showed in his post, Auto-Update Stats Default

Sampling Test. In some cases, the sample size may not be large enough to capture enough interesting

information, or the right information, for the statistics histogram, as noted by Conor Cunningham in his

Statistics Sample Rates post. If the default sample does not create a good histogram, DBAs can choose

to update statistics with a higher sampling rate, up to a FULLSCAN (scanning all rows in the table or

indexed view). But as Conor mentioned in his post, scanning more rows comes at a cost, and the DBA is

challenged with deciding whether to run a FULLSCAN to try and create the “best” histogram possible, or

sample a smaller percentage to minimize the performance impact of the update.

To try and understand at what point a sample takes longer than a FULLSCAN, I ran the following

statements against copies of the SalesOrderDetail table that were enlarged using Jonathan Kehayias’

script:

statement

ID

UPDATE STATISTICS statement

1 UPDATE STATISTICS [Sales].[SalesOrderDetailEnlarged] WITH FULLSCAN;

2 UPDATE STATISTICS [Sales].[SalesOrderDetailEnlarged];

3 UPDATE STATISTICS [Sales].[SalesOrderDetailEnlarged] WITH SAMPLE 10 PERCENT;

http://msdn.microsoft.com/en-us/library/ms190397.aspx
http://msdn.microsoft.com/en-us/library/ms187348.aspx
http://blogs.msdn.com/b/srgolla/archive/2012/09/04/sql-server-statistics-explained.aspx
http://www.sqlskills.com/blogs/joe/auto-update-stats-default-sampling-test/
http://www.sqlskills.com/blogs/joe/auto-update-stats-default-sampling-test/
http://blogs.msdn.com/b/conor_cunningham_msft/archive/2008/07/24/statistics-sample-rates.aspx
http://www.sqlskills.com/blogs/jonathan/enlarging-the-adventureworks-sample-databases/

4 UPDATE STATISTICS [Sales].[SalesOrderDetailEnlarged] WITH SAMPLE 25 PERCENT;

5 UPDATE STATISTICS [Sales].[SalesOrderDetailEnlarged] WITH SAMPLE 50 PERCENT;

6 UPDATE STATISTICS [Sales].[SalesOrderDetailEnlarged] WITH SAMPLE 75 PERCENT;

I had three copies of the SalesOrderDetailEnlarged table, with the following characteristics*:

Row Count Page Count MAXDOP Max

Memory

Storage Machine

23,899,449 363,284 4 8GB SSD_1 Laptop

607,312,902 7,757,200 16 54GB SSD_2 Test Server

607,312,902 7,757,200 16 54GB 15K Test Server

*Additional details about the hardware are at the end of this post.

All copies of the table had the following statistics, and none of the three index statistics had included

columns:

Statistic Type Columns in Key

PK_SalesOrderDetailEnlarged_SalesOrderID_SalesOrderDetailID Index
SalesOrderID,

SalesOrderDetailID

AK_SalesOrderDetailEnlarged_rowguid Index rowguid

IX_SalesOrderDetailEnlarged_ProductID Index ProductId

user_CarrierTrackingNumber Column CarrierTrackingNumber

I ran the above UPDATE STATISTICS statements four times each against the SalesOrderDetailEnlarged

table on my laptop, and twice each against the SalesOrderDetailEnlarged tables on the TestServer.

Statements were run in random order each time, and procedure cache and buffer cache were cleared

before each update statement. The duration and tempdb usage for each set of statements (averaged)

are in the graphs below:

Average Duration – Update All Statistics for SalesOrderDetailEnlarged

tempdb Usage – Update All Statistics for SalesOrderDetailEnlarged

The durations for the 23 million row table were all less than three minutes, and are described in more

detail in the next section. For the table on the SSD_2 disks, the FULLSCAN statement took 1492 seconds

(almost 25 minutes) and the update with a 25% sample took 2051 seconds (over 34 minutes). In

contrast, on the 15K disks, the FULLSCAN statement took 2864 seconds (over 47 minutes) and the

update with a 25% sample took 2147 seconds (almost 36 minutes) – less than time the FULLSCAN.

However, the update with a 50% sample took 4296 seconds (over 71 minutes).

Tempdb usage is much more consistent, showing a steady increase as the sample size increases, and

using more tempdb space than a FULLSCAN somewhere between 25% and 50%. What’s notable here is

that UPDATE STATISTICS does use tempdb, which is important to remember when you’re sizing tempdb

for a SQL Server environment. Tempdb usage is mentioned in the UPDATE STATISTICS BOL entry:

“UPDATE STATISTICS can use tempdb to sort the sample of rows for building statistics.”

http://msdn.microsoft.com/en-us/library/ms187348.aspx

And the effect is documented in Linchi Shea’s post, Performance impact: tempdb and update statistics.

However, it’s not something always mentioned during tempdb sizing discussions. If you have large

tables and perform updates with FULLSCAN or high sample values, be aware of the tempdb usage.

Performance of Selective Updates

I next decided to test the UPDATE STATISTICS statements for the other statistics on the table, but limited

my tests to the copy of the table with 23 million rows. The above six variations of the UPDATE

STATISTICS statement were repeated four times each for the following individual statistics and then

compared against the update for the entire table:

 PK_SalesOrderDetailEnlarged_SalesOrderID_SalesOrderDetailID

 IX_SalesOrderDetailEnlarged_ProductID

 user_CarrierTrackingNumber

All tests were run with the aforementioned configuration on my laptop, and the results are in the graph

below:

Average Duration for UPDATE STATISTICS – All Statistics vs. Selected

As expected, the updates to an individual statistic took less time than when updating all statistics for the

table. The value at which the sampled updated took longer than a FULLSCAN varied:

UPDATE statement FULLSCAN duration (s) First UPDATE that took longer

Entire Table 62 50% – 110 seconds

Clustered Index 17 75% – 26 seconds

http://sqlblog.com/blogs/linchi_shea/archive/2009/08/16/performance-impact-tempdb-and-update-stats.aspx

Nonclustered Index 10 25% – 19 seconds

User Created Statistic 26 50% – 28 seconds

Conclusion

Based on this data, and the FULLSCAN data from the 607 million row tables, there is no specific tipping

point where a sampled update takes longer than a FULLSCAN; that point is dependent on table size and

the resources available. But the data is still worthwhile as it demonstrates that there is a point where a

sampled valued can take longer to capture than a FULLSCAN. It again comes down to knowing your

data. This is critical to not only understand whether a table needs custom management of statistics, but

also to understand the ideal sample size to create a useful histogram and also optimize resource usage.

Specifications

Laptop specifications: Dell M6500, 1 Intel i7 (2.13GHz 4 cores and HT is enabled so 8 logical cores), 32

GB memory, Windows 7, SQL Server 2012 SP1 (11.0.3128.0 x64), database files stored on a 265GB

Samsung SSD PM810

Test Server specifications: Dell R720, 2 Intel E5-2670 (2.6GHz 8 cores and HT is enabled so 16 logical

cores per socket), 64 GB memory, Windows 2012, SQL Server 2012 SP1 (11.0.3339.0 x64), database files

for one table are located on two 640GB Fusion-io Duo MLC cards, database files for the other table are

on nine 15K RPM disks in a RAID5 array

Tracking Automatic Updates to Statistics
By Erin Stellato

When you create a new database in SQL Server, the Auto Update Statistics option is enabled by default.

It is generally recommended to leave this option enabled. Ideally, statistics are managed by a scheduled

job, and the automatic option is used as a safety net – available to update statistics in the event a

scheduled update does not occur, or accidentally does not include all existing statistics.

Some DBAs rely solely on automatic updates to manage statistics, and as long as no performance

problems related to out-of-date or poorly sampled statistics exist, this is acceptable. If you are relying on

this option to manage your statistics, and you have some very large tables, it might be worth

implementing trace flag 2371. As with any trace flag, make sure you test with a representative workload

before implementing it in production. You may already be aware that there are times when an

automatic update can affect system performance. For example, the update to a statistic can introduce a

spike in CPU or I/O as the table or index data is read, as well as delay query execution while the update

occurs. There is another database option you can enable to address that query delay, and I’ll cover that

later in this post.

The question I'm often asked is, "How do you know if automatic updates to statistics

are causing performance problems?" One option is to track them, and tie the updates to a change in

performance. Many options exist for tracking updates, and in this post we'll review a few of the

available methods so you can choose and then implement the option that fits best with your existing

method of monitoring for performance problems.

SQL Trace

If you are running SQL Server 2008 R2 or below in your environment, SQL Trace is one method you can

use to capture automatic updates. The trace definition script used below only captures the Auto Stats

event, which catches when a statistic auto-updates, and when a statistic auto-creates. After this trace

has run for a while in your environment, you can load it into a table and then query the output to see

what updates occurred. The included script below walks through an example using the baseball stats

sample database.

Extended Events

If you are running SQL Server 2012 or higher, I recommend using Extended Events to capture automatic

updates. Like the SQL Trace script, the included session definition script only captures the Auto Stats

events – again, both auto-updates and auto-creates. Once the XE session has run for a while, you can

load the output into a table through the UI and then query it to see what updates occurred. The

included script walks through the same example as before, but this time using Extended Events to

collect the data.

sys.dm_db_stats_properties

A third option that you could consider to monitor statistics updates is

the sys.dm_db_stats_properties DMF, which is only available in SQL Server 2008 R2 SP2 and higher, and

SQL Server 2012 SP1 and higher. As much as I love this DMF, this solution is trickier in terms of making

http://blogs.msdn.com/b/saponsqlserver/archive/2011/09/07/changes-to-automatic-update-statistics-in-sql-server-traceflag-2371.aspx
http://technet.microsoft.com/en-us/library/cc293613.aspx
http://www.sqlskills.com/sql-server-resources/sql-server-demos/
http://www.sqlskills.com/sql-server-resources/sql-server-demos/
http://www.sqlskills.com/blogs/jonathan/category/extended-events/
http://technet.microsoft.com/en-us/library/jj553546.aspx

sure you captured all the data, and reviewing the output takes more work. With the DMF, every auto-

update is not tracked, we just trend statistics update information to see when updates occur.

It's a simple task: you create a table to hold the stats information, and then snapshot information from

the DMF to the table on a regular basis. The key here is to figure out how often to capture the

data. Every hour is probably overkill, once a day might not be frequent enough. I recommend starting

with a SQL Agent job that snapshots the DMF data every four hours. Let that run for a few days, then

check your data. If statistics are updating once a day at most, then you can increase the interval to every

eight or twelve hours. If statistics are easily updating every four hours, then drop your interval to every

two hours – you want to make sure you're capturing each update. For this reason, for some

systems, sys.dm_db_stats_properties might not be worth the effort; an XE session or Trace might be

simpler.

A final sample script walks through an example of how you would use sys.dm_db_stats_properties to

trend updates to statistics. Be aware that this script only captures statistics information for one table. If

you alter the script to capture every table in the database, there will be a lot more data to analyze.

Next Steps

Download the sample scripts, and decide which method you should use to track statistics updates.

Once you have the data that shows when automatic updates occur, you need to tie that back to known

performance issues. As such, if you're not tracking any performance metrics, then the auto-stats update

data isn't going to help with any kind of correlation. Assuming you have timestamps for any

performance issue, you can compare it to the StartTime and EndTime from Trace, the timestamp from

XE, or last_updated from the sys.dm_db_stats_properties DMF, to determine if the automatic update

did affect system performance.

If you cannot make any correlation between the updates and performance issues, then you can rule out

updates as the cause of the problem, and focus on another area. If the updates are the root cause, then

you have two options: disable the Auto Update Statistics option, or enable the Auto Update Statistics

Asynchronously option. Both have pros and cons that you, as the DBA, must consider.

Disabling Auto-Update Statistics

If you choose to disable the auto-update statistics option, the two most important things to know are:

1. You absolutely must manage your statistics via a maintenance task or custom job.

2. Queries will not recompile when you update statistics in SQL Server 2008 R2 and below.

I view the second item as a bigger challenge – I'm a big advocate for managing statistics and expect that

it's something DBAs are doing anyway. The larger issue is that, even though updating

statistics normally causes queries to recompile (to take advantage of the updated stats), this

does not occur when you have the auto-update statistics option disabled. I've written about this

previously, and recommend reviewing this information if you're not familiar with this behavior. Also see

a follow-up post for options to address it.

http://cdn.sqlperformance.com/wp-content/uploads/2014/TrackingStats.zip
http://erinstellato.com/2012/01/statistics-recompilations/
http://erinstellato.com/2012/01/statistics-recompilations/
http://erinstellato.com/2012/02/statistics-recompilations-part-ii/

In general, this is not the path that I recommend. There are very specific edge-cases where this might be

appropriate, but I would rather see a DBA perform manual updates (through scheduled jobs) to avoid

the automatic updates, and leave the option enabled as a safety measure.

Enabling Auto Update Statistics Asynchronously

When you enable the Auto Update Statistics Asynchronously option, if a statistic has been invalidated

and a query that uses that statistic is run, the statistic will not be updated until after the query has

completed – the update is asynchronous. The benefit here is that the update will not affect the query

that was run; the drawback is that the query will use the existing plan, which may no longer be the

optimal plan. Whether the plan is still optimal will depend on your workload (e.g. a reporting workload

with long-running queries). As a DBA, you have to weigh the pros and cons of enabling this option, and

determine what's best for your database. Note that if you are running SQL Server 2008 through 2012,

there is a memory leak associated with this setting. Microsoft does have Cumulative Updates available

that provide a fix, but if you don't already have them applied, you face another decision: apply the CU so

you can enable the option, or don't apply the CU and don’t enable the option.

Summary

The only way to know if automatic updates to statistics are affecting query performance is to either see

an update occur at the same time as a problem, or capture when updates occur and correlate the data

to additional information you're capturing about performance problems. The latter option allows you to

be proactive – even if you're not having performance issues, it might be a good idea to know how often

automatic updates occur. Frequent updates may mean you need to revisit the Agent job that manually

manages statistics. In general, leave the option to automatically update statistics enabled, but have a

method to manage statistics and use the option as a safety net.

http://www.sqlskills.com/blogs/glenn/important-hotfix-for-sql-server-2008-and-newer/
http://support.microsoft.com/kb/2778088

How Automatic Updates to Statistics Can Affect Query Performance
By Erin Stellato

In my previous post, I explored different methods to track automatic updates to statistics to determine if

they were affecting query performance. In the latter half of the post I included options, one of which

was to enable the Auto Update Statistics Asynchronously database setting. In this post, I want to look at

how query performance changes when the automatic update does occur prior to query execution, and

what happens to performance if the update is asynchronous.

The Set Up

I started with a copy of the AdventureWorks2012 database, and then created a copy of the

SalesOrderHeader table with over 200 million rows using this script. The table has a clustered index on

SalesOrderID, and a nonclustered index on CustomerID, OrderDate, SubTotal. [Note: if you are going to

do repeated tests, take a backup of this database at this point to save yourself some time]. After loading

the data and creating the nonclustered index, I verified row count and calculated how many rows

(approximately) would need to be modified to invoke an automatic update.

SELECT
OBJECT_NAME([p].[object_id]) [TableName],
[si].[name] [IndexName],
[au].[type_desc] [Type],
[p].[rows] [RowCount],
([p].[rows]*.20) + 500 [UpdateThreshold],
[au].total_pages [PageCount],
(([au].[total_pages]*8)/1024)/1024 [TotalGB]
FROM [sys].[partitions] [p]
JOIN [sys].[allocation_units] [au] ON [p].[partition_id] = [au].[container_id]
JOIN [sys].[indexes] [si] on [p].[object_id] = [si].object_id and [p].[index_id] =
[si].[index_id]
WHERE [p].[object_id] = OBJECT_ID(N'Sales.Big_SalesOrderHeader');

Big_SalesOrderHeader CIX and NCI Information

I also verified the current statistics header for the index:

DBCC SHOW_STATISTICS
('Sales.Big_SalesOrderHeader',[IX_Big_SalesOrderHeader_CustomerID_OrderDate_SubTotal]);

NCI Statistics: At Start

I then created the stored procedure that I would use for testing. It’s a straightforward procedure that

queries Sales.Big_SalesOrderHeader, and aggregates sales data by CustomerID and OrderDate for

analysis:

http://www.sqlperformance.com/2014/04/extended-events/tracking-auto-stats

CREATE PROCEDURE Sales.usp_GetCustomerStats
@CustomerID INT,
@StartDate DATETIME,
@EndDate DATETIME
AS
BEGIN
 SET NOCOUNT ON;

 SELECT CustomerID, DATEPART(YEAR, OrderDate), DATEPART(MONTH, OrderDate),
COUNT([SalesOrderID]) as Computed
 FROM [Sales].[Big_SalesOrderHeader]
 WHERE CustomerID = @CustomerID
 AND OrderDate BETWEEN @StartDate and @EndDate
 GROUP BY CustomerID, DATEPART(YEAR, OrderDate), DATEPART(MONTH, OrderDate)
 ORDER BY DATEPART(YEAR, OrderDate), DATEPART(MONTH, OrderDate);
END

Finally, before executing the stored procedure, I created an Extended Events session so I could track

query duration using sp_statement_starting and sp_statement_completed. I also added the auto_stats

event, because even though I did not expect an update to occur, I wanted to use this same session

definition later.

CREATE EVENT SESSION [StatsUpdate_QueryPerf]
ON SERVER
ADD EVENT sqlserver.auto_stats,
ADD EVENT sqlserver.sp_statement_completed(
SET collect_statement=(1)
),
ADD EVENT sqlserver.sp_statement_starting
ADD TARGET package0.event_file(
SET filename=N'C:\temp\StatsUpdate_QueryPerf.xel'
)
WITH (MAX_MEMORY=4096
KB,EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_LOSS,MAX_DISPATCH_LATENCY=30 SECONDS,
MAX_EVENT_SIZE=0 KB,MEMORY_PARTITION_MODE=NONE,TRACK_CAUSALITY=ON,STARTUP_STATE=OFF);
GO

The Test

I started the Extended Events session, and then executed the stored procedure multiple times, using

different CustomerIDs:

ALTER EVENT SESSION [StatsUpdate_QueryPerf]
ON SERVER
STATE = START;
GO

EXEC Sales.usp_GetCustomerStats 11331, '2012-08-01 00:00:00.000', '2012-08-31
23:59:59.997'
GO
EXEC Sales.usp_GetCustomerStats 11330, '2013-01-01 00:00:00.000', '2013-01-31
23:59:59.997'
GO
EXEC Sales.usp_GetCustomerStats 11506, '2012-11-01 00:00:00.000', '2012-11-30
23:59:59.997'

GO
EXEC Sales.usp_GetCustomerStats 17061, '2013-01-01 00:00:00.000', '2013-01-31
23:59:59.997'
GO
EXEC Sales.usp_GetCustomerStats 11711, '2013-03-01 00:00:00.000', '2013-03-31
23:59:59.997'
GO
EXEC Sales.usp_GetCustomerStats 15131, '2013-02-01 00:00:00.000', '2013-02-28
23:59:59.997'
GO
EXEC Sales.usp_GetCustomerStats 29837, '2012-10-01 00:00:00.000', '2012-10-31
23:59:59.997'
GO
EXEC Sales.usp_GetCustomerStats 15750, '2013-03-01 00:00:00.000', '2013-03-31
23:59:59.997'
GO

I verified the execution count, and the plan, by querying the procedure cache:

SELECT
OBJECT_NAME([st].[objectid]),
[st].[text],
[qs].[execution_count],
[qs].[creation_time],
[qs].[last_execution_time],
[qs].[min_worker_time],
[qs].[max_worker_time],
[qs].[min_logical_reads],
[qs].[max_logical_reads],
[qs].[min_elapsed_time],
[qs].[max_elapsed_time],
[qp].[query_plan]
FROM [sys].[dm_exec_query_stats] [qs]
CROSS APPLY [sys].[dm_exec_sql_text]([qs].plan_handle) [st]
CROSS APPLY [sys].[dm_exec_query_plan]([qs].plan_handle) [qp]
WHERE [st].[text] LIKE '%usp_GetCustomerStats%'
AND OBJECT_NAME([st].[objectid]) IS NOT NULL;

Plan Cache: At Start

Query Plan for Stored Procedure, using SQL Sentry Plan Explorer

I could see that the plan was created at 2014-04-08 18:59:39.850. With the plan in cache, I stopped the

Extended Events session:

http://sqlsentry.com/plan-explorer

ALTER EVENT SESSION [StatsUpdate_QueryPerf]
ON SERVER
STATE = STOP;

Next I added about 47 million rows of data to the table using this script, well over the threshold

necessary to invalidate the current statistics. After adding the data, I verified the number of rows in the

table:

Big_SalesOrderHeader CI: After Data Load

Before I re-ran my stored procedure, I checked the plan cache to make sure nothing had changed, and

verified that statistics had not yet updated. Remember, even though the statistics were invalidated at

this point, they will not update until a query that uses the statistic is executed (for

reference: Understanding When Statistics Will Automatically Update). For the final step, I started the

Extended Events session again, and then ran the stored procedure multiple times. After those

executions, I checked the plan cache again:

Plan Cache: After Data Load

The execution_count is 8 again, and if we look at the create_time of the plan, we can see it’s changed to

2014-04-08 19:32:52.913. If we check the plan, we can see that it is the same, even though the plan was

recompiled:

Query Plan for Stored Procedure, using SQL Sentry Plan Explorer

Analysis of Extended Events Output

I took the first Extended Events file – before data was loaded – and opened it in SSMS, then applied a

filter so that only statements from the stored procedure were listed:

http://www.sqlskills.com/blogs/erin/understanding-when-statistics-will-automatically-update/
http://sqlsentry.com/plan-explorer

Extended Events Output: After Initial SP Execution

You can see that there are eight (8) executions of the stored procedure, with query durations that vary

slightly.

I took the second Extended Events file – after data was loaded – opened it SSMS, and filtered again so

that only statements from the stored procedure, as well as auto_stats events, were listed:

Extended Events Output: SP Execution After Data Load

The output is truncated, as it is not all needed to show the main result. The blue highlighted entries

represent the first execution of the stored procedure, and note that there are multiple steps – the

update to statistics is part of the execution. The SELECT statement starts (attach_activity_id.seq = 3),

and the updates to statistics then execute. In our example, we actually have updates to three statistics.

Once the last update completes (attach_activity_id.seq = 11), then the stored procedure starts and

completes (attach_activity_id.seq = 13 and attach_activity_id.seq = 14). Interestingly enough, there is a

second sp_statement_starting event for the stored procedure (presumably the first one is disregarded),

so the total duration for the stored procedure is calculated without the update to statistics.

In this scenario, having statistics automatically update immediately – that is, when a query that uses

invalidated statistics executes – causes the query to run longer, even though query duration based on

the sp_statement_completed event is still less than 14000. The end result is that there is no benefit to

query performance, as the plan is exactly same before and after the statistics update. In this scenario,

the query plan and execution duration do not change after more data is added to the table, so the

update to statistics only hinders its performance. Now let’s see what happens when we enable the Auto

Update Statistics Asynchronously option.

The Test, Version 2

We start by restoring to the backup that I took before we started the first test. I recreated the stored

procedure and then changed the database option to update statistics asynchronously:

USE [master];
GO
ALTER DATABASE [AdventureWorks2012_Big] SET AUTO_UPDATE_STATISTICS_ASYNC ON WITH NO_WAIT
GO

I started the Extended Events session, and again executed the stored procedure multiple times, using

different CustomerIDs:

ALTER EVENT SESSION [StatsUpdate_QueryPerf]
ON SERVER
STATE = START;
GO

EXEC Sales.usp_GetCustomerStats11331, '2012-08-01 00:00:00.000', '2012-08-31
23:59:59.997'
GO
EXEC Sales.usp_GetCustomerStats11330, '2013-01-01 00:00:00.000', '2013-01-31
23:59:59.997'
GO
EXEC Sales.usp_GetCustomerStats11506, '2012-11-01 00:00:00.000', '2012-11-30
23:59:59.997'
GO
EXEC Sales.usp_GetCustomerStats17061, '2013-01-01 00:00:00.000', '2013-01-31
23:59:59.997'
GO
EXEC Sales.usp_GetCustomerStats11711, '2013-03-01 00:00:00.000', '2013-03-31
23:59:59.997'

GO
EXEC Sales.usp_GetCustomerStats15131, '2013-02-01 00:00:00.000', '2013-02-28
23:59:59.997'
GO
EXEC Sales.usp_GetCustomerStats29837, '2012-10-01 00:00:00.000', '2012-10-31
23:59:59.997'
GO
EXEC Sales.usp_GetCustomerStats15750, '2013-03-01 00:00:00.000', '2013-03-31
23:59:59.997'
GO

I verified the execution count, and the plan, by querying the procedure cache:

Plan Cache: At Start, Test 2

Query Plan for Stored Procedure, using SQL Sentry Plan Explorer

For this test, the plan was created at 2014-04-08 21:15:55.490. I stopped the Extended Events session

and again added about 47 million rows of data to the table, using the same query as before.

Once the data had been added, I checked the plan cache to make sure nothing had changed, and

verified that statistics had not yet updated. Finally, I started the Extended Events session again, and then

ran the stored procedure eight more times. A final peek into the plan cache showed execution_count at

16 and a create_time of 2014-04-08 21:15:55.490. The execution_count and create_time demonstrate

that statistics have not updated, as the plan hasn't been flushed from cache yet (if it had, we would have

a later create_time and an execution_count of 8).

Plan Cache: After Data Load, Test 2

If we open the Extended Events output from after the data load in SSMS, and again filter so we only see

statements from the stored procedure, as well as auto_stats events, we find this (note that the output is

broken into two screen shots):

http://sqlsentry.com/plan-explorer

Extended Events Output: Test 2, SP Execution After Data Load, part I

Extended Events Output: Test 2, SP Execution After Data Load, part II

The events for the execution of the first call of the stored procedure are highlighted in blue – they start

at 2014-04-08 21:54:14.9480607 and there are seven (7) events. Note that there are three (3)

auto_stats events, but none of them actually complete, as we saw when the Auto Update Statistics

Asynchronously option was disabled. You'll notice that the automatic update does start for one of the

statistics almost immediately (2014-04-08 21:54:14.9481288), and it's three events have the red text

'Stat Update #1' next to them. That statistics update finishes at 2014-04-08 21:54:16.5392219, just

under two seconds after it starts, but after all other executions of the procedure have completed. This is

why the execution_count from sys.dm_exec_query_stats shows 16. From the XE output, we can see that

the other statistics updates then complete (Stat Update #2 and Stat Update #3). All of the updates are

asynchronous to the initial stored procedure's execution.

Summary

As you can see, automatic updates to statistics have the potential to negatively affect query

performance. The degree of impact will depend on the amount of data that has to be read to update the

statistic, and the system resources. In some cases, query performance only increases by milliseconds

and is most likely imperceptible to users. Other times, the duration can increase dramatically, which

then affects end-user experience. In the case where the query plan does not change after an update to

statistics, it is well worth considering enabling the Auto Update Statistics Asynchronously option, to

mitigate the impact on query performance.

Interesting Things about INSTEAD OF Triggers
By Paul White

Summary: This article examines some surprising behaviour of INSTEAD OF triggers and reveals a serious

cardinality estimation bug in SQL Server 2014.

Triggers and Row Versioning

Only DML AFTER triggers use row versioning (in SQL Server 2005 onward) to provide

the inserted and deleted pseudo-tables inside a trigger procedure. This point is not clearly made in much

of the official documentation. In most places, the documentation simply says that row-versioning is used

to build the inserted and deleted tables in triggers without qualification (examples below):

Row Versioning Resource Usage

Understanding Row Versioning-Based Isolation Levels

Controlling Trigger Execution When Bulk Importing Data

Presumably, the original versions of these entries were written before INSTEAD OF triggers were added

to the product, and never updated. Either that, or it is a simple (but repeated) oversight.

Anyway, the way row-versioning works with AFTER triggers is quite intuitive. These triggers fire after the

modifications in question have been performed, so it's easy to see how maintaining versions of the

modified rows enables the database engine to provide the inserted and deleted pseudo-tables.

The deleted pseudo-table is constructed from versions of the affected rows before the modifications

took place; the inserted pseudo-table is formed from the versions of the affected rows as at the time the

trigger procedure started.

Instead Of Triggers

INSTEAD OF triggers are different because this type of DML trigger completely replaces the triggered

action. The inserted and deleted pseudo-tables now represent changes that would have been made, had

the triggering statement actually executed. Row-versioning cannot be used for these triggers because no

modifications have occurred, by definition. So, if not using row versions, how does SQL Server do it?

The answer is that SQL Server modifies the execution plan for the triggering DML statement when an

INSTEAD OF trigger exists. Rather than modifying the affected tables directly, the execution plan writes

information about the changes to a hidden worktable. This worktable contains all the data needed to

perform the original changes, the type of modification to perform on each row (delete or insert), as well

as any information needed in the trigger for an OUTPUT clause.

Execution plan without a trigger

To see all this in action, we will first run a simple test without an INSTEAD OF trigger present:

CREATE TABLE Test
(
 RowID integer NOT NULL,
 Data integer NOT NULL,

 CONSTRAINT PK_Test_RowID

http://technet.microsoft.com/en-us/library/ms175492.aspx
http://technet.microsoft.com/en-us/library/ms189050.aspx
http://technet.microsoft.com/en-us/library/ms187640.aspx

 PRIMARY KEY CLUSTERED (RowID)
);
GO
INSERT dbo.Test
 (RowID, Data)
VALUES
 (1, 100),
 (2, 200),
 (3, 300);
GO
DELETE dbo.Test;
GO
DROP TABLE dbo.Test;

The execution plan for the delete is very straightforward:

Each row that qualifies is passed directly to a Clustered Index Delete operator, which deletes it. Easy.

Execution plan with an INSTEAD OF trigger

Now let's modify the test to include an INSTEAD OF DELETE trigger (one that just performs the same

delete action for simplicity):

CREATE TABLE Test
(
 RowID integer NOT NULL,
 Data integer NOT NULL,

 CONSTRAINT PK_Test_RowID
 PRIMARY KEY CLUSTERED (RowID)
);
GO
INSERT dbo.Test
 (RowID, Data)
VALUES
 (1, 100),
 (2, 200),
 (3, 300);
GO
CREATE TRIGGER dbo_Test_IOD
ON dbo.Test
INSTEAD OF DELETE
AS
BEGIN
 SET NOCOUNT ON;

 DELETE FROM dbo.Test
 WHERE EXISTS
 (

 SELECT * FROM Deleted
 WHERE Deleted.RowID = dbo.Test.RowID
);
END;
GO
DELETE dbo.Test;
GO
DROP TABLE dbo.Test;

The execution plan for the DELETE is now quite different:

The Clustered Index Delete operator has been replaced by a Clustered Index Insert. This is the insert to

the hidden worktable, which is renamed (in the public execution plan representation) to the name of

the base table affected by the delete. The renaming occurs when the XML show plan is generated from

the internal execution plan representation, so there is no documented way to see the hidden worktable.

As a result of this change, the plan therefore appears to perform an insert to the base table in order

to delete rows from it. This is confusing, but it does at least disclose the presence of an INSTEAD OF

trigger. Replacing the Insert operator with a Delete might be even more confusing. Perhaps the ideal

would be a new graphical icon for an INSTEAD OF trigger worktable? Anyway, it is what it is.

The new Compute Scalar operator defines the type of action performed on each row. This action code is

an integer, with the following meanings:

 3 = DELETE

 4 = INSERT

 259 = DELETE in a MERGE plan

 260 = INSERT in a MERGE plan

For this query, the action is a constant 3, meaning every row is to be deleted:

Update Actions

As an aside, an INSTEAD OF UPDATE execution plan replaces a single Update operator

with two Clustered Index Inserts to the same hidden worktable – one for the inserted pseudo-table

rows, and one for the deleted pseudo-table rows. An example execution plan:

A MERGE that performs an UPDATE also produces an execution plan with two inserts to the same base

table for similar reasons:

The Trigger Execution Plan

The execution plan for the trigger body also has some interesting features:

The first thing to notice is that the graphical icon used for the deleted table is not the same as the

icon used in AFTER trigger plans:

The representation in the INSTEAD OF trigger plan is a Clustered Index Seek. The underlying object is the

same internal worktable we saw earlier, though here it is named deleted instead of being given the base

table name, presumably for some sort of consistency with AFTER triggers.

The seek operation on the deleted table might not be what you were expecting (if you were expecting a

seek on RowID):

This 'seek' returns all rows from the worktable that have an action code of 3 (delete), making it exactly

equivalent to the Deleted Scan operator seen in AFTER trigger plans. The same internal worktable is

used to hold rows for both inserted and deleted pseudo-tables in INSTEAD OF triggers. The equivalent of

an Inserted Scan is a seek on action code 4 (which is possible in a deletetrigger, but the result will always

be empty). There are no indexes on the internal worktable aside from the non-unique clustered index on

the action column alone. In addition, there are no statistics associated with this internal index.

http://technet.microsoft.com/en-us/library/ms188244.aspx
http://technet.microsoft.com/en-us/library/ms188244.aspx

The analysis so far might leave you wondering where the join between the RowID columns is performed.

This comparison occurs at the Nested Loops Left Semi Join operator as a residual predicate:

Now that we know the 'seek' is effectively a full scan of the deleted table, the execution plan chosen by

the query optimizer seems pretty inefficient. The overall flow of the execution plan is that each row

from the Test table is potentially compared with the entire set of deleted rows, which sounds a lot like a

cartesian product.

The saving grace is that the join is a semi join, meaning the comparison process stops for a given Test

row as soon as the first deleted row satisfies the residual predicate. Nevertheless, the strategy seems a

curious one. Perhaps the execution plan would be better if the Test table contained more rows?

Trigger test with 1,000 rows

The following script can be used to test the trigger with a larger number of rows. We will start with

1,000:

CREATE TABLE Test
(
 RowID integer NOT NULL,
 Data integer NOT NULL,

 CONSTRAINT PK_Test_RowID
 PRIMARY KEY CLUSTERED (RowID)
);
GO
SET STATISTICS XML OFF;
SET NOCOUNT ON;
GO
DECLARE @i integer = 1;
WHILE @i <= 1000
BEGIN
 INSERT dbo.Test (RowID, Data)
 VALUES (@i, @i * 100);

 SET @i += 1;
END;
GO
CREATE TRIGGER dbo_Test_IOD
ON dbo.Test
INSTEAD OF DELETE
AS
BEGIN
 SET NOCOUNT ON;

 DELETE FROM dbo.Test
 WHERE EXISTS
 (
 SELECT * FROM Deleted
 WHERE Deleted.RowID = dbo.Test.RowID
);
END;
GO
SET STATISTICS XML ON;
GO
DELETE dbo.Test;
GO
DROP TABLE dbo.Test;

The execution plan for the trigger body is now:

Mentally replacing the (misleading) Clustered Index Seek with a Deleted Scan, the plan looks generally

pretty good. The optimizer has chosen a one-to-many Merge Join instead of a Nested Loops Semi Join,

which seems reasonable. The Distinct Sort is a curious addition though:

This sort is performing two functions. First, it is providing the merge join with the sorted input it needs,

which is fair enough because there is no index on the internal worktable to provide the necessary order.

The second thing the sort is doing is to distinct on RowID. This might seem odd, because RowID is the

primary key of the base table.

The issue is that rows in the deleted table are simply candidate rows that the original DELETE query

identified. Unlike an AFTER trigger, these rows have not been checked for constraint or key violations

yet, so the query processor has no guarantee they are in fact unique.

Generally, this is a very important point to bear in mind with INSTEAD OF triggers: there is no guarantee

that the rows provided meet any of the constraints on the base table (including NOT NULL). This is not

only important for the trigger author to remember; it also limits the simplifications and transformations

the query optimizer can perform.

A second issue shown in the Sort properties above, but not highlighted, is that the output estimate is

just 32 rows. The internal worktable has no statistics associated with it, so the optimizerguesses at the

effect of the Distinct operation. We 'know' the RowID values are unique, but without any hard

information to go on, the optimizer makes a poor guess. This issue will return to haunt us in the next

test.

Trigger test with 5,000 rows

Now modify the test script to generate 5,000 rows:

CREATE TABLE Test
(
 RowID integer NOT NULL,
 Data integer NOT NULL,

 CONSTRAINT PK_Test_RowID
 PRIMARY KEY CLUSTERED (RowID)
);
GO
SET STATISTICS XML OFF;
SET NOCOUNT ON;
GO
DECLARE @i integer = 1;
WHILE @i <= 5000
BEGIN
 INSERT dbo.Test (RowID, Data)
 VALUES (@i, @i * 100);

 SET @i += 1;
END;
GO
CREATE TRIGGER dbo_Test_IOD
ON dbo.Test
INSTEAD OF DELETE
AS
BEGIN
 SET NOCOUNT ON;

 DELETE FROM dbo.Test
 WHERE EXISTS
 (
 SELECT * FROM Deleted
 WHERE Deleted.RowID = dbo.Test.RowID
);
END;
GO
SET STATISTICS XML ON;
GO
DELETE dbo.Test;
GO
DROP TABLE dbo.Test;

The trigger execution plan is:

This time the optimizer has decided to split the distinct and sort operations. The distinct on RowID is

performed by the Hash Match (Aggregate) operator:

Notice the optimizer's estimate for the output is 71 rows. In fact, all 5,000 rows survive the distinct

because RowID is unique. The inaccurate estimate means that an inadequate fraction of the query

memory grant is allocated to the Sort, which ends up spilling to tempdb:

This test has to be performed on SQL Server 2012 or higher in order to see the sort warning in the

execution plan. In prior versions, the plan contains no information about spills – a Profiler trace on the

Sort Warnings event would be needed to reveal it (and you would need to correlate that back to the

source query somehow).

Trigger test with 5,000 rows on SQL Server 2014

If the previous test is repeated on SQL Server 2014, in a database set to compatibility level 120 so the

new cardinality estimator (CE) is used, the trigger execution plan is different again:

In some ways, this execution plan seems like an improvement. The (unnecessary) Distinct Sort is still

there, but the overall strategy seems more natural: for each distinct candidate RowID in

thedeleted table, join to the base table (so verifying that the candidate row actually exists) and then

delete it.

Unfortunately, the 2014 plan is based on worse cardinality estimates than we saw in SQL Server 2012.

Switching Plan Explorer to display the estimated row counts shows the problem clearly:

The optimizer chose a Nested Loops strategy for the join because it expected a very small number of

rows on its top input. The first issue occurs at the Clustered Index Seek. The optimizer knows the

deleted table contains 5,000 rows at this point, as we can see by switching to Plan Tree view and adding

the optional Table Cardinality column (which I wish were included by default):

http://www.sqlsentry.com/products/plan-explorer/sql-server-query-view

The 'old' cardinality estimator in SQL Server 2012 and earlier is smart enough to know that the 'seek' on

the internal worktable would return all 5,000 rows (so it chose a merge join). The new CE is not so

smart. It sees the worktable as a 'black box' and guesses at the effect of the seek on action code = 3:

The guess of 71 rows (rounded up) is a pretty miserable outcome, but the error is compounded when

the new CE estimates the rows for the distinct operation on those 71 rows:

Based on the expected 8 rows, the optimizer chooses the Nested Loops strategy. Another way to see

these estimation errors is to add the following statement to the trigger body (for test purposes only):

SELECT COUNT_BIG(DISTINCT RowID)
FROM Deleted;

The estimated plan shows the estimation errors clearly:

The actual plan still shows 5,000 rows of course:

Or you could compare estimate versus actual at the same time in Plan Tree view:

A million rows…

The poor guess-estimates when using the 2014 cardinality estimator cause the optimizer to select a

Nested Loops strategy even when the Test table contains a million rows. The 2014 new

CEestimated plan for that test is:

The 'seek' estimates 1,000 rows from the known cardinality of 1,000,000 and the distinct estimate is 32

rows. The post-execution plan reveals the effect on the memory reserved for the Hash Match:

Expecting only 32 rows, the Hash Match gets into real trouble, recursively spilling its hash table before

eventually completing.

Final Thoughts

While it is true that a trigger should never be written to do something that can be achieved with

declarative referential integrity, it is also true that a well-written trigger that uses an efficientexecution

plan can be comparable in performance to the cost of maintaining an extra nonclustered index.

There are two practical problems with the above statement. First (and with the best will in the world)

people don't always write good trigger code. Second, getting a good execution plan from the query

optimizer in all circumstances can be difficult. The nature of triggers is that they are called with a wide

range of input cardinalities and data distributions.

Even for AFTER triggers, the lack of indexes and statistics on the deleted and inserted pseudo-tables

means plan selection is often based on guesses or misinformation. Even where a good plan is initially

selected, later executions may reuse the same plan when a recompilation would have been a better

choice. There are ways to work around the limitations, primarily through the use of temporary tables

and explicit indexes/statistics but even there great care is required (since triggers are a form of stored

procedure).

With INSTEAD OF triggers, the risks can be even greater because the contents of

the inserted and deleted tables are unverified candidates – the query optimizer cannot use constraints

on the base table to simplify and refine its execution plan. The new cardinality estimator in SQL Server

2014 also represents a real step backwards when it comes to INSTEAD OF trigger plans. Guessing at the

effect of a seek operation that the engine introduced itself is a surprising and unwelcome oversight.

http://sqlblog.com/blogs/paul_white/archive/2012/08/15/temporary-tables-in-stored-procedures.aspx

Measuring & Performance Troubleshooting
Impact of the query_post_execution_showplan Extended Event
By Jonathan Kehayias

One of the toughest challenges in SQL Server is troubleshooting problems with parameter sensitivity or

cardinality estimation that cause performance degradation of a workload. Generally you'll need to have

the actual execution plan from the statement running to be able to determine the cause of the

performance degradation. In SQL Server 2012, the query_post_execution_showplan Extended Event

provides the ability to capture the actual execution plan for statements. However, as useful as this

seems, this event is not something that can be used without a significant performance impact on the

workload running on the server.

In my article Measuring “Observer Overhead” of SQL Trace vs. Extended Events, I showed a comparison

of the performance impact of SQL Trace against an identical configuration using Extended Events in SQL

Server 2012. At the time I originally did the testing for that article I also did a lot of testing of the

query_post_execution_showplan event in SQL Server 2012. This event was first introduced in SQL

Server 2012 CTP1 when many of the trace events were ported over to Extended Events to provide parity

with SQL Trace. At that time the event only had a subset of the columns that were included in the final

RTM of SQL Server 2012.

During CTP1 I submitted a Connect item requesting that an action be created to allow the collection of

the actual execution plan with events in SQL Server 2012. The goal was to be able to use the

module_end or sql_statement_completed events to identify when the execution of a procedure or

statement exceeds its normal duration. For example, in the scenario of parameter sensitivity, where a

less ideal plan is generated for the normal parameter values, the event can be used to collect the actual

execution plan for that statement through an action. In response, the SQL Server team added the

duration and cpu_time columns to the query_post_execution_showplan event to allow for predicate

definitions to only collect this event for those scenarios.

Unfortunately this doesn’t have the same benefits that an implementation as an action would have had

on performance. In the rest of this post I’ll explain why.

Performance Impact

At the time that I did the testing for my previous article, I also tested the overhead associated with the

query_post_execution_showplan event, primarily because I was really interested in using it in a couple

of client production systems and before I did so I needed to understand what kind of impact the event

would have on their workload. I was really dismayed by the results I got from my original tests, and

after having Aaron Bertrand validate my results using SQL Sentry’s in-house test harness, I filed

another Connect item reporting the performance issues which has subsequently been closed as “By

Design”.

For testing the performance impact, the exact same workload and Distributed Replay configuration from

the Measuring “Observer Overhead” of SQL Trace vs. Extended Events article was used. The only

difference for the test results shown in this article is that a newer, more powerful host system was used

for the VM environment. The VMs used were exactly the same, with no changes to their configuration,

http://www.sqlperformance.com/2012/10/sql-trace/observer-overhead-trace-extended-events
http://connect.microsoft.com/SQLServer/feedback/details/648351/extended-events-action-to-collect-actual-execution-plan
http://connect.microsoft.com/SQLServer/feedback/details/732870/sqlserver-query-post-execution-showplan-performance-impact
http://www.sqlperformance.com/2012/10/sql-trace/observer-overhead-trace-extended-events

and they were simply copied to the new system which is why the baseline workload was able to perform

the replay faster with a higher average Batch Requests/sec. The baseline results were captured using a

standard SQL Server 2012 installation with only the default system_health event session running on the

server.

For the comparison of the performance impact of the query_post_execution_showplan event, the

following event session definition was used.

CREATE EVENT SESSION [query_post_execution_showplan Overhead]
ON SERVER
ADD EVENT sqlserver.query_post_execution_showplan(
WHERE ([duration]=(5000000)));
GO

This session does not actually collect the event data using a target and uses a predicate on the duration

for the event duration equals 5000000 microseconds, or five seconds duration. For the replay workload,

no statement executing has a duration of exactly five second, so the query_post_execution_showplan

event never actually fires in the server, and any performance degradation is strictly the result of the

event data collection and then predicate evaluation. The results from the tests are shown in Table 1 and

charted in Chart 2.

Table 1 – query_post_execution event overhead

Chart 2 – query_post_execution event overhead

For this round of tests, the performance of the workload degrades by roughly 30% by simply having this

event enabled in an event session, even though it won’t fire for any of the events that are being

replayed on the server. The overall degradation will depend on the actual workload for the server, and

it is important to note that this series of tests reflects more of a worst case scenario since the

Distributed Replay was run in stress mode and the CPU usage on the SQL Server was pegged at 94% on

average during the tests.

Understanding the Performance Impact

The reason that this event imposes such a significant overhead on performance can be explained from

the event lifecycle in Extended Events. When a critical point in the SQL Server code associated with an

event is encountered during execution, the code performs a very fast Boolean check to determine if the

event is enabled in any active event session on the server. If the event is enabled for an active event

session, all the data columns associated with the event are collected, including any customizable

columns that have been turned on. At this point the event evaluates any predicates for the active event

sessions that are collecting the event to determine if the event will actually fire completely.

For the query_post_exection_showplan event, all of the performance impact is from the overhead

associated with the data collection. Even in the case where there is a predicate for duration equal to

five seconds, just by turning the event on in an event session, it has to collect the Showplan XML for

every statement that executes on the server just to be able to evaluate the predicate and then

determine that the event won’t fire. For this reason, the query_post_execution_showplan event should

be avoided for production workloads. For the test replay workload, the event had to be evaluated

roughly 440,000 times, even though it doesn’t actually fire for the workload and event session being

tested since none of the replay events has a duration of exactly five seconds. The event count

information was collected by adding the event_counter target to the event session and removing the

duration predicate and then retesting the replay workload with the following session definition.

CREATE EVENT SESSION [query_post_execution_showplan Overhead]
ON SERVER
ADD EVENT sqlserver.query_post_execution_showplan
ADD TARGET package0.event_counter;
GO

Comparison to Rapidly Firing Events

To provide a frame of reference for this performance impact we can look at the overhead of turning on

a set of frequently executing events in the server and performing the same replay workload. Two of the

most frequently executed events in SQL Server are the lock_acquired and lock_released events. To

compare the overhead of these two events, the following event session can be used, which collects the

events with no predicate so that every execution is collected and counts how frequently they fire using

the event_counter target.

CREATE EVENT SESSION [locking Overhead]
ON SERVER

ADD EVENT sqlserver.lock_acquired,
ADD EVENT sqlserver.lock_released
ADD TARGET package0.event_counter;
GO

For our replay workload, these two events fire roughly 111,180,000 times. The overhead associated

with collecting these events can be seen in Table 3 and Chart 4.

Table 3 – Locking overhead comparison

Chart 4 – Locking events overhead comparison

As you can see from the data, the performance effect of these events is significantly lower than for

query_post_execution_showplan, even though the locking event session definition was configured to

allow all of the events to fire on the server, the total overhead was under 1% overall. Keep in mind that

the locking event session evaluated the equivalent of 500 times more events, and in this case all of the

events actually had to fire for the event session, where the query_post_execution_showplan event

didn’t actually have to fire after being evaluated.

Summary

While the query_post_execution_showplan event provides the ability to collect the actual query plan for

a statement that executes, the performance impact of the data collection just to evaluate the event

makes it something that is not viable for production usage. At a minimum, the overhead should be

considered before you ever use this event against a production workload. Even the event description

provided by Microsoft acknowledges that the event can have a significant performance impact (my

highlighting):

Occurs after a SQL statement is executed. This event returns an XML

representation of the actual query plan. Using this event can have a

significant performance overhead so it should only be used when

troubleshooting or monitoring specific problems for brief periods of time.

The event description can be found in the description column of the sys.dm_xe_objects catalog view, or

in the New Session UI as shown in Figure 5 (my highlighting):

Figure 5 – Event description from the New Session UI

I would recommend benchmarking the performance of any event with this warning in the description

before actually using it in a production environment.

Observer Overhead and Wait Type Symptoms
By Joe Sack

Many people use wait statistics as part of their overall performance troubleshooting methodology, as do

I, so the question I wanted to explore in this post is around wait types associated with observer

overhead. By observer overhead, I mean the impact to SQL Server workload throughput caused by SQL

Profiler, Server-side traces or Extended Event sessions. For more on the subject of observer overhead,

see the following two posts from my colleague Jonathan Kehayias:

 Measuring “Observer Overhead” of SQL Trace vs. Extended Events

 Impact of the query_post_execution_showplan Extended Event in SQL Server 2012

So in this post I would like to walk through a few variations of observer overhead and see if we can find

consistent wait types associated with the measured degradation. There are a variety of ways that SQL

Server users implement tracing in their production environments, so your results may vary, but I did

want to cover a few broad categories and report back on what I found:

 SQL Profiler session usage

 Server-side trace usage

 Server-side trace usage, writing to a slow I/O path

 Extended Events usage with a ring buffer target

 Extended Events usage with a file target

 Extended Events usage with a file target on a slow I/O path

 Extended Events usage with a file target on a slow I/O path with no event loss

You can likely think up other variations on the theme and I invite you to share any interesting findings

regarding observer overhead and wait stats as a comment in this post.

Baseline

For the test, I used a VMware virtual machine with four vCPUs and 4GB of RAM. My virtual machine

guest was on OCZ Vertex SSDs. The operating system was Windows Server 2008 R2 Enterprise and the

version of SQL Server is 2012, SP1 CU4.

As for the “workload” I’m using a read-only query in a loop against the 2008 Credit sample database, set

to GO 10,000,000 times.

USE [Credit];
GO

SELECT TOP 1
 [member].[member_no],
 [member].[lastname],
 [payment].[payment_no],
 [payment].[payment_dt],

http://www.sqlperformance.com/2012/10/sql-trace/observer-overhead-trace-extended-events
http://www.sqlperformance.com/2013/03/sql-plan/showplan-impact
http://www.sqlskills.com/sql-server-resources/sql-server-demos/

 [payment].[payment_amt]
FROM [dbo].[payment]
INNER JOIN [dbo].[member]
ON [member].[member_no] = [payment].[member_no];
GO 10000000

I’m also executing this query via 16 concurrent sessions. The end result on my test system is 100% CPU

utilization across all vCPUs on the virtual guest and an average of 14,492 batch requests per second over

a 2 minute period.

Regarding the event tracing, in each test I used Showplan XML Statistics Profile for the SQL Profiler and

Server-side trace tests – and query_post_execution_showplan for Extended Event sessions. Execution

plan events are very expensive, which is precisely why I chose them so that I could see if under extreme

circumstances whether or not I could derive wait type themes.

For testing wait type accumulation over a test period, I used the following query. Nothing fancy – just

clearing the stats, waiting 2 minutes and then collecting the top 10 wait accumulations for the SQL

Server instance over the degradation test period:

-- Clearing the wait stats

DBCC SQLPERF('waitstats', clear);

WAITFOR DELAY '00:02:00';
GO

SELECT TOP 10
 [wait_type],
 [waiting_tasks_count],
 [wait_time_ms]
FROM sys.[dm_os_wait_stats] AS [ws]
ORDER BY [wait_time_ms] DESC;

Notice I’m not filtering out background wait types that are typically filtered out, and this is because I

didn’t want to eliminate something that is normally benign – but in this circumstance actually points to a

real area to investigate further.

SQL Profiler Session

The following table shows the before-and-after batch requests per second when enabling a local SQL

Profiler trace tracking Showplan XML Statistics Profile (running on the same VM as the SQL Server

instance):

Baseline Batch Requests per Second

(2 minute average)

SQL Profiler Session Batch Requests per Second

(2 minute average)

14,492 1,416

You can see that the SQL Profiler trace causes a significant drop in throughput.

As for accumulated wait time over that same period, the top wait types were as follows (as with the rest

of the tests in this article, I did a few test runs and the output was generally consistent):

wait_type waiting_tasks_count wait_time_ms

TRACEWRITE 67,142 1,149,824

FT_IFTS_SCHEDULER_IDLE_WAIT 4 237,003

SLEEP_TASK 313 180,449

REQUEST_FOR_DEADLOCK_SEARCH 24 120,111

HADR_FILESTREAM_IOMGR_IOCOMPLETION 240 120,086

LAZYWRITER_SLEEP 120 120,059

DIRTY_PAGE_POLL 1,198 120,038

HADR_WORK_QUEUE 12 120,015

LOGMGR_QUEUE 937 120,011

SQLTRACE_INCREMENTAL_FLUSH_SLEEP 30 120,006

The wait type that jumps out to me is TRACEWRITE – which is defined by Books Online as a wait type

that “occurs when the SQL Trace rowset trace provider waits for either a free buffer or a buffer with

events to process”. The rest of the wait types look like standard background wait types that one would

typically filter out of your result set. What’s more, I talked about a similar issue with over-tracing in an

article back in 2011 called Observer overhead – the perils of too much tracing – so I was familiar with

this wait type sometimes properly pointing to observer overhead issues. Now in that particular case I

blogged about, it wasn’t SQL Profiler, but another application using the rowset trace provider

(inefficiently).

Server-Side Trace

That was for SQL Profiler, but what about server-side trace overhead? The following table shows the

before-and-after batch requests per second when enabling a local server-side trace writing to a file:

Baseline Batch Requests per Second

(2 minute average)

SQL Profiler Batch Requests per Second

(2 minute average)

14,492 4,015

The top wait types were as follows (I did a few test runs and the output was consistent):

http://msdn.microsoft.com/en-us/library/ms179984.aspx
http://www.sqlskills.com/blogs/joe/observer-overhead-the-perils-of-too-much-tracing/

wait_type waiting_tasks_count wait_time_ms

FT_IFTS_SCHEDULER_IDLE_WAIT 4 237,015

SLEEP_TASK 253 180,871

SQLTRACE_INCREMENTAL_FLUSH_SLEEP 30 120,046

HADR_WORK_QUEUE 12 120,042

REQUEST_FOR_DEADLOCK_SEARCH 24 120,021

XE_DISPATCHER_WAIT 3 120,006

WAITFOR 1 120,000

LOGMGR_QUEUE 931 119,993

DIRTY_PAGE_POLL 1,193 119,958

XE_TIMER_EVENT 55 119,954

This time we don’t see TRACEWRITE (we’re using a file provider now) and the other trace-related wait

type, the undocumented SQLTRACE_INCREMENTAL_FLUSH_SLEEP climbed up – but in comparison to

the first test, has very similar accumulated wait time (120,046 vs. 120,006) – and my colleague Erin

Stellato (@erinstellato) talked about this particular wait type in her post Figuring Out When Wait

Statistics Were Last Cleared. So looking at the other wait types, none are jumping out as a reliable red

flag.

Server-Side Trace writing to a slow I/O path

What if we put the server-side trace file on slow disk? The following table shows the before-and-after

batch requests per second when enabling a local server-side trace that writes to a file on a USB stick:

Baseline Batch Requests per Second

(2 minute average)

SQL Profiler Batch Requests per Second

(2 minute average)

14,492 260

As we can see – the performance is significantly degraded – even compared to the previous test.

The top wait types were as follows:

wait_type waiting_tasks_count wait_time_ms

SQLTRACE_FILE_BUFFER 357 351,174

SP_SERVER_DIAGNOSTICS_SLEEP 2,273 299,995

SLEEP_TASK 240 194,264

http://twitter.com/erinstellato
http://www.sqlskills.com/blogs/erin/figuring-out-when-wait-stats-were-last-cleared/
http://www.sqlskills.com/blogs/erin/figuring-out-when-wait-stats-were-last-cleared/

FT_IFTS_SCHEDULER_IDLE_WAIT 2 181,458

REQUEST_FOR_DEADLOCK_SEARCH 25 125,007

LAZYWRITER_SLEEP 63 124,437

LOGMGR_QUEUE 941 120,559

HADR_FILESTREAM_IOMGR_IOCOMPLETION 67 120,516

WAITFOR 1 120,515

DIRTY_PAGE_POLL 1,204 120,513

One wait type that jumps out for this test is the undocumented SQLTRACE_FILE_BUFFER. Not much

documented on this one, but based on the name, we can make an educated guess (especially given this

particular test’s configuration).

Extended Events to the ring buffer target

Next let’s review the findings for Extended Event session equivalents. I used the following session

definition:

CREATE EVENT SESSION [ApplicationXYZ] ON SERVER
 ADD EVENT sqlserver.query_post_execution_showplan,
 ADD TARGET package0.ring_buffer(SET max_events_limit=(1000))
 WITH (STARTUP_STATE=ON);
GO

The following table shows the before-and-after batch requests per second when enabling an XE session

with a ring buffer target (capturing the query_post_execution_showplan event):

Baseline Batch Requests per Second

(2 minute average)

SQL Profiler Batch Requests per Second

(2 minute average)

14,492 4,737

The top wait types were as follows:

wait_type waiting_tasks_count wait_time_ms

SP_SERVER_DIAGNOSTICS_SLEEP 612 299,992

FT_IFTS_SCHEDULER_IDLE_WAIT 4 237,006

SLEEP_TASK 240 181,739

LAZYWRITER_SLEEP 120 120,219

HADR_WORK_QUEUE 12 120,038

DIRTY_PAGE_POLL 1,198 120,035

REQUEST_FOR_DEADLOCK_SEARCH 24 120,017

SQLTRACE_INCREMENTAL_FLUSH_SLEEP 30 120,011

LOGMGR_QUEUE 936 120,008

WAITFOR 1 120,001

Nothing jumped out as XE-related, only background task “noise”.

Extended Events to a file target

What about changing the session to use a file target instead of a ring buffer target? The following table

shows the before-and-after batch requests per second when enabling an XE session with a file target

instead of a ring buffer target:

Baseline Batch Requests per Second

(2 minute average)

SQL Profiler Batch Requests per Second

(2 minute average)

14,492 4,299

The top wait types were as follows:

wait_type waiting_tasks_count wait_time_ms

SP_SERVER_DIAGNOSTICS_SLEEP 2,103 299,996

FT_IFTS_SCHEDULER_IDLE_WAIT 4 237,003

SLEEP_TASK 253 180,663

LAZYWRITER_SLEEP 120 120,187

HADR_WORK_QUEUE 12 120,029

SQLTRACE_INCREMENTAL_FLUSH_SLEEP 30 120,019

REQUEST_FOR_DEADLOCK_SEARCH 24 120,011

WAITFOR 1 120,001

XE_TIMER_EVENT 59 119,966

LOGMGR_QUEUE 935 119,957

Nothing, with the exception of XE_TIMER_EVENT, jumped out as XE-related. Bob Ward’s Wait Type

Repository refers this one as safe to ignore unless there was something possible wrong – but realistically

http://blogs.msdn.com/b/psssql/archive/2009/11/03/the-sql-server-wait-type-repository.aspx
http://blogs.msdn.com/b/psssql/archive/2009/11/03/the-sql-server-wait-type-repository.aspx

would you notice this usually-benign wait type if it was in 9th place on your system during a performance

degradation? And what if you’re already filtering it out because of its normally benign nature?

Extended Events to a slow I/O path file target

Now what if I put the file on a slow I/O path? The following table shows the before-and-after batch

requests per second when enabling an XE session with a file target on a USB stick:

Baseline Batch Requests per Second

(2 minute average)

SQL Profiler Batch Requests per Second

(2 minute average)

14,492 4,386

The top wait types were as follows:

wait_type waiting_tasks_count wait_time_ms

FT_IFTS_SCHEDULER_IDLE_WAIT 4 237,046

SLEEP_TASK 253 180,719

HADR_FILESTREAM_IOMGR_IOCOMPLETION 240 120,427

LAZYWRITER_SLEEP 120 120,190

HADR_WORK_QUEUE 12 120,025

SQLTRACE_INCREMENTAL_FLUSH_SLEEP 30 120,013

REQUEST_FOR_DEADLOCK_SEARCH 24 120,011

WAITFOR 1 120,002

DIRTY_PAGE_POLL 1,197 119,977

XE_TIMER_EVENT 59 119,949

Again, nothing XE-related jumping out except for the XE_TIMER_EVENT.

Extended Events to a slow I/O path file target, no event loss

The following table shows the before-and-after batch requests per second when enabling an XE session

with a file target on a USB stick, but this time without allowing event loss

(EVENT_RETENTION_MODE=NO_EVENT_LOSS) – which is not recommended and you’ll see in the results

why that might be:

Baseline Batch Requests per Second

(2 minute average)

SQL Profiler Batch Requests per Second

(2 minute average)

14,492 539

The top wait types were as follows:

wait_type waiting_tasks_count wait_time_ms

XE_BUFFERMGR_FREEBUF_EVENT 8,773 1,707,845

FT_IFTS_SCHEDULER_IDLE_WAIT 4 237,003

SLEEP_TASK 337 180,446

LAZYWRITER_SLEEP 120 120,032

DIRTY_PAGE_POLL 1,198 120,026

HADR_WORK_QUEUE 12 120,009

REQUEST_FOR_DEADLOCK_SEARCH 24 120,007

SQLTRACE_INCREMENTAL_FLUSH_SLEEP 30 120,006

WAITFOR 1 120,000

XE_TIMER_EVENT 59 119,944

With the extreme throughput reduction, we see XE_BUFFERMGR_FREEBUF_EVENT jump to the number

one position on our accumulated wait time results. This one is documented in Books Online, and

Microsoft tells us that this event is associated with XE sessions configured for no event loss, and where

all buffers in the session are full.

Observer Impact

Wait types aside, it was interesting to note what impact each observation method had on our

workload's ability to process batch requests:

http://msdn.microsoft.com/en-us/library/ms179984.aspx

Impact of different observation methods on batch requests per second

For all approaches, there was a significant – but not shocking – hit compared to our baseline (no

observation); the most pain, however, was felt when using Profiler, when using Server-Side Trace to a

slow I/O path, or Extended Events to a file target on a slow I/O path – but only when configured for no

event loss. With event loss, this setup actually performed on par with a file target to a fast I/O path,

presumably because it was able to drop a lot more events.

Summary

I didn’t test every possible scenario and there certainly are other interesting combinations (not to

mention different behaviors based on SQL Server version), but the key conclusion I take away from this

exploration is that you cannot always rely on an obvious wait type accumulation pointer when facing an

observer overhead scenario. Based on the tests in this post, only three out of seven scenarios

manifested a specific wait type that could potentially help point you in the right direction. Even then –

these tests were on a controlled system – and oftentimes people filter out the aforementioned wait

types as benign background types – so you might not see them at all.

Given this, what can you do? For performance degradation without clear or obvious symptoms, I

recommend widening the scope to ask about traces and XE sessions (as an aside – I also recommend

widening your scope if the system is virtualized or may have incorrect power options). For example, as

part of troubleshooting a system, check sys.[traces] and sys.[dm_xe_sessions] to see if anything is

running on the system that is unexpected. It is an extra layer to what you need to worry about, but

doing a few quick validations may save you a significant amount of time.

VMware CPU Hot Plug vNUMA Effects on SQL Server
By Johathan Kehayias

When ESX 5 and Hyper-V in Windows Server 2012 released and changed the limitations that previously

existed for VM sizes, I knew almost immediately that we'd see more large scale-up SQL Server workloads

start to be virtualized. I've worked with a number of customers in the last year that were virtualizing 16-

32 core SQL Servers with various reasons, from simplified Disaster Recovery strategies that matched the

rest of the business, to consolidation and lower total cost of ownership on newer hardware platforms.

One of the reasons for the scalability change with ESX 5+ was the introduction of virtual NUMA

(vNUMA) for wide guests that exceeded the size of an individual hardware NUMA node. With vNUMA,

the guest VM is optimized to match the hardware NUMA topology, allowing the guest operating system

and any NUMA aware applications, like SQL Server, that are running on the VM to take advantage of the

NUMA performance optimizations, just as if they were running on a physical server.

Within VMware, a vNUMA topology is available on hardware version 8 or higher, and gets configured by

default if the number of vCPUs is greater than eight for the guest. It is also possible to manually

configure the vNUMA topology for a VM using advanced configuration options, which can be useful for

VMs that have more memory allocated to them than a physical NUMA node can provide, but still uses

eight or fewer vCPUs. For the most part, the default configuration settings work for the majority of VMs

that I've looked at over the last few years, but there are certain scenarios where the default vNUMA

topology isn't ideal and manual configuration can provide some benefits. Recently I was working with a

client with a number of 32 vCPU SQL Server VMs with 512GB RAM allocated doing some performance

tuning where the vNUMA topology wasn't anything close to what was expected.

The VM host servers in this environment were four socket E5-4650 eight core processors and 1TB of

RAM, each dedicated to a single SQL Server VM under typical operations, but with available capacity to

sustain two VMs in a failure scenario. With this hardware layout, there are four NUMA nodes, one per

socket, and the expected VM configuration would also have 4 vNUMA nodes presented to it for a 32

vCPU configuration. However, what I found while looking at the DMVs in SQL Server was that this wasn't

the case:

Figure 1 – Incorrect vNUMA configuration

As you can probably see in the image, something is really wrong with the NUMA configuration on this

server. There are four memory nodes within SQLOS and only a single CPU Node, with all of the vCPUs

allocated in it. To be perfectly honest, this blew my mind when I saw it because it went against

everything I knew about how SQLOS configured the internal structures at instance startup. After digging

around a bit in the ErrorLog files, Performance Monitor, and Windows Task Manager, I downloaded a

copy of CoreInfo from SysInternals, and took a look at the NUMA layout being reported to Windows.

Logical Processor to Socket Map:
********———————— Socket 0
——–********—————- Socket 1
—————-********——– Socket 2
————————******** Socket 3
Logical Processor to NUMA Node Map:

******************************** NUMA Node 0

The CoreInfo output confirmed that the VM present the 32 vCPUs as 4 different sockets, but then

grouped all 32 vCPUs into NUMA Node 0. Looking at the Windows Server 2012 performance counters on

the VM I could see from the NUMA Node Memory counter group, that 4 NUMA memory nodes were

presented to the OS with the memory evenly distributed across the nodes. This all lined up with what I

was seeing in SQLOS, and I could also tell from the startup ERRORLOG entries that the cpu mask for the

node was masking all available CPUs into CPU Node 0, but four Large Page Allocators were being

created, one for each memory node.

09/22/2013 05:03:37,Server,Unknown,Node configuration: node 0: CPU mask:

0x00000000ffffffff:0 Active CPU mask: 0x00000000ffffffff:0. This message

http://technet.microsoft.com/en-us/sysinternals/cc835722.aspx

provides a description of the NUMA configuration for this computer. This is an

informational message only. No user action is required.

09/22/2013 05:03:37,Server,Unknown,This instance of SQL Server last reported

using a process ID of 1596 at 9/22/2013 5:00:25 AM (local) 9/22/2013 10:00:25

AM (UTC). This is an informational message only; no user action is required.

09/22/2013 05:03:35,Server,Unknown,Large Page Allocated: 32MB

09/22/2013 05:03:35,Server,Unknown,Large Page Allocated: 32MB

09/22/2013 05:03:35,Server,Unknown,Large Page Allocated: 32MB

09/22/2013 05:03:35,Server,Unknown,Large Page Allocated: 32MB

09/22/2013 05:03:35,Server,Unknown,Using locked pages in the memory manager.

09/22/2013 05:03:35,Server,Unknown,Detected 524287 MB of RAM. This is an

informational message; no user action is required.

09/22/2013 05:03:35,Server,Unknown,SQL Server is starting at normal priority

base (=7). This is an informational message only. No user action is required.

09/22/2013 05:03:35,Server,Unknown,SQL Server detected 4 sockets with 8 cores

per socket and 8 logical processors per socket 32 total logical processors;

using 32 logical processors based on SQL Server licensing. This is an

informational message; no user action is required.

At this point I was sure it was something related to the VM configuration, but I couldn't identify what

specifically the problem was as I had never seen this behavior on other wide SQL Server VMs that I'd

assisted clients on VMware ESX 5+ in the past. After making a couple of configuration changes to a test

VM server that was available, only none of them corrected the vNUMA configuration being presented

inside the VM. After calling into VMware support, we were asked to disable the vCPU hotplug feature

for the test VM and see if that corrected the issue. With hotplug disabled on the VM, the CoreInfo

output confirmed that the vNUMA mapping of the processors for the VM now was correct:

Logical Processor to Socket Map:
********———————— Socket 0
——–********—————- Socket 1
—————-********——– Socket 2
————————******** Socket 3
Logical Processor to NUMA Node Map:

********———————— NUMA Node 0

——–********—————- NUMA Node 1

—————-********——– NUMA Node 2

————————******** NUMA Node 3

This behavior is actually documented in the VMware KB article, (vNUMA is disabled if VCPU hotplug is

enabled), from October 2013. This happened to be the first wide VM for SQL Server that I had worked

with where vCPU hotplug was enabled, and it's not a typical configuration I would expect for a 32 vCPU

VM, but was a part of the standard template being used at the client and happened to affect their SQL

Server.

Effects of vNUMA being disabled

There are a number of effects that vNUMA being disabled like this could have to a workload, but there

are two specific problems that could affect SQL Server specifically under this type of configuration. The

first is that the server could have problems with CMEMTHREAD wait accumulations since there are 32

vCPUs allocated to a single NUMA node, and the default partitioning for memory objects in SQLOS is per

http://kb.vmware.com/kb/2040375
http://kb.vmware.com/kb/2040375

NUMA node. This specific problem was documented by Bob Dorr in the CSS group at Microsoft on their

blog post SQL Server 2008/2008 R2 on Newer Machines with More Than 8 CPUs Presented per NUMA

Node May Need Trace Flag 8048. As a part of doing wait stats review on the VM with the client I noted

that CMEMTHREAD was their second highest wait type, which is abnormal from my experience and

caused me to look at SQLOS NUMA configuration shown in Figure 1 above. In this case the trace flag

isn't the solution, removing vCPU hotplug from the VM configuration resolves the issue.

The second problem that would affect SQL Server specifically if you are on an unpatched version is

associated with NUMA memory management in SQLOS, and the way that SQLOS tracks and manages

Away pages during the initial memory ramp-up phase after instance startup. This behavior was

documented by Bob Dorr on the CSS blog post, How It Works: SQL Server (NUMA Local, Foreign and

Away Memory Blocks). Essentially, when SQLOS attempts a local node memory allocation during initial

ramp-up, if the memory address returned is from a different memory node, the page is added to the

Away list, and another local memory allocation attempt occurs, and the process repeats until a local

memory allocation succeeds, or the server memory target is reached. Since three fourths of our

instances memory exists on NUMA nodes without any schedulers, this creates a degraded performance

condition during the initial ramp-up of memory for the instance. Recent updates have changed the

behavior of memory allocation during initial ramp-up to only attempt the local memory allocation a

fixed number of times (the specific number is not documented) before using the foreign memory to

continue processing. Those updates are documented in KB #2819662, FIX: SQL Server performance

issues in NUMA environments.

Summary

For wide VMs, defined as having greater than 8 vCPUs, it is desirable to have vNUMA passed into the

VM by the hypervisor to allow Windows and SQL Server to leverage the NUMA optimizations within

their code base. As a result, these wider VMs should not have the vCPU hotplug configuration enabled,

as this is incompatible with vNUMA and can result in degraded performance for SQL Server when

virtualized.

http://blogs.msdn.com/b/psssql/archive/2011/09/01/sql-server-2008-2008-r2-on-newer-machines-with-more-than-8-cpus-presented-per-numa-node-may-need-trace-flag-8048.aspx
http://blogs.msdn.com/b/psssql/archive/2011/09/01/sql-server-2008-2008-r2-on-newer-machines-with-more-than-8-cpus-presented-per-numa-node-may-need-trace-flag-8048.aspx
http://blogs.msdn.com/b/psssql/archive/2012/12/13/how-it-works-sql-server-numa-local-foreign-and-away-memory-blocks.aspx
http://blogs.msdn.com/b/psssql/archive/2012/12/13/how-it-works-sql-server-numa-local-foreign-and-away-memory-blocks.aspx
http://support.microsoft.com/kb/2819662
http://support.microsoft.com/kb/2819662

Troubleshooting SQL Server CPU Performance Issues
By Joe Sack

In this post I’ll discuss a general methodology for troubleshooting CPU performance issues. I like

applying methodologies by default and I also like building efficiencies in how I troubleshoot issues based

on past experiences. Without a general framework, it becomes too easy to miss the true root cause in

the middle of a crisis.

The steps I’ll describe in this post are as follows:

1. Define the problem

2. Validate the current conditions

3. Answer “Is it SQL Server”?

4. Identify CPU consumers

5. Match the pattern and resolve

This article will cover each of these steps. I’ll be making an assumption that you may not be using a

third-party monitoring tool. If you are though, the framework here still applies, but your data sources

and tools at your disposal will vary from what I describe.

Define the problem

First we need to scope the issue. When someone comes up to you and says they are seeing a CPU

performance issue, this could mean any number of different things. So the first task is to understand

what the nature of the CPU performance issue currently is.

Some common categories include:

 Availability being impacted due to “pegged CPUs”. For example – all schedulers running at 100%

across the board and throughput being stalled or significantly reduced.

 Degradation of performance due to “higher than normal” CPU usage. So we’re not pegged, but

your CPUs are running at a higher percentage than is ordinary and presumably it is impacting

performance.

 Another common category of CPU performance issue is the “winners and losers” scenario where

workloads are competing against each other. Perhaps you have an OLTP workload that is

encountering reduced throughput due to a parallel executing report query.

 Another problem might be the encountering of a tipping point – where the overall capacity and

scalability limitations of your system are hit at a certain point.

I mention these over-arching categories as a starting point, but I know that often there can be heavy

dependencies across these issues and one categorization can blend into the other. With that said, the

first step is to define the symptoms and problems as clearly as possible.

Validate the current conditions

Whether the issue happened in the past or is happening right now, it is important to get as much

background information about the system, workload and configurations as possible. If you’re using

baselines and run-books, ideally you’re tracking much of this information already. If not, ask yourself

how quickly you could get answers to these questions at 2AM in the middle of a crisis.

The following sub-sections cover important data points that I’m typically interested in for a CPU-

performance issue.

Physical server details

o How many sockets and cores?

o Is hyper-threading enabled?

o What is the processor model, architecture (32-bit/64-bit)?

Virtual server details

o Is this a virtual guest?

o If so, you’re now also going to be interested in details about the host and the other

virtual guests you’re sharing resources with.

o Are there any CPU-related settings in effect?

o For example, Hyper-V CPU

Reserve, VMware CPU Reservation, Hyper-V CPU Relative Weight, and VMware CPU Shares.

o How many vCPUs are allocated across guests?

o How many vCPUs does this guest have?

o Was the guest recently migrated to a new host prior to the issue?

SQL Server instance configuration settings

o Max degree of parallelism setting

o Cost threshold for parallelism option

o Processor affinity setting

o Priority boost setting

o Max worker threads setting

o Lightweight pooling setting

The first three configurations may require further discussion. There are rarely absolutes regarding these

settings.

Regarding the last three settings, such as “priority boost”, if I see that they are at non-default values I’m

definitely going to be pushing for more background information and history.

CPU power-option settings

o What is the power-option setting? (OS level, VM Host or BIOS controlled)

 High Performance, Balanced, Power Saving?

Power-option settings below “High Performance” are still very common and shouldn’t be ignored for

servers that host SQL Server instances.

Resource Governor configuration

o Is it configured beyond the default settings?

I still find that it is rare to encounter customers using this feature at all, but it is easy to validate whether

it is being used and will be worth it for the times that it is actually configured beyond the default.

SQL Server error log and Windows event logs

o Do you see any unusual warnings or errors?

Why look in the error and event logs for a CPU issue? Sometimes upstream issues can cause

downstream performance issues in SQL Server. You don’t want to waste time tuning a query or adding a

new index when you’re upstream root-cause issue is a hardware component degradation issue.

Answer “Is it SQL Server?”

It sounds obvious when I ask it, but you really don’t want to spend a significant amount of time

troubleshooting a high CPU issue in SQL Server if the culprit isn’t actually SQL Server.

Instead, take a quick moment to check which process is consuming the most CPU. There are several

options to choose from, including:

 Process: % User Time (user mode)

 Process: % Privileged Time (kernel mode)

 Task Manager

 Process Explorer

 Recent CPU information via sys.dm_os_ring_buffers or the system health session for the specific

SQL Server instances running on the system

If it is SQL Server and you have multiple SQL Server instances to choose from, be sure you’re

troubleshooting the right SQL Server instance on the host. There are a few ways to do this, including the

use of SELECT SERVERPROPERTY('processid') to get the PID and then associating it to Task Manager or

Process Explorer.

Once you’ve confirmed it is SQL Server, are you seeing high user time or privileged (kernel) time? Again

this can be confirmed via Process: % Privileged Time (sqlservr object) and also Windows Task Manager

or Process Explorer.

While high kernel time issues should be rare, they still require different troubleshooting paths than

standard user time CPU troubleshooting issues. Some potential causes of high kernel time include faulty

filter-drivers (anti-virus, encryption services), out-of-date or missing firmware updates and drivers, or

defective I/O components.

Identify CPU consumers

Once you’ve validated which SQL Server instance is driving the user-time CPU usage on the system,

there are plenty of pre-canned query examples out on the web that you could use.

Below is a list of DMVs that people commonly use in various forms during a performance issue. I

structured this in a Q&A format to help frame why you would want to access them.

What requests are executing right now and what is their status?

o sys.dm_exec_requests

What is it executing?

o sys.dm_exec_sql_text

Where is it from?

o sys.dm_exec_sessions

o sys.dm_exec_connections

What is its estimated plan? (but be careful of shredding xml on an already-CPU-constrained system)

o sys.dm_exec_query_plan

Who’s waiting on a resource and what are they waiting for?

o sys.dm_os_waiting_tasks

Which queries have taken up the most CPU time since the last restart?

o sys.dm_exec_query_stats

 Aggregate by total_worker_time

 Define averages with execution_count

 If ad hoc workloads, you could group by query_hash

 Use the plan_handle with sys.dm_exec_query_plan to grab the plan

Is this query using parallelism?

o sys.dm_os_tasks

 Ordered by session_id, request_id

o sys.dm_exec_query_plan

 Look at plan operators – but keep in mind this is just the estimated plan

o sys.dm_exec_query_stats

 Filter total_elapsed_time less than total_worker_time

 But note that this can be a false negative for blocking scenarios – where

duration is inflated due to a wait on resource

Match the pattern and resolve

You’re probably laughing at this particular step – as this one can be the most involved (and is another

reason why SQL Server professionals are gainfully employed). There are several different patterns and

associated resolutions – so I’ll finish this post with a list of the more common CPU performance issue

drivers that I’ve seen over the last few years:

 High I/O operations (and in my experience this is the most common driver of CPU)

 Cardinality estimate issues (and associated poor query plan quality)

 Unexpected parallelism

 Excessive compilation / recompilation

 Calculation-intensive UDF calls, shredding operations

 Row-by-agonizing row operations

 Concurrent maintenance activities (e.g. UPDATE stats with FULLSCAN)

Each area I’ve identified has a large associated body of work to research. In terms of consolidated

resources, I still think one of the better ones is still the “Troubleshooting Performance Problems in SQL

Server 2008” technical article written by Sunil Agarwal, Boris Baryshnikov, Keith Elmore, Juergen

Thomas, Kun Cheng and Burzin Patel.

Summary

As with any methodology, there are boundaries for its utilization and areas where you are justified in

improvising. Please note that I’m not suggesting the steps I described in this post be used as a rigid

framework, but instead consider it to be a launch-point for your troubleshooting efforts. Even highly

experienced SQL Server professionals can make rookie mistakes or be biased by their more recent

troubleshooting experiences, so having a minimal methodology can help avoid troubleshooting the

wrong issue.

http://msdn.microsoft.com/en-us/library/dd672789(v=sql.100).aspx
http://msdn.microsoft.com/en-us/library/dd672789(v=sql.100).aspx

Using Geekbench 3 to Evaluate Database Server Performance
By Glenn Berry

One of my favorite tools for quickly evaluating and comparing processor and memory performance on a

database server is Geekbench 3 from Primate Labs. Primate Labs just released the completely

rewritten Geekbench 3.0 on Aug 16, 2013, and the latest version is Geekbench 3.02.

Geekbench developer John Poole describes Geekbench 3 like this: “Geekbench 3 includes 15 new

benchmark tests that are designed to model real-world processor intensive tasks. The new tests cover a

number of different application domains, including encryption, image processing, signal processing, and

physics simulation. Geekbench 3 also includes 12 completely rewritten benchmark tests from

Geekbench 2. These tests are now more representative of real-world applications and usage scenarios.”

Geekbench is a cross-platform, processor and memory benchmark that quickly measures both integer

and floating-point processor performance along with your memory performance on a computer in just a

couple of minutes, without requiring (or allowing) any configuration whatsoever. You just install

Geekbench, unlock your license, and run the program, and you will see the results in roughly two-three

minutes. You can then decide whether you want to upload your results to the Geekbench online

database, either anonymously or using a Geekbench account. By design, Geekbench does not measure

I/O performance.

Figure 1: Geekbench 3 Main Screen

http://www.primatelabs.com/
http://www.primatelabs.com/blog/2013/08/geekbench-3/
http://www.primatelabs.com/blog/2013/08/geekbench-302/

Geekbench Scores

Geekbench 3 has an overall Single-Core Score and an overall Multi-Core Score, along with individual

scores for each one of the twenty-seven tests in the benchmark. The single-core score is very useful for

evaluating single-threaded processor and memory performance, which is very important for SQL Server

OLTP workloads (since most OLTP queries end up only running on a single processor core). The multi-

core score is useful for evaluating the multi-threaded processor and memory performance of the entire

machine.

With SQL Server 2012 core-based licensing, you want to make sure you are getting the best single-

threaded performance possible from each physical processor core that you have to buy a relatively

expensive SQL Server 2012 core license for. The Geekbench 3 Single-Core score is one quick and easy

way to measure both single-threaded processor and memory performance.

Geekbench Usage Scenarios

One handy usage scenario for Geekbench 3 is to confirm that your processor cores are not being

throttled back due to software or hardware-level power management. Modern Intel and AMD

processors can reduce their electrical power usage when they are not under a heavy workload by

reducing their current core speed. This is a good way to increase battery life on a laptop or tablet, but it

is not a good idea for a mission-critical database server. The problem is that the core speed of the

processors does not react quickly enough (depending on the processor model) to an increase in load to

avoid hurting performance, especially for short duration OLTP-type queries.

By default, Windows Server 2008 and newer use the Balanced Power Plan when they are first installed.

You should make sure to change this setting to use the High Performance Power Plan on your database

server, but you should be aware that the BIOS-level hardware power management setting can override

the Windows Power Plan. This means that even though you have the Windows Power Plan set to High

Performance, the processor core speed may still be reduced to less than the rated base clock speed of

the processor.

You can detect this problem by using the free CPU-Z utility (as shown in Figure 2) to see the current Core

Speed of Core #0 of the current processor. If the current Core Speed is significantly less than the rated,

base clock speed of your processor, you have either software or hardware (or both) power management

in effect. It is sometimes harder to figure this out with the latest Intel processors when they are not

under any load, so you can use Geekbench 3 to put some intense load on your processor. While

Geekbench 3 is running, watch the current Core Speed on CPU-Z to make sure the processor is running

at or actually above the rated base clock speed of the processor during the test.

Intel Turbo Boost 2.0 allows individual processor cores to run above their rated base clock speed when

the operating system requests the highest processor performance state (P0) if they’re operating below

power, current, and temperature specification limits for the entire processor. This is an effective and

useful feature, especially for OLTP database server performance.

If you have your hardware and software power management configured correctly and you have Turbo

Boost enabled in the BIOS, you should see your processor cores periodically run at higher than their

normal base clock speed while you are running Geekbench 3 (as you see in Figure 2 and Figure 4).

http://www.cpuid.com/softwares/cpu-z/versions-history.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html

Your will also see differing Geekbench 3 scores based on your overall hardware and software power

management configurations and the exact processor that you are using. Older 45nm Intel Nehalem and

32nm Intel Westmere processors are affected more by power management settings than newer 32nm

Intel Sandy Bridge, 22nm Intel Ivy Bridge, or 22nm Intel Haswell processors.

Figure 2: CPU-Z Display of Dell PowerEdge R720 System Running Geekbench 3

Your overall Geekbench 3 scores and your Geekbench 3 memory scores are also affected by your

memory type and configuration. For example, depending on the processor (where the memory

controller is), it can make a pretty significant difference how exactly how many memory modules are

populated and exactly what slots are populated. It also makes a difference whether you have 1333MHz

memory modules, 1600MHz memory modules, or 1866MHz memory modules (1866MHz is supported

by the upcoming Intel Ivy Bridge-EP). Dell has an online memory configuration utility for their 12th

Generation servers that can help you configure your memory correctly, but you can use the memory

scores in Geekbench 3 to validate that you are getting better performance after a memory configuration

change.

https://roianalyst.alinean.com/dell/AutoLogin.do?d=240493329964944458

Figure 3 and Figure 5 show the Geekbench 3 results for a two-socket Dell PowerEdge R720 server with

two, 32nm Intel Xeon E5-2670 Sandy Bridge-EP processors compared to a single-socket desktop system

with a newer and faster 22nm Intel Core i7-3770K Ivy Bridge processor (that is also mildly over-clocked).

The faster clock speed Ivy Bridge system has a much higher Single-Core score than the lower clock speed

Sandy Bridge server system. Ivy Bridge also has some minor architectural improvements that improve its

performance slightly compared to Sandy Bridge.

Running Geekbench 3 only takes about two-three minutes, and it gives you a wealth of useful

information about your processor and memory performance. Even if you are unable or unwilling to run

Geekbench on your database servers (during a maintenance window or before they are deployed to

production), you can still take advantage of the online Geekbench database of scoresto find a similar

system to what you want to evaluate.

http://browser.primatelabs.com/

Figure 3: Dell PowerEdge R720 64-bit Geekbench 3 Results

Figure 4: CPU-Z Display of Ivy Bridge Core i7-3770K Desktop System Running Geekbench 3

Figure 5: Ivy Bridge Core i7-3770K Desktop System 64-bit Geekbench 3 Results

What Virtual Filestats Do, and Do Not, Tell You About I/O Latency
By Erin Stellato

Background

One of the first things I look at when I'm troubleshooting a performance issue is wait statistics via

the sys.dm_os_wait_stats DMV. To see what SQL Server is waiting on, I use the query from Glenn Berry’s

current set of SQL Server Diagnostic Queries. Depending on the output, I start digging into specific areas

within SQL Server.

As an example, if I see high CXPACKET waits I check the number of cores on the server, the number of

NUMA nodes, and the values for max degree of parallelism and cost threshold for parallelism. This is

background information that I use to understand the configuration. Before I even consider making any

changes, I gather more quantitative data, as a system with CXPACKET waits does not necessarily have an

incorrect setting for max degree of parallelism.

Similarly, a system that has high waits for I/O-related wait types such as PAGEIOLATCH_XX, WRITELOG,

and IO_COMPLETION does not necessarily have an inferior storage subsystem. When I see I/O-related

wait types as the top waits, I immediately want to understand more about the underlying storage. Is it

direct-attached storage or a SAN? What is the RAID level, how many disks exist in the array, and what

are the speed of the disks? I also want to know if other files or databases share the storage. And while

it's important to understand the configuration, a logical next step is to look at virtual file stats via

the sys.dm_io_virtual_file_stats DMV.

Introduced in SQL Server 2005, this DMV is a replacement for the fn_virtualfilestats function that those

of you who ran on SQL Server 2000 and earlier probably know and love. The DMV contains cumulative

I/O information for each database file, but the data resets on instance restart, when a database is

closed, taken offline, detached and reattached, etc. It's critical to understand that virtual file stats data is

not representative of current performance – it is a snapshot that is an aggregation of I/O data since the

last clearing by one of the aforementioned events. Even though the data is not point-in-time, it can still

be useful. If the highest waits for an instance are I/O-related, but the average wait time is less than 10

ms, storage is probably not an issue – but correlating the output with what you see in

sys.dm_io_virtual_stats is still worthwhile to confirm low latencies. Further, even if you see high

latencies in sys.dm_io_virtual_stats, you still haven’t proven that storage is a problem.

The Setup

To look at virtual file stats, I set up two copies of the AdventureWorks2012 database, which you can

download from Codeplex. For the first copy, hereafter known as EX_AdventureWorks2012, I

ran Jonathan Kehayias' script to expand the Sales.SalesOrderHeader and Sales.SalesOrderDetail tables to

1.2 million and 4.9 million rows, respectively. For the second database, BIG_AdventureWorks2012, I

used the script from my previous partitioning post to create a copy of the Sales.SalesOrderHeader table

with 123 million rows. Both databases were stored on an external USB drive (Seagate Slim 500GB), with

tempdb on my local disk (SSD).

Before testing, I created four custom stored procedures in each database (Create_Custom_SPs.zip),

which would serve as my "normal" workload. My testing process was as follows for each database:

http://msdn.microsoft.com/en-us/library/ms179984.aspx
http://sqlserverperformance.wordpress.com/tag/dmv-queries/
http://technet.microsoft.com/en-us/library/ms190326.aspx
http://msftdbprodsamples.codeplex.com/
http://www.sqlskills.com/blogs/jonathan/enlarging-the-adventureworks-sample-databases/
http://www.sqlperformance.com/2013/09/sql-indexes/partitioning-benefits
http://cdn.sqlperformance.com/wp-content/uploads/2013/10/Create_Custom_SPs.zip

1. Restart the instance.

2. Capture virtual file stats.

3. Run the "normal" workload for two minutes (procedures called repeatedly via a PowerShell

script).

4. Capture virtual file stats.

5. Rebuild all indexes for the appropriate SalesOrder table(s).

6. Capture virtual file stats.

The Data

To capture virtual file stats, I created a table to hold historical information, and then used a variation of

Jimmy May's query from his DMV All-Stars script for the snapshot:

USE [msdb];
GO

CREATE TABLE [dbo].[SQLskills_FileLatency]
(
 [RowID] [INT] IDENTITY(1,1) NOT NULL,
 [CaptureID] [INT] NOT NULL,
 [CaptureDate] [DATETIME2](7) NULL,
 [ReadLatency] [BIGINT] NULL,
 [WriteLatency] [BIGINT] NULL,
 [Latency] [BIGINT] NULL,
 [AvgBPerRead] [BIGINT] NULL,
 [AvgBPerWrite] [BIGINT] NULL,
 [AvgBPerTransfer] [BIGINT] NULL,
 [Drive] [NVARCHAR](2) NULL,
 [DB] [NVARCHAR](128) NULL,
 [database_id] [SMALLINT] NOT NULL,
 [file_id] [SMALLINT] NOT NULL,
 [sample_ms] [INT] NOT NULL,
 [num_of_reads] [BIGINT] NOT NULL,
 [num_of_bytes_read] [BIGINT] NOT NULL,
 [io_stall_read_ms] [BIGINT] NOT NULL,
 [num_of_writes] [BIGINT] NOT NULL,
 [num_of_bytes_written] [BIGINT] NOT NULL,
 [io_stall_write_ms] [BIGINT] NOT NULL,
 [io_stall] [BIGINT] NOT NULL,
 [size_on_disk_MB] [NUMERIC](25, 6) NULL,
 [file_handle] [VARBINARY](8) NOT NULL,
 [physical_name] [NVARCHAR](260) NOT NULL
) ON [PRIMARY];
GO

CREATE CLUSTERED INDEX CI_SQLskills_FileLatency ON [dbo].[SQLskills_FileLatency]
([CaptureDate], [RowID]);

CREATE NONCLUSTERED INDEX NCI_SQLskills_FileLatency ON [dbo].[SQLskills_FileLatency]
([CaptureID]);

DECLARE @CaptureID INT;

http://blogs.msdn.com/b/jimmymay/archive/2008/10/30/drum-roll-please-the-debut-of-the-sql-dmv-all-stars-dream-team.aspx

SELECT @CaptureID = MAX(CaptureID) FROM [msdb].[dbo].[SQLskills_FileLatency];

PRINT (@CaptureID);

IF @CaptureID IS NULL
BEGIN
 SET @CaptureID = 1;
END
ELSE
BEGIN
 SET @CaptureID = @CaptureID + 1;
END

INSERT INTO [msdb].[dbo].[SQLskills_FileLatency]
(
 [CaptureID],
 [CaptureDate],
 [ReadLatency],
 [WriteLatency],
 [Latency],
 [AvgBPerRead],
 [AvgBPerWrite],
 [AvgBPerTransfer],
 [Drive],
 [DB],
 [database_id],
 [file_id],
 [sample_ms],
 [num_of_reads],
 [num_of_bytes_read],
 [io_stall_read_ms],
 [num_of_writes],
 [num_of_bytes_written],
 [io_stall_write_ms],
 [io_stall],
 [size_on_disk_MB],
 [file_handle],
 [physical_name]
)
SELECT
 --virtual file latency
 @CaptureID,
 GETDATE(),
 CASE
 WHEN [num_of_reads] = 0
 THEN 0
 ELSE ([io_stall_read_ms]/[num_of_reads])
 END [ReadLatency],
 CASE
 WHEN [io_stall_write_ms] = 0
 THEN 0
 ELSE ([io_stall_write_ms]/[num_of_writes])
 END [WriteLatency],
 CASE
 WHEN ([num_of_reads] = 0 AND [num_of_writes] = 0)
 THEN 0
 ELSE ([io_stall]/([num_of_reads] + [num_of_writes]))
 END [Latency],
 --avg bytes per IOP

 CASE
 WHEN [num_of_reads] = 0
 THEN 0
 ELSE ([num_of_bytes_read]/[num_of_reads])
 END [AvgBPerRead],
 CASE
 WHEN [io_stall_write_ms] = 0
 THEN 0
 ELSE ([num_of_bytes_written]/[num_of_writes])
 END [AvgBPerWrite],
 CASE
 WHEN ([num_of_reads] = 0 AND [num_of_writes] = 0)
 THEN 0
 ELSE (([num_of_bytes_read] + [num_of_bytes_written])/([num_of_reads] +
[num_of_writes]))
 END [AvgBPerTransfer],
 LEFT([mf].[physical_name],2) [Drive],
 DB_NAME([vfs].[database_id]) [DB],
 [vfs].[database_id],
 [vfs].[file_id],
 [vfs].[sample_ms],
 [vfs].[num_of_reads],
 [vfs].[num_of_bytes_read],
 [vfs].[io_stall_read_ms],
 [vfs].[num_of_writes],
 [vfs].[num_of_bytes_written],
 [vfs].[io_stall_write_ms],
 [vfs].[io_stall],
 [vfs].[size_on_disk_bytes]/1024/1024. [size_on_disk_MB],
 [vfs].[file_handle],
 [mf].[physical_name]
FROM [sys].[dm_io_virtual_file_stats](NULL,NULL) AS vfs
JOIN [sys].[master_files] [mf]
 ON [vfs].[database_id] = [mf].[database_id]
 AND [vfs].[file_id] = [mf].[file_id]
ORDER BY [Latency] DESC;

I restarted the instance and then immediately captured file stats. When I filtered the output to only view

the EX_AdventureWorks2012 and tempdb database files, only tempdb data was captured as no data

had been requested from the EX_AdventureWorks2012 database:

Output from initial capture of sys.dm_os_virtual_file_stats

I then ran the "normal" workload for two minutes (the number of executions of each stored procedure

varied slightly), and after it completed captured file stats again:

Output from sys.dm_os_virtual_file_stats after normal workload

We see a latency of 57ms for the EX_AdventureWorks2012 data file. Not ideal, but over time with my

normal workload, this would probably even out. There is minimal latency for tempdb, which is expected

http://cdn.sqlperformance.com/wp-content/uploads/2013/10/1_output_initial_capture.jpg
http://cdn.sqlperformance.com/wp-content/uploads/2013/10/2_output_after_normal_workload.jpg

as the workload I ran doesn’t generate much tempdb activity. Next I rebuilt all indexes for the

Sales.SalesOrderHeaderEnlarged and Sales.SalesOrderDetailEnlarged tables:

USE [EX_AdventureWorks2012];
GO
ALTER INDEX ALL ON Sales.SalesOrderHeaderEnlarged REBUILD;
ALTER INDEX ALL ON Sales.SalesOrderDetailEnlarged REBUILD;

The rebuilds took less than a minute, and notice the spike in read latency for the

EX_AdventureWorks2012 data file, and the spikes in write latency for the EX_AdventureWorks2012

data and log files:

Output from sys.dm_os_virtual_file_stats after index rebuild

According to that snapshot of file stats, latency is horrible; over 600ms for writes! If I saw this value for a

production system it would be easy to immediately suspect problems with storage. However, it's also

worth noting that AvgBPerWrite increased as well, and bigger block writes take longer to complete. The

AvgBPerWrite increase is expected for the index rebuild task.

Understand that as you look at this data, you are not getting a complete picture. A better way to look at

latencies using virtual file stats is to take snapshots and then calculate latency for the elapsed time

period. For example, the script below uses two snapshots (Current and Previous) and then calculates the

number of reads and writes in that time period, the difference in io_stall_read_ms and

io_stall_write_ms values, and then divides io_stall_read_ms delta by number of reads, and

io_stall_write_ms delta by number of writes. With this method, we calculate the amount of time SQL

Server was waiting on I/O for reads or writes, and then divide it by the number of reads or writes to

determine latency.

DECLARE @CurrentID INT, @PreviousID INT;
SET @CurrentID = 3;
SET @PreviousID = @CurrentID - 1;

WITH [p] AS (SELECT
 [CaptureDate],
 [database_id],
 [file_id],
 [ReadLatency],
 [WriteLatency],
 [num_of_reads],
 [io_stall_read_ms],
 [num_of_writes],
 [io_stall_write_ms]
 FROM [msdb].[dbo].[SQLskills_FileLatency]
 WHERE [CaptureID] = @PreviousID
)
SELECT
 [c].[CaptureDate] [CurrentCaptureDate],
 [p].[CaptureDate] [PreviousCaptureDate],

http://cdn.sqlperformance.com/wp-content/uploads/2013/10/3_output_after_index_rebuild.jpg

 DATEDIFF(MINUTE, [p].[CaptureDate], [c].[CaptureDate]) [MinBetweenCaptures],
 [c].[DB],
 [c].[physical_name],
 [c].[ReadLatency] [CurrentReadLatency],
 [p].[ReadLatency] [PreviousReadLatency],
 [c].[WriteLatency] [CurrentWriteLatency],
 [p].[WriteLatency] [PreviousWriteLatency],
 [c].[io_stall_read_ms]- [p].[io_stall_read_ms] [delta_io_stall_read],
 [c].[num_of_reads] - [p].[num_of_reads] [delta_num_of_reads],
 [c].[io_stall_write_ms] - [p].[io_stall_write_ms] [delta_io_stall_write],
 [c].[num_of_writes] - [p].[num_of_writes] [delta_num_of_writes],
 CASE
 WHEN ([c].[num_of_reads] - [p].[num_of_reads]) = 0 THEN NULL
 ELSE ([c].[io_stall_read_ms] -
[p].[io_stall_read_ms])/([c].[num_of_reads] - [p].[num_of_reads])
 END [IntervalReadLatency],
 CASE
 WHEN ([c].[num_of_writes] - [p].[num_of_writes]) = 0 THEN NULL
 ELSE ([c].[io_stall_write_ms] -
[p].[io_stall_write_ms])/([c].[num_of_writes] - [p].[num_of_writes])
 END [IntervalWriteLatency]
FROM [msdb].[dbo].[SQLskills_FileLatency] [c]
JOIN [p] ON [c].[database_id] = [p].[database_id] AND [c].[file_id] = [p].[file_id]
WHERE [c].[CaptureID] = @CurrentID
AND [c].[database_id] IN (2, 11);

When we execute this to calculate latency during the index rebuild, we get the following:

Latency calculated from sys.dm_io_virtual_file_stats during index rebuild for EX_AdventureWorks2012

Now we can see that the actual latency during that time was high – which we would expect. And if we

then went back to our normal workload and ran it for a few hours, the average values calculated from

virtual file stats would decrease over time. In fact, if we look at PerfMon data which was captured during

the test (and then processed through PAL), we see significant spikes in Avg. Disk sec/Read and Avg. Disk

sec/Write which correlates to the time that the index rebuild was running. But at other times, the

latency values are well below acceptable values:

http://cdn.sqlperformance.com/wp-content/uploads/2013/10/4_comparison.png
http://pal.codeplex.com/

Summary of Avg Disk Sec/Write from PAL for EX_AdventureWorks2012 during testing

Summary of Avg Disk Sec/Write from PAL for EX_AdventureWorks2012 during testing

You can see the same behavior for the BIG_AdventureWorks 2012 database. Here is the latency

information based on the virtual file stats snapshot before the index rebuild and after:

Latency calculated from sys.dm_io_virtual_file_stats during index rebuild for BIG_AdventureWorks2012

And Performance Monitor data shows the same spikes during the rebuild:

http://cdn.sqlperformance.com/wp-content/uploads/2013/10/PhysicalDisk_Avg_Disk_sec_Write01.png
http://cdn.sqlperformance.com/wp-content/uploads/2013/10/PhysicalDisk_Avg_Disk_sec_Write01.png
http://cdn.sqlperformance.com/wp-content/uploads/2013/10/PhysicalDisk_Avg_Disk_sec_Write01.png
http://cdn.sqlperformance.com/wp-content/uploads/2013/10/4_comparison_BIG.png

Summary of Avg Disk Sec/Read from PAL for BIG_AdventureWorks2012 during testing

Summary of Avg Disk Sec/Write from PAL for BIG_AdventureWorks2012 during testing

Conclusion

Virtual file stats are a great starting point when you want to understand I/O performance for a SQL

Server instance. If you see I/O-related waits when looking at wait statistics, looking at

sys.dm_io_virtual_file_stats is a logical next step. However, understand that the data you're viewing is

an aggregate since the stats last cleared by one of the associated events (instance restart, offline of

database, etc). If you see low latencies, then the I/O subsystem is keeping up with the performance

load. However, if you see high latencies, it's not a foregone conclusion that storage is a problem. To

really know what's going on you can start to snapshot file stats, as shown here, or you can simply use

Performance Monitor to look at latency in real time. It's very easy to create a Data Collector Set in

PerfMon that captures the Physical Disk counters Avg. Disk Sec/Read and Avg. Disk Sec/Read for all disks

that host database files. Schedule the Data Collector to start and stop on a regular basis, and sample

http://cdn.sqlperformance.com/wp-content/uploads/2013/10/PhysicalDisk_Avg_Disk_sec_Read0.png
http://cdn.sqlperformance.com/wp-content/uploads/2013/10/PhysicalDisk_Avg_Disk_sec_Write0.png

every n seconds (e.g. 15), and once you've captured PerfMon data for an appropriate time, run it

through PAL to examine latency over time.

If you do find that I/O latency occurs during your normal workload, and not just during maintenance

tasks that drive I/O, you still cannot point to storage as the underlying problem. Storage latency can

exist for a variety of reasons, such as:

 SQL Server has to read too much data as a result of inefficient query plans or missing indexes

 Too little memory is allocated to the instance and the same data is read from disk over and over

because it cannot stay in memory

 Implicit conversions cause index or table scans

 Queries perform SELECT * when not all columns are required

 Forwarded record problems in heaps cause additional I/O

 Low page densities from index fragmentation, page splits, or incorrect fill factor settings cause

additional I/O

Whatever the root cause, what's essential to understand about performance – particularly as it relates

to I/O – is that there is rarely one data point that you can use to pinpoint the problem. Finding the true

issue takes multiple facts that, when pieced together, help you uncover the problem.

Finally, note that in some cases the storage latency may be completely acceptable. Before you demand

faster storage or changes to code, review the workload patterns and Service Level Agreement (SLA) for

the database. In the case of a Data Warehouse that services reports to users, the SLA for queries is

probably not the same sub-second values you would expect for a high-volume OLTP system. In the DW

solution, I/O latencies greater than one second might be perfectly acceptable and expected. Understand

the expectations of the business and its users, and then determine what action, if any, to take. And if

changes are required, gather the quantitative data you need to support your argument, namely wait

statistics, virtual file statistics, and latencies from Performance Monitor.

Performance Issues: The First Encounter
By Erin Stellato

As a DBA, addressing performance issues is often a reactive event; problem occurs, you have to

respond. Sometimes you are looking at a SQL Server instance that you know well, other times it may be

your first encounter with an environment. This occurs in the consulting world as well. When helping a

long-term customer, I already have the details about the environment filed away. However, when we

get an email from someone who we have not worked with before, and it’s an emergency situation

where they want immediate help, we have no background about the environment and have no idea

what we are walking into. We provide assistance without going through the extensive data collection

and analysis process that begins every new customer engagement.

For this reason, I have a set of five items that I check immediately when I confront a new

environment. The information I collect sets the stage for how I approach troubleshooting going

forward, and while it rarely pinpoints THE specific problem, it helps me rule out what is NOT the

problem, which is sometimes just as important.

Data Collection Methods

I recognize that everyone has a different approach when tackling a new environment. There are several

free, widely available scripts that you can download and run to give you the “lay of the land” for a SQL

Server instance (Glenn Berry's DMV scripts come to mind). The focus here is not how you collect the

data, it is what data you collect, and what you analyze first.

Server Properties

The very first thing I want to know when I look at an instance is the SQL Server version and edition. The

fastest way to get this information is to execute:

SELECT @@VERSION;

With this output, I can check the build to determine the service packs, cumulative updates, and hotfixes

applied, and I know what edition is used. I also like to know if the instance is clustered, so I also execute:

SELECT SERVERPROPERTY('IsClustered');

I do sometimes have this information from the customer, but it never hurts to verify, as version and

edition can affect subsequent troubleshooting steps and recommendations. For example, a client

recently contacted us about an intermittent performance issue they saw with SQL Server 2008. A quick

check of the version revealed that they were running SQL Server 2008 SP3, and there were several

Cumulative Updates released after SP3 that addressed a range of performance issues. While I gathered

more information before making the recommendation that they apply the latest CU, this was an

immediate red flag as to what may be causing the issue.

http://sqlserverperformance.wordpress.com/tag/dmv-queries/

sys.configurations

This catalog view helps build on the foundation started with server properties, and helps us understand

how the instance is configured. With this view, I look for settings that have been changed from the

defaults, but should not have been, and those that have not been modified, but should.

SELECT [name], [value], [value_in_use], [description]
 FROM [sys].[configurations]
 ORDER BY [name];

Consider the max server memory (MB) setting, which limits the amount of memory available to the

buffer pool. The default value is 2147483647, but it should be changed to a value less than the total

memory on the server to ensure there is plenty of memory for the OS, other applications, and other SQL

Server tasks that require memory not taken from the buffer pool. For guidance on setting the

appropriate value for max server memory (MB), I recommend Jonathan's post, How much memory does

my SQL Server actually need?

Conversely, the priority boost setting has a default of zero, and should always be left as such. In

fact, Microsoft recommends not changing it, and the option will be removed in a future release of SQL

Server.

sys.databases

After I understand how the instance is configured, I next look to see what exists at the database level.

SELECT *
 FROM [sys].[databases]
 ORDER BY [database_id];

When I check the output of this catalog view, I look for anti-patterns – anything that jumps out as

unexpected or atypical – in the data. The output is conducive for quick analysis – many of the settings

list a 0 or 1 for the value (off or on) and I make a mental note of what's different. I expect auto-create

statistics and auto-update statistics to be enabled (set to 1). I expect auto-close and auto-shrink to be

disabled (set to 0). I look to see what the collation is for the user databases, specifically whether they all

have the same collation, and if that collation is the same as tempdb. I also note security options such as

cross-database chaining and the is_trustworthy option, both disabled (0) by default. If I find that any of

these settings deviate from what I expect, I note it, and move on. At no point do I stop my collection or

analysis to make a change, as I am simply gathering information as quickly as I can to get a good

understanding of the environment.

In addition to checking the settings for the databases, I also take note of the number of user databases.

There is no “right number” of user databases for an instance – an instance can perform poorly with one

database, and it can perform wonderfully with 100. There are a myriad of factors at play, and the

number of databases is simply a data point worth noting.

http://www.sqlskills.com/blogs/jonathan/how-much-memory-does-my-sql-server-actually-need/
http://www.sqlskills.com/blogs/jonathan/how-much-memory-does-my-sql-server-actually-need/
http://support.microsoft.com/kb/319942
http://technet.microsoft.com/en-us/library/ms188709.aspx

Error Logs

I admit, I used to neglect the SQL Server ERRORLOG; it was like an after-thought when I investigated a

SQL Server problem. Then I realized the error of my ways, and I have not taken it for granted since. I

tend to navigate through Management Studio to access the log (within Management | SQL Server Logs),

though you can use the sp_readerrorlog stored procedure or browse out to the file and open it your

favorite text editor.

Within the ERRORLOG I look for recent errors – for example anything related to memory – and I also

look to see what trace flags, if any, are in use. I also check to see if Lock Pages in Memory is enabled, if

the cache is being flushed (either purposely or not), and if any other unusual activity occurs with

regularity. Depending on how urgent the problem is I also look at the Windows logs (Event, Application,

and Security), again not just looking for errors, but also unexpected message patterns.

Wait Statistics

The final area of SQL Server that I review when looking at a performance issue on an unknown instance

is wait statistics. Every SQL Server instance will have waits – no matter how well tuned the code is, no

matter how much hardware is behind it. As a DBA you want to know what your typical waits are for an

instance, and when I'm looking at a new environment, I don't immediately know if the waits I see are

typical, or due the performance issue. I ask the customer if they baseline wait statistics, and if not, I ask

if I can clear them and let them start to accumulate while the performance problem occurs. To check

wait statistics you can use the script in Paul Randal's oft-referenced post, or the version in Glenn's DMV

queries.

Once you review the accumulated wait statistics, you will have the final piece that provides the “big

picture” of the SQL Server instance, and the information you need to start troubleshooting. It's not

uncommon to check wait statistics first when troubleshooting, but waits alone are not enough

information to determine what you need to investigate next unless you also understand the basic SQL

Server configuration.

Next Steps

As I alluded to earlier, there is typically no one piece of data that tells you where the performance

problem lies, it’s multiple data points obtained that point you in the right direction. How you capture

that information is up to you, but once you review the output you should have a good understanding of

how the SQL Server environment is configured, and that knowledge, combined with the wait statistics,

can help you decide what to investigate next. Troubleshooting works best with a methodical approach,

so start with the basics and work up, and when you think you have determined the root cause, dig just a

little bit more and find one or two additional pieces of evidence that support your finding. Once you

have that data, then you can make a recommendation to help improve or resolve the issue.

http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/

Avoiding Knee-Jerk Performance Troubleshooting
By Paul Randal

Performance troubleshooting is an art and a science. The art comes from experience (and learning from

others’ experiences) and the science comes from well-known guidelines about what to do in which

scenarios.

Or at least that’s what I like to think, and teach.

In reality, many DBAs and developers out there practice what I call ‘knee-jerk performance

troubleshooting. This commonly happens when a performance problem has reached the critical stage

with, for instance, queries timing out, processes running slowly or failing, users disgruntled, and

management wanting answers and action fast!

The ‘knee-jerk’ comes from doing some superficial analysis of the problem and jumping to the

conclusion (really it’s grasping at a straw) that the most prevalent symptom must be the root cause and

trying to address that, to no or little avail, often using misguided or downright incorrect advice found

online. This leads to a lot of frustration and wasted time, and often leads to wasted money when the

organization decides to try to throw hardware at the problem by upgrading the server and/or the I/O

subsystem, only to find the problem is still there, or reappears pretty quickly again.

Wait statistics analysis is one of the areas where it’s easiest to knee-jerk, and in this post I’m going to

talk about a few of the common wait types and the mistakes that people make around them. There isn’t

scope in an article like this to go into great depth about what to do in each case, but I’ll give you enough

information to point you in the right direction.

LCK_M_XX

Most people assume that if locking waits are the most prevalent, then it must be some kind of blocking

problem that is the issue. Often it is, such as a lack of a suitable nonclustered index causing a table scan

in REPEATABLE_READ or SERIALIZABLE isolation levels that escalates to an S table lock. (And as a quick

hint, if you don’t think you ever use SERIALIZABLE, you do if you use distributed transactions –

everything is converted to SERIALIZABLE under the covers, which can lead to unexpected blocking and

deadlocks.)

However, it’s often the case the blocking is being caused by something else. Under the default

READ_COMMITTED isolation level, locks covering changes are held until the transaction commits, and

will block reads and other updates to the same row(s). If anything prevents a transaction from

committing, that could cause blocking to show up.

For instance, if the database is synchronously mirrored, then the transaction cannot commit and release

its locks until the log records have been sent across to the mirror and written to the mirror’s log drive. If

the network is severely congested, or there’s massive I/O contention on the mirror, this could seriously

delay the mirroring operation, and so cause the transaction to take much longer to commit. This would

look like blocking but the root cause is resource contention to do with mirroring.

For locking waits, unless the cause is obvious from looking at the query plan, lock resource (e.g. table-

level indicating lock escalation, or isolation level, follow the blocking chain (using a script that walks the

blocking_session_id column in sys.dm_exec_requests and then look to see what the thread at the head

of the blocking chain is waiting for. That’s going to point towards the root cause.

ASYNC_NETWORK_IO

The name of this one causes lots of confusion. What word do you focus in on? NETWORK. The cause of

this wait type usually has nothing to do with the network. It should really be called

WAITING_FOR_APP_ACK (nowledgment), or something similar, as that’s exactly what is happening: SQL

Server has sent some data to a client and is waiting for the client to acknowledge that is has consumed

the data.

One of my favorite demos to do when teaching about wait statistics is to run a query that returns a large

resultset in Management Studio and watch the server rack up ASYNC_NETWORK_IO waits. There’s

clearly no network involved – it’s just SSMS taking a long time to reply to SQL Server. It’s doing what is

known as RBAR (Row-By-Agonizing-Row), where only one row at a time is pulled from the results and

processed, instead of caching all the results and then immediately replying to SQL Server and

proceeding to process the cached rows.

This is the major cause of ASYNC_NETWORK_IO waits – poor application design. Occasionally it’s the

network, but that’s rare in my experience.

OLEDB

The common knee-jerk reaction here is to equate this wait type with linked servers. However, this wait

time became more common to see when SQL Server 2005 shipped, because 2005 contained a raft of

new DMVs, and DMVs mostly use OLE DB under the covers. Before looking for linked server problems,

I’d check whether a monitoring tool is running DMVs constantly on the server.

If you do have linked servers, continue troubleshooting by going to the linked server and looking at the

wait statistics there to see what the most prevalent issue is, and then continue the same analysis.

One other thing that can cause OLEDB waits is DBCC CHECKDB (and related commands). It uses an OLE

DB rowset to communicate information between its Query Processor and Storage Engine subsystems.

Other Waits

Some of the other waits that cause knee-jerk reactions are CXPACKET, PAGEIOLATCH_XX,

SOS_SCHEDULER_YIELD, and WRITELOG, and I’ll cover those in my post next month.

Summary

When you have a performance problem, take the time to understand the data you’re looking at and

perform further investigations to help narrow down to the root-cause of the problem. Don’t just grasp

at whatever seems to be the top wait statistic and follow the first piece of advice you come across

online (unless it’s from a well-known and reputable source) or you likely won’t solve your problem, and

may even make it worse.

As far as general wait statistics are concerned, you can find more information about using them for

performance troubleshooting in:

 My blog post series, starting with Wait statistics, or please tell me where it hurts

 My Pluralsight online training course SQL Server: Performance Troubleshooting Using Wait

Statistics

 SQL Sentry Performance Advisor

This was the first in a series of posts I’ll be doing over the course of this year that talk about knee-jerk

(re)actions around SQL Server and why they’re the wrong thing to do. Until next time, happy

troubleshooting!

http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/
http://www.pluralsight.com/training/Courses/TableOfContents/sqlserver-waits
http://www.pluralsight.com/training/Courses/TableOfContents/sqlserver-waits
http://www.sqlsentry.net/performance-advisor/

Knee-Jerk Wait Statistics : SOS_SCHEDULER_YIELD
By Paul Randal

In my previous post, I discussed LCK_M_XX, ASYNC_NETWORK_IO, and OLEDB waits and the knee-jerk

reactions to them. In this post I’m going to continue with the wait statistics theme and discuss the

SOS_SCHEDULER_YIELD wait.

When SOS_SCHEDULER_YIELD is the most prevalent on a server, it’s common to see sustained, high CPU

usage. The knee-jerk reaction here is that the server must be under CPU pressure, or that a spinlock is

the problem.

We need a bit of background here to understand these two reactions.

Thread Scheduling

Thread scheduling in SQL Server is managed by SQL Server itself, not by Windows (i.e. it’s non-

preemptive). The SQL OS portion of the Storage Engine provides scheduling functionality and threads

transition from running on a Processor (where the thread state is RUNNING) to being on the Waiter List

waiting for a resource to become available (state is SUSPENDED) to being on the Runnable Queue once

the resource becomes available (state is RUNNABLE) waiting to get to the top of the queue and back

onto the Processor again (back to state being RUNNING). I’ve capitalized Processor, Waiter List, and

Runnable Queue to identify them as parts of a scheduler.

Whenever a thread needs a resource that it can’t immediately acquire, it becomes suspended and waits

on the Waiter List to be told (signaled) that its resource is available. The time spent on the Waiter List is

the resource wait time and the time spent on the Runnable Queue is the signal wait time. Together they

combine to be the overall wait time. SQL OS keeps track of the wait time and the signal wait time so we

have to do some math on the output from sys.dm_os_wait_stats to derive the resource wait time

(see my script here).

The Waiter List is unordered (any thread on it can be signaled at any time and move to the Runnable

Queue) and the Runnable Queue is First-In-First-Out (FIFO) almost 100% of the time. The only exception

to the Runnable Queue being FIFO is where multiple Resource Governor workload groups have been

configured in the same resource pool and they have different priorities relative to each other. I’ve never

seen this used successfully in production so I won’t discuss it further.

There is another reason why a thread may need to move off the Processor – it exhausts its quantum.

The thread quantum in SQL OS is fixed at 4milliseconds. The thread itself is responsible for determining

that its quantum has been exhausted (by calling helper routines in SQL OS) and voluntarily giving up the

processor (known as yielding). When this occurs, the thread moves directly to the bottom of the

Runnable Queue, as there is nothing for it to wait for. SQL OS must register a wait type for this transition

off the Processor though, and registers SOS_SCHEDULER_YIELD.

This behavior is often mistaken for CPU pressure, but it’s not – it’s just sustained CPU usage. CPU

pressure, and recognizing it, is a whole other topic for a future post. As far as this post is concerned, as

long as the average signal wait time is low (0-0.1-0.2ms), it’s a pretty safe bet that CPU pressure isn’t an

issue.

http://www.sqlperformance.com/2014/02/sql-performance/knee-jerk-performance-troubleshooting
http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/

Spinlocks

A spinlock is a very low-level synchronization primitive that is used to provide thread-safe access to data

structures in SQL Server that are extremely hot (very volatile and accessed and changed incredibly

frequently by multiple threads). Examples of such structures are the buffer free list in each portion of

the buffer pool and the proportional-fill weightings array for the data files in a filegroup.

When a thread needs to acquire a spinlock, it looks to see if the spinlock is free and if so immediately

acquires it (using an interlocked assembly-language primitive like ‘test bit clear and set’). If the spinlock

can’t be acquired, the thread immediately tries to acquire it again, and again, and again, for up to a

thousand iterations, until it backs off and goes to the bottom of the Runnable Queue, registering an

SOS_SCHEDULER_YIELD wait.

SOS_SCHEDULER_YIELD Causes

So there are two main causes for SOS_SCHEDULER_YIELD: a thread exhausting its scheduling quantum

and a thread failing to acquire a spinlock, and heavily recurring instances of either cause can lead to

SOS_SCHEDULER_YIELD being the most prevalent wait along with high CPU usage.

Nearly 100% of the time the first case is what is happening. It’s extremely rare for a spinlock to be the

cause of high CPU and high SOS_SCHEDULER_YIELD. The only way to prove that a spinlock is or isn’t the

cause is to capture SQL Server call stacks when that wait type occurs, using Extended Events and debug

symbols from Microsoft. I have a blog post that describes and shows how to perform that investigation,

and there’s a great whitepaper about spinlocks and spinlock investigations that is worth reading if

you’re interested in that depth of internals.

For the case of quantum exhaustion, that’s not the root cause. It’s a further symptom. Now we need to

consider why a thread may be exhausting its quantum repeatedly.

A thread can only exhaust its quantum when it can continue processing SQL Server code for 4ms without

needing a resource that another thread owns – no waiting for locks, page latches, data file pages to be

read from disk, memory allocations, file growths, logging, or the myriad other resources that a thread

might need.

The most common piece of code where quantum exhaustion can occur and rack up large amounts of

SOS_SCHEDULER_YIELD waits is scanning an index/table where all the necessary data files pages are in

memory and there is no contention for access to those pages, and so that’s what I encourage you to

look for in query plans when you see SOS_SCHEDULER_YIELD as the top wait type – large and/or

repeated index/table scans.

This doesn’t mean I’m saying that large scans are bad, as it could be that the most efficient way to

process your workload is through a scan. However, if the SOS_SCHEDULER_YIELD waits are new and

unusual, and are caused by large scans, you should investigate why the query plans are using scans.

Maybe someone dropped a critical nonclustered index, or statistics are out-of-date and so an incorrect

query plan was chosen, or maybe an unusual parameter value was passed to a stored procedure and the

query plan called for a scan, or a code change occurred without supporting index additions.

http://www.sqlskills.com/blogs/paul/sos_scheduler_yield-waits-and-the-lock_hash-spinlock/
http://www.sqlskills.com/blogs/paul/new-whitepapers-on-latches-and-spinlocks-published/

Summary

Just as with other wait types, understanding exactly what SOS_SCHEDULER_YIELD means is key to

understanding how to troubleshoot it, and whether the behavior is expected because of the workload

being processed.

As far as general wait statistics are concerned, you can find more information about using them for

performance troubleshooting in:

 My SQLskills blog post series, starting with Wait statistics, or please tell me where it hurts

 My Pluralsight online training course SQL Server: Performance Troubleshooting Using Wait

Statistics

 SQL Sentry Performance Advisor

In the next article in the series, I’ll discuss another wait type that is a common cause of knee-jerk

reactions. Until then, happy troubleshooting!

http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/
http://www.pluralsight.com/training/Courses/TableOfContents/sqlserver-waits
http://www.pluralsight.com/training/Courses/TableOfContents/sqlserver-waits
http://www.sqlsentry.net/performance-advisor/

Performance Testing Methodologies: Discovering a New Way
By Erin Stellato

A few weeks ago the SQLskills team was in Tampa for our Performance Tuning Immersion Event (IE2)

and I was covering baselines. Baselines is a topic that’s near and dear to my heart, because they are so

valuable for many reasons. Two of those reasons, which I always bring up whether teaching or working

with clients, are using baselines to troubleshoot performance, and then also trending usage and

providing capacity planning estimates. But they’re also essential when you’re doing performance tuning

or testing – whether you think of your existing performance metrics as baselines or not.

During the module, I reviewed different sources for data such as Performance Monitor, the DMVs, and

trace or XE data, and a question came up related to data loads. Specifically, the question was whether is

it better to load data into a table with no indexes, and then create them when finished, versus having

the indexes in place during the data load. My response was, “Typically, yes". My personal experience

has been that this is always the case, but you never know what caveat or one-off scenario someone

might run into where the performance change is not what was expected, and as with all performance

questions, you don’t know for certain until you test it. Until you establish a baseline for one method and

then see if the other method improves upon that baseline, you’re only guessing. I thought it would be

fun to test this scenario, not just to prove what I expect to be true, but also to show what metrics I

would examine, why, and how to capture them. If you’ve done performance testing previously, this is

probably old hat. But for those of you new to the practice, I’ll step through the process I follow to help

get you started. Realize that there are many ways to derive the answer to, “Which method is better?” I

expect that you will take this process, tweak it, and make it yours over time.

What Are You Trying to Prove?

The first step is to decide exactly what you’re testing. In our case it’s straight-forward: is it faster to load

data into an empty table, then add the indexes, or is it faster to have the indexes on the table during the

data load? But, we can add some variation here if we want. Consider the time it takes to load data into

a heap, and then create the clustered and nonclustered indexes, versus the time it takes to load data

into a clustered index, and then create the nonclustered indexes. Is there a difference in

performance? Would the clustering key be a factor? I expect that the data load will cause existing

nonclustered indexes to fragment, so perhaps I want to see what impact rebuilding the indexes after the

load has on the total duration. It’s important to scope this step as much as possible, and be very specific

about what you want to measure, as this will determine what data you capture. For our example, our

four tests will be:

Test 1: Load data into a heap, create the clustered index, create the nonclustered indexes

Test 2: Load data into a clustered index, create the nonclustered indexes

Test 3: Create the clustered index and nonclustered indexes, load the data

Test 4: Create the clustered index and nonclustered indexes, load the data, rebuild the nonclustered

indexes

What Do You Need to Know?

In our scenario, our primary question is “what method is fastest”? Therefore, we want to measure

duration and to do so we need to capture a start time and an end time. We could leave it at that, but

http://www.sqlskills.com/sql-server-training/ie2/

we may want to understand what resource utilization looks like for each method, or perhaps we want to

know the highest waits, or the number of transactions, or the number of deadlocks. The data that is

most interesting and relevant will depend on what processes you’re comparing. Capturing the number

of transactions is not that interesting for our data load; but for a code change it might be. Because we

are creating indexes and rebuilding them, I am interested in how much IO each method

generates. While overall duration is probably the deciding factor in the end, looking at IO might be

useful to not only understand what option generates the most IO, but also whether the database

storage is performing as expected.

Where is the Data You Need?

Once you’ve determined what data you need, decide from where it will be captured. We are interested

in duration, so we want to record the time each data load test starts, and when it ends. We are also

interested in IO, and we can pull this data from multiple locations – Performance Monitor counters and

the sys.dm_io_virtual_file_stats DMV come to mind.

Understand that we could get this data manually. Before we run a test, we can select against

sys.dm_io_virtual_file_stats and save the current values to a file. We can note the time, and then start

the test. When it finishes, we note the time again, query sys.dm_io_virtual_file_stats again and

calculate differences between values to measure IO.

There are numerous flaws in this methodology, namely that it leaves significant room for error; what if

you forget to note the start time, or forget to capture file stats before you start? A much better solution

is to automate not just the execution of the script, but also the data capture. For example, we can

create a table that holds our test information – a description of what the test is, what time it started,

and what time it completed. We can include the file stats in the same table. If we are collecting other

metrics, we can add those to the table. Or, it may be easier to create a separate table for each set of

data we capture. For example, if we store file stats data in a different table, we need to give each test a

unique id, so that we can match our test with the right file stats data. When capturing file statistics, we

have to capture the values for our database before we start, and then after, and calculate the

difference. We can then store that information into its own table, along with the unique test ID.

A Sample Exercise

For this test I created an empty copy of the Sales.SalesOrderHeader table named

Sales.Big_SalesOrderHeader, and I used a variation of a script I used in my partitioning post to load data

into the table in batches of approximately 25,000 rows. You can download the script for the data load

here. I ran it four times for each variation, and I also varied the total number of rows inserted. For the

first set of tests I inserted 20 million rows, and for the second set I inserted 60 million rows. The

duration data is not surprising:

Data Load Duration

Loading data, without the nonclustered indexes, is much faster than loading it with the nonclustered

indexes already in place. What I did find interesting is that for the load of 20 million rows, the total

duration was about the same between Test 1 and Test 2, but Test 2 was faster when loading 60 million

rows. In our test, our clustering key was SalesOrderID, which is an identity and therefore a good

clustering key for our load since it is ascending. If we had a clustering key that was a GUID instead, the

load time may be higher because of random inserts and page splits (another variation that we could

test).

Does the IO data mimic the trend in duration data? Yes, with the differences having the indexes already

in place, or not, even more exaggerated:

Data Load Reads and Writes

The method that I’ve presented here for performance testing, or measuring changes in performance

based on modifications to code, design, etc., is just one option for capturing baseline information. In

some scenarios, this may be overkill. If you have one query you’re trying to tune, setting up this process

to capture data might take longer than it would to make tweaks to the query! If you’ve done any

amount of query tuning, you’re probably in the habit of capturing STATISTICS IO and STATISTICS TIME

data, along with the query plan, and then comparing the output as you make changes. I’ve been doing

this for years, but I recently discovered a better way… SQL Sentry Plan Explorer PRO. In fact, after I

completed all the load testing I described above, I went through and re-ran my tests through PE, and

found I could capture the information I wanted, without having to set up my data collection tables.

Within Plan Explorer PRO you have the option to get the actual plan – PE will run the query against the

selected instance and database, and return the plan. And with it, you get all the other great data that PE

provides (time statistics, reads and writes, IO by table), as well as the wait statistics, which is a nice

benefit. Using our example, I started with the first test – creating the heap, loading data and then

adding the clustered index and nonclustered indexes – and then ran the option Get Actual Plan. When it

completed I modified my script test 2, ran the option Get Actual Plan again. I repeated this for the third

and fourth tests, and when I was finished, I had this:

http://sqlsentry.net/
http://sqlsentry.net/plan-explorer/

Plan Explorer PRO view after running 4 tests

Notice the history pane on the right side? Every time I modified my code and recaptured the actual

plan, it saved a new set of information. I have the ability to save this data as a .pesession file to share

with another member of my team, or go back later and scroll through through the different tests, and

drill into different statements within the batch as necessary, looking at different metrics such as

duration, CPU, and IO. In the screen shot above, I've highlighted the INSERT from Test 3, and the query

plan shows the updates to all four nonclustered indexes.

Summary

As with so many tasks in SQL Server, there are many ways to capture and review data when you're

running performance tests or performing tuning. The less manual effort you have to put forth, the

better, as it leaves more time to actually make changes, understand the impact, and then move on to

your next task. Whether you customize a script to capture data, or let a third party utility do it for you,

the steps I outlined are still valid:

1. Define what you want improve

2. Scope your testing

3. Determine what data can be used to measure improvement

4. Decide how to capture the data

5. Set up an automated method, whenever possible, for testing and capture

6. Test, evaluate, and repeat as necessary

Happy testing!

Following a single-transaction deadlock across SQL Server versions
By Aaron Bertrand

One of the less common deadlocks is one where there is a single user and they deadlock themselves on

some system resource. A recent one I came across is creating an alias type, then declaring a variable of

that type, inside the same transaction. Imagine you're trying to run a unit test or pre-deployment test,

check for failures, and rollback in any case so that you don't leave any trace of what you'd done. The

pattern might look like this:

BEGIN TRANSACTION;
GO
CREATE TYPE EmailAddress FROM VARCHAR(320);
GO
DECLARE @x TABLE (e EmailAddress);
GO
ROLLBACK TRANSACTION;

Or, more likely, a little more complex:

BEGIN TRANSACTION;
GO
CREATE TYPE EmailAddress FROM VARCHAR(320);
GO
CREATE PROCEDURE dbo.foo
 @param EmailAddress
AS
BEGIN
 SET NOCOUNT ON;
 DECLARE @x TABLE (e EmailAddress);
 INSERT @x SELECT @param;
END
GO
DECLARE @x EmailAddress;
SET @x = N'whatever';
EXEC dbo.foo @param = N'whatever';
GO
ROLLBACK TRANSACTION;

The first place I tried this code was SQL Server 2012, and both examples failed with the following error:

Msg 1205, Level 13, State 55, Line 14

Transaction (Process ID 57) was deadlocked on lock resources with another process and

has been chosen as the deadlock victim. Rerun the transaction.

And there's not much at all to learn from the deadlock graph:

Stepping back a few years, I recall when I first learned about alias types, back in SQL Server 2000 (when

they were called User-Defined Data Types). At that time, this deadlock that I came across more recently

would not happen (but this is at least partly because you couldn't declare a table variable with an alias

type – see here and here). I did run the following code on SQL Server 2000 RTM (8.0.194) and SQL Server

2000 SP4 (8.0.2039), and it ran just fine:

BEGIN TRANSACTION;
GO
EXEC sp_addtype @typename = N'EmailAddress', @phystype = N'VARCHAR(320)';
GO
CREATE PROCEDURE dbo.foo
 @param EmailAddress
AS
BEGIN
 SET NOCOUNT ON;

http://technet.microsoft.com/en-us/library/aa933121(v=sql.80).aspx
http://technet.microsoft.com/en-us/library/aa258839(v=sql.80).aspx
http://technet.microsoft.com/en-us/library/aa260638(v=sql.80).aspx)

 SELECT @param;
END
GO
EXEC dbo.foo @param = N'whatever';
GO
DECLARE @x EmailAddress;
SET @x = N'whatever';
EXEC dbo.foo @param = @x;
GO
ROLLBACK TRANSACTION;

Of course, this scenario wasn't very widespread at the time because, after all, not many people used

alias types in the first place. While they may make your metadata more self-documenting and data-

definition-like, they are a royal pain if you ever want to change them, which may be a topic for another

post.

SQL Server 2005 came around, and introduced new DDL syntax for creating alias types: CREATE TYPE.

This didn't really solve the problem with changing the types, it just made the syntax a little cleaner. In

RTM, all of the above code samples worked just fine with no deadlocks. In SP4, however, they would all

deadlock. Therefore, somewhere between RTM and SP4, they changed the internal handling for

transactions that involved table variables using alias types.

Fast forward a few years to SQL Server 2008, where table-valued parameters were added (see a good

use case here). This made the use of these types much more prevalent, and introduced another case

where a transaction that tried to create and use such a type would deadlock:

BEGIN TRANSACTION;
GO
CREATE TYPE dbo.Items AS TABLE(Item INT);
GO
DECLARE @r dbo.Items;
GO
ROLLBACK TRANSACTION;

I checked Connect, and found several related items, one of them claiming that this issue has been fixed

in SQL Server 2008 SP2 and 2008 R2 SP1:

Connect #365876 : Deadlock occurs when creating user-defined data type and objects that use it

What this actually referred to was the following scenario, where simply creating a stored procedure that

referenced the type in a table variable would deadlock in SQL Server 2008 RTM (10.0.1600) and SQL

Server 2008 R2 RTM (10.50.1600):

BEGIN TRANSACTION;
GO
CREATE TYPE EmailAddress FROM VARCHAR(320);
GO
CREATE PROCEDURE dbo.foo
 @param EmailAddress
AS
BEGIN

http://www.sqlperformance.com/2012/08/t-sql-queries/splitting-strings-now-with-less-t-sql
http://www.sqlperformance.com/2012/08/t-sql-queries/splitting-strings-now-with-less-t-sql
http://connect.microsoft.com/SQLServer/feedback/details/365876/

 SET NOCOUNT ON;
 DECLARE @x TABLE (e EmailAddress);
 INSERT @x SELECT @param;
END
GO
ROLLBACK TRANSACTION;

However, this does not deadlock in SQL Server 2008 SP3 (10.0.5846) or 2008 R2 SP2 (10.50.4295). So I

tend to believe the comments on the Connect item – that this portion of the bug was fixed in 2008 SP2

and 2008 R2 SP1, and has never been an issue in more modern versions.

But this still leaves out the ability to actually put the alias type through any sort of true testing. So my

unit tests would succeed as long as all I wanted to do was test that I could create the procedure – forget

about declaring the type as a local variable or as a column in a local table variable.

The only way to resolve this is to create the table type before starting the transaction, and explicitly

drop it afterward (or otherwise break it up into multiple transactions). This could be extremely

cumbersome, or even impossible, to have often automated testing frameworks and harnesses

completely change the way they operate to account for this limitation.

So I decided to go through some tests in the initial and most recent builds of all of the major versions:

SQL Server 2005 RTM, 2005 SP4, 2008 RTM, 2008 SP3, 2008 R2 RTM, 2008 R2 SP2, 2012 RTM, 2012 SP1,

and 2014 CTP2 (and yes, I do have them all installed). I had reviewed several Connect items and various

comments that left me wondering which use cases were supported and where, and I had a strange

compulsion to find out which aspects of this issue had actually been fixed. I tested various potential

deadlock scenarios involving alias types, table variables, and table-valued parameters against all of these

builds; the code is as follows:

/*
 alias type - declare in local table variable
 always deadlocks on 2005 SP4 -> 2014, except in 2005 RTM
*/

BEGIN TRANSACTION;
GO
CREATE TYPE EmailAddress FROM VARCHAR(320)
GO
DECLARE @r TABLE(e EmailAddress);
GO
ROLLBACK TRANSACTION;

/*
 alias type - create procedure with param & table var
 sometimes deadlocks - 2005 SP4, 2008 RTM & SP1, 2008 R2 RTM
*/

BEGIN TRANSACTION;
GO
CREATE TYPE EmailAddress FROM VARCHAR(320);
GO
CREATE PROCEDURE dbo.foo
 @param EmailAddress

http://connect.microsoft.com/SQLServer/feedback/details/365876/
http://cdn.sqlperformance.com/wp-content/uploads/2013/11/version_matrix_1.png

AS
BEGIN
 SET NOCOUNT ON;
 DECLARE @x TABLE (e EmailAddress);
 INSERT @x SELECT @param;
END
GO
ROLLBACK TRANSACTION;

/*
 alias type - create procedure, declare & exec
 always deadlocks on 2005 SP4 -> 2014, except on 2005 RTM
*/

BEGIN TRANSACTION;
GO
CREATE TYPE EmailAddress FROM VARCHAR(320);
GO
CREATE PROCEDURE dbo.foo
 @param EmailAddress
AS
BEGIN
 SET NOCOUNT ON;
 DECLARE @x TABLE (e EmailAddress);
 INSERT @x SELECT @param;
END
GO
DECLARE @x EmailAddress;
SET @x = N'whatever';
EXEC dbo.foo @param = N'whatever';
GO
ROLLBACK TRANSACTION;

/* obviously did not run these on SQL Server 2005 builds */

/*
 table type - create & declare local variable
 always deadlocks on 2008 -> 2014
*/

BEGIN TRANSACTION;
GO
CREATE TYPE dbo.Items AS TABLE(Item INT);
GO
DECLARE @r dbo.Items;
GO
ROLLBACK TRANSACTION;

/*
 table type - create procedure with param and SELECT
 never deadlocks on 2008 -> 2014
*/

BEGIN TRANSACTION;
GO
CREATE TYPE dbo.Items AS TABLE(Item INT);
GO

CREATE PROCEDURE dbo.foo
 @param dbo.Items READONLY
AS
BEGIN
 SET NOCOUNT ON;
 SELECT Item FROM @param;
END
GO
ROLLBACK TRANSACTION;

/*
 table type - create procedure, declare & exec
 always deadlocks on 2008 -> 2014
*/

BEGIN TRANSACTION;
GO
CREATE TYPE dbo.Items AS TABLE(Item INT);
GO
CREATE PROCEDURE dbo.foo
 @param dbo.Items READONLY
AS
BEGIN
 SET NOCOUNT ON;
 SELECT Item FROM @param;
END
GO
DECLARE @x dbo.Items;
EXEC dbo.foo @param = @x;
GO
ROLLBACK TRANSACTION;

And the results reflect my story above: SQL Server 2005 RTM did not deadlock on any of the scenarios,

but by the time SP4 rolled around, they all deadlocked. This was corrected for the "create a type and

create a procedure" scenario, but none of the others, in 2008 SP2 and 2008 R2 SP1. Here is a table

showing all of the results:

SQL Server Version / Build #

SQL 2005 SQL 2008 SQL 2008 R2 SQL 2012
SQL

2014

RTM

9.0.139

9

SP4

9.0.532

4

RTM

10.0.16

00

SP3

10.0.58

46

RTM

10.50.16

00

SP2

10.50.42

95

RTM

11.0.21

00

SP1

11.0.33

81

CTP2

12.0.15

24

Alias

Type

declare in

table var

create

procedure

create &

exec proc

Table

Type

declare

local var

N/A

create

procedure

create &

exec proc

Conclusion

So, the moral of the story is, there is still no fix for the use case described above, where you want to

create a table type, create a procedure or function that uses the type, declare a type, test the module,

and roll everything back. In any case, here are the other Connect items for you to look at; hopefully you

can vote for them and leave comments describing how this deadlock scenario affects your business

directly:

Connect #581193 : Creating a table type and using it in the same transaction causes a deadlock

Connect #800919 : Problem in Create a Function with TableValue Return Type in transaction with user

defined type in table which is created in a same transaction scope

Connect #804365 : Deadlock occurs when a user-defined table type is created and used in one

transaction

I fully expect some clarifications to be added to these Connect items in the near future, though I do not

know exactly when they'll get pushed through.

http://connect.microsoft.com/SQLServer/feedback/details/581193/
http://connect.microsoft.com/SQLServer/feedback/details/800919/
http://connect.microsoft.com/SQLServer/feedback/details/800919/
http://connect.microsoft.com/SQLServer/feedback/details/804365/
http://connect.microsoft.com/SQLServer/feedback/details/804365/

Dude, who owns that #temp table?
By Aaron Bertrand

You have probably been in a scenario where you were curious about who created a specific copy of a

#temp table. Back in June of 2007, I asked for a DMV to map #temp tables to sessions, but this was

rejected for the 2008 release – and has been subsequently ignored in every release since. (Please feel

free to vote and, more importantly, comment about your business need.)

In SQL Server 2005, 2008 and 2008 R2, you should be able to pull this information from the default

trace:

DECLARE @filename VARCHAR(MAX);

SELECT @filename = SUBSTRING([path], 0,
 LEN([path])-CHARINDEX('\', REVERSE([path]))+1) + '\Log.trc'
FROM sys.traces
WHERE is_default = 1;

SELECT
 o.name,
 o.[object_id],
 o.create_date,
 gt.SPID,
 NTUserName = gt.NTDomainName + '\' + gt.NTUserName,
 SQLLogin = gt.LoginName,
 gt.HostName,
 gt.ApplicationName,
 gt.TextData -- don't bother, always NULL
 FROM sys.fn_trace_gettable(@filename, DEFAULT) AS gt
 INNER JOIN tempdb.sys.objects AS o
 ON gt.ObjectID = o.[object_id]
 WHERE gt.DatabaseID = 2
 AND gt.EventClass = 46 -- (Object:Created Event from sys.trace_events)
 AND gt.EventSubClass = 1 -- Commit
 AND o.name LIKE N'#%'
 AND o.create_date >= DATEADD(MILLISECOND, -100, gt.StartTime)
 AND o.create_date <= DATEADD(MILLISECOND, 100, gt.StartTime);

Based on code from this Jonathan Kehayias blog post.

To determine space usage you could further enhance this to join in data from DMVs

like sys.db_db_partition_stats – for example:

DECLARE @filename VARCHAR(MAX);

SELECT @filename = SUBSTRING([path], 0,
 LEN([path])-CHARINDEX('\', REVERSE([path]))+1) + '\Log.trc'
FROM sys.traces
WHERE is_default = 1;

SELECT
 o.name,
 o.[object_id],
 o.create_date,
 gt.SPID,

http://connect.microsoft.com/SQLServer/feedback/details/285110/dmv-to-map-temp-table-session-id
http://sqlblog.com/blogs/jonathan_kehayias/archive/2009/09/29/what-session-created-that-object-in-tempdb.aspx

 NTUserName = gt.NTDomainName + '\' + gt.NTUserName,
 SQLLogin = gt.LoginName,
 gt.HostName,
 gt.ApplicationName,
 row_count = x.rc,
 reserved_page_count = x.rpc
 FROM sys.fn_trace_gettable(@filename, DEFAULT) AS gt
 INNER JOIN tempdb.sys.objects AS o
 ON gt.ObjectID = o.[object_id]
 INNER JOIN
 (
 SELECT
 [object_id],
 rc = SUM(CASE WHEN index_id IN (0,1) THEN row_count END),
 rpc = SUM(reserved_page_count)
 FROM tempdb.sys.dm_db_partition_stats
 GROUP BY [object_id]
) AS x
 ON x.[object_id] = o.[object_id]
 WHERE gt.DatabaseID = 2
 AND gt.EventClass = 46 -- (Object:Created Event from sys.trace_events)
 AND gt.EventSubClass = 1 -- Commit
 AND gt.IndexID IN (0,1)
 AND o.name LIKE N'#%'
 AND o.create_date >= DATEADD(MILLISECOND, -100, gt.StartTime)
 AND o.create_date <= DATEADD(MILLISECOND, 100, gt.StartTime);

Starting in SQL Server 2012, however, this stopped working if the #temp table was a heap. Bob Ward

(@bobwardms) furnished a thorough explanation of why this happened; the short answer is there was a

bug in their logic to try to filter out #temp table creation from the default trace, and this bug was

partially corrected during the SQL Server 2012 work of better aligning trace and extended events. Note

that SQL Server 2012+ will still capture #temp table creation with inline constraints such as a primary

key, just not heaps.

The Object:Created event actually has 3 subevents: Begin, Commit, and Rollback. So if
you successfully create an object you get 2 events: 1 for Begin and 1 for Commit. You
know which one by looking at EventSubClass.

Prior to SQL Server 2012, only the Object:Created with subclass = Begin has the

ObjectName populated. So the subclass = Commit did not contain the ObjectName

populated. This was by design to avoid repeating this thinking you could look up the

name in the Begin event.

As I've said the default trace was designed to skip any trace events where the dbid =

2 and object name started with "#". So what can show up in the default trace are the

Object:Created subclass = Commit events (which is why the Object Name is blank).

Even though we didn't document our "intentions" to not trace tempdb objects, the

behavior was clearly not working as intended.

Now move forward to the building of SQL Server 2012. We move to a process of porting

events from SQLTrace to XEvent. We decided during this timeframe as part of this

http://twitter.com/bobwardms

XEvent work that the subclass=Commit or Rollback needed the ObjectName populated. The

code where we do this is the same code where we produce the SQLTrace event so now the

SQLTrace event has the ObjectName in it for the subclass=Commit.

And since our filtering logic for default trace has not changed, now you don't see

either Begin or Commit events.

How you should do it today

In SQL Server 2012 and up, Extended Events will allow you to manually capture

the object_created event, and it is easy to add a filter to only care about names that start with #. The

following session definition will capture all #temp table creation, heap or not, and will include all of the

useful information that would normally be retrieved from the default trace. In addition, it captures the

SQL batch responsible for the table creation (if you want it to), information not available in the default

trace (TextData is always NULL).

CREATE EVENT SESSION [TempTableCreation] ON SERVER
ADD EVENT sqlserver.object_created
(
 ACTION
 (
 -- you may not need all of these columns
 sqlserver.session_nt_username,
 sqlserver.server_principal_name,
 sqlserver.session_id,
 sqlserver.client_app_name,
 sqlserver.client_hostname,
 sqlserver.sql_text
)
 WHERE
 (
 sqlserver.like_i_sql_unicode_string([object_name], N'#%')
 AND ddl_phase = 1 -- just capture COMMIT, not BEGIN
)
)
ADD TARGET package0.asynchronous_file_target
(
 SET FILENAME = 'c:\temp\TempTableCreation.xel',
 -- you may want to set different limits depending on
 -- temp table creation rate and available disk space
 MAX_FILE_SIZE = 32768,
 MAX_ROLLOVER_FILES = 10
)
WITH
(
 -- if temp table creation rate is high, consider
 -- ALLOW_SINGLE/MULTIPLE_EVENT_LOSS instead
 EVENT_RETENTION_MODE = NO_EVENT_LOSS
);
GO
ALTER EVENT SESSION [TempTableCreation] ON SERVER STATE = START;

You may be able to do something similar in 2008 and 2008 R2, but I know there are some subtle

differences to what is available, and I did not test it after getting this error right off the bat:

Msg 25623, Level 16, State 1, Line 1

The event name, "sqlserver.object_created", is invalid, or the object could not be

found

Analyzing the data

Pulling the information from the file target is a little more cumbersome than with the default trace,

mostly because it is all stored as XML (well, to be pedantic, it is XML presented as NVARCHAR). Here is a

query I whipped up to return information similar to the second query above against the default trace.

One important thing to note is that Extended Events stores its data in UTC, so if your server is set to

another time zone, you will need to adjust so that the create_date in sys.objects is compared as if it

were UTC. (The timestamps are set to match becauseobject_id values can be recycled. I assume here

that a two second window is sufficient to filter out any recycled values.)

DECLARE @delta INT = DATEDIFF(MINUTE, SYSUTCDATETIME(), SYSDATETIME());

;WITH xe AS
(
 SELECT
 [obj_name] = xe.d.value(N'(event/data[@name="object_name"]/value)[1]',N'sysname'),
 [object_id] = xe.d.value(N'(event/data[@name="object_id"]/value)[1]',N'int'),
 [timestamp] = DATEADD(MINUTE, @delta,
xe.d.value(N'(event/@timestamp)[1]',N'datetime2')),
 SPID = xe.d.value(N'(event/action[@name="session_id"]/value)[1]',N'int'),
 NTUserName =
xe.d.value(N'(event/action[@name="session_nt_username"]/value)[1]',N'sysname'),
 SQLLogin =
xe.d.value(N'(event/action[@name="server_principal_name"]/value)[1]',N'sysname'),
 HostName =
xe.d.value(N'(event/action[@name="client_hostname"]/value)[1]',N'sysname'),
 AppName =
xe.d.value(N'(event/action[@name="client_app_name"]/value)[1]',N'nvarchar(max)'),
 SQLBatch =
xe.d.value(N'(event/action[@name="sql_text"]/value)[1]',N'nvarchar(max)')
 FROM
 sys.fn_xe_file_target_read_file(N'C:\temp\TempTableCreation*.xel',NULL,NULL,NULL)
AS ft
 CROSS APPLY (SELECT CONVERT(XML, ft.event_data)) AS xe(d)
)
SELECT
 DefinedName = xe.obj_name,
 GeneratedName = o.name,
 o.[object_id],
 xe.[timestamp],
 o.create_date,
 xe.SPID,
 xe.NTUserName,
 xe.SQLLogin,
 xe.HostName,
 ApplicationName = xe.AppName,
 TextData = xe.SQLBatch,
 row_count = x.rc,
 reserved_page_count = x.rpc
FROM xe
INNER JOIN tempdb.sys.objects AS o
ON o.[object_id] = xe.[object_id]

AND o.create_date >= DATEADD(SECOND, -2, xe.[timestamp])
AND o.create_date <= DATEADD(SECOND, 2, xe.[timestamp])
INNER JOIN
(
 SELECT
 [object_id],
 rc = SUM(CASE WHEN index_id IN (0,1) THEN row_count END),
 rpc = SUM(reserved_page_count)
 FROM tempdb.sys.dm_db_partition_stats
 GROUP BY [object_id]
) AS x
ON o.[object_id] = x.[object_id];

Of course this will only return space and other information for #temp tables that still exist. If you want

to see all #temp table creations still available in the file target, even if they don't exist now, simply

change both instances of INNER JOIN to LEFT OUTER JOIN.

The overhead of #temp table creation tracking
By Aaron Bertrand

In my last post ("Dude, who owns that #temp table?"), I suggested that in SQL Server 2012 and above,

you could use Extended Events to monitor the creation of #temp tables. This would allow you to

correlate specific objects taking up a lot of space in tempdb with the session that created them (for

example, to determine if the session could be killed to try to free up the space). What I didn't discuss is

the overhead of this tracking – we expect Extended Events to be lighter than trace, but no monitoring is

completely free.

Since most people leave the default trace enabled, we'll leave that in place. We'll test both heaps

using SELECT INTO (which the default trace won't collect) and clustered indexes (which it will), and we'll

time the batch on its own as a baseline, then run the batch again with the Extended Events session

running. We'll also test against both SQL Server 2012 and SQL Server 2014. The batch itself is pretty

simple:

SET NOCOUNT ON;

SELECT SYSDATETIME();
GO

-- run this portion for only the heap batch:
SELECT TOP (100) [object_id]
 INTO #foo
 FROM sys.all_objects
 ORDER BY [object_id];
DROP TABLE #foo;

-- run this portion for only the CIX batch:
CREATE TABLE #bar(id INT PRIMARY KEY);
INSERT #bar(id)
 SELECT TOP (100) [object_id]
 FROM sys.all_objects
 ORDER BY [object_id];
DROP TABLE #bar;

GO 100000

SELECT SYSDATETIME();

Both instances have tempdb configured with four data files and with TF 1117 and TF 1118 enabled, in a

VM with four CPUs, 16GB of memory, and only SSD. I intentionally created small #temp tables to amplify

any observed impact on the batch itself (which would get drowned out if creating the #temp tables took

a long time or caused excessive autogrowth events).

I ran these batches in each scenario, and here were the results, measured in batch duration in seconds:

http://sqlperformance.com/2014/05/t-sql-queries/dude-who-owns-that-temp-table

Batch duration, in seconds, of creating 100,000 #temp tables

Expressing the data a little bit differently, if we divide 100,000 by the duration, we can show the number

of #temp tables we can create per second in each scenario (read: throughput). Here are those results:

#temp tables created per second under each scenario

The results were a little surprising to me – I expected that, with the SQL Server 2014 improvements in

eager write logic, the heap population at the very least would run a lot faster. The heap in 2014 was two

measly seconds faster than 2012 at the baseline configuration, but Extended Events drove the time up

quite a bit (roughly a 10% increase over baseline); while the clustered index time was comparable to

2012 at the baseline, but went up by nearly 18% with Extended Events enabled. In 2012, the deltas for

heaps and clustered indexes were much more modest – 1.1% and 1.5% respectively. (And to be clear, no

autogrow events occurred during any of the tests.)

So, I thought, what if I created a leaner, meaner Extended Events session? Surely I could remove some

of those action columns – maybe I only need login name and spid, and can ignore the app name, host

name, and potentially expensive sql_text. Perhaps I could drop the additional filter against the commit

(collecting twice as many events, but less CPU spent on filtering) and allow multiple event loss to reduce

potential impact on the workload. This leaner session looks like this:

CREATE EVENT SESSION [TempTableCreation2014_LeanerMeaner] ON SERVER
ADD EVENT sqlserver.object_created
(
 ACTION
 (
 sqlserver.server_principal_name,
 sqlserver.session_id
)
 WHERE
 (
 sqlserver.like_i_sql_unicode_string([object_name], N'#%')
)
)
ADD TARGET package0.asynchronous_file_target
(
 SET FILENAME = 'c:\temp\TempTableCreation2014_LeanerMeaner.xel',
 MAX_FILE_SIZE = 32768,
 MAX_ROLLOVER_FILES = 10
)
WITH
(
 EVENT_RETENTION_MODE = ALLOW_MULTIPLE_EVENT_LOSS
);
GO
ALTER EVENT SESSION [TempTableCreation2014_LeanerMeaner] ON SERVER STATE = START;

Alas, no, same results. Just over three minutes for the heap, and just under seven minutes for the

clustered index. In order to dig deeper into where the extra time was being spent, I watched the 2014

instance with SQL Sentry Performance Advisor, and ran just the clustered index batch without any

Extended Events sessions configured. Then I ran the batch again, this time with the lighter XE session

configured. The batch times were 5:47 (347 seconds) and 6:55 (415 seconds) – so very much in line with

the previous batch (I was happy to see that our monitoring did not contribute any further to the

duration :-)). I validated that no events were dropped, and again that no autogrow events occurred.

I looked at Performance Advisor's dashboard in history mode, which allowed me to quickly view the

performance metrics of both batches side by side:

http://sqlsentry.com/products/performance-advisor/sql-server-performance
http://sqlsentry.com/products/performance-advisor/sql-server-performance

Performance Advisor dashboard, in history mode, showing both batches

Both batches were virtually identical in terms of network, CPU, transactions, compiles, key lookups, etc.

There is some slight difference in the Waits – the spikes during the first batch were exclusively

WRITELOG, while there were some minor CXPACKET waits found in the second batch. My working

theory well after midnight is that perhaps a good portion of the delay observed was due to context

switching caused by the Extended Events process. Since we don't have any visibility into exactly what XE

is doing under the covers, nor do we know what underlying mechanics have changed in XE between

2012 and 2014, that's the story I'm going to stick with for now, until I am more comfortable with xperf

and/or WinDbg.

Conclusion

In any event, it is clear that tracking #temp table creation is not free, and the cost may vary depending

on the type of #temp tables you are creating, the amount of information you are collecting in your XE

sessions, and even the version of SQL Server you are using. So you can run similar tests to what I have

done here, and decide how valuable collecting this information is in your environment.

The Myth that DROP and TRUNCATE TABLE are Non-Logged
By Paul Randal

There is a persistent myth in the SQL Server world that both the DROP TABLE and TRUNCATE TABLE

commands are non-logged.

They’re not. They’re both fully-logged, but efficiently logged.

You can easily prove this to yourself. Run the following code to set up a test database and table, and

show we have 10,000 rows in our table:

CREATE DATABASE [TruncateTest];
GO

ALTER DATABASE [TruncateTest] SET RECOVERY SIMPLE;
GO

USE [TruncateTest];
GO

CREATE TABLE [TestTable] (
 [c1] INT IDENTITY,
 [c2] CHAR (8000) DEFAULT 'a');
GO

SET NOCOUNT ON;
GO

INSERT INTO [TestTable] DEFAULT VALUES;
GO 10000

SELECT
 COUNT (*) AS N'RowCount'
FROM
 [TestTable];
GO

Results:

RowCount

———–

10000

And then the following code, which truncates the table in a transaction and checks the row count:

BEGIN TRAN;
GO
TRUNCATE TABLE [TestTable];
GO

SELECT
 COUNT (*) AS N'RowCount'
FROM

 [TestTable];
GO

Results:

RowCount

———–

0

Now the table is empty. But I can roll back the transaction and put all the data back again:

ROLLBACK TRAN;
GO

SELECT
 COUNT (*) AS N'RowCount'
FROM
 [TestTable];
GO

Results:

RowCount

———–

10000

Clearly the TRUNCATE operation must be logged otherwise the roll back operation would not work.

So where does the misconception come from?

It comes from the behavior of DROP and TRUNCATE operations on large tables. They will complete

almost instantaneously, and if you look in the transaction log using fn_dblog right afterwards, you’ll only

see a small number of log records generated from the operation. That small number doesn’t correlate

with the size of the table being truncated or dropped, so it seems as if DROP and TRUNCATE operations

are non-logged.

But they’re fully logged, as I demonstrated above. So where are the log records for the operations?

The answer is that the log records will be created, just not immediately, by a mechanism called ‘deferred

drop’, which was added in SQL Server 2000 SP3.

When a table is dropped or truncated, all the data file pages allocated for the table must be deallocated.

The mechanism for this before SQL Server 2000 SP3 was as follows:

For each extent allocated to the table

Begin

 Acquire an eXclusive allocation lock on the extent

 Probe the page lock for each page in the extent (acquire the lock in eXclusive mode, and
immediately drop it, making sure no-one else has the page locked)

 Do NOT release the extent lock, guaranteeing that no-one else can use that extent

 Move to the next extent

End

As all the extent locks were held until the end of the operation, and each lock takes a small amount of

memory, it was possible for the lock manager to run out of memory when a DROP or TRUNCATE of a

very large table occurred. Some SQL Server customers started to find they ran into out-of-memory

conditions on SQL Server 2000, as tables grew very large and vastly outstripped the growth in system

memory.

The deferred-drop mechanism simulates the DROP or TRUNCATE operation completing immediately, by

unhooking the allocations for the table and putting them on the ‘deferred-drop queue’, for later

processing by a background task. This unhook-and-transfer operation only generates a handful of log

records. This is the operation that is being done and rolled-back in my code example above.

The ‘deferred-drop background task’ spins up every few seconds and deallocates all the pages and

extents on the deferred-drop queue in small batches, guaranteeing that the operation will not run out of

memory. These deallocations are all fully-logged, but remember that deallocating a page full of data or

index records does not log individual deletes of those records; instead the entire page is just marked as

deallocated in the relevant PFS (Page Free Space) allocation byte-map.

From SQL Server 2000 SP3 onwards, when you perform a DROP or TRUNCATE of a table, you’ll only see a

few log records being generated. If you wait a minute or so, and then look in the transaction log again,

you’ll see thousands of log records have been generated by the deferred-drop operation, each

deallocating a page or extent. The operation is fully and efficiently logged.

Here’s an example, using the scenario we created above:

CHECKPOINT;
GO
TRUNCATE TABLE [TestTable];
GO
SELECT
 COUNT (*) AS N'LogRecCount'
FROM
 fn_dblog (NULL, NULL);
GO

Results:

LogRecCount

———–

25

As you can see, there clearly aren’t log records deallocating the 10,000 pages, plus 1,250 extents in the

TestTable table.

If I wait a few seconds, and then run the fn_dblog code again, I get:

LogRecCount

———–

3811

You might wonder why there aren’t at least 10,000 log records – one for each page being deallocated.

That’s because the page deallocations are even logged efficiently – with one log record reflecting PFS

page allocation changes for 8 consecutive data file pages, instead of one log record for each data file

page reflecting its allocation status changing in the PFS page.

SQL Server always tries to produce as little transaction log as possible, while still adhering to the rules

about full or minimal logging based on the current recovery model. If you want to look at the actual log

records generated by the unhook-and-transfer and deferred-drop mechanisms, simply substitute * for

COUNT (*) in the fn_dblog code above and look for a transaction with the Transaction Name set to

DeferredAllocUnitDrop::Process.

In future posts I’ll discuss the internals that underpin other persistent myths around performance

aspects of the SQL Server Storage Engine.

Transaction Log Monitoring
By Paul Randal

Over the last year I’ve blogged several times on SQLPerformance.com about transaction log

performance issues (see here) and I promised to discuss transaction log monitoring, which I’ll do in this

post. I’m going to present some of the metrics you can track, why you should care, and any advice for

dealing with the indicated problem.

DMVs

The easiest way to monitor transaction log I/O latencies is to use the sys.dm_io_virtual_file_stats DMV.

You’ll need to perform some math to get useful results and you can get some example code in the

VirtualFileStats.sql script in this demo zip file. You really want to see write latencies of less than 5ms for

the transaction log.

Earlier in November I blogged the results of a survey showing transaction log and tempdb data file

latencies for more than 25,000 databases around the world (see here), with 80% of databases hitting

the 5ms or less mark for transaction log write latency.

If your write latency is higher than 5ms, you can:

 Work to reduce the amount of log being generated and/or the amount of log flushes occurring

from tiny transactions, as I described in earlier posts.

 Follow some of the troubleshooting steps I describe in the survey blog post above.

 Move to a faster I/O subsystem, remembering that if you decide to use an SSD, you need to use

two in a RAID-1 configuration.

Another thing you can is watch to make sure you aren’t hitting the hard limit of 32 outstanding write

I/Os for each database’s transaction log. You can try to do this by looking at the Physical Disk/Avg. Disk

Write Queue Length, but that’s for an entire volume, not per file so if there’s anything else on the

volume apart from the log file you’re interested in, that won’t give you a valid number. A better way is

to aggregate the results of the sys.dm_io_pending_io_requests DMV, which lists all outstanding I/Os.

Here’s some code to do that:

SELECT
 COUNT (*) AS [PendingIOs],
 DB_NAME ([vfs].[database_id]) AS [DBName],
 [mf].[name] AS [FileName],
 [mf].[type_desc] AS [FileType],
 SUM ([pior].[io_pending_ms_ticks]) AS [TotalStall]
FROM sys.dm_io_pending_io_requests AS [pior]
JOIN sys.dm_io_virtual_file_stats (NULL, NULL) AS [vfs]
 ON [vfs].[file_handle] = [pior].[io_handle]
JOIN sys.master_files AS [mf]
 ON [mf].[database_id] = [vfs].[database_id]
 AND [mf].[file_id] = [vfs].[file_id]
WHERE
 [pior].[io_pending] = 1
GROUP BY [vfs].[database_id], [mf].[name], [mf].[type_desc]

http://www.sqlperformance.com/author/paulrandal
http://technet.microsoft.com/en-us/library/ms190326.aspx
http://www.sqlskills.com/InsiderContent/YouTube/Insider201104-2Code.zip
http://www.sqlskills.com/blogs/paul/are-io-latencies-killing-your-performance/
http://technet.microsoft.com/en-us/library/ms188762.aspx

ORDER BY [vfs].[database_id], [mf].[name];

You can easily modify this to only display results for log files (filter on type_desc ='LOG') and just for the

database ID you’re interested in.

If you find that you’re hitting the 32 limit for a particular database, you can:

 Reduce the amount of log flushes happening by reducing the number of small transactions and

watching out for things like page splits and unused/duplicate indexes being changed during data

modification operations. You can read more about optimizing log flushes in this article.

 Try using a faster I/O subsystem.

 As a last resort, split the workload over multiple databases or servers.

If you’re interested to see how much transaction log is being generated by your transactions, you can

use the sys.dm_tran_database_transactions DMV, in code similar to that below:

BEGIN TRAN;
GO

-- Do something you want to evaluate
GO

SELECT [database_transaction_log_bytes_used]
FROM sys.dm_tran_database_transactions
WHERE [database_id] = DB_ID (N'YourTestDB');
GO

You might be very surprised at how much log is being generated, especially in tempdb for code that

makes use of temporary objects. And of course, tempdb’s transaction log can be a bottleneck just like

for a user database.

Performance Monitor Counters

The log-related performance counters are all in the Databases performance object. Here are some of the

main ones to watch (either with Performance Monitor itself, or using SQL Agent alerts, or using the

sys.dm_os_performance_counters DMV, or in your favorite 3rd-party monitoring tool):

Log Growths

You don’t want to see this counter increasing as that says there’s something happening in the database

that’s causing more transaction log to be generated than there is current space. It implies that the

transaction log isn’t able to clear so you should investigate the cause by querying the

log_reuse_wait_desc field of sys.databases and take whatever action is required (see the Books Online

topic Factors That Can Delay Log Truncation for more details). Some example code would be:

http://technet.microsoft.com/en-us/library/ms186957.aspx

SELECT [log_reuse_wait_desc]
 FROM sys.databases
 WHERE [name] = N'YourDB';
GO

Whenever a log growth occurs, the newly allocated portion of the transaction log has to be zeroed out,

plus more Virtual Log Files are added – both of which can cause problems as I blogged about previously.

Log Shrinks

Unless you are the person performing the shrink operation to bring an out-of-control transaction log

back under control, you don’t want to see this counter increasing. If someone just shrinks the

transaction log for no good reason, it will likely grow again, causing problems as I blogged about

previously.

Percent Log Used

You should monitor this counter and be concerned if the value goes higher than 90%, as that indicates

that a log growth might be imminent and the transaction log is not able to clear correctly, as I discussed

above.

Log Flush Waits/sec

You want this value to remain the same or decrease. If it increases, it means you have an I/O subsystem

bottleneck or a bottleneck inside the log flush mechanism because you’re flushing many small portions

of log. An increase here may also correlate with hitting the 32 outstanding I/Os for the log. See the

discussion of sys.dm_io_pending_io_requests above for more details.

Log Bytes Flushed/sec and Log Flushes/sec

These two counters allow you to figure out the average log flush size, by dividing the first counter by the

second. The result will be a value between 512 and 61440 (the minimum and maximum sizes of a log

flush, respectively). A lower value is more likely to correlate with increasing Log Flush Waits/sec. Again,

see the discussion of sys.dm_io_pending_io_requests above for more details.

Extended Events

For the more advanced among you, there are some Extended Events that you can use to watch what’s

going on with the log. I recommend you start by using the Database Log File IO Tracking template in SQL

Server 2012 SSMS. You can get to this by going to Object Explorer and then your instance ->

Management -> Extended Events and right-clicking Sessions to select New Session Wizard. In the

Window that comes up, type a session name and select the tracking template from the drop down. Then

hit Ctrl+Shift+N and the session will be scripted to a query window. The details of everything in there are

beyond the scope of this post, unfortunately, but the template description is pretty explanatory:

This template monitors the IO for database log files on a server by tracking

asynchronous IO, database log flushes, file writes, spinlock backoffs of type

LOGFLUSHQ and waits of type WRITELOG. This template collects data in two ways:

raw data is collected to a ring buffer and spinlock backoff information is

aggregated based on the input buffer (sql_text). The session is filtered for a

single log file per database; if you have multiple log files you can modify

the filter for the file_write_completed and file_written events to include

more than just file_id = 2.

There’s also a new Extended Event in SQL Server 2012 called transaction_log that can be used to do all

sorts of interesting analysis of what log records are being generated. That’s definitely a subject I’ll cover

in a future post.

Summary

Given all the information above, you should be able to come up with a pretty good transaction log

monitoring system. Transaction log health is of paramount importance for ensuring your workload is

performing as it should be and I hope the four posts in this series (plus all the other links) have helped

you to improve the overall performance of your SQL Server environment.

Looking at Database Snapshot Performance
By Jonathan Kehayias

A database snapshot provides a read-only view of a SQL Server database that is transactionally

consistent with the state of the source database at the time that the database snapshot was created. A

number of reasons exist for using database snapshots, for example reporting against a mirrored

database, and DBCC CHECKDB also uses internal database snapshots from SQL Server 2005 onwards.

Database snapshots also provide the ability to roll back all of the changes that have occurred to a

database since the database snapshot was created, but with a nasty side effect on the database’s

transaction log that Paul blogged about here.

One of the things that isn’t commonly considered or shown around database snapshots is the

performance impact that the snapshot has for the database write workload. The SQLCAT team published

a whitepaper for SQL Server 2005, Database Snapshot Performance Considerations under I/O-Intensive

Workloads, that investigated the performance impacts of database snapshots, and after working with a

client recently where database snapshots resulted in performance problems, I wanted to test SQL Server

2012 and determine if there were any changes to the overhead of database snapshots seven years and

three SQL Server releases later.

Test Configuration

To perform the testing of the effect of database snapshots on write workload performance, I used our

Dell R720 performing a 1,000,000 row insert into a new table in an enlarged version of the

AdventureWorks2012 database. The AdventureWorks2012 database was created with 8 data files

spread across two Fusion-io ioDrive Duo 640GB SSDs that were each setup as two individual 320GB disks

in Windows, presenting a total of 4 disks. To simplify explaining the configuration, the storage layout

used for these tests is shown in the table below:

Disk Configuration Usage

K 15K RAID 5 – 6 Disk Snapshot

L Fusion-io Card2 – Side B Log File

M Fusion-io Card2 – Side A 4 Data Files

N Fusion-io Card1 – Side A 4 Data Files

Q Fusion-io Card1 – Side B Tempdb

R LSI Nytro BLP4-1600 Snapshot

Table 1 – Server Disk Layout and Usage

The storage for the database snapshot was either a RAID-5 array of six 15k RPM SAS drives connected

through iSCSI, or an LSI Nytro BLP4-1600 PCI-E card.

The test workload used the following SELECT INTO statement to generate a 1,000,000 row table which

was dropped between each of the tests.

http://www.sqlskills.com/blogs/paul/bug-reverting-from-a-database-snapshot-shrinks-the-transaction-log-to-0-5mb/
http://sqlcat.com/sqlcat/b/whitepapers/archive/2008/02/11/database-snapshot-performance-considerations-under-i-o-intensive-workloads.aspx
http://sqlcat.com/sqlcat/b/whitepapers/archive/2008/02/11/database-snapshot-performance-considerations-under-i-o-intensive-workloads.aspx

SELECT TOP 1000000 *
INTO tmp_SalesOrderHeader
FROM Sales.SalesOrderHeaderEnlarged;

The tests were timed to measure the duration without a database snapshot, and then the duration with

a database snapshot created on each of the storage devices to measure the performance degradation

caused by writing page changes to the database snapshot sparse file. The tests were also run using two

database snapshots on the same storage device to ascertain what the overhead of having additional

database snapshots might be for the duplicated write operations that potentially have to be performed.

Results

Each test configuration was executed ten times and the average duration, converted from milliseconds

to seconds for easier viewing, is shown in Figure 1, for 0, 1, or 2 database snapshots.

Figure 1 – Snapshot Duration

The baseline tests with no database snapshots executed on average in 1.8 seconds, and even when the

storage for the database snapshot files was equivalent in performance, the existence of a single

database snapshot imposed overhead to the write performance for the database. The overhead of the

second database snapshot is lower than having the first database snapshot in each of the tests, though

the 15K RPM disks had a much more difficult time keeping up with the added write workload from the

second database snapshot for the database.

The performance on the LSI Nytro card initially surprised me since it was also a PCI-X SSD. However,

after discussing the results with Glenn, he mentioned that the Sandforce controller compression and

slower write performance for random, low-compression data from his past tests on the drive. However,

it still easily outclassed the spinning media.

Before running the tests I was interested to know what wait types would occur during the tests, so as a

part of the test configuration, I cleared sys.dm_os_wait_stats with DBCC SQLPERF and captured the

output from the DMV for each test run into a table. The top waits for the single snapshot configurations

http://www.sqlskills.com/blogs/glenn/a-sql-server-hardware-tidbit-a-day-day-10/

were PREEMPTIVE_OS_WRITEFILE and WRITE_COMPLETION as shown in Figure 2, for 1 or 2 database

snapshots.

Figure 2 – Snapshot Top Waits

One of the interesting items was the addition of FCB_REPLICA_WRITE waits when a second snapshot

was created. After reviewing the single database snapshot wait results, and re-running a couple of

rounds of tests, this wait never occurs for a single snapshot and only occurs when more than one

snapshot exists and is associated with copying the pages into the database snapshot files. The wait times

for the PREEMPTIVE_OS_WRITEFILE waits trend closely with the increases in execution duration for each

of the configurations.

With these results in mind, when reviewing a system using the Waits and Queues methodology, seeing

this wait type with higher values might be worth investigating whether or not database snapshots exist

for any of the databases on the server.

Conclusion

When using database snapshots, even in SQL Server 2012, there is an overhead associated with the

additional writes required for copying data pages to the sparse files for the snapshots. If using database

snapshots is a part of your general configuration, I would really be careful about planning the I/O

subsystem to meet the workload requirements for concurrent I/O activity to the database snapshot

sparse files.

From the results of these tests I’d even consider placing database snapshots on SSDs ahead of tempdb

for the write performance, and also for lower performance impact from the snapshot maintenance.

As always, your mileage may vary, and you will certainly want to test the performance of any

configuration before placing it into production usage.

http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/

Comparing Windows Azure Virtual Machine Performance
By Glenn Berry

Unless you have been making a concerted effort to ignore it, you may have heard that Microsoft

would really like for you to move much of your SQL Server database infrastructure into a Microsoft data

center, whether you go to an Azure SQL Database (which I recently discussed here), or whether you host

it on a Windows Azure Virtual Machine. Microsoft calls these persistent virtual machines “compute

instances”, and they have two main tiers to choose from, which include the Basic Compute Tier and the

Standard Compute Tier. They describe these two tiers as:

Basic Compute Tier: This new tier of compute instances is similar in configuration to the Standard tier

with lower prices. These instances do not include load balancer and auto-scaling. They are well-suited

for single instance production applications, development workloads, test servers and batch processing

applications that might not require these features. The basic compute tier is currently available only for

the General Purpose Instances. These instances range from Basic A0 to Basic A4.

Standard Compute Tier: This tier of compute instances provides an optimal set of compute, memory

and IO resources for running a wide array of applications. These instances include both auto-scaling and

load balancing capabilities at no additional cost. The standard compute tier is available across General

Purpose, Memory Intensive and Compute Intensive instances. These instances range from Standard A0

to Standard A7.

There are several important advantages to hosting your SQL Server infrastructure on a Windows Azure

Virtual Machine. First, you have no capital costs for storage or hardware, along with no ongoing

maintenance of the storage or hardware. Second, you have no OS or SQL Server license costs (when you

use a SQL image from the standard Azure VM gallery). Third, you can create a new Azure VM that

already has SQL Server installed in a few minutes (even though it may take a little longer to completely

configure the OS and the SQL Server instance to your exact requirements). Going forward, it will still be

up to you to install Windows and SQL Server updates, but you won’t have to worry about things like

firmware, BIOS, or driver updates.

If you want to use Windows Azure Virtual Machines to host all or part of your SQL Server infrastructure,

you should be aware of the current pricing details that are available for the specific Azure data center

that you want to host your virtual machines, since pricing can vary across different Microsoft data

centers. Microsoft currently has 13 different Windows Azure virtual machine sizes, as detailed in

their Virtual Machine and Cloud Service Sizes for Azure page. Microsoft reduced the hourly pricing for

the memory intensive instances (Standard A5, Standard A6, and Standard A7) by 18% in most of their

data centers on May 1, 2014, and the pricing shown in Table 1 reflects those new, lower prices.

The Single-Core Score and the Multi-Core Score in the two right-hand columns of Table 1 are the

average scores that I observed using the 32-bit version of the Geekbench 3.05 processor and memory

benchmark on a sample Windows Server 2012 R2 Datacenter VM in the East U.S. Data Center. These

scores may or may not be representative of what you will see.

http://www.sqlskills.com/blogs/glenn/new-azure-sql-database-service-tiers/
http://msdn.microsoft.com/en-us/library/azure/jj156003.aspx
http://azure.microsoft.com/en-us/pricing/details/virtual-machines/
http://msdn.microsoft.com/library/azure/dn197896.aspx
http://www.primatelabs.com/geekbench/

VM

Size

CPU

Cores

Memory

(GB)

Hourly

Cost

Monthly

Cost

Single-Core

Score

Multi-Core

Score

Basic A0 1 (shared) 0.75 $0.018 ~$14 507 498

Basic A1 1 1.75 $0.074 ~$56 679 670

Basic A2 2 3.50 $0.148 ~$111 709 1,358

Basic A3 4 7.00 $0.296 ~$221 717 2,472

Basic A4 8 14.00 $0.592 ~$441 724 4,042

Standard

A0
1 (shared) 0.75 $0.020 ~$15 492 502

Standard

A1
1 1.75 $0.090 ~$67 1,068 1,083

Standard

A2
2 3.50 $0.180 ~$134 1,069 2,002

Standard

A3
4 7.00 $0.360 ~$268 1,070 3,593

Standard

A4
8 14.00 $0.720 ~$536 1,094 6,446

Standard

A5
2 14.00 $0.330 ~$246 1,080 2,026

Standard

A6
4 28.00 $0.660 ~$492 1,080 3,686

Standard

A7
8 56.00 $1.320 ~$983 1,056 6,185

Table 1: Selected Virtual Machine Specifications for Windows Azure in the East U.S. Data Center

Currently, Microsoft has nine data centers that can host new persistent virtual machines, which include

East U.S., West U.S., Brazil South (Preview), North Europe, West Europe, East Asia, Southeast Asia, Japan

West, and Japan East. According to Microsoft, “A1 is the smallest size recommended for production

workloads”, and you should select “a virtual machine with 4 or 8 CPU cores when using SQL Server

Enterprise Edition”. One useful, if somewhat dated reference for running SQL Server on a Windows

Azure Virtual Machine is the Performance Guidance for SQL Server in Windows Azure Virtual

Machines that was published in June, 2013.

Windows Azure Virtual Machine Characteristics

When you look at the CPU properties on the Performance tab in Windows Server 2012 R2 Task Manager

(in Figure 1 and Figure 2), you will notice that it reports that it is using a relatively old, 45nm AMD

Opteron 4171 HE processor, running at a speed of 2.1GHz. This particular six-core processor was

http://msdn.microsoft.com/en-us/library/dn248436.aspx
http://msdn.microsoft.com/en-us/library/dn248436.aspx
http://cdn.sqlperformance.com/wp-content/uploads/2014/05/gVM-0.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/05/gVM-1.png
http://www.cpu-world.com/CPUs/K10/AMD-Opteron%204171%20HE%20OS4171FNU6DGO.html
http://www.cpu-world.com/CPUs/K10/AMD-Opteron%204171%20HE%20OS4171FNU6DGO.html

introduced in June of 2010, as part of the two-socket Lisbon family. The HE suffix means that it is a “low-

powered” energy efficient model which is not a good choice for SQL Server usage, since it gives up a

significant amount of performance for a relatively small amount of reduced energy usage. After doing

some digging, I have been told that this processor is a special OEM processor for Microsoft data centers.

Figure 1: Basic A0 Virtual Machine in East U.S. Data Center

Figure 2: Standard A7 Virtual Machine in East U.S. Data Center

The other big issue with this processor besides its age and relatively poor single-threaded performance

is the fact that it only has six physical cores. This is a problem with the Basic A4, Standard A4, and

Standard A7 VM sizes, which have two NUMA nodes and eight total physical cores. This would mean

that a VM of that size would cross a NUMA node on the underlying physical host, which is not a good

idea for memory performance. I have a hard time believing that Microsoft would do this on purpose. I

also have a hard time believing that every single Azure VM in every single data center that I have tried so

far is using the exact same elderly AMD processor. It is fairly common knowledge that Microsoft has at

least three different generations of hardware (Gen 1, Gen 2, and Gen 3) that they have used so far in

their Azure data centers. After some more inquiries, I have discovered that this AMD Opteron 4171 HE

processor is an Azure Gen 2 processor.

You can browse the Geekbench 3 online database of uploaded benchmark results, looking for systems

using the AMD Opteron 4171 HE processor here. You may notice that every single result for this

processor seems to be for a Microsoft Virtual Machine, which is also quite curious. Windows Server

2012 R2 Task Manager is reporting the L1 cache as “N/A” and not even listing the L2 and L3 cache sizes

on these Azure VMs. Another curious piece of evidence is the fact that the Standard Instances have

about 50% higher Geekbench 3 scores than the equivalent Basic Instances when they have the exact

same total processor core counts and memory sizes, for both the Single-Core score and Multi-Core

score. This much of a variance does not make any sense if the underlying host machine is actually using

the same processor.

Summary

All of this evidence initially led me to the conclusion that Microsoft was probably obscuring the actual

processor in the host machine. I thought they might be doing this to try to prevent people from

purposely provisioning multiple VMs until they happen to get a VM is running on newer, faster, host

hardware. It turns out that Microsoft is not quite that clever. I have been assured that Microsoft does

not alter the identity of the CPU in an Azure VM. There are newer Azure Gen 3 processors that you may

get in an Azure VM, as you provision new VMs in the future. Another possible reason for my results was

that they are likely using some sort of governance to limit VM performance to a reliable, uniform level,

regardless of the underlying host hardware, so that they can host more VMs on less hardware over time.

This would be a smart course of action for an IaaS hoster.

The relatively low Geekbench 3.05 scores (see Figure 3) for even the largest Azure VMs means that you

are giving up a significant amount of processor and memory performance compared to an equivalent

physical two-socket server with the same number of processor cores and memory.

http://browser.primatelabs.com/geekbench3/search?q=Opteron+4171+HE
http://browser.primatelabs.com/geekbench3/search?q=Opteron+4171+HE
http://cdn.sqlperformance.com/wp-content/uploads/2014/05/gVM-2.png

Figure 3: 32-bit Geekbench 3.05 Results for Standard A4 Virtual Machine in East U.S. Data Center

Many SQL Server workloads will run perfectly well with this level of processor and memory

performance, albeit a little slower than you may be used to. If you factor in the SQL Server 2014

Enterprise Edition license savings from an eight-core machine, plus the capex for a modest, two-socket

server and its associated storage, you could afford to run a Standard A7 virtual machine 24×7 for about

five to six years. Given that sort of ROI, I can see many organizations making the economic decision to

move at least a portion of their SQL Server infrastructure to Azure Virtual Machines. As long as your

workload can run on a 56GB or smaller VM, and as long as having less CPU and memory performance

than a typical recent vintage laptop is also acceptable, this is a rational course of action. Microsoft

recently announced the availability of larger, much faster A8 and A9 VM Compute Intensive Instances,

that use Intel Xeon E5-2670 processors. This will be a huge improvement in performance over the Azure

Gen 2 processors.

http://msdn.microsoft.com/en-us/library/azure/dn689095.aspx
http://msdn.microsoft.com/en-us/library/azure/dn689095.aspx

SQL Server 2014
Prepare a new VM for SQL Server 2014
By Aaron Bertrand

So, you probably want to play with all the new performance-related features of the SQL Server 2014 CTP

that was just released, such as Updateable Columnstore Indexes, Hekaton, and Buffer Pool Extensions.

However, don't jump on the download and try to install it on a machine that already has an earlier

version of SQL Server or any installation of Visual Studio. During setup you will fail on two warnings:

http://www.microsoft.com/en-us/sqlserver/sql-server-2014.aspx
http://www.microsoft.com/en-us/sqlserver/sql-server-2014.aspx

Rule "Previous SQL product installation" failed.
A SQL product other than SQL Server 2014 CTP1 is detected. You cannot install

this release until the existing instances of SQL products are uninstalled.

Rule "Check for Visual Studio" failed.
Installation blocked due to detection of versions of Visual Studio that

install SQL Server 2012 client libraries. SQL14 CTP1 is prerelease software

and should be installed only on a clean machine.

In many of the previous versions (at least from what I remember), while running the beta side-by-side

with the previous version of SQL Server was not technically supported, it wasn't blocked by setup either.

These days you'll have to devote a VM (or machine, or environment) to this type of testing, and be

prepared to wipe, rinse and repeat when the next CTP is released. From previous experience I would

recommend not bothering to try and "clean" an existing machine by uninstalling SQL Server and/or

Visual Studio.

I'll be blogging more about the features later, but in the meantime, I wanted to try and save you some

headache…

Exploring SQL Server 2014 SELECT INTO Parallelism
By Joe Sack

SQL Server 2014 CTP1 has been out for a few weeks now, and you’ve likely seen quite a bit of press

about memory-optimized tables and updateable columnstore indexes. While these are certainly worthy

of attention, in this post I wanted to explore the new SELECT … INTO parallelism improvement. The

improvement is one of those ready-to-wear changes that, from the looks of it, will not require significant

code changes in order to start benefiting from it. My explorations were performed using version

Microsoft SQL Server 2014 (CTP1) – 11.0.9120.5 (X64), Enterprise Evaluation Edition.

Parallel SELECT … INTO

SQL Server 2014 introduces parallel-enabled SELECT ... INTO for databases and to test this feature I used

the AdventureWorksDW2012 database and a version of the FactInternetSales table that had 61,847,552

rows in it (I was responsible for adding those rows; they don’t come with the database by default).

Because this feature, as of CTP1, requires database compatibility level 110, for testing purposes I set the

database to compatibility level 100 and executed the following query for my first test:

SELECT [ProductKey],
 [OrderDateKey],
 [DueDateKey],
 [ShipDateKey],
 [CustomerKey],
 [PromotionKey],
 [CurrencyKey],
 [SalesTerritoryKey],
 [SalesOrderNumber],
 [SalesOrderLineNumber],
 [RevisionNumber],
 [OrderQuantity],
 [UnitPrice],
 [ExtendedAmount],
 [UnitPriceDiscountPct],
 [DiscountAmount],
 [ProductStandardCost],
 [TotalProductCost],
 [SalesAmount],
 [TaxAmt],
 [Freight],
 [CarrierTrackingNumber],
 [CustomerPONumber],
 [OrderDate],
 [DueDate],
 [ShipDate]
INTO dbo.FactInternetSales_V2
FROM dbo.FactInternetSales;

The query execution duration was 3 minutes and 19 seconds on my test VM and the actual query

execution plan produced was as follows:

SQL Server used a serial plan, as I expected. Notice also that my table had a nonclustered columnstore

index on it which was scanned (I created this nonclustered columnstore index for use with other tests,

but I’ll show you the clustered columnstore index query execution plan later as well). The plan did not

use parallelism and the Columnstore Index Scan used row execution mode instead of batch execution

mode.

So next, I modified the database compatibility level (and note that there isn’t a SQL Server 2014

compatibility level in CTP1 yet):

USE [master];
GO
ALTER DATABASE [AdventureWorksDW2012] SET COMPATIBILITY_LEVEL = 110;
GO

I dropped the FactInternetSales_V2 table and then re-executed my original SELECT ... INTO operation.

This time the query execution duration was 1 minute and 7 seconds and the actual query execution plan

was as follows:

We now have a parallel plan and the only change I had to make was to the database compatibility level

for AdventureWorksDW2012. My test VM has four vCPUs allocated to it, and the query execution plan

distributed rows across four threads:

The nonclustered Columnstore Index Scan, while using parallelism, didn’t use batch execution mode.

Instead it used row execution mode.

Here is a table to show the test results so far:

Scan Type
Compatibility

level

Parallel SELECT …

INTO

Execution

Mode
Duration

Nonclustered Columnstore

Index Scan
100 No Row 3:19

Nonclustered Columnstore

Index Scan
110 Yes Row 1:07

So as a next test, I dropped the nonclustered columnstore index and re-executed the SELECT ...

INTO query using both the database compatibility level 100 and 110.

The compatibility level 100 test took 5 minutes and 44 seconds to run, and the following plan was

generated:

The serial Clustered Index Scan took 2 minutes and 25 seconds longer than the serial nonclustered

Columnstore Index Scan.

Using compatibility level 110, the query took 1 minute and 55 seconds to run, and the following plan

was generated:

Similar to the parallel nonclustered Columnstore Index Scan test, the parallel Clustered Index Scan

distributed rows across four threads:

The following table summarizes these two aforementioned tests:

Scan Type
Compatibility

level

Parallel SELECT …

INTO

Execution

Mode
Duration

Clustered Index

Scan
100 No Row (N/A) 5:44

Clustered Index

Scan
110 Yes Row (N/A) 1:55

So then I wondered about the performance for a clustered columnstore index (new in SQL Server 2014),

so I dropped the existing indexes and created a clustered columnstore index on the FactInternetSales

table. I also had to drop the eight different foreign key constraints defined on the table before I could

create the clustered columnstore index.

The discussion becomes somewhat academic, since I'm comparing SELECT ... INTO performance at

database compatibility levels that didn’t offer clustered columnstore indexes in the first place – nor did

the earlier tests for nonclustered columnstore indexes at database compatibility level 100 – and yet it is

interesting to see and compare the overall performance characteristics.

CREATE CLUSTERED COLUMNSTORE INDEX [CCSI_FactInternetSales]
ON [dbo].[FactInternetSales]
WITH (DROP_EXISTING = OFF);
GO

As an aside, the operation to create the clustered columnstore index on a 61,847,552 million row table

took 11 minutes and 25 seconds with four available vCPUs (of which the operation leveraged them all),

4GB of RAM and virtual guest storage on OCZ Vertex SSDs. During that time the CPUs weren’t pegged

the entire time, but rather displayed peaks and valleys (a sampling of 60 seconds of CPU activity shown

below):

After the clustered columnstore index was created, I re-executed the two SELECT ... INTO tests. The

compatibility level 100 test took 3 minutes and 22 seconds to run, and the plan was a serial one as

expected (I'm showing the SQL Server Management Studio version of the plan since the clustered

Columnstore Index Scan, as of SQL Server 2014 CTP1, is not yet fully recognized by Plan Explorer):

Next I changed the database compatibility level to 110 and re-ran the test, which this time the query

took 1 minute and 11 seconds and had the following actual execution plan:

The plan distributed rows across four threads, and just like the nonclustered columnstore index, the

execution mode of the clustered Columnstore Index Scan was row and not batch.

The following table summarizes all the tests within this post (in order of duration, low to high):

Scan Type
Compatibility

level

Parallel SELECT …

INTO

Execution

Mode
Duration

Nonclustered Columnstore

Index Scan
110 Yes Row 1:07

Clustered Columnstore Index

Scan
110 Yes Row 1:11

Clustered Index Scan 110 Yes Row (N/A) 1:55

Nonclustered Columnstore

Index Scan
100 No Row 3:19

Clustered Columnstore Index

Scan
100 No Row 3:22

Clustered Index Scan 100 No Row (N/A) 5:44

A few observations:

 I'm not sure if the difference between a parallel SELECT ... INTO operation against a

nonclustered columnstore index versus clustered columnstore index is statistically significant. I'd

need to do more tests, but I think I would wait to perform those until RTM.

 I can safely say that the parallel SELECT ... INTO did significantly outperform the serial

equivalents across a clustered index, nonclustered columnstore and clustered columnstore

index tests.

It is worth mentioning that these results are for a CTP version of the product, and my tests should be

viewed as something that could shift in behavior by RTM – so I was less interested in the standalone

durations versus how those durations compared between serial and parallel conditions.

Some performance features require significant refactoring – but for the SELECT ... INTO improvement, all

I had to do was bump up the database compatibility level in order to start seeing the benefits, which is

definitely something I appreciate.

A First Look at the NEW SQL Server Cardinality Estimator
By Benjamin Nevarez

While most of the information, blogs and documentation about SQL Server 2014 have focused on

Hekaton and other new features, not many details have been provided about the new cardinality

estimator. Currently BOL only indirectly talks about it on the What’s New (Database Engine) section,

saying that SQL Server 2014 “includes substantial improvements to the component that creates and

optimizes query plans,” and the ALTER DATABASE statement shows how to enable or disable its

behavior. Fortunately we can get some additional information by reading the research paper Testing

Cardinality Estimation Models in SQL Server by Campbell Fraser et al. Although the focus of the paper is

the quality assurance process of the new estimation model, it also offers a basic introduction to the new

cardinality estimator, and the motivation of its redesign.

So, what is a cardinality estimator? A cardinality estimator is the component of the query processor

whose job is to estimate the number of rows returned by relational operations in a query. This

information, along with some other data, is used by the query optimizer to select an efficient execution

plan. Cardinality estimation is inherently inexact, as it is a mathematical model which relies on statistical

information. It is also based on several assumptions which, although not documented, have been known

over the years – some of them include the uniformity, independence, containment and inclusion

assumptions. A brief description of these assumptions follows.

1. Uniformity. Used when the distribution for an attribute is unknown, for example, inside of range

rows in a histogram step or when a histogram is not available.

2. Independence. Used when the attributes in a relation are independent, unless a correlation

between them is known.

3. Containment. Used when two attributes might be the same, they are assumed to be the same.

4. Inclusion. Used when comparing an attribute with a constant, it is assumed there is always a

match.

It is interesting that I just recently talked about some of the limitations of these assumptions at my last

talk at the PASS Summit, called Defeating the Limitations of the Query Optimizer. Yet I was surprised to

read in the paper that the authors admit that, according to their experience in practice, these

assumptions are “frequently incorrect.”

The current cardinality estimator was written along with the entire query processor for SQL Server 7.0,

which was released back in December of 1998. Obviously this component has faced multiple changes

during several years and multiple releases of SQL Server, including fixes, adjustments and extensions to

accommodate cardinality estimation for new T-SQL features. So you may be thinking, why replace a

component which has been successfully used in for about 15 years?

Why a New Cardinality Estimator

The paper explains some of the reasons of the redesign including:

1. To accommodate the cardinality estimator to new workload patterns.

http://msdn.microsoft.com/en-us/library/bb510411(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/bb510680(v=sql.120).aspx
http://dl.acm.org/citation.cfm?id=2304526
http://dl.acm.org/citation.cfm?id=2304526
http://www.sqlpass.org/summit/2013/Sessions/SessionDetails.aspx?sid=5065

2. Changes made to the cardinality estimator over the years made the component difficult to

“debug, predict, and understand.”

3. Trying to improve on the current model was difficult using the current architecture, so a new

design was created, focused on the separation of tasks of (a) deciding how to compute a

particular estimate, and (b) actually performing the computation.

I am not sure if more details about the new cardinality estimator are going to be published by Microsoft.

After all, not so many details were ever published about the old cardinality estimator in 15 years; for

example, how some specific cardinality estimation is calculated. On the other hand, there are new

extended events which we can use to troubleshoot problems with cardinality estimation, or just to

explore how it works. These events

include query_optimizer_estimate_cardinality, inaccurate_cardinality_estimate,query_optimizer_force_

both_cardinality_estimation_behaviors and query_rpc_set_cardinality.

Plan Regressions

A major concern that comes to mind with such a huge change inside the query optimizer is plan

regressions. The fear of plan regressions has been considered the biggest obstacle to query optimizer

improvements. Regressions are problems introduced after a fix has been applied to the query optimizer

and sometimes referred as the classic “two wrongs make a right.” This can happen when two bad

estimations, for example one overestimating a value and the second one underestimating it, cancel each

other out, luckily giving a good estimate. Correcting only one of these values may now lead to a bad

estimation which may negatively impact the choice of plan selection, causing a regression.

To help avoid regressions related to the new cardinality estimator, SQL Server provides a way to enable

or disable it, as it depends on the database compatibility level. This can be changed using the ALTER

DATABASE statement, as indicated earlier. Setting a database to the compatibility level 120 will use the

new cardinality estimator, while a compatibility level less than 120 will use the old cardinality estimator.

In addition, once you are using a specific cardinality estimator, there are two trace flags you can use to

change to the other. Although at the moment I don’t see the trace flags documented anywhere, they

are mentioned as part of the description of

the query_optimizer_force_both_cardinality_estimation_behaviors extended event. Trace flag 2312 can

be used to enable the new cardinality estimator, while trace flag 9481 can be used to disable it. You can

even use the trace flags for a specific query using the QUERYTRACEON hint (though it is not yet

documented if this will be supported either).

Examples

Finally, the paper also mentions some tested scenarios like the overpopulated primary key, simple join,

or the ascending key problem. It also shows how the authors experimented with multiple scenarios (or

model variations) and in some cases “relaxed” some of the assumptions made by the cardinality

estimator, for example, in the case of the independency assumption, going from complete

independence to complete correlation and something in between until good results were found.

Although no details are provided on the paper I decide to start testing some of these scenarios to try to

understand how the new cardinality estimator works. For now I will show you example using the

independence assumption and ascending keys. I also tested the uniformity assumption but so far was

not able to find any difference on estimation.

Let start with the independency assumption example. First let us see the current behavior. For that,

make sure you are using the old cardinality estimator by running the following statement on the

AdventureWorks2012 database:

ALTER DATABASE AdventureWorks2012 SET COMPATIBILITY_LEVEL = 110;

Then run:

SELECT * FROM Person.Address WHERE City = 'Burbank';

We get an estimated of 196 records as shown next:

In a similar way the following statement will get an estimated of 194:

SELECT * FROM Person.Address WHERE PostalCode = '91502';

If we use both predicates we have the following query, which will have an estimated number of rows of

1.93862 (rounded up to 2 rows if using SQL Sentry Plan Explorer):

SELECT * FROM Person.Address WHERE City = 'Burbank' AND PostalCode = '91502';

This value is calculated assuming total independence of both predicates, which uses the formula (196 *

194) / 19614.0 (where 19614 is the total number of rows in the table). Using a total correlation should

give us an estimate of 194, as all the records with postal code 91502 belong to Burbank. The new

cardinality estimator estimates a value which does not assume total independence or total correlation.

Change to the new cardinality estimator using the following statement:

ALTER DATABASE AdventureWorks2012 SET COMPATIBILITY_LEVEL = 120;
GO

SELECT * FROM Person.Address WHERE City = 'Burbank' AND PostalCode = '91502';

http://sqlsentry.net/plan-explorer

Running the same statement again will give an estimate of 19.3931 rows, which you can see is a value

between assuming total independence and total correlation (rounded up to 19 rows in Plan Explorer).

The formula used is selectivity of most selective filter * SQRT(selectivity of next most selective filter) or

(194/19614.0) * SQRT(196/19614.0) * 19614 which gives 19.393:

If you have enabled the new cardinality estimator at the database level buy want to disable it for a

specific query to avoid a plan regression, you can use trace flag 9481 as explained earlier:

ALTER DATABASE AdventureWorks2012 SET COMPATIBILITY_LEVEL = 120;
GO

SELECT * FROM Person.Address WHERE City = 'Burbank' AND PostalCode = '91502'
 OPTION (QUERYTRACEON 9481);

Note: The QUERYTRACEON query hint is used to apply a trace flag at the query level and currently it is

only supported in a limited number of scenarios. For more information about the QUERYTRACEON query

hint you can look at http://support.microsoft.com/kb/2801413.

Now let us look at the ascending key problem, a topic I’ve explained in more detail in this post. The

traditional recommendation from Microsoft to fix this problem is to manually update statistics after

loading data, as explained here – which describes the problem in the following way:

“Statistics on ascending or descending key columns, such as IDENTITY or real-time timestamp columns,

might require more frequent statistics updates than the query optimizer performs. Insert operations

append new values to ascending or descending columns. The number of rows added might be too small

to trigger a statistics update. If statistics are not up-to-date and queries select from the most recently

added rows, the current statistics will not have cardinality estimates for these new values. This can

result in inaccurate cardinality estimates and slow query performance. For example, a query that selects

from the most recent sales order dates will have inaccurate cardinality estimates if the statistics are not

updated to include cardinality estimates for the most recent sales order dates.”

The recommendation in my article was to use trace flags 2389 and 2390, which were first published by

Ian Jose in his article Ascending Keys and Auto Quick Corrected Statistics. You can read my article for an

explanation and example on how to use these trace flags to avoid this problem. These trace flags still

work on SQL Server 2014 CTP2. But even better, they are no longer needed if you are using the new

cardinality estimator.

Using the same example in my post:

http://support.microsoft.com/kb/2801413
http://www.benjaminnevarez.com/2013/02/statistics-on-ascending-keys/
http://msdn.microsoft.com/en-us/library/ms190397.aspx
http://blogs.msdn.com/b/ianjo/archive/2006/04/24/582227.aspx

CREATE TABLE dbo.SalesOrderHeader (
 SalesOrderID int NOT NULL,
 RevisionNumber tinyint NOT NULL,
 OrderDate datetime NOT NULL,
 DueDate datetime NOT NULL,
 ShipDate datetime NULL,
 Status tinyint NOT NULL,
 OnlineOrderFlag dbo.Flag NOT NULL,
 SalesOrderNumber nvarchar(25) NOT NULL,
 PurchaseOrderNumber dbo.OrderNumber NULL,
 AccountNumber dbo.AccountNumber NULL,
 CustomerID int NOT NULL,
 SalesPersonID int NULL,
 TerritoryID int NULL,
 BillToAddressID int NOT NULL,
 ShipToAddressID int NOT NULL,
 ShipMethodID int NOT NULL,
 CreditCardID int NULL,
 CreditCardApprovalCode varchar(15) NULL,
 CurrencyRateID int NULL,
 SubTotal money NOT NULL,
 TaxAmt money NOT NULL,
 Freight money NOT NULL,
 TotalDue money NOT NULL,
 Comment nvarchar(128) NULL,
 rowguid uniqueidentifier NOT NULL,
 ModifiedDate datetime NOT NULL
);

Insert some data:

INSERT INTO dbo.SalesOrderHeader SELECT * FROM Sales.SalesOrderHeader
WHERE OrderDate < '2008-07-20 00:00:00.000';

CREATE INDEX IX_OrderDate ON SalesOrderHeader(OrderDate);

Since we created an index we just have new statistics. Running the following query will create a good

estimate of 35 rows:

SELECT * FROM dbo.SalesOrderHeader WHERE OrderDate = '2008-07-19 00:00:00.000';

If we insert new data:

INSERT INTO dbo.SalesOrderHeader SELECT * FROM Sales.SalesOrderHeader
WHERE OrderDate = '2008-07-20 00:00:00.000';

You can see the estimate with the old cardinality estimator as shown next:

ALTER DATABASE AdventureWorks2012 SET COMPATIBILITY_LEVEL = 110;
GO

SELECT * FROM dbo.SalesOrderHeader WHERE OrderDate = '2008-07-20 00:00:00.000';

Since the small number of records inserted was not enough to trigger an automatic update of the
statistics object, the current histogram is not aware of the new records added and the query optimizer
uses an estimated of 1 row. Optionally you could use trace flags 2389 and 2390 to help to obtain a
better estimation. But if you try the same query with the new cardinality estimator, you get the
following estimation:

ALTER DATABASE AdventureWorks2012 SET COMPATIBILITY_LEVEL = 120;
GO

SELECT * FROM dbo.SalesOrderHeader WHERE OrderDate = '2008-07-20 00:00:00.000';

In this case we get a better estimation than the old cardinality estimator (or we get the same estimation
as using trace flags 2389 or 2390). The estimated value of 27.9631 (again, rounded to 28 by Plan
Explorer) is calculated using the density information of the statistics object multiplied by the number of
rows of the table; that is, 0.0008992806 * 31095. The density value can be obtained using:

DBCC SHOW_STATISTICS('dbo.SalesOrderHeader', 'IX_OrderDate');

Finally, keep in mind that nothing mentioned in this article is documented, and this is the behavior I
have observed so far in SQL Server 2014 CTP2. Any of this could change in a later CTP or the RTM version
of the product.

Exploring Partition-Level Online Index Operations in SQL Server 2014
By Joe Sack

SQL Server 2014 CTP1 introduces extensions to online operation options that will good news for

companies hosting very large databases that require little to no downtime.

To set the context, imagine that you’re using SQL Server 2012 Enterprise Edition for the online index

management and index partitioning features and you attempt the following index rebuild on a

partitioned table:

ALTER INDEX [PK_FactInternetSales_SalesOrderNumber_SalesOrderLineNumber]
ON [dbo].[FactInternetSales]
REBUILD PARTITION = ALL
WITH (ONLINE= ON);

Testing this in SQL Server 2012, we are able to rebuild all partitions online without error. But what if we

want to specify a specific partition instead of all partitions?

ALTER INDEX [PK_FactInternetSales_SalesOrderNumber_SalesOrderLineNumber]
ON [dbo].[FactInternetSales]
REBUILD PARTITION = 1
WITH (ONLINE= ON);

Attempting this in SQL Server 2012 or earlier, you’ll see the following error message:

Msg 155, Level 15, State 1, Line 4

'ONLINE' is not a recognized ALTER INDEX REBUILD PARTITION option.

But starting with SQL Server 2014 (as of CTP1), online single partition index operations are now

supported. And this is certainly a big deal for very large table maintenance scenarios where you would

prefer, or indeed must break your overall maintenance into smaller pieces over a period of time. You

may also want to do partition-level maintenance for only those partitions that actually require it – for

example, those partitions that actually exceed a specific fragmentation level.

To test out this SQL Server 2014 CTP1 functionality I used the AdventureWorksDW2012 with a version of

FactInternetSales that contains 61,847,552 rows, and partitioned by the ShipDate column.

Rebuilding all partitions online for the table using PARTITION = ALL in my test environment took 3

minutes and 23 seconds. Regarding overall duration, my tests were for indexes that weren’t all that

fragmented, so the 3 minutes and 23 second duration represents an average duration over a few tests.

Also keep in mind that I didn’t have competing workloads running at the time, so the online rebuild is

happening without having to compete with other significant workloads against the index in question.

The query execution plan shape for the online index rebuild using PARTITION = ALL was as follows:

Execution plan for online rebuild of all partitions

Notice that the operations are parallel-enabled except for the Constant Scan operator. In the query

execution plan you can see 39 rows in the outer reference Constant Scan that are being passed to the

Distribute Streams operator and then driving the Nested Loop.

The significance of the 39 rows? The following query validates the maximum partition number count

from sys.dm_db_partition_stats. For my test environment, the result was 39 for the maximum partition

number, matching what I saw for the Constant Scan actual rows:

SELECT MAX([partition_number]) AS [max_partition_number]
FROM [sys].[dm_db_partition_stats]
WHERE [object_id] = OBJECT_ID('FactInternetSales');

Now you’ll also notice the Online Index Insert operator in the previous plan. Removing the ONLINE =

ON option from my ALTER INDEX REBUILD (making it an offline operation), and keeping thePARTITION =

ALL option, the only change was having an “Index Insert” operator instead of an “Online Index Insert” in

the query execution plan – and also a reduction in duration, where my test showed a 1 minute and 9

seconds execution duration compared to the online 3 minutes and 23 seconds.

I then tested an online rebuild of one partition with 5,678,080 rows in it instead (remember the total

table row count is 61,847,552 rows). For this test, the overall duration took exactly 1 minute and had the

following query execution plan shape:

Execution plan for online rebuild of a single partition

The first observation is that this is a serial plan. Also note that I said I picked one partition out of the

original 39, although that particular partition did represent ~ 9% of rows in the table overall. Also notice

that the Constant Scan shows 1 row instead of 39, as I would expect.

What about the duration of a single partition, offline rebuild? In my test environment, this took 11

seconds compared to the online rebuild 1 minute. The query execution plan shape for the offline rebuild

of a single partition was as follows:

Execution plan for offline rebuild of a single partition

Notice there is no Constant Scan or associated Nested Loops process and also notice that this plan now

has parallel operators in it vs. the previous serial plan, even though they are both doing a Clustered

Index Scan for 5,678,080 rows. Also doing a keyword search of “partition” in the XML plan text for the

single partition offline parallel index operation didn’t result in any matches – compared to the serial

plan, online single partition index operation which had Partitioned = “true” for the Clustered Index Scan

and Online Index Insert physical operators.

Back to the main exploration…

Can I pick a few, but not all partitions in a single execution? Unfortunately not.

The ALTER INDEX and ALTER TABLE commands have the PARTITION = ALL argument and then PARTITION

= <partition number> argument, but not the ability to list multiple partitions for a single rebuild

operation. I’m not complaining too loudly about this though, as I’m happy to have the ability to rebuild a

single partition online and it isn’t terribly complicated to execute the operation once for each rebuild,

however the cumulative impact to duration was something I wanted to explore further.

How long would it take to rebuild all 39 partitions separately and online versus the PARTITION =

ALL duration of 3 minutes and 23 seconds?

We know that a benefit of online rebuilds is the ability to still access the associated table or index during

the index operation. But in exchange for that online operation, we’ll lose the performance edge of the

rebuild compared to an offline rebuild. And what I wanted to know next was how a one-by-one partition

online rebuild would perform versus the PARTITION = ALLalternative.

Executing 39 separate rebuild operations (one rebuild for each unique partition), the total execution

duration was 9 minutes and 54 seconds compared to the PARTITION = ALL which took 3 minutes and 23

seconds, so clearly the piecemeal approach is cumulatively not as fast as an online rebuild of all

partitions in one statement. While I was able to do one partition at a time, the over-arching benefit is

the ability to break apart our maintenance activities over time and keep access to the objects as they are

being rebuilt, but if you’re looking for a shorter rebuild window, offline options are still the fastest,

followed by online for PARTITION = ALL and then in last place, doing one partition at a time.

The following table recaps the duration comparisons – and again, these tests were based on SQL Server

2014 CTP1 and a very specific table size and VM guest configuration, so pay more attention to the

relative durations across tests rather than the durations themselves:

Test Description Duration

Offline rebuild of all partitions 1:09

Online rebuild of all partitions 3:23

Online rebuild of one partition 1:00

Offline rebuild of one partition 0:11

Online rebuild of all partitions, one partition at a time 9:54

Now there are other aspects to explore on this subject as well. Just because an operation is online

doesn’t mean that there aren’t a few moments (or longer) where locks are still be held on the targeted

object. Index operations still have locking behavior for online operations – and SQL Server 2014 has

provided options for this as well which I’ll explore in a separate post.

Exploring Low Priority Lock Wait Options in SQL Server 2014
By Joe Sack

SQL Server 2014 CTP1 introduces low priority lock wait options for use with online index operations and

partition switches.

For those leveraging online index management or index partitioning and partition switch operations in

SQL Server 2012 Enterprise Edition, you may have at one point experienced blocking of your DDL

operation as these operations still have some locking requirements.

To illustrate, imagine that I execute the following single-partition online index rebuild in SQL Server 2014

CTP1:

ALTER INDEX [ClusteredIndex_on_ps_ShipDate]
ON [dbo].[FactInternetSales]
REBUILD PARTITION = (37)
WITH (ONLINE= ON);

And let’s take a look at the locks acquired and released during this rebuild operation using Extended

Events and the following session definition (this is target-less session and I watched the results via the

“Watch Live Data” pane in SQL Server Management Studio):

CREATE EVENT SESSION [Online_Index_Rebuild_Locks_Taken] ON SERVER
ADD EVENT sqlserver.lock_acquired(
 WHERE ([object_id]=(309576141))),
ADD EVENT sqlserver.lock_released(
 WHERE ([object_id]=(309576141)))
WITH
(
 MAX_MEMORY=4096 KB, EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_LOSS,
 MAX_DISPATCH_LATENCY=30 SECONDS, MAX_EVENT_SIZE=0 KB,
 MEMORY_PARTITION_MODE=NONE, TRACK_CAUSALITY=OFF, STARTUP_STATE=OFF
);
GO

The value 309576141 represents the object ID of the FactInternetSales table.

My online index rebuild of a single partition took 56 seconds to complete and after completion, I saw

the following lock acquire and release activity:

Lock activity for single-partition online rebuild

As you can see from the output, although the rebuild is an online operation, it does involve the acquiring

of locks in various modes over the lifecycle of the operation. Ideally the lock duration is minimal (for

example – the timestamp is identical for the first SCH_S lock acquired and released). But even with a

minimal amount of locking you can certainly encounter concurrency issues depending on the

transactions running against the index being rebuilt or switched into.

I mentioned at the beginning of this post that Microsoft introduced low priority lock wait options for

online operations and partition switch operations in SQL Server 2014 CTP1. On the subject of partition

switches, imagine I execute the following operation:

ALTER TABLE [AdventureWorksDW2012].[dbo].[FactInternetSales]
SWITCH PARTITION 37 TO [AdventureWorksDW2012].[dbo].[staging_FactInternetSales];

To see the locks acquired and released for this operation, I modified my previously defined Extended

Event session to include the applicable objects (source and target table). I saw the following:

Lock activity for a partition switch operation

The switch operation to an empty partition occurred in less than a second, but we still see

that SCH_S and SCH_M locks were required during the operation lifecycle on both the source and

destination (309576141 being FactInternetSales and 398624463 being staging_FactInternetSales).

So again, while the duration of the locking can be extremely brief when there are no concurrent

transactions accessing the objects in question, we know this isn’t always possible and so our online

index rebuild and partition switch operations can indeed get blocked.

So with this reality, SQL Server 2014 introduces the WAIT_AT_LOW_PRIORITY argument that can be

adjusted with MAX_DURATION and ABORT_AFTER_WAIT options for both the ALTER INDEX and ALTER

TABLE commands that we can use for both online index and partition switch operations.

What does this allow us to do? First of all, let’s talk about what the behavior was prior to SQL Server

2014. As an example, imagine that I have the following transaction open and uncommitted:

BEGIN TRANSACTION;
DELETE [dbo].[staging_FactInternetSales];

If I tried to perform an ALTER TABLE SWITCH to the staging_FactInternetSales table as a destination in a

separate session, I’m going to be blocked and the request is just going to wait. Specifically for this

example, I would be waiting with a LCK_M_SCH_M wait type. Once I rollback or commit my transaction,

the operation can move forward and complete.

Now if I’m using SQL Server

2014’s WAIT_AT_LOW_PRIORITY with MAX_DURATION and ABORT_AFTER_WAIT, I can leverage a few

different options depending on my application requirements.

MAX_DURATION allows me to specify the number of minutes the online index rebuild or partition

switch operation will wait. If the MAX_DURATION value is reached, we can set what happens next based

on the setting of ABORT_AFTER_WAIT, which can be a value of NONE, SELF or BLOCKERS:

 NONE means that the index operation will continue attempting the operation.

 SELF means that if the MAX_DURATION is reached, the operation (the online index rebuild or

partition switch) will be cancelled.

 If BLOCKERS is used, it will kill any transactions that are blocking the online index rebuild or

partition switch operation (not an option, in my opinion, to be used lightly). BLOCKERS also

requires ALTER ANY CONNECTION permission for the request issuing the online index rebuild or

partition switch operation.

The following code examples demonstrate different configuration variations.

Pre-2014 default behavior (wait indefinitely)

Executing the following will result in the behavior we’re used to seeing pre-SQL Server 2014 – and it

might still be what you’ll want or expect for certain scenarios:

ALTER TABLE [AdventureWorksDW2012].[dbo].[FactInternetSales]

SWITCH PARTITION 37 TO [AdventureWorksDW2012].[dbo].[staging_FactInternetSales]
WITH (WAIT_AT_LOW_PRIORITY (MAX_DURATION = 0 MINUTES, ABORT_AFTER_WAIT = NONE));

Wait 1 Minute and Cancel the DDL Operation

The following example waits for 1 minute if there is a blocking transaction and will get a “lock request

time out period exceeded” for the SWITCH operation if the maximum duration is reached:

ALTER TABLE [AdventureWorksDW2012].[dbo].[FactInternetSales]
SWITCH PARTITION 37 TO [AdventureWorksDW2012].[dbo].[staging_FactInternetSales]
WITH (WAIT_AT_LOW_PRIORITY (MAX_DURATION = 1 MINUTES, ABORT_AFTER_WAIT = SELF));

Wait 1 Minute and Kill the Blocker(s)

This example waits for 1 minute if there is a blocking transaction and then will kill the blocking

transactions (source or destination included), allowing the SWITCH operation to complete.

ALTER TABLE [AdventureWorksDW2012].[dbo].[staging_FactInternetSales]
SWITCH PARTITION 37 TO [AdventureWorksDW2012].[dbo].[FactInternetSales]
WITH (WAIT_AT_LOW_PRIORITY (MAX_DURATION = 1 MINUTES, ABORT_AFTER_WAIT = BLOCKERS));

In my example of a DELETE inside an uncommitted transaction, there was no error in my SQL Server

Management Studio window as I didn’t have an actively running statement, but attempting another

statement within that session returned the following error message (as my session had been killed):

Msg 233, Level 20, State 0, Line 3

A transport-level error has occurred when sending the request to the server.

(provider: Shared Memory Provider, error: 0 – No process is on the other end of the

pipe.)

Kill the Blocker(s) Immediately (Source or Destination for SWITCH)

The following is an example of killing the blocker immediately – and in my example the switch happened

in sub-second and indeed the session that was the blocker did get killed:

ALTER TABLE [AdventureWorksDW2012].[dbo].[FactInternetSales]
SWITCH PARTITION 37 TO [AdventureWorksDW2012].[dbo].[staging_FactInternetSales]
WITH (WAIT_AT_LOW_PRIORITY (MAX_DURATION = 0 MINUTES, ABORT_AFTER_WAIT = BLOCKERS));

One last positive aspect I wanted to call out…

The SQL Server Error Log provides some by-default auditing of the low priority lock wait usage, including

information about the ABORT_AFTER_WAIT operation inline with the victim information:

Date 9/10/2013 1:37:15 PM

Log SQL Server (Current – 9/10/2013 12:03:00 PM)

Source spid51

Message

Process ID 57 was killed by an ABORT_AFTER_WAIT = BLOCKERS DDL statement on

database_id = 5, object_id = 309576141.

And you’ll also see separate entries for the original operation itself. For example:

An ALTER TABLE SWITCH statement was executed on database 'AdventureWorksDW2012',

table 'staging_FactInternetSales' by hostname 'WIN-4T7S36VMSD9', host process ID 1360

with target table 'AdventureWorksDW2012.dbo.FactInternetSales' using the

WAIT_AT_LOW_PRIORITY options with MAX_DURATION = 1 and ABORT_AFTER_WAIT = BLOCKERS.

Blocking user sessions will be killed after the max duration of waiting time.

This kind of logging is very useful for troubleshooting and auditing purposes and I’m glad to see it.

SQL Server 2014 : Native backup encryption
By Aaron Bertrand

A new feature in SQL Server 2014 that many of you hadn't heard about until it was announced this week

at the PASS Summit is native backup encryption in Standard, Business Intelligence and Enterprise

Editions (sorry, Web and Express are not supported). This is something that 3rd party vendors have been

offering for a long time, and it finally makes its way into the product, supporting four encryption

algorithms: AES 128, AES 192, AES 256, and Triple DES (3DES).

If you are currently using Transparent Data Encryption solely for the purpose of having encrypted data in

your backup files, this could be a way to migrate from that technique and have encrypted backups

without the hit that TDE places on your live system. If you are currently using a 3rd party tool for

encrypted backups, you should compare that to the functionality and performance of native encrypted

backups.

P.S. You can download CTP2 right now.

I didn't want to get into comparing to 3rd party products – I'm sure they all do a fine job, and probably

have additional features that I haven't even thought about. I just wanted to test what kind of hit the

different algorithms would take on full backups, from and to both traditional spinny disks (RAID 1) and

solid state drives, and with and without native compression.

So, I downloaded the AdventureWorks2012 data file, made two copies, named

them awSSD.mdf and awHDD.mdf, and placed one on the RAID 1 drive (D:\) and one on the SSD drive

(E:\). Then I attached both with FOR ATTACH_REBUILD_LOG, set them to FULL recovery, changed the

default auto-growth settings, and set the default location for log files in between (as this is the only way

I know of to specify the location of the rebuilt log file):

USE [master];
GO

EXEC xp_instance_regwrite N'HKEY_LOCAL_MACHINE',
 N'Software\Microsoft\MSSQLServer\MSSQLServer',
 N'DefaultLog', REG_SZ, N'D:\CTP2_Data';
GO

CREATE DATABASE awHDD ON (filename='D:\CTP2_Data\awHDD.mdf') FOR ATTACH_REBUILD_LOG;
ALTER DATABASE awHDD SET RECOVERY FULL;
ALTER DATABASE awHDD MODIFY FILE (NAME = N'AdventureWorks2012_Data', FILEGROWTH =
512000KB);
ALTER DATABASE awHDD MODIFY FILE (NAME = N'AdventureWorks2012_Log', FILEGROWTH =
512000KB);
GO

EXEC xp_instance_regwrite N'HKEY_LOCAL_MACHINE',
 N'Software\Microsoft\MSSQLServer\MSSQLServer',
 N'DefaultLog', REG_SZ, N'E:\CTP2_Data';
GO

CREATE DATABASE awSSD ON (filename='E:\CTP2_Data\awSSD.mdf') FOR ATTACH_REBUILD_LOG;
ALTER DATABASE awSSD SET RECOVERY FULL;
ALTER DATABASE awSSD MODIFY FILE (NAME = N'AdventureWorks2012_Data', FILEGROWTH =
512000KB);

http://msdn.microsoft.com/en-us/library/dn449489(v=sql.120).aspx
http://technet.microsoft.com/en-us/library/bb934049.aspx
http://technet.microsoft.com/en-us/evalcenter/dn205290.aspx
http://msftdbprodsamples.codeplex.com/releases/view/55330

ALTER DATABASE awSSD MODIFY FILE (NAME = N'AdventureWorks2012_Log', FILEGROWTH =
512000KB);

Next, I enlarged them using this script from Jonathan Kehayias (so that both the database and the log

would be large enough to be meaningful). This took about 4 minutes per database on both HDD and

SSD.

At that point, EXEC sp_helpfile; yielded the following for each database:

name fileid filename size

----------------------- ------ -------- ----------

AdventureWorks2012_Data 1 <db>.mdf 1553408 KB

AdventureWorks2012_Log 2 <db>.ldf 5605504 KB

Now, a couple of things about this feature before we can actually start performing encrypted backups.

You need to have a certificate (or asymmetric key) to use encryption, and this in turn will require a

master key. I chose a certificate, and created these as follows:

USE master;
GO
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'p@ssw0rd';
GO
OPEN MASTER KEY DECRYPTION BY PASSWORD = 'p@ssw0rd';
GO
CREATE CERTIFICATE TestCert WITH SUBJECT = 'EncryptionTesting';
GO

You also get a warning if you attempt to create an encrypted backup using a certificate that has not,

itself, been backed up:

Warning: The certificate used for encrypting the database encryption key has

not been backed up. You should immediately back up the certificate and the

private key associated with the certificate. If the certificate ever becomes

unavailable or if you must restore or attach the database on another server,

you must have backups of both the certificate and the private key or you will

not be able to open the database.

In my case I could just back up the certificate and the master key, like this:

BACKUP CERTIFICATE TestCert
 TO FILE = 'C:\temp\TestCert.cert'
 WITH PRIVATE KEY
 (
 FILE = 'C:\temp\TestCert.key',
 ENCRYPTION BY PASSWORD = 'p@ssw0rd'
);

http://www.sqlskills.com/blogs/jonathan/enlarging-the-adventureworks-sample-databases/

BACKUP MASTER KEY TO FILE = 'C:\temp\MasterKey.key'
 ENCRYPTION BY PASSWORD = 'p@ssw0rd';

Strictly speaking, backing up the master key is not necessary to perform an encrypted backup (or even

to avoid the warning), but you should back this up anyway. And you will probably want to use a stronger

password than p@ssw0rd, store it somewhere other than the C: drive on the same machine, etc. Finally,

you should take heed that if you encrypt your backups and you don't take all the right precautions, they

may be useless in the event of a disaster. This is not a feature you should just turn on without a fair

amount of diligence and testing.

With all of that out of the way, I could get on with testing. This system only has a single platter-based

disk and a single SSD, so I couldn't test SSD -> different SSD or HDD -> different HDD; only backing up

from one to the other, or to the same drive. The basic syntax for backing up with encryption is:

BACKUP DATABASE ... WITH ENCRYPTION
 (ALGORITHM = <algorithm>, SERVER CERTIFICATE = <certificate>);

And the four possible values for <algorithm> are AES_128, AES_192, AES_256 and TRIPLE_DES_3KEY.

So, next, I generated the script to run the backups to compare the performance and size of various

combinations – the four different encryption algorithms (and no encryption), with and without

compression, where the data comes from (HDD or SSD) and where the data is backed up to (HDD or

SSD). That's 40 different backups, and the script I used to generate it looks like this:

DECLARE @sql NVARCHAR(MAX) = N'';

;WITH s(s) AS (SELECT 1 UNION ALL SELECT 2),
m AS (SELECT m FROM
(VALUES('AES_128'),('AES_192'),('AES_256'),('TRIPLE_DES_3KEY'),(NULL)) AS m(m)),
c AS (SELECT c FROM (VALUES('NO_COMPRESSION'),('COMPRESSION')) AS c(c)),
d AS (SELECT d,t FROM (VALUES('D','HDD'),('E','SSD')) AS d(d,t))
SELECT @sql += N'
BACKUP DATABASE aw' + CASE s WHEN 1 THEN 'HDD' ELSE 'SSD' END
 + ' TO DISK =
 ''' + d + ':\backup\' + n + '.bak''
 WITH INIT, ' + c + ',' + COALESCE('
 ENCRYPTION (ALGORITHM = ' + m + ', SERVER CERTIFICATE = TestCert),', '') + '
 NAME = ''' + n + ''';' FROM
 (
 SELECT *, n = 'test' + CONVERT(VARCHAR(8000), RIGHT('0' + RTRIM(r),2)) + '-' +
 COALESCE(m,'NO_ENCRYPTION') + '-' + CASE WHEN r < 11 THEN 'HDD' ELSE 'SSD' END
 + '-to-' + t + '-' + c FROM
 (
 SELECT *, r = ROW_NUMBER() OVER (PARTITION BY d.d ORDER BY s.s,m.m,c.c)
 FROM s CROSS JOIN m CROSS JOIN c CROSS JOIN d
) AS x
) AS y ORDER BY r;

--EXEC sp_executesql @sql;
--GO 10

SELECT CONVERT(XML, @sql);

Looks really complicated, but really it's just generating 40 BACKUP DATABASE strings. I select as XML so

that, when you click on the results in the grid, you can view the whole output – instead of what PRINT or

selecting the output to grid/text will limit you to. The output in this case is below:

BACKUP DATABASE awHDD TO DISK = 'D:\backup\test01-NO_ENCRYPTION-HDD-to-HDD-
COMPRESSION.bak'
 WITH INIT, COMPRESSION, NAME = 'test01-NO_ENCRYPTION-HDD-to-HDD-COMPRESSION';
BACKUP DATABASE awHDD TO DISK = 'E:\backup\test01-NO_ENCRYPTION-HDD-to-SSD-
COMPRESSION.bak'
 WITH INIT, COMPRESSION, NAME = 'test01-NO_ENCRYPTION-HDD-to-SSD-COMPRESSION';
BACKUP DATABASE awHDD TO DISK = 'E:\backup\test02-NO_ENCRYPTION-HDD-to-SSD-
NO_COMPRESSION.bak'
 WITH INIT, NO_COMPRESSION, NAME = 'test02-NO_ENCRYPTION-HDD-to-SSD-NO_COMPRESSION';
BACKUP DATABASE awHDD TO DISK = 'D:\backup\test02-NO_ENCRYPTION-HDD-to-HDD-
NO_COMPRESSION.bak'
 WITH INIT, NO_COMPRESSION, NAME = 'test02-NO_ENCRYPTION-HDD-to-HDD-NO_COMPRESSION';
BACKUP DATABASE awHDD TO DISK = 'D:\backup\test03-AES_128-HDD-to-HDD-COMPRESSION.bak'
 WITH INIT, COMPRESSION, ENCRYPTION (ALGORITHM = AES_128, SERVER CERTIFICATE =
TestCert),
 NAME = 'test03-AES_128-HDD-to-HDD-COMPRESSION';
BACKUP DATABASE awHDD TO DISK = 'E:\backup\test03-AES_128-HDD-to-SSD-COMPRESSION.bak'
 WITH INIT, COMPRESSION, ENCRYPTION (ALGORITHM = AES_128, SERVER CERTIFICATE =
TestCert),
 NAME = 'test03-AES_128-HDD-to-SSD-COMPRESSION';
BACKUP DATABASE awHDD TO DISK = 'E:\backup\test04-AES_128-HDD-to-SSD-
NO_COMPRESSION.bak'
 WITH INIT, NO_COMPRESSION, ENCRYPTION (ALGORITHM = AES_128, SERVER CERTIFICATE =
TestCert),
 NAME = 'test04-AES_128-HDD-to-SSD-NO_COMPRESSION';
BACKUP DATABASE awHDD TO DISK = 'D:\backup\test04-AES_128-HDD-to-HDD-
NO_COMPRESSION.bak'
 WITH INIT, NO_COMPRESSION, ENCRYPTION (ALGORITHM = AES_128, SERVER CERTIFICATE =
TestCert),
 NAME = 'test04-AES_128-HDD-to-HDD-NO_COMPRESSION';
BACKUP DATABASE awHDD TO DISK = 'D:\backup\test05-AES_192-HDD-to-HDD-COMPRESSION.bak'
 WITH INIT, COMPRESSION, ENCRYPTION (ALGORITHM = AES_192, SERVER CERTIFICATE =
TestCert),
 NAME = 'test05-AES_192-HDD-to-HDD-COMPRESSION';
BACKUP DATABASE awHDD TO DISK = 'E:\backup\test05-AES_192-HDD-to-SSD-COMPRESSION.bak'
 WITH INIT, COMPRESSION, ENCRYPTION (ALGORITHM = AES_192, SERVER CERTIFICATE =
TestCert),
 NAME = 'test05-AES_192-HDD-to-SSD-COMPRESSION';
BACKUP DATABASE awHDD TO DISK = 'E:\backup\test06-AES_192-HDD-to-SSD-
NO_COMPRESSION.bak'
 WITH INIT, NO_COMPRESSION, ENCRYPTION (ALGORITHM = AES_192, SERVER CERTIFICATE =
TestCert),
 NAME = 'test06-AES_192-HDD-to-SSD-NO_COMPRESSION';
BACKUP DATABASE awHDD TO DISK = 'D:\backup\test06-AES_192-HDD-to-HDD-
NO_COMPRESSION.bak'
 WITH INIT, NO_COMPRESSION, ENCRYPTION (ALGORITHM = AES_192, SERVER CERTIFICATE =
TestCert),
 NAME = 'test06-AES_192-HDD-to-HDD-NO_COMPRESSION';
BACKUP DATABASE awHDD TO DISK = 'D:\backup\test07-AES_256-HDD-to-HDD-COMPRESSION.bak'
 WITH INIT, COMPRESSION, ENCRYPTION (ALGORITHM = AES_256, SERVER CERTIFICATE =
TestCert),

 NAME = 'test07-AES_256-HDD-to-HDD-COMPRESSION';
BACKUP DATABASE awHDD TO DISK = 'E:\backup\test07-AES_256-HDD-to-SSD-COMPRESSION.bak'
 WITH INIT, COMPRESSION, ENCRYPTION (ALGORITHM = AES_256, SERVER CERTIFICATE =
TestCert),
 NAME = 'test07-AES_256-HDD-to-SSD-COMPRESSION';
BACKUP DATABASE awHDD TO DISK = 'E:\backup\test08-AES_256-HDD-to-SSD-
NO_COMPRESSION.bak'
 WITH INIT, NO_COMPRESSION, ENCRYPTION (ALGORITHM = AES_256, SERVER CERTIFICATE =
TestCert),
 NAME = 'test08-AES_256-HDD-to-SSD-NO_COMPRESSION';
BACKUP DATABASE awHDD TO DISK = 'D:\backup\test08-AES_256-HDD-to-HDD-
NO_COMPRESSION.bak'
 WITH INIT, NO_COMPRESSION, ENCRYPTION (ALGORITHM = AES_256, SERVER CERTIFICATE =
TestCert),
 NAME = 'test08-AES_256-HDD-to-HDD-NO_COMPRESSION';
BACKUP DATABASE awHDD TO DISK = 'D:\backup\test09-TRIPLE_DES_3KEY-HDD-to-HDD-
COMPRESSION.bak'
 WITH INIT, COMPRESSION, ENCRYPTION (ALGORITHM = TRIPLE_DES_3KEY, SERVER CERTIFICATE =
TestCert),
 NAME = 'test09-TRIPLE_DES_3KEY-HDD-to-HDD-COMPRESSION';
BACKUP DATABASE awHDD TO DISK = 'E:\backup\test09-TRIPLE_DES_3KEY-HDD-to-SSD-
COMPRESSION.bak'
 WITH INIT, COMPRESSION, ENCRYPTION (ALGORITHM = TRIPLE_DES_3KEY, SERVER CERTIFICATE =
TestCert),
 NAME = 'test09-TRIPLE_DES_3KEY-HDD-to-SSD-COMPRESSION';
BACKUP DATABASE awHDD TO DISK = 'E:\backup\test10-TRIPLE_DES_3KEY-HDD-to-SSD-
NO_COMPRESSION.bak'
 WITH INIT, NO_COMPRESSION, ENCRYPTION (ALGORITHM = TRIPLE_DES_3KEY, SERVER CERTIFICATE
= TestCert),
 NAME = 'test10-TRIPLE_DES_3KEY-HDD-to-SSD-NO_COMPRESSION';
BACKUP DATABASE awHDD TO DISK = 'D:\backup\test10-TRIPLE_DES_3KEY-HDD-to-HDD-
NO_COMPRESSION.bak'
 WITH INIT, NO_COMPRESSION, ENCRYPTION (ALGORITHM = TRIPLE_DES_3KEY, SERVER CERTIFICATE
= TestCert),
 NAME = 'test10-TRIPLE_DES_3KEY-HDD-to-HDD-NO_COMPRESSION';
BACKUP DATABASE awSSD TO DISK = 'D:\backup\test11-NO_ENCRYPTION-SSD-to-HDD-
COMPRESSION.bak'
 WITH INIT, COMPRESSION, NAME = 'test11-NO_ENCRYPTION-SSD-to-HDD-COMPRESSION';
BACKUP DATABASE awSSD TO DISK = 'E:\backup\test11-NO_ENCRYPTION-SSD-to-SSD-
COMPRESSION.bak'
 WITH INIT, COMPRESSION, NAME = 'test11-NO_ENCRYPTION-SSD-to-SSD-COMPRESSION';
BACKUP DATABASE awSSD TO DISK = 'E:\backup\test12-NO_ENCRYPTION-SSD-to-SSD-
NO_COMPRESSION.bak'
 WITH INIT, NO_COMPRESSION, NAME = 'test12-NO_ENCRYPTION-SSD-to-SSD-NO_COMPRESSION';
BACKUP DATABASE awSSD TO DISK = 'D:\backup\test12-NO_ENCRYPTION-SSD-to-HDD-
NO_COMPRESSION.bak'
 WITH INIT, NO_COMPRESSION, NAME = 'test12-NO_ENCRYPTION-SSD-to-HDD-NO_COMPRESSION';
BACKUP DATABASE awSSD TO DISK = 'D:\backup\test13-AES_128-SSD-to-HDD-COMPRESSION.bak'
 WITH INIT, COMPRESSION, ENCRYPTION (ALGORITHM = AES_128, SERVER CERTIFICATE =
TestCert),
 NAME = 'test13-AES_128-SSD-to-HDD-COMPRESSION';
BACKUP DATABASE awSSD TO DISK = 'E:\backup\test13-AES_128-SSD-to-SSD-COMPRESSION.bak'
 WITH INIT, COMPRESSION, ENCRYPTION (ALGORITHM = AES_128, SERVER CERTIFICATE =
TestCert),
 NAME = 'test13-AES_128-SSD-to-SSD-COMPRESSION';
BACKUP DATABASE awSSD TO DISK = 'E:\backup\test14-AES_128-SSD-to-SSD-
NO_COMPRESSION.bak'
 WITH INIT, NO_COMPRESSION, ENCRYPTION (ALGORITHM = AES_128, SERVER CERTIFICATE =
TestCert),
 NAME = 'test14-AES_128-SSD-to-SSD-NO_COMPRESSION';

BACKUP DATABASE awSSD TO DISK = 'D:\backup\test14-AES_128-SSD-to-HDD-
NO_COMPRESSION.bak'
 WITH INIT, NO_COMPRESSION, ENCRYPTION (ALGORITHM = AES_128, SERVER CERTIFICATE =
TestCert),
 NAME = 'test14-AES_128-SSD-to-HDD-NO_COMPRESSION';
BACKUP DATABASE awSSD TO DISK = 'D:\backup\test15-AES_192-SSD-to-HDD-COMPRESSION.bak'
 WITH INIT, COMPRESSION, ENCRYPTION (ALGORITHM = AES_192, SERVER CERTIFICATE =
TestCert),
 NAME = 'test15-AES_192-SSD-to-HDD-COMPRESSION';
BACKUP DATABASE awSSD TO DISK = 'E:\backup\test15-AES_192-SSD-to-SSD-COMPRESSION.bak'
 WITH INIT, COMPRESSION, ENCRYPTION (ALGORITHM = AES_192, SERVER CERTIFICATE =
TestCert),
 NAME = 'test15-AES_192-SSD-to-SSD-COMPRESSION';
BACKUP DATABASE awSSD TO DISK = 'E:\backup\test16-AES_192-SSD-to-SSD-
NO_COMPRESSION.bak'
 WITH INIT, NO_COMPRESSION, ENCRYPTION (ALGORITHM = AES_192, SERVER CERTIFICATE =
TestCert),
 NAME = 'test16-AES_192-SSD-to-SSD-NO_COMPRESSION';
BACKUP DATABASE awSSD TO DISK = 'D:\backup\test16-AES_192-SSD-to-HDD-
NO_COMPRESSION.bak'
 WITH INIT, NO_COMPRESSION, ENCRYPTION (ALGORITHM = AES_192, SERVER CERTIFICATE =
TestCert),
 NAME = 'test16-AES_192-SSD-to-HDD-NO_COMPRESSION';
BACKUP DATABASE awSSD TO DISK = 'D:\backup\test17-AES_256-SSD-to-HDD-COMPRESSION.bak'
 WITH INIT, COMPRESSION, ENCRYPTION (ALGORITHM = AES_256, SERVER CERTIFICATE =
TestCert),
 NAME = 'test17-AES_256-SSD-to-HDD-COMPRESSION';
BACKUP DATABASE awSSD TO DISK = 'E:\backup\test17-AES_256-SSD-to-SSD-COMPRESSION.bak'
 WITH INIT, COMPRESSION, ENCRYPTION (ALGORITHM = AES_256, SERVER CERTIFICATE =
TestCert),
 NAME = 'test17-AES_256-SSD-to-SSD-COMPRESSION';
BACKUP DATABASE awSSD TO DISK = 'E:\backup\test18-AES_256-SSD-to-SSD-
NO_COMPRESSION.bak'
 WITH INIT, NO_COMPRESSION, ENCRYPTION (ALGORITHM = AES_256, SERVER CERTIFICATE =
TestCert),
 NAME = 'test18-AES_256-SSD-to-SSD-NO_COMPRESSION';
BACKUP DATABASE awSSD TO DISK = 'D:\backup\test18-AES_256-SSD-to-HDD-
NO_COMPRESSION.bak'
 WITH INIT, NO_COMPRESSION, ENCRYPTION (ALGORITHM = AES_256, SERVER CERTIFICATE =
TestCert),
 NAME = 'test18-AES_256-SSD-to-HDD-NO_COMPRESSION';
BACKUP DATABASE awSSD TO DISK = 'D:\backup\test19-TRIPLE_DES_3KEY-SSD-to-HDD-
COMPRESSION.bak'
 WITH INIT, COMPRESSION, ENCRYPTION (ALGORITHM = TRIPLE_DES_3KEY, SERVER CERTIFICATE =
TestCert),
 NAME = 'test19-TRIPLE_DES_3KEY-SSD-to-HDD-COMPRESSION';
BACKUP DATABASE awSSD TO DISK = 'E:\backup\test19-TRIPLE_DES_3KEY-SSD-to-SSD-
COMPRESSION.bak'
 WITH INIT, COMPRESSION, ENCRYPTION (ALGORITHM = TRIPLE_DES_3KEY, SERVER CERTIFICATE =
TestCert),
 NAME = 'test19-TRIPLE_DES_3KEY-SSD-to-SSD-COMPRESSION';
BACKUP DATABASE awSSD TO DISK = 'E:\backup\test20-TRIPLE_DES_3KEY-SSD-to-SSD-
NO_COMPRESSION.bak'
 WITH INIT, NO_COMPRESSION, ENCRYPTION (ALGORITHM = TRIPLE_DES_3KEY, SERVER CERTIFICATE
= TestCert),
 NAME = 'test20-TRIPLE_DES_3KEY-SSD-to-SSD-NO_COMPRESSION';
BACKUP DATABASE awSSD TO DISK = 'D:\backup\test20-TRIPLE_DES_3KEY-SSD-to-HDD-
NO_COMPRESSION.bak'
 WITH INIT, NO_COMPRESSION, ENCRYPTION (ALGORITHM = TRIPLE_DES_3KEY, SERVER CERTIFICATE
= TestCert),

 NAME = 'test20-TRIPLE_DES_3KEY-SSD-to-HDD-NO_COMPRESSION';

I didn't need to do anything special to time these, because I could pull all of the relevant statistics from

the msdb database after they were done (the only downside is that the duration is only measured to the

granularity of seconds, unless I wanted to parse the output manually). So I uncommented the EXEC

sp_executesql and GO lines (I wanted to run each backup 10 times to get averages, rule out anomalies,

etc.), hit F5, and went to work on one of my sessions for the PASS Summit.

When I came back, I checked out the msdb tables to get the sizes / durations for each backup. This

query is quite simple:

;WITH x AS
(
 SELECT
 name,
 natural_size = backup_size/1024/1024.0,
 compressed_size = compressed_backup_size/1024/1024.0,
 duration = 1.0*DATEDIFF(SECOND, backup_start_date, backup_finish_date)
 FROM msdb.dbo.backupset
 WHERE name LIKE 'test%'
)
SELECT
 name,
 [natural_size] = MAX(natural_size),
 [compressed_size] = MAX(compressed_size),
 [min_duration] = MIN(duration),
 [max_duration] = MAX(duration),
 [avg_duration] = AVG(duration)
FROM x
GROUP BY name
ORDER BY name;

This would give me the data I needed to make some pretty charts.

Impact on Size

Depending on your experience with encryption in general, it may or may not surprise you that

encrypting a database backup has very little impact on its overall size. How this works is beyond the

scope of this post, for certain; a simple explanation would be that – at least with AES encryption –

compression is not very effective on most of the output because it is basically random gibberish.

The end result is that this chart is not very exciting. The compressed and non-compressed sizes of native

backups against the four different encryption methods:

Size, in MB, of backups with and without encryption

As you can see, there was almost zero impact on the size of the database – around 0.03% increased size

for a non-compressed backup, and an additional 0.04% for a compressed backup.

Impact on Performance

While encryption had a negligible impact on size, it did affect the speed of the backup. But in some

cases, not in the way you'd think. Here is the overall measure of average runtimes for each approach:

Average duration, in seconds, of various backups

I truly expected the encryption to always cause a performance hit, and you should test in your

environment to see if your results are different from mine. I'm going to come back and update this with

a new chart showing particular cases that were surprising to me, and remove some outlier values to

make sure the results are truly representative.

A Caveat

One important note: you can't append encrypted backups. If you generate an encrypted backup file

using WITH INIT, and then try to append another encrypted backup to the same file, you will receive this

error:

Msg 3095, Level 16, State 1, Line 11

The backup cannot be performed because 'ENCRYPTION' was requested after the media was

formatted with an incompatible structure. To append to this media set, either omit

'ENCRYPTION' or create a new media set by using WITH FORMAT in your BACKUP statement.

If you use WITH FORMAT on an existing media set, all its backup sets will be

overwritten.

Msg 3013, Level 16, State 1, Line 11

BACKUP DATABASE is terminating abnormally.

You can, confusingly, append a non-encrypted backup when the initial file was encrypted. This is not the

intention, and is a bug I've reported on Connect (#805220, but it is currently marked as private);

hopefully they will address this before RTM.

In the meantime, you have to be careful here because nothing has been changed about the RESTORE

HEADERONLY output to indicate whether any of the enclosed backups were encrypted. To discover this,

you'll need to check the BackupSetGUID value in that output at Position = 1, and find the

corresponding backup_set_uuid value in msdb.dbo.backupset. This table has new columns to support

encryption, where you can get this information: key_algorithm, encryptor_thumbprint,

and encryptor_type. This is problematic in cases where you don't have thebackupset data – maybe it's

been cleared out during maintenance tasks, or maybe you can't access it because you really are

recovering from a disaster or only have the .bak file (or only have the .bak file for other reasons). In this

case I'm hoping there is some other way to tell from the backup file that it has been encrypted (and

how), but at the time of writing I don't know of a way. I filed a suggestion (#805292, also private) that

the output of RESTORE HEADERONLY be augmented with encryption information the same way it was

augmented with compression information when that feature was added in SQL Server 2008.

When they do resolve these issues (and I am confident they will), I'll remove all of this noise, but it is

important to be aware of this in the meantime, if you are going to perform any testing with current

CTPs.

Next Up…

What this type of backup means for restoring, I'll circle back around to in another post, when I test

restore speeds and reveal any trouble areas there. I also want to revisit these tests to investigate

encrypted log backups.

Hekaton with a twist: In-memory TVPs – Part 1
By Aaron Bertrand

There have been a lot of discussions about In-Memory OLTP (the feature formerly known as "Hekaton")

and how it can help very specific, high-volume workloads. In the midst of a different conversation, I

happened to notice something in the CREATE TYPE documentation for SQL Server 2014 that made me

think there might be a more general use case:

Relatively quiet and unheralded additions to the CREATE TYPE documentation

Based on the syntax diagram, it seems that table-valued parameters (TVPs) can be memory-optimized,

just like permanent tables can. And with that, the wheels immediately started turning.

One thing I've used TVPs for is to help customers eliminate expensive string-splitting methods in T-SQL

or CLR (see background in previous posts here, here, and here). In my tests, using a regular TVP

outperformed equivalent patterns using CLR or T-SQL splitting functions by a significant margin (25-

50%). I logically wondered: Would there be any performance gain from a memory-optimized TVP?

There has been some apprehension about In-Memory OLTP in general, because there are many

limitations and feature gaps, you need a separate filegroup for memory-optimized data, you need to

move entire tables to memory-optimized, and the best benefit is typically achieved by also creating

natively-compiled stored procedures (which have their own set of limitations). As I'll demonstrate,

assuming your table type contains simple data structures (e.g. representing a set of integers or strings),

using this technology just for TVPs eliminates some of these issues.

The Test

You will still need a memory-optimized filegroup even if you aren't going to create permanent, memory-

optimized tables. So let's create a new database with the appropriate structure in place:

CREATE DATABASE xtp;

http://msdn.microsoft.com/en-us/library/dn133186(v=sql.120).aspx
http://technet.microsoft.com/en-us/library/ms175007(SQL.120).aspx
http://www.sqlperformance.com/2012/07/t-sql-queries/split-strings
http://www.sqlperformance.com/2012/08/t-sql-queries/splitting-strings-follow-up
http://www.sqlperformance.com/2012/08/t-sql-queries/splitting-strings-now-with-less-t-sql
http://msdn.microsoft.com/en-us/library/dn170449(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn170449(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn452279(v=sql.120).aspx

GO
ALTER DATABASE xtp ADD FILEGROUP xtp CONTAINS MEMORY_OPTIMIZED_DATA;
GO
ALTER DATABASE xtp ADD FILE (name='xtpmod', filename='c:\...\xtp.mod') TO FILEGROUP
xtp;
GO
ALTER DATABASE xtp SET MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT = ON;
GO

Now, we can create a regular table type, as we would today, and a memory-optimized table type with a

non-clustered hash index and a bucket count I pulled out of the air (more information on calculating

memory requirements and bucket count in the real world here):

USE xtp;
GO

CREATE TYPE dbo.ClassicTVP AS TABLE
(
 Item INT PRIMARY KEY
);

CREATE TYPE dbo.InMemoryTVP AS TABLE
(
 Item INT NOT NULL PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 256)
)
WITH (MEMORY_OPTIMIZED = ON);

If you try this in a database that does not have a memory-optimized filegroup, you will get this error

message, just as you would if you tried to create a normal memory-optimized table:

Msg 41337, Level 16, State 0, Line 9

The MEMORY_OPTIMIZED_DATA filegroup does not exist or is empty. Memory optimized

tables cannot be created for a database until it has one MEMORY_OPTIMIZED_DATA

filegroup that is not empty.

To test a query against a regular, non-memory-optimized table, I simply pulled some data into a new table

from the AdventureWorks2012 sample database, using SELECT INTO to ignore all those pesky constraints,

indexes and extended properties, then created a clustered index on the column I knew I would be searching

on (ProductID):

SELECT * INTO dbo.Products
 FROM AdventureWorks2012.Production.Product; -- 504 rows

CREATE UNIQUE CLUSTERED INDEX p ON dbo.Products(ProductID);

Next I created four stored procedures: two for each table type; each using EXISTS and JOIN approaches

(I typically like to examine both, even though I prefer EXISTS; later on you'll see why I didn't want to

restrict my testing to just EXISTS). In this case I merely assign an arbitrary row to a variable, so that I can

observe high execution counts without dealing with resultsets and other output and overhead:

-- Old-school TVP using EXISTS:

http://msdn.microsoft.com/en-us/library/dn465866(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn465866(v=sql.120).aspx
http://msftdbprodsamples.codeplex.com/releases/view/55330

CREATE PROCEDURE dbo.ClassicTVP_Exists
 @Classic dbo.ClassicTVP READONLY
AS
BEGIN
 SET NOCOUNT ON;

 DECLARE @name NVARCHAR(50);

 SELECT @name = p.Name
 FROM dbo.Products AS p
 WHERE EXISTS
 (
 SELECT 1 FROM @Classic AS t
 WHERE t.Item = p.ProductID
);
END
GO

-- In-Memory TVP using EXISTS:
CREATE PROCEDURE dbo.InMemoryTVP_Exists
 @InMemory dbo.InMemoryTVP READONLY
AS
BEGIN
 SET NOCOUNT ON;

 DECLARE @name NVARCHAR(50);

 SELECT @name = p.Name
 FROM dbo.Products AS p
 WHERE EXISTS
 (
 SELECT 1 FROM @InMemory AS t
 WHERE t.Item = p.ProductID
);
END
GO

-- Old-school TVP using a JOIN:
CREATE PROCEDURE dbo.ClassicTVP_Join
 @Classic dbo.ClassicTVP READONLY
AS
BEGIN
 SET NOCOUNT ON;

 DECLARE @name NVARCHAR(50);

 SELECT @name = p.Name
 FROM dbo.Products AS p
 INNER JOIN @Classic AS t
 ON t.Item = p.ProductID;
END
GO

-- In-Memory TVP using a JOIN:
CREATE PROCEDURE dbo.InMemoryTVP_Join
 @InMemory dbo.InMemoryTVP READONLY
AS
BEGIN
 SET NOCOUNT ON;

 DECLARE @name NVARCHAR(50);

 SELECT @name = p.Name
 FROM dbo.Products AS p
 INNER JOIN @InMemory AS t
 ON t.Item = p.ProductID;
END
GO

Next, I needed to simulate the kind of query that typically comes against this type of table and requires a

TVP or similar pattern in the first place. Imagine a form with a drop-down or set of checkboxes

containing a list of products, and the user can select the 20 or 50 or 200 that they want to compare, list,

what have you. The values are not going to be in a nice contiguous set; they will typically be scattered all

over the place (if it was a predictably contiguous range, the query would be much simpler: start and end

values). So I just picked an arbitrary 20 values from the table (trying to stay below, say, 5% of the table

size), ordered randomly. An easy way to build a reusable VALUES clause like this is as follows:

DECLARE @x VARCHAR(4000) = '';

SELECT TOP (20) @x += '(' + RTRIM(ProductID) + '),'
 FROM dbo.Products ORDER BY NEWID();

SELECT @x;

The results (yours will almost certainly vary):

(725),(524),(357),(405),(477),(821),(323),(526),(952),(473),(442),(450),(735),(441),(

409),(454),(780),(966),(988),(512),

Unlike a direct INSERT...SELECT, this makes it quite easy to manipulate that output into a reusable

statement to populate our TVPs repeatedly with the same values and throughout multiple iterations of

testing:

SET NOCOUNT ON;

DECLARE @ClassicTVP dbo.ClassicTVP;
DECLARE @InMemoryTVP dbo.InMemoryTVP;

INSERT @ClassicTVP(Item) VALUES
 (725),(524),(357),(405),(477),(821),(323),(526),(952),(473),
 (442),(450),(735),(441),(409),(454),(780),(966),(988),(512);

INSERT @InMemoryTVP(Item) VALUES
 (725),(524),(357),(405),(477),(821),(323),(526),(952),(473),
 (442),(450),(735),(441),(409),(454),(780),(966),(988),(512);

EXEC dbo.ClassicTVP_Exists @Classic = @ClassicTVP;
EXEC dbo.InMemoryTVP_Exists @InMemory = @InMemoryTVP;
EXEC dbo.ClassicTVP_Join @Classic = @ClassicTVP;
EXEC dbo.InMemoryTVP_Join @InMemory = @InMemoryTVP;

If we turn our showplan functionality on, the resulting plans show a big difference: the in-memory TVP is

able to use a nested loops join and 20 single-row clustered index seeks, vs. a merge join fed 494 rows by

a clustered index scan for the classic TVP. And in this case, EXISTS and JOIN yielded identical plans. This

might tip with a much higher number of values, but let's continue with the assumption that the number

of values will be less than 5% of the table size:

Plans for Classic and In-Memory TVPs

Tooltips for scan/seek operators, highlighting major differences – Classic on left, In-Memory on right

(Usually I would show shots from SQL Sentry Plan Explorer, but as SQL Server 2014 is still in CTP, we are

still implementing support for the new operators and properties.)

Now what does this mean at scale? Let's turn off any showplan collection, and change the test script

slightly to run each procedure 100,000 times, capturing cumulative runtime manually:

DECLARE @i TINYINT = 1, @j INT = 1;

WHILE @i <= 4
BEGIN
 SELECT SYSDATETIME();
 WHILE @j <= 100000
 BEGIN

 IF @i = 1
 BEGIN
 EXEC dbo.ClassicTVP_Exists @Classic = @ClassicTVP;
 END

 IF @i = 2
 BEGIN
 EXEC dbo.InMemoryTVP_Exists @InMemory = @InMemoryTVP;
 END

http://sqlsentry.net/plan-explorer/

 IF @i = 3
 BEGIN
 EXEC dbo.ClassicTVP_Join @Classic = @ClassicTVP;
 END

 IF @i = 4
 BEGIN
 EXEC dbo.InMemoryTVP_Join @InMemory = @InMemoryTVP;
 END

 SET @j += 1;
 END

 SELECT @i += 1, @j = 1;
END
SELECT SYSDATETIME();

In the results, averaged over 10 runs, we see that, in this limited test case at least, using a memory-

optimized table type yielded a roughly 3X improvement on arguably the most critical performance

metric in OLTP (runtime duration):

Runtime results showing a 3X improvement with In-Memory TVPs

In-Memory + In-Memory + In-Memory : In-Memory Inception

Now that we've seen what we can do by simply changing our regular table type to a memory-optimized

table type, let's see if we can squeeze any more performance out of this same query pattern when we

apply the trifecta: an in-memory table, using a natively compiled memory-optimized stored procedure,

which accepts an in-memory table table as a table-valued parameter.

First, we need to create a new copy of the table, and populate it from the local table we already created:

CREATE TABLE dbo.Products_InMemory
(
 ProductID INT NOT NULL,
 Name NVARCHAR(50) NOT NULL,
 ProductNumber NVARCHAR(25) NOT NULL,
 MakeFlag BIT NOT NULL,
 FinishedGoodsFlag BIT NULL,
 Color NVARCHAR(15) NULL,
 SafetyStockLevel SMALLINT NOT NULL,
 ReorderPoint SMALLINT NOT NULL,
 StandardCost MONEY NOT NULL,
 ListPrice MONEY NOT NULL,
 [Size] NVARCHAR(5) NULL,
 SizeUnitMeasureCode NCHAR(3) NULL,
 WeightUnitMeasureCode NCHAR(3) NULL,
 [Weight] DECIMAL(8, 2) NULL,
 DaysToManufacture INT NOT NULL,
 ProductLine NCHAR(2) NULL,
 [Class] NCHAR(2) NULL,
 Style NCHAR(2) NULL,
 ProductSubcategoryID INT NULL,
 ProductModelID INT NULL,
 SellStartDate DATETIME NOT NULL,
 SellEndDate DATETIME NULL,
 DiscontinuedDate DATETIME NULL,
 rowguid UNIQUEIDENTIFIER NULL,
 ModifiedDate DATETIME NULL,

 PRIMARY KEY NONCLUSTERED HASH (ProductID) WITH (BUCKET_COUNT = 256)
)
WITH
(
 MEMORY_OPTIMIZED = ON,
 DURABILITY = SCHEMA_AND_DATA
);

INSERT dbo.Products_InMemory SELECT * FROM dbo.Products;

Next, we create a natively compiled stored procedure that takes our existing memory-optimized table

type as a TVP:

CREATE PROCEDURE dbo.InMemoryProcedure
 @InMemory dbo.InMemoryTVP READONLY
WITH NATIVE_COMPILATION, SCHEMABINDING, EXECUTE AS OWNER
AS
 BEGIN ATOMIC WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE = N'us_english');

 DECLARE @Name NVARCHAR(50);

 SELECT @Name = Name
 FROM dbo.Products_InMemory AS p
 INNER JOIN @InMemory AS t
 ON t.Item = p.ProductID;
END
GO

A couple of caveats. We can't use a regular, non-memory-optimized table type as a parameter to a

natively compiled stored procedure. If we try, we get:

Msg 41323, Level 16, State 1, Procedure InMemoryProcedure

The table type 'dbo.ClassicTVP' is not a memory optimized table type and cannot be

used in a natively compiled stored procedure.

Also, we can't use the EXISTS pattern here either; when we try, we get:

Msg 12311, Level 16, State 37, Procedure NativeCompiled_Exists

Subqueries (queries nested inside another query) are not supported with natively

compiled stored procedures.

There are many other caveats and limitations with In-Memory OLTP and natively compiled stored

procedures, I just wanted to share a couple of things that might seem to be obviously missing from the

testing.

So adding this new natively compiled stored procedure to the test matrix above, I found that – again,

averaged over 10 runs – it executed the 100,000 iterations in a mere 1.25 seconds. This represents

roughly a 20X improvement over regular TVPs and a 6-7X improvement over in-memory TVPs using

traditional tables and procedures:

Runtime results showing up to 20X improvement with In-Memory all around

Conclusion

If you're using TVPs now, or you are using patterns that could be replaced by TVPs, you absolutely must

consider adding memory-optimized TVPs to your testing plans, but keeping in mind that you may not

see the same improvements in your scenario. (And, of course, keeping in mind that TVPs in general have

a lot of caveats and limitations, and they aren't appropriate for all scenarios either. Erland Sommarskog

has a great article about today's TVPs here.)

http://www.sommarskog.se/arrays-in-sql-2008.html
http://www.sommarskog.se/arrays-in-sql-2008.html

In fact you may see that at the low end of volume and concurrency, there is no difference – but please

test at realistic scale. This was a very simple and contrived test on a modern laptop with a single SSD,

but when you're talking about real volume and/or spinny mechanical disks, these performance

characteristics may hold a lot more weight. There is a follow-up coming with some demonstrations on

larger data sizes.

Hekaton with a twist: In-memory TVPs – Part 2
By Aaron Bertrand

In my last post, I demonstrated that at small volumes, a memory-optimized TVP can deliver substantial

performance benefits to typical query patterns.

To test at slightly higher scale, I made a copy of the SalesOrderDetailEnlarged table, which I had

expanded to roughly 5,000,000 rows thanks to this script by Jonathan Kehayias (blog |@SQLPoolBoy)).

DROP TABLE dbo.SalesOrderDetailEnlarged;
GO

SELECT * INTO dbo.SalesOrderDetailEnlarged
 FROM AdventureWorks2012.Sales.SalesOrderDetailEnlarged; -- 4,973,997 rows

CREATE CLUSTERED INDEX PK_SODE
 ON dbo.SalesOrderDetailEnlarged(SalesOrderID, SalesOrderDetailID);

I also created three in-memory versions of this table, each with a different bucket count (fishing for a

"sweet spot") – 16,384, 131,072, and 1,048,576. (You can use rounder numbers, but they get rounded

up to the next power of 2 anyway.) Example:

CREATE TABLE [dbo].[SalesOrderDetailEnlarged_InMem_16K] -- and _131K and _1MM
(
 [SalesOrderID] [int] NOT NULL,
 [SalesOrderDetailID] [int] NOT NULL,
 [CarrierTrackingNumber] [nvarchar](25) COLLATE SQL_Latin1_General_CP1_CI_AS
NULL,
 [OrderQty] [smallint] NOT NULL,
 [ProductID] [int] NOT NULL,
 [SpecialOfferID] [int] NOT NULL,
 [UnitPrice] [money] NOT NULL,
 [UnitPriceDiscount] [money] NOT NULL,
 [LineTotal] [numeric](38, 6) NOT NULL,
 [rowguid] [uniqueidentifier] NOT NULL,
 [ModifiedDate] [datetime] NOT NULL
 PRIMARY KEY NONCLUSTERED HASH
 (
 [SalesOrderID],
 [SalesOrderDetailID]
) WITH (BUCKET_COUNT = 16384) -- and 131072 and 1048576
) WITH (MEMORY_OPTIMIZED = ON , DURABILITY = SCHEMA_AND_DATA);
GO

INSERT dbo.SalesOrderDetailEnlarged_InMem_16K
 SELECT * FROM dbo.SalesOrderDetailEnlarged;

INSERT dbo.SalesOrderDetailEnlarged_InMem_131K
 SELECT * FROM dbo.SalesOrderDetailEnlarged;

INSERT dbo.SalesOrderDetailEnlarged_InMem_1MM
 SELECT * FROM dbo.SalesOrderDetailEnlarged;
GO

http://www.sqlperformance.com/2013/11/t-sql-queries/hekaton-twist
http://www.sqlskills.com/blogs/jonathan/post/Enlarging-the-AdventureWorks-Sample-Databases.aspx
http://www.sqlskills.com/blogs/jonathan/
http://twitter.com/SQLPoolBoy

Notice I changed the bucket size from the previous example (256). When building the table, you want to

pick the "sweet spot" for bucket size – you want to optimize the hash index for point lookups, meaning

you want as many buckets as possible with as few rows in each bucket as possible. Of course if you

create ~5 million buckets (since in this case, perhaps not a very good example, there are ~5 million

unique combinations of values), you will have some memory utilization and garbage collection trade-

offs to deal with. However if you try to stuff ~5 million unique values into 256 buckets, you're also going

to experience some problems. In any case, this discussion goes way beyond the scope of my tests for

this post.

To test against the standard table, I made similar stored procedures as in the previous tests:

CREATE PROCEDURE dbo.SODE_InMemory
 @InMemory dbo.InMemoryTVP READONLY
AS
BEGIN
 SET NOCOUNT ON;

 DECLARE @tn NVARCHAR(25);

 SELECT @tn = CarrierTrackingNumber
 FROM dbo.SalesOrderDetailEnlarged AS sode
 WHERE EXISTS (SELECT 1 FROM @InMemory AS t
 WHERE sode.SalesOrderID = t.Item);
END
GO

CREATE PROCEDURE dbo.SODE_Classic
 @Classic dbo.ClassicTVP READONLY
AS
BEGIN
 SET NOCOUNT ON;

 DECLARE @tn NVARCHAR(25);

 SELECT @tn = CarrierTrackingNumber
 FROM dbo.SalesOrderDetailEnlarged AS sode
 WHERE EXISTS (SELECT 1 FROM @Classic AS t
 WHERE sode.SalesOrderID = t.Item);
END
GO

So first, to look at the plans for, say, 1,000 rows being inserted into the table variables, and then running

the procedures:

DECLARE @InMemory dbo.InMemoryTVP;
INSERT @InMemory SELECT TOP (1000) SalesOrderID
 FROM dbo.SalesOrderDetailEnlarged
 GROUP BY SalesOrderID ORDER BY NEWID();

DECLARE @Classic dbo.ClassicTVP;
INSERT @Classic SELECT Item FROM @InMemory;

EXEC dbo.SODE_Classic @Classic = @Classic;
EXEC dbo.SODE_InMemory @InMemory = @InMemory;

This time, we see that in both cases, the optimizer has chosen a clustered index seek against the base

table and a nested loops join against the TVP. Some costing metrics are different, but otherwise the

plans are quite similar:

Similar plans for in-memory TVP vs. classic TVP at higher scale

Comparing seek operator costs – Classic on the left, In-Memory on the right

The absolute value of the cost (disregarding the identical percentage) makes it seem like the classic TVP
would be a lot less efficient than the In-Memory TVP. But I wondered if this would be true in practice
(especially since the Estimated Number of Executions figure on the right seemed suspect), so of course, I
ran some tests. I decided to check against 100, 1,000, and 2,000 values to be sent to the procedure.

DECLARE @values INT = 100; -- 1000, 2000

DECLARE @Classic dbo.ClassicTVP;
DECLARE @InMemory dbo.InMemoryTVP;

INSERT @Classic(Item)
SELECT TOP (@values) SalesOrderID
 FROM dbo.SalesOrderDetailEnlarged
 GROUP BY SalesOrderID ORDER BY NEWID();

INSERT @InMemory(Item) SELECT Item FROM @Classic;

DECLARE @i INT = 1;

SELECT SYSDATETIME();

WHILE @i <= 10000
BEGIN
 EXEC dbo.SODE_Classic @Classic = @Classic;
 SET @i += 1;
END

SELECT SYSDATETIME();

SET @i = 1;

WHILE @i <= 10000
BEGIN
 EXEC dbo.SODE_InMemory @InMemory = @InMemory;
 SET @i += 1;
END

SELECT SYSDATETIME();

The performance results show that, at larger numbers of point lookups, using an In-Memory TVP leads
to slightly diminishing returns, being slightly slower every time:

Results of 10,000 executions using classic and in-memory TVPs

So, contrary to the impression you may have taken from my previous post, using an in-memory TVP is
not necessarily beneficial in all cases.

Earlier I also looked at natively compiled stored procedures and in-memory tables, in combination with
in-memory TVPs. Could this make a difference here? Spoiler: absolutely not. I created three procedures
like this:

CREATE PROCEDURE [dbo].[SODE_Native_InMem_16K] -- and _131K and _1MM
 @InMemory dbo.InMemoryTVP READONLY
WITH NATIVE_COMPILATION, SCHEMABINDING, EXECUTE AS OWNER

http://www.sqlperformance.com/2013/11/t-sql-queries/hekaton-twist

AS
 BEGIN ATOMIC WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE = N'us_english');

 DECLARE @tn NVARCHAR(25);

 SELECT @tn = CarrierTrackingNumber
 FROM dbo.SalesOrderDetailEnlarged_InMem_16K AS sode -- and _131K and _1MM
 INNER JOIN @InMemory AS t -- no EXISTS allowed here
 ON sode.SalesOrderID = t.Item;
END
GO

Another spoiler: I wasn't able to run these 9 tests with an iteration count of 10,000 – it took way too
long. Instead I looped through and ran each procedure 10 times, ran that set of tests 10 times, and took
the average. Here are the results:

Results of 10 executions using in-memory TVPs and natively compiled stored procedures

Overall, this experiment was rather disappointing. Just looking at the sheer magnitude of the difference,
with an on-disk table, the average stored procedure call was completed in an average of 0.0036
seconds. However, when everything was using in-memory technologies, the average stored procedure
call was 1.1662 seconds. Ouch. It is highly likely I have just chosen a poor use case to demo overall, but it
seemed at the time to be an intuitive "first try."

Conclusion

There is plenty more to test around this scenario, and I have more blog posts to follow. I haven't yet
identified the optimal use case for in-memory TVPs at a larger scale, but hope that this post serves as a
reminder that even though a solution seems optimal in one case, it is never safe to assume it is equally
applicable to different scenarios. This is exactly how In-Memory OLTP should be approached: as a
solution with a narrow set of use cases that absolutely must be validated before implemented in
production.

Hekaton with a twist: In-memory TVPs – Part 3
By Aaron Bertrand

In my previous post in this series, I demonstrated that not all query scenarios can benefit from In-

Memory OLTP technologies. In fact, using Hekaton in certain use cases can actually have a detrimental

effect on performance:

Performance monitor profile during stored procedure execution

However, I might have stacked the deck against Hekaton in that scenario, in two ways:

1. The memory-optimized table type I created had a bucket count of 256, but I was passing in up to

2,000 values to compare. In a more recent blog post from the SQL Server team, they explained

that over-sizing the bucket count is better than under-sizing it – something that I knew in

general, but didn't realize also had significant effects on table variables:

Keep in mind that for a hash index the bucket_count should be about 1-2X the number

of expected unique index keys. Over-sizing is usually better than under-sizing: if

sometimes you insert only 2 values in the variables, but sometimes insert up to 1000

values, it’s usually better to specify BUCKET_COUNT=1000.

They don't explicitly discuss the actual reason for this, and I'm sure there are plenty of technical details

we could delve into, but the prescriptive guidance seems to be to over-size.

2. The primary key was a hash index on two columns, whereas the table-valued parameter was

only attempting to match values in one of those columns. Quite simply, this meant that the hash

index couldn't be used. Tony Rogerson explains this in a little more detail in a recent blog post:

The hash is generated across all the columns contained in the index, you must also

specify all the columns in the hash index on your equality check expression otherwise

the index cannot be used.

I didn't show it before, but notice that the plan against the memory-optimized table with the two-

column hash index actually does a table scan rather than the index seek you might expect against the

non-clustered hash index (since the leading column was SalesOrderID):

http://www.sqlperformance.com/2013/12/t-sql-queries/hekaton-twist-2
http://blogs.technet.com/b/dataplatforminsider/archive/2014/01/07/sql-server-2014-in-memory-oltp-memory-optimized-table-types-and-table-variables.aspx
http://dataidol.com/tonyrogerson/2014/01/06/hekaton-in-memory-tables-hash-indexes/

Query plan involving an in-memory table with a two-column hash index

1. To be more specific, in a hash index, the leading column doesn't mean a hill of beans on its own;

the hash is still matched across all columns, so it does not work like a traditional B-tree index at

all (with a traditional index, a predicate involving only the leading column could still be very

useful in eliminating rows).

What To Do?

Well, first, I created a secondary hash index on only the SalesOrderID column. An example of one such

table, with a million buckets:

CREATE TABLE [dbo].[SODE_InMem_1MM]
(
 [SalesOrderID] [int] NOT NULL,
 [SalesOrderDetailID] [int] NOT NULL,
 [CarrierTrackingNumber] [nvarchar](25) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 [OrderQty] [smallint] NOT NULL,
 [ProductID] [int] NOT NULL,
 [SpecialOfferID] [int] NOT NULL,
 [UnitPrice] [money] NOT NULL,
 [UnitPriceDiscount] [money] NOT NULL,
 [LineTotal] [numeric](38, 6) NOT NULL,
 [rowguid] [uniqueidentifier] NOT NULL,
 [ModifiedDate] [datetime] NOT NULL
 PRIMARY KEY NONCLUSTERED HASH
 (
 [SalesOrderID],
 [SalesOrderDetailID]
) WITH (BUCKET_COUNT = 1048576),

 /* I added this secondary non-clustered hash index: */

 INDEX x NONCLUSTERED HASH
 (
 [SalesOrderID]
) WITH (BUCKET_COUNT = 1048576)

 /* I used the same bucket count to minimize testing permutations */

) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA);

Remember that our table types are set up this way:

CREATE TYPE dbo.ClassicTVP AS TABLE
(
 Item INT PRIMARY KEY
);

CREATE TYPE dbo.InMemoryTVP AS TABLE
(
 Item INT NOT NULL PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 256)
)
WITH (MEMORY_OPTIMIZED = ON);

Once I populated the new tables with data, and created a new stored procedure to reference the new

tables, the plan we get correctly shows an index seek against the single-column hash index:

Improved plan using the single-column hash index

But what would that really mean for performance? I ran the same set of tests again – queries against

this table with bucket counts of 16K, 131K, and 1MM; using both classic and in-memory TVPs with 100,

1,000 and 2,000 values; and in the in-memory TVP case, using both a traditional stored procedure and a

natively compiled stored procedure. Here is how the performance went for 10,000 iterations per

combination:

Performance profile for 10,000 iterations against a single-column hash index, using a 256-bucket TVP

You may think, hey, that performance profile does not look that great; on the contrary, it is much better

than my previous test last month. It just demonstrates that the bucket count for the table can have a

huge impact on SQL Server's ability to effectively use the hash index. In this case, using a bucket count of

16K clearly is not optimal for any of these cases, and it gets exponentially worse as the number of values

in the TVP increases.

Now, remember, the bucket count of the TVP was 256. So what would happen if I increased that, as per

Microsoft's guidance? I created a second table type with a more appropriate bucket size. Since I was

testing 100, 1,000 and 2,000 values, I used the next power of 2 for the bucket count (2,048):

CREATE TYPE dbo.InMemoryTVP AS TABLE
(
 Item INT NOT NULL PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 2048)
)
WITH (MEMORY_OPTIMIZED = ON);

I created supporting procedures for this, and ran the same battery of tests again. Here are the

performance profiles side-by-side:

Performance profile comparison with 256- and 2,048-bucket TVPs

The change in bucket count for the table type did not have the impact I would have expected, given

Microsoft's statement on sizing. It really didn't have much of a positive effect at all; in fact for some

scenarios it was a little bit worse. But overall the performance profiles are, for all intents and purposes,

the same.

What did have a huge effect, though, was creating the *right* hash index to support the query pattern. I

was thankful that I was able to demonstrate that – in spite of my previous tests that indicated otherwise

– an in-memory table and in-memory TVP could beat the old school way to accomplish the same thing.

Let's just take the most extreme case from my previous example, when the table only had a two-column

hash index:

Performance profile for 10 iterations against a two-column hash index

The right-most bar shows the duration of just 10 iterations of the native stored procedure matching

against an inappropriate hash index – query times ranging from 735 to 1,601 milliseconds. Now,

however, with the right hash index in place, the same queries are executing in much smaller range –

from 0.076 milliseconds to 51.55 milliseconds. If we leave out the worst case (16K bucket counts), the

discrepancy is even more pronounced. In all cases, this is at least twice as efficient (at least in terms of

duration) as either method, without a naively compiled stored procedure, against the same memory-

optimized table; and hundreds of times better than any of the approaches against our old memory-

optimized table with the sole, two-column hash index.

Conclusion

I hope I have demonstrated that much care must be taken when implementing memory-optimized

tables of any type, and that in a lot of cases, using a memory-optimized TVP on its own may not yield the

largest performance gain. You will want to consider using natively-compiled stored procedures to get

the most bang for your buck, and to best scale, you will really want to pay attention to the bucket count

for the hash indexes in your memory-optimized tables (but perhaps not so much attention to your

memory-optimized table types).

For additional reading on In-Memory OLTP technology in general, you may want to check out these

resources:

 The SQL Server Team Blog (Tag: Hekaton and Tag: In-Memory OLTP – aren't code names fun?)

 Bob Beauchemin's blog

 Klaus Aschenbrenner's blog

http://blogs.technet.com/b/dataplatforminsider/archive/tags/hekaton/
http://blogs.technet.com/b/dataplatforminsider/archive/tags/in+memory+oltp/default.aspx
http://www.sqlskills.com/blogs/bobb/category/hekaton/
http://www.sqlpassion.at/blog/

A couple of small issues with Hekaton samples
By Aaron Bertrand

Some of you have access to published Hekaton In-Memory OLTP demo scripts involving

AdventureWorks; the most recent sample is published here. These examples piggyback on

theAdventureWorks2012 sample database on CodePlex. If you have tried these samples, you may have

come across a couple of issues that can dramatically change your first experience with this technology.

Database Authorization

A lot of people download the "AdventureWorks2012 Data File" – a 200 MB .mdf file that you can attach

– without a log – using the following syntax:

CREATE DATABASE AdventureWorks2012 ON
(
 NAME = AdventureWorks2012_Data, FILENAME = '<path>\AdventureWorks2012_Data.mdf'
)
FOR ATTACH_REBUILD_LOG;

The problem is that, if you are connected to the SQL Server instance as your Windows account, you may

end up inadvertently as the database owner. Which isn't going to be a big deal in most scenarios, except

that if you create stored procedures with EXECUTE AS OWNER, like many samples you come across will

do, this can cause an issue. You may find this line, for example, in many natively-compiled stored

procedures:

WITH NATIVE_COMPILATION, SCHEMABINDING, EXECUTE AS OWNER

Unless you've already mitigated this issue in other ways, if the owner of the database is your Windows

account, you are likely to get the following error when trying to create such a procedure:

Msg 15517, Level 16, State 1, Procedure [procedure name]

Cannot execute as the database principal because the principal "dbo" does not exist,

this type of principal cannot be impersonated, or you do not have permission.

Depending on your environment, you may want to seriously weigh how you deal with this; in my case, I

took the easy path and just set authorization on the database to sa:

ALTER AUTHORIZATION ON DATABASE::AdventureWorks2012 TO sa;

At this point I was able to run the demo script without issue (well, I got errors when it tried to add

another memory-optimized filegroup, but that is a completely different and ignorable problem).

Bucket Count

There doesn't seem to be a ton of practical guidance about how to choose bucket count for your

memory-optimized tables. There is this article on MSDN, which goes into some technical details, and

Klaus Aschenbrenner has written this post about making smart choices in this area. Outside of that,

you're pretty much on your own to experiment. The SWAG I've heard most often is 1x-2x the number of

http://msftdbprodsamples.codeplex.com/releases/view/114491?WT.mc_id=Blog_SQL_InMem_CTP2
http://msftdbprodsamples.codeplex.com/releases/view/55330
http://msdn.microsoft.com/en-us/library/dn465866(v=sql.120).aspx
http://www.sqlpassion.at/archive/2013/11/23/choose-your-hash-bucket-count-very-wisely-in-hekaton/

unique key values, so that point lookups are most efficient. However some of the samples you'll find out

there either consistently use 1,000,000 buckets, or smaller numbers like 100 (and even 5 in one case), or

a mix. Keep that in mind as you start to experiment with your own schema and data access patterns –

you may have to rip down tables and try again with different bucket sizes to find the "sweet spot" for

your scenario.

Recovery Model

The AdventureWorks2012 database is set to SIMPLE recovery. Like the database owner issue, in most

cases this isn't that big of a deal for a sample database. But when you are testing In-Memory OLTP – and

likely in combination with other technologies that make SIMPLE recovery a deal-breaker, like Availability

Groups – it may make a lot more sense to perform your testing against a database with recovery set

to FULL. Otherwise you may be failing to observe certain behaviors that could be different under

different recovery models. You can change AdventureWorks2012 to FULL as follows:

ALTER DATABASE AdventureWorks2012 SET RECOVERY FULL;

And don't forget to take a full backup, so that a backup chain is established, and the database

isn't operating in pseudo-SIMPLE recovery mode.

http://www.sqlskills.com/blogs/paul/new-script-is-that-database-really-in-the-full-recovery-mode/

How not to call Hekaton natively compiled stored procedures
By Aaron Bertrand

There are some habits and best practices that a lot of us develop over time with regard to Transact-SQL

code. With stored procedures in particular, we strive to pass parameter values of the correct data type,

and name our parameters explicitly rather than rely solely on ordinal position. Sometimes, though, we

might get lazy about this: we might forget to prefix a Unicode string with N, or just list the constants or

variables in order instead of specifying the parameter names. Or both.

In SQL Server 2014, if you are using In-Memory OLTP and natively compiled procedures, you might want

to adjust your thinking on these things a little bit. I'll demonstrate with some code against the SQL

Server 2014 RTM In-Memory OLTP Sample on CodePlex, which extends the AdventureWorks2012

sample database. (If you are going to set this up from scratch to follow along, please take a quick glance

at my observations in a previous post.)

Let's take a look at the signature for the stored procedure Sales.usp_InsertSpecialOffer_inmem:

CREATE PROCEDURE [Sales].[usp_InsertSpecialOffer_inmem]
 @Description NVARCHAR(255) NOT NULL,
 @DiscountPct SMALLMONEY NOT NULL = 0,
 @Type NVARCHAR(50) NOT NULL,
 @Category NVARCHAR(50) NOT NULL,
 @StartDate DATETIME2 NOT NULL,
 @EndDate DATETIME2 NOT NULL,
 @MinQty INT NOT NULL = 0,
 @MaxQty INT = NULL,
 @SpecialOfferID INT OUTPUT
WITH NATIVE_COMPILATION, SCHEMABINDING, EXECUTE AS OWNER
AS
BEGIN ATOMIC
WITH (TRANSACTION ISOLATION LEVEL=SNAPSHOT, LANGUAGE=N'us_english')

 DECLARE @msg nvarchar(256)

 -- validation removed for brevity

 INSERT Sales.SpecialOffer_inmem (Description,
 DiscountPct,
 Type,
 Category,
 StartDate,
 EndDate,
 MinQty,
 MaxQty)
 VALUES (@Description,
 @DiscountPct,
 @Type,
 @Category,
 @StartDate,
 @EndDate,
 @MinQty,
 @MaxQty)

 SET @SpecialOfferID = SCOPE_IDENTITY()
END

http://sqlperformance.com/?p=6779
http://msftdbprodsamples.codeplex.com/releases/view/114491
http://msftdbprodsamples.codeplex.com/releases/view/114491
http://msftdbprodsamples.codeplex.com/releases/view/55330
http://msftdbprodsamples.codeplex.com/releases/view/55330
http://sqlperformance.com/2013/12/system-configuration/hekaton-sample-issues

GO

I was curious if it mattered whether the parameters were named, or if natively compiled procedures

handled implicit conversions as arguments to stored procedures any better than traditional stored

procedures. First I created a copy Sales.usp_InsertSpecialOffer_inmem as a traditional stored procedure

– this involved merely removing the ATOMIC block and removing theNOT NULL declarations from the

input parameters:

CREATE PROCEDURE [Sales].[usp_InsertSpecialOffer]
 @Description NVARCHAR(255),
 @DiscountPct SMALLMONEY = 0,
 @Type NVARCHAR(50),
 @Category NVARCHAR(50),
 @StartDate DATETIME2,
 @EndDate DATETIME2,
 @MinQty INT = 0,
 @MaxQty INT = NULL,
 @SpecialOfferID INT OUTPUT
AS
BEGIN
 DECLARE @msg nvarchar(256)

 -- validation removed for brevity

 INSERT Sales.SpecialOffer_inmem (Description,
 DiscountPct,
 Type,
 Category,
 StartDate,
 EndDate,
 MinQty,
 MaxQty)
 VALUES (@Description,
 @DiscountPct,
 @Type,
 @Category,
 @StartDate,
 @EndDate,
 @MinQty,
 @MaxQty)

 SET @SpecialOfferID = SCOPE_IDENTITY()
END
GO

To minimize shifting criteria, the procedure still inserts into the In-Memory version of the table, Sales.SpecialOffer_inmem.

Then I wanted to time 100,000 calls to both copies of the stored procedure with these criteria:

Parameters explicitly

named

Parameters not

named

All parameters of correct data type x x

Some parameters of wrong data

type
x x

Using the following batch, copied for the traditional version of the stored procedure (simply

removing _inmem from the four EXEC calls):

SET NOCOUNT ON;

CREATE TABLE #x
(
 i INT IDENTITY(1,1),
 d VARCHAR(32),
 s DATETIME2(7) NOT NULL DEFAULT SYSDATETIME(),
 e DATETIME2(7)
);
GO

INSERT #x(d) VALUES('Named, proper types');
GO

/* this uses named parameters, and uses correct data types */

DECLARE
 @p1 NVARCHAR(255) = N'Product 1',
 @p2 SMALLMONEY = 10,
 @p3 NVARCHAR(50) = N'Volume Discount',
 @p4 NVARCHAR(50) = N'Reseller',
 @p5 DATETIME2 = '20140615',
 @p6 DATETIME2 = '20140620',
 @p7 INT = 10,
 @p8 INT = 20,
 @p9 INT;

EXEC Sales.usp_InsertSpecialOffer_inmem
 @Description = @p1,
 @DiscountPct = @p2,
 @Type = @p3,
 @Category = @p4,
 @StartDate = @p5,
 @EndDate = @p6,
 @MinQty = @p7,
 @MaxQty = @p8,
 @SpecialOfferID = @p9 OUTPUT;

GO 100000

UPDATE #x SET e = SYSDATETIME() WHERE i = 1;
GO

DELETE Sales.SpecialOffer_inmem WHERE Description = N'Product 1';

GO

INSERT #x(d) VALUES('Not named, proper types');
GO

/* this does not use named parameters, but uses correct data types */

DECLARE
 @p1 NVARCHAR(255) = N'Product 1',
 @p2 SMALLMONEY = 10,
 @p3 NVARCHAR(50) = N'Volume Discount',
 @p4 NVARCHAR(50) = N'Reseller',
 @p5 DATETIME2 = '20140615',
 @p6 DATETIME2 = '20140620',
 @p7 INT = 10,
 @p8 INT = 20,
 @p9 INT;

EXEC Sales.usp_InsertSpecialOffer_inmem
 @p1, @p2, @p3, @p4, @p5,
 @p6, @p7, @p8, @p9 OUTPUT;

GO 100000

UPDATE #x SET e = SYSDATETIME() WHERE i = 2;
GO

DELETE Sales.SpecialOffer_inmem WHERE Description = N'Product 1';
GO

INSERT #x(d) VALUES('Named, improper types');
GO

/* this uses named parameters, but incorrect data types */

DECLARE
 @p1 VARCHAR(255) = 'Product 1',
 @p2 DECIMAL(10,2) = 10,
 @p3 VARCHAR(255) = 'Volume Discount',
 @p4 VARCHAR(32) = 'Reseller',
 @p5 DATETIME = '20140615',
 @p6 CHAR(8) = '20140620',
 @p7 TINYINT = 10,
 @p8 DECIMAL(10,2) = 20,
 @p9 BIGINT;

EXEC Sales.usp_InsertSpecialOffer_inmem
 @Description = @p1,
 @DiscountPct = @p2,
 @Type = @p3,
 @Category = @p4,
 @StartDate = @p5,
 @EndDate = @p6,
 @MinQty = '10',
 @MaxQty = @p8,
 @SpecialOfferID = @p9 OUTPUT;

GO 100000

UPDATE #x SET e = SYSDATETIME() WHERE i = 3;

GO

DELETE Sales.SpecialOffer_inmem WHERE Description = N'Product 1';
GO

INSERT #x(d) VALUES('Not named, improper types');
GO

/* this does not use named parameters, and uses incorrect data types */

DECLARE
 @p1 VARCHAR(255) = 'Product 1',
 @p2 DECIMAL(10,2) = 10,
 @p3 VARCHAR(255) = 'Volume Discount',
 @p4 VARCHAR(32) = 'Reseller',
 @p5 DATETIME = '20140615',
 @p6 CHAR(8) = '20140620',
 @p7 TINYINT = 10,
 @p8 DECIMAL(10,2) = 20,
 @p9 BIGINT;

EXEC Sales.usp_InsertSpecialOffer_inmem
 @p1, @p2, @p3, @p4, @p5,
 @p6, '10', @p8, @p9 OUTPUT;

GO 100000

UPDATE #x SET e = SYSDATETIME() WHERE i = 4;
GO
DELETE Sales.SpecialOffer_inmem WHERE Description = N'Product 1';
GO

SELECT d, duration_ms = DATEDIFF(MILLISECOND, s, e) FROM #x;
GO
DROP TABLE #x;
GO

I ran each test 10 times, and here were the average durations, in milliseconds:

Traditional Stored Procedure

Parameters
Average Duration

(milliseconds)

Named, proper types 72,132

Not named, proper types 72,846

Named, improper types 76,154

Not named, improper types 76,902

Natively Compiled Stored Procedure

Parameters
Average Duration

(milliseconds)

Named, proper types 63,202

Not named, proper types 61,297

Named, improper types 64,560

Not named, improper types 64,288

Average duration, in milliseconds, of various call methods

With the traditional stored procedure, it is clear that using the wrong data types has a substantial

impact on performance (about a 4 second difference), while not naming the parameters had a much less

dramatic effect (adding about 700ms). I've always tried to follow best practices and use the right data

types as well as name all parameters, and this small test seems to confirm that doing so can be

beneficial.

With the natively compiled stored procedure, using the wrong data types still led to a similar drop in

performance as with the traditional stored procedure. This time, though, naming the parameters didn't

help out so much; in fact, it had a negative impact, adding almost two seconds to the overall duration.

To be fair, this is a large number of calls in a fairly short time, but if you're trying to squeeze the absolute

most bleeding-edge performance you can out of this feature, every nanosecond counts.

Discovering the Problem

How can you know if your natively compiled stored procedures are getting called with either of these

"slow" methods? There's an XEvent for that! The event is

callednatively_compiled_proc_slow_parameter_passing, and it doesn't seem to be documented in

Books Online at this time. You can create the following Extended Events session to monitor for this

event:

CREATE EVENT SESSION [XTP_Parameter_Events] ON SERVER
ADD EVENT sqlserver.natively_compiled_proc_slow_parameter_passing
(
 ACTION(sqlserver.sql_text)
)
ADD TARGET package0.event_file(SET filename=N'C:\temp\XTPParams.xel');
GO
ALTER EVENT SESSION [XTP_Parameter_Events] ON SERVER STATE = START;

Once the session is running, you could try any of the above four calls individually, and then you can run

this query:

;WITH x([timestamp], db, [object_id], reason, batch)
AS
(
 SELECT
 xe.d.value(N'(event/@timestamp)[1]',N'datetime2(0)'),
 DB_NAME(xe.d.value(N'(event/data[@name="database_id"]/value)[1]',N'int')),

 xe.d.value(N'(event/data[@name="object_id"]/value)[1]',N'int'),
 xe.d.value(N'(event/data[@name="reason"]/text)[1]',N'sysname'),
 xe.d.value(N'(event/action[@name="sql_text"]/value)[1]',N'nvarchar(max)')
 FROM
 sys.fn_xe_file_target_read_file(N'C:\temp\XTPParams*.xel',NULL,NULL,NULL) AS ft
 CROSS APPLY (SELECT CONVERT(XML, ft.event_data)) AS xe(d)
)
SELECT [timestamp], db, [object_id], reason, batch FROM x;

Depending on what you ran, you should see results similar to this:

Sample results from Extended Events

Hopefully the batch column is enough to identify the culprit, but if you have large batches that contain

multiple calls to natively compiled procedures and you need to track down the objects that are

specifically triggering this problem, you can simply look them up by object_id in their respective

databases.

Now, I don't recommend running all 400,000 calls in the text while the session is active, or turning this

session on in a highly concurrent, production environment – if you are doing this a lot, it can cause some

significant overhead. You are much better off checking for this kind of activity in your development or

staging environment, as long as you can subject it to a proper workload covering a full business cycle.

Conclusion

I was definitely surprised by the fact that naming parameters – long considered a best practice – has

been turned into a worst practice with natively compiled stored procedures. And it is known by

Microsoft to be enough of a potential problem that they created an Extended Event designed specifically

to track it. If you are using In-Memory OLTP, this is one thing you should keep on your radar as you

develop supporting stored procedures. I know I am definitely going to have to un-train my muscle

memory from using named parameters.

SQL Server 2014 Incremental Statistics
By Benjamin Nevarez

A major problem with updating statistics in large tables in SQL Server is that the entire table always has

to be scanned, for example when using the WITH FULLSCAN option, even if only recent data has

changed. This is also true when using partitioning: even if only the newest partition had changed since

the last time statistics were updated, updating statistics again required to scan the entire table including

all the partitions that didn’t change. Incremental statistics, a new SQL Server 2014 feature, can help with

this problem.

Using incremental statistics you can update only the partition or partitions that you need and the

information on these partitions will be merged with the existing information to create the final statistics

object. Another advantage of incremental statistics is that the percentage of data changes required to

trigger an automatic update of statistics now works at the partition level which basically means that now

only 20% of rows changed (changes on the leading statistics column) per partition are required.

Unfortunately the histogram is still limited to 200 steps for the entire statistics object in this version of

SQL Server.

Let us look at an example of how can you update statistics at a partition level to explore its behavior at

least as of SQL Server 2014 CTP2. First we need to create a partitioned table using the

AdventureWorks2012 database:

CREATE PARTITION FUNCTION TransactionRangePF1 (DATETIME)
AS RANGE RIGHT FOR VALUES
(
 '20071001', '20071101', '20071201', '20080101',
 '20080201', '20080301', '20080401', '20080501',
 '20080601', '20080701', '20080801'
);
GO

CREATE PARTITION SCHEME TransactionsPS1 AS PARTITION TransactionRangePF1 TO
(
 [PRIMARY], [PRIMARY], [PRIMARY], [PRIMARY], [PRIMARY],
 [PRIMARY], [PRIMARY], [PRIMARY], [PRIMARY], [PRIMARY],
 [PRIMARY], [PRIMARY], [PRIMARY]
);
GO

CREATE TABLE dbo.TransactionHistory
(
 TransactionID INT NOT NULL, -- not bothering with IDENTITY here
 ProductID INT NOT NULL,
 ReferenceOrderID INT NOT NULL,
 ReferenceOrderLineID INT NOT NULL DEFAULT (0),
 TransactionDate DATETIME NOT NULL DEFAULT (GETDATE()),
 TransactionType NCHAR(1) NOT NULL,
 Quantity INT NOT NULL,
 ActualCost MONEY NOT NULL,
 ModifiedDate DATETIME NOT NULL DEFAULT (GETDATE()),
 CONSTRAINT CK_TransactionType
 CHECK (UPPER(TransactionType) IN (N'W', N'S', N'P'))
)

ON TransactionsPS1 (TransactionDate);
GO

Note: For details about partitioning and the CREATE PARTITION FUNCTION / SCHEME statements please

refer to Partitioned Tables and Indexes in Books Online.

We currently have data to populate 12 partitions. Let us start by first populating only 11.

INSERT INTO dbo.TransactionHistory
SELECT * FROM Production.TransactionHistory
WHERE TransactionDate < '2008-08-01';

If required, you can use the following statement to inspect the contents of the partitions:

SELECT * FROM sys.partitions
 WHERE object_id = OBJECT_ID('dbo.TransactionHistory');

Let us create an incremental statistics object using the CREATE STATISTICS statement with the

new INCREMENTAL clause set to ON (OFF is the default):

CREATE STATISTICS incrstats ON dbo.TransactionHistory(TransactionDate)
 WITH FULLSCAN, INCREMENTAL = ON;

You can also create incremental statistics while creating an index using the

new STATISTICS_INCREMENTAL clause of the CREATE INDEX statement.

You can inspect the created statistics object using DBCC:

DBCC SHOW_STATISTICS('dbo.TransactionHistory', incrstats);

Among other things, you will notice that the histogram has 200 steps (only the last 3 shown here):

 RANGE_HI_KEY RANGE_ROWS EQ_ROWS DISTINCT_RANGE_ROWS

198 2008-07-25 00:00:00.000 187 100 2

199 2008-07-27 00:00:00.000 103 101 1

200 2008-07-31 00:00:00.000 281 131 3

Initial DBCC results

So we already have the maximum of steps in a statistics object. What would happen if you add data to a
new partition? Let us add data to partition 12:

INSERT INTO dbo.TransactionHistory
SELECT * FROM Production.TransactionHistory

http://technet.microsoft.com/en-us/library/ms190787.aspx
http://msdn.microsoft.com/en-us/library/bb510411(v=sql.120).aspx#Stats
http://msdn.microsoft.com/en-us/library/bb510411(v=sql.120).aspx#Stats

WHERE TransactionDate >= '2008-08-01';

Now, we update the statistics object using the following statement:

UPDATE STATISTICS dbo.TransactionHistory(incrstats)
 WITH RESAMPLE ON PARTITIONS(12);

Note the new syntax specifying the partition, where you can specify multiple partitions, separated by
comma. The UPDATE STATISTICS statement reads the specified partitions and then merges their results
with the existing statistic object to build the global statistics. Note the RESAMPLE clause; this is required
as partition statistics need to have the same sample rates to be merged to build the global statistics.
Although only the specified partition was scanned, you can see that SQL Server has rearranged the
histogram. The last three steps now show data for the added partition. You can also compare the
original with the new histogram for other minor differences:

 RANGE_HI_KEY RANGE_ROWS EQ_ROWS DISTINCT_RANGE_ROWS

197 2008-07-31 00:00:00.000 150 131 2

198 2008-08-12 00:00:00.000 300 36 9

199 2008-08-22 00:00:00.000 229 43 7

200 2008-09-03 00:00:00.000 363 37 11

DBCC results after the incremental update

If for any reason you want to disable the incremental statistics you can use the following statement to
go back to the original behavior (or optionally just drop the statistics object and create a new one).

UPDATE STATISTICS dbo.TransactionHistory(incrstats)
 WITH FULLSCAN, INCREMENTAL = OFF;

After disabling the incremental statistics trying to update a partition as shown previously will return the
following error message:

Msg 9111, Level 16, State 1

UPDATE STATISTICS ON PARTITIONS syntax is not supported for non-incremental

statistics.

Finally, you can also enable incremental statistics for your automatic statistics at the database level, if

needed. This requires the INCREMENTAL = ON clause in the ALTER DATABASE statement and obviously

also requires AUTO_CREATE_STATISTICS set to ON.

http://msdn.microsoft.com/en-us/library/bb522682(v=sql.120).aspx

Some great news for Standard customers in SQL Server 2014
By Aaron Bertrand

Some recent changes in the documentation for SQL Server 2014 have revealed that a couple of

significant changes will have a fantastic impact on Standard Edition customers.

More Memory

The first one is that the supported memory limit per instance has been raised from 64 GB in SQL Server

2008 R2 and SQL Server 2012 to 128 GB in SQL Server 2014:

Memory supported by editions of SQL Server 2014

Brent Ozar (@BrentO) caught this and blogged about it earlier this week, and I believe his earlier post

complaining about Standard Edition, as well as repeated advice from MVPs such as Glenn Berry

(@GlennAlanBerry) and others (see here and here), had something to do with this.

We can pretend, of course, that 128 GB is a huge win, forgetting that not too long ago – as recent as SQL

Server 2008 – there was no limit at all in Standard Edition:

http://msdn.microsoft.com/en-us/library/cc645993(SQL.120).aspx
http://twitter.com/BrentO
http://ozar.me/2014/03/good-news-sql-server-standard-editions-limits/
http://www.brentozar.com/archive/2013/07/sql-server-2014-standard-edition-sucks-and-its-all-your-fault/
http://www.brentozar.com/archive/2013/07/sql-server-2014-standard-edition-sucks-and-its-all-your-fault/
http://twitter.com/GlennAlanBerry
http://www.sqlperformance.com/2013/08/sql-memory/common-sense-licensing-changes-for-sql-server-2014-standard-edition
http://sqlserverperformance.wordpress.com/2012/12/28/sql-server-2012-standard-edition-licensing-limits/
http://technet.microsoft.com/en-us/library/ms143685(v=sql.100).aspx

Memory supported by editions of SQL Server 2008

But hey, any time Microsoft decides to give us *more* for the same price, we should take as an

opportunity.

Buffer Pool Extensions

During the beta and public CTPs, all signs pointed to this being an Enterprise Edition feature, but – and

again, this is an assumption – some loud MVPs and TAP members seem to have convinced Microsoft to

loosen the restrictions here, and make this feature available to Standard Edition customers.

Partial list of features supported in SQL Server 2014

Of course these are the very people who are much more likely than Enterprise customers to be short on

memory, and to be able to throw in commodity SSDs to compensate.

If you want a very digestible overview of this feature, Klaus Aschenbrenner (@Aschenbrenner) has a

great introduction.

http://twitter.com/Aschenbrenner
http://www.sqlpassion.at/archive/2014/03/11/buffer-pool-extensions-in-sql-server-2014/
http://www.sqlpassion.at/archive/2014/03/11/buffer-pool-extensions-in-sql-server-2014/

Delayed Durability in SQL Server 2014
By Aaron Bertrand

Delayed Durability is a late-breaking but interesting feature in SQL Server 2014; the high-level elevator

pitch of the feature is, quite simply:

"Trade durability for performance."

Some background first. By default, SQL Server uses a write-ahead log (WAL), which means that changes

are written to the log before they are allowed to be committed. In systems where transaction log writes

become the bottleneck, and where there is a moderate tolerance for data loss, you now have the

option to temporarily suspend the requirement to wait for the log flush and acknowledgement. This

happens to quite literally take the D out of ACID, at least for a small portion of data (more on this later).

You kind of already make this sacrifice now. In full recovery mode, there is always some risk of data loss,

it's just measured in terms of time rather than size. For example, if you back up the transaction log every

five minutes, you could lose up to just under 5 minutes of data if something catastrophic happened. I'm

not talking simple failover here, but let's say the server literally catches on fire or someone trips over the

power cord – the database may very well be unrecoverable and you may have to go back to the point in

time of the last log backup. And that's assuming you are even testing your backups by restoring them

somewhere – in the event of a critical failure you may not have the recovery point you think you have.

We tend not to think about this scenario, of course, because we never expect bad things™ to happen.

How it works

Delayed durability enables write transactions to continue running as if the log had been flushed to disk;

in reality, the writes to disk have been grouped and deferred, to be handled in the background. The

transaction is optimistic; it assumes that the log flush will happen. The system uses a 60KB chunk of log

buffer, and attempts to flush the log to disk when this 60KB block is full. You can set this option at the

database level, at the individual transaction level, or – in the case of natively compiled procedures in In-

Memory OLTP – at the procedure level. The database setting wins in the case of a conflict; for example,

if the database is set to disabled, trying to commit a transaction using the delayed option will simply be

ignored, with no error message. Also, some transactions are always fully durable, regardless of database

settings or commit settings; for example, system transactions, cross-database transactions, and

operations involving FileTable, Change Tracking and Change Data Capture.

At the database level, you can use:

ALTER DATABASE dbname SET DELAYED_DURABILITY = DISABLED | ALLOWED | FORCED;

If you set it to ALLOWED, this means that any individual transaction can use Delayed

Durability; FORCED means that all transactions that can use Delayed Durability will (the exceptions

above are still relevant in this case). You will likely want to use ALLOWED rather than FORCED – but the

latter can be useful in the case of an existing application where you want to use this option throughout

and also minimize the amount of code that has to be touched. An important thing to note

about ALLOWED is that fully durable transactions may have to wait longer, as they will force the flush of

any delayed durable transactions first.

http://msdn.microsoft.com/en-us/library/dn449490(v=sql.120).aspx
http://technet.microsoft.com/en-us/library/ms186259(v=sql.105).aspx

At the transaction level, you can say:

COMMIT TRANSACTION WITH (DELAYED_DURABILITY = ON);

And in an In-Memory OLTP natively-compiled procedure, you can add the following option to the BEGIN

ATOMIC block:

BEGIN ATOMIC WITH (DELAYED_DURABILITY = ON, ...)

A common question is around what happens with locking and isolation semantics. Nothing changes,

really. Locking and blocking still happen, and transactions are committed in the same way and with the

same rules. The only difference is that, by allowing the commit to occur without waiting for the log to

flush to disk, any related locks are released that much sooner.

When You Should Use It

In addition to the benefit you get from allowing the transactions to proceed without waiting for the log

write to happen, you also get fewer log writes of larger sizes. This can work out very well if your system

has a high proportion of transactions that are actually smaller than 60KB, and particularly when the log

disk is slow (though I found similar benefits on SSD and traditional HDD). It doesn't work out so well if

your transactions are, for the most part, larger than 60KB, if they are typically long-running, or if you

have high throughput and high concurrency. What can happen here is that you can fill the entire log

buffer before the flush finishes, which just means transferring your waits to a different resource and,

ultimately, not improving the perceived performance by the users of the application.

In other words, if your transaction log is not currently a bottleneck, don't turn this feature on. How can

you tell if your transaction log is currently a bottleneck? The first indicator would be

highWRITELOG waits, particularly when coupled with PAGEIOLATCH_**. Paul Randal (@PaulRandal) has

a great four-part series on identifying transaction log problems, as well as configuring for optimal

performance:

 Trimming the Transaction Log Fat

 Trimming More Transaction Log Fat

 Transaction Log Configuration Issues

 Transaction Log Monitoring

Also see this blog post from Kimberly Tripp (@KimberlyLTripp), 8 Steps to Better Transaction Log

Throughput, and the SQL CAT team's blog post, Diagnosing Transaction Log Performance Issues and

Limits of the Log Manager.

This investigation may lead you to the conclusion that Delayed Durability is worth looking into; it may

not. Testing your workload will be the most reliable way to know for sure. Like many other additions in

recent versions of SQL Server (*cough* Hekaton), this feature is NOT designed to improve every single

workload – and as noted above, it can actually make some workloads worse. See this blog post by Simon

http://twitter.com/PaulRandal
http://www.sqlperformance.com/2012/12/io-subsystem/trimming-t-log-fat
http://www.sqlperformance.com/2013/01/io-subsystem/trimming-more-transaction-log-fat
http://www.sqlperformance.com/2013/02/system-configuration/transaction-log-configuration
http://www.sqlperformance.com/2013/11/sql-performance/transaction-log-monitoring
http://twitter.com/KimberlyLTripp
http://www.sqlskills.com/blogs/kimberly/8-steps-to-better-transaction-log-throughput/
http://www.sqlskills.com/blogs/kimberly/8-steps-to-better-transaction-log-throughput/
http://blogs.msdn.com/b/sqlcat/archive/2013/09/10/diagnosing-transaction-log-performance-issues-and-limits-of-the-log-manager.aspx
http://blogs.msdn.com/b/sqlcat/archive/2013/09/10/diagnosing-transaction-log-performance-issues-and-limits-of-the-log-manager.aspx
http://rule30.wordpress.com/2014/03/16/delayed-durability-in-sql-server-2014-part-3-when-should-i-use-it/

Harvey for some other questions you should ask yourself about your workload to determine if it is

feasible to sacrifice some durability to achieve better performance.

Potential for data loss

I'm going to mention this several times, and add emphasis every time I do: You need to be tolerant to

data loss. Under a well-performing disk, the maximum you should expect to lose in a catastrophe – or

even a planned and graceful shutdown – is up to one full block (60KB). However, in the case where your

I/O subsystem can't keep up, it is possible that you could lose as much as the entire log buffer (~7MB).

To clarify, from the documentation (emphasis mine):

For delayed durability, there is no difference between an unexpected shutdown and an

expected shutdown/restart of SQL Server. Like catastrophic events, you should plan

for data loss. In a planned shutdown/restart some transactions that have not been

written to disk may first be saved to disk, but you should not plan on it. Plan as

though a shutdown/restart, whether planned or unplanned, loses the data the same as a

catastrophic event.

So it is very important that you weigh your data loss risk with your need to alleviate transaction log

performance issues. If you run a bank or anything dealing with money, it may be much safer and more

appropriate for you to move your log to faster disk than to roll the dice using this feature. If you are

trying to improve the response time in your Web Gamerz Chat Room application, maybe the risk is less

severe.

You can control this behavior to some degree in order to minimize your risk of data loss. You can force

all delayed durable transactions to be flushed to disk in one of two ways:

1. Commit any fully durable transaction.

2. Call sys.sp_flush_log manually.

This allows you to revert to controlling data loss in terms of time, rather than size; you could schedule

the flush every 5 seconds, for example. But you will want to find your sweet spot here; flushing too

often can offset the Delayed Durability benefit in the first place. In any case, you will still need to be

tolerant to data loss, even if it is only <n> seconds' worth.

You would think that CHECKPOINT might help here, but this operation actually does not technically

guarantee the log will be flushed to disk.

Interaction with HA/DR

You might wonder how Delayed Durablity functions with HA/DR features such as log shipping,

replication, and Availability Groups. With most of these it works unchanged. Log shipping and replication

will replay the log records that have been hardened, so the same potential for data loss exists there.

With AGs in asynchronous mode, we're not waiting for the secondary acknowledge anyway, so it will

behave the same as today. With synchronous, however, we can't commit on the primary until the

transaction is committed and hardened to the remote log. Even in that scenario we may have some

benefit locally by not having to wait for the local log to write, we still have to wait for the remote

activity. So in that scenario there is less benefit, and potentially none; except perhaps in the rare

http://rule30.wordpress.com/2014/03/16/delayed-durability-in-sql-server-2014-part-3-when-should-i-use-it/
http://msdn.microsoft.com/en-us/library/dn449490(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn467645(v=sql.120).aspx

scenario where the primary's log disk is really slow and the secondary's log disk is really fast. I suspect

the same conditions hold true for sync/async mirroring, but you won't get any official commitment from

me about how a shiny new feature works with a deprecated one. :-)

Performance Observations

This wouldn't be much of a post here if I didn't show some actual performance observations. I set up 8

databases to test the effects of two different workload patterns with the following attributes:

 Recovery model: simple vs. full

 Log location: SSD vs. HDD

 Durability: delayed vs. fully durable

I am really, really, really lazyefficient about this kind of thing. Since I want to avoid repeating the same

operations within each database, I created the following table temporarily in model:

USE model;
GO

CREATE TABLE dbo.TheTable
(
 TheID INT IDENTITY(1,1) PRIMARY KEY,
 TheDate DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP,
 RowGuid UNIQUEIDENTIFIER NOT NULL DEFAULT NEWID()
);

Then I built a set of dynamic SQL command to builds these 8 databases, rather than create the

databases individually and then muck with the settings:

-- C and D are SSD, G is HDD

DECLARE @sql NVARCHAR(MAX) = N'';

;WITH l AS (SELECT l FROM (VALUES('D'),('G')) AS l(l)),
r AS (SELECT r FROM (VALUES('FULL'),('SIMPLE')) AS r(r)),
d AS (SELECT d FROM (VALUES('FORCED'),('DISABLED')) AS d(d)),
x AS (SELECT l.l, r.r, d.d, n = CONVERT(CHAR(1),ROW_NUMBER() OVER
 (ORDER BY d.d DESC, l.l)) FROM l CROSS JOIN r CROSS JOIN d)
SELECT @sql += N'
CREATE DATABASE dd' + n + ' ON '
+ '(name = ''dd' + n + '_data'','
+ ' filename = ''C:\SQLData\dd' + n + '.mdf'', size = 1024MB)
LOG ON (name = ''dd' + n + '_log'','
+ ' filename = ''' + l + ':\SQLLog\dd' + n + '.ldf'', size = 1024MB);
 ALTER DATABASE dd' + n + ' SET RECOVERY ' + r + ';
 ALTER DATABASE dd' + n + ' SET DELAYED_DURABILITY = ' + d + ';'
FROM x ORDER BY d, l;

PRINT @sql;
-- EXEC sp_executesql @sql;

Feel free to run this code yourself (with the EXEC still commented out) to see that this would create 4

databases with Delayed Durability OFF (two in FULL recovery, two in SIMPLE, one of each with log on

slow disk, and one of each with log on SSD). Repeat that pattern for 4 databases with Delayed Durability

FORCED – I did this to simplify the code in the test, rather than to reflect what I would do in real life

(where I would likely want to treat some transactions as critical, and some as, well, less than critical).

For sanity checking, I ran the following query to ensure that the databases had the right matrix of

attributes:

SELECT d.name, d.recovery_model_desc, d.delayed_durability_desc,
 log_disk = CASE WHEN mf.physical_name LIKE N'D%' THEN 'SSD' else 'HDD' END
FROM sys.databases AS d
INNER JOIN sys.master_files AS mf
ON d.database_id = mf.database_id
WHERE d.name LIKE N'dd[1-8]'
AND mf.[type] = 1; -- log

Results:

name recovery_model delayed_durability log_disk

dd1 FULL FORCED SSD

dd2 SIMPLE FORCED SSD

dd3 FULL FORCED HDD

dd4 SIMPLE FORCED HDD

dd5 FULL DISABLED SSD

dd6 SIMPLE DISABLED SSD

dd7 FULL DISABLED HDD

dd8 SIMPLE DISABLED HDD

Relevant configuration of the 8 test databases

I also ran the test cleanly multiple times to ensure that a 1 GB data file and 1 GB log file would be

sufficient to run the entire set of workloads without introducing any autogrowth events into the

equation. As a best practice, I routinely go out of my way to ensure customers' systems have enough

allocated space (and proper alerts built in) such that no growth event ever occurs at an unexpected

time. In the real world I know this doesn't always happen, but it is ideal.

I set up the system to be monitored with SQL Sentry Performance Advisor – this would allow me to

easily show most of the performance metrics I wanted to highlight. But I also created a temporary table

to store batch metrics including duration and very specific output from sys.dm_io_virtual_file_stats:

http://sqlsentry.com/products/performance-advisor/sql-server-performance
http://technet.microsoft.com/en-us/library/ms190326.aspx

SELECT test = 1, cycle = 1, start_time = GETDATE(), *
INTO #Metrics
FROM sys.dm_io_virtual_file_stats(DB_ID('dd1'), 2) WHERE 1 = 0;

This would allow me to record the start and finish time of each individual batch, and measure deltas in

the DMV between start time and end time (only reliable in this case because I know I'm the only user on

the system).

Lots of small transactions

The first test I wanted to perform was a lot of small transactions. For each database, I wanted to end up

with 500,000 separate batches of a single insert each:

INSERT #Metrics SELECT 1, 1, GETDATE(), *
 FROM sys.dm_io_virtual_file_stats(DB_ID('dd1'), 2);
GO
INSERT dbo.TheTable DEFAULT VALUES;
GO 500000
INSERT #Metrics SELECT 1, 2, GETDATE(), *
 FROM sys.dm_io_virtual_file_stats(DB_ID('dd1'), 2);

Remember, I try to be lazyefficient about this kind of thing. So to generate the code for all 8 databases, I

ran this:

;WITH x AS
(
 SELECT TOP (8) number FROM master..spt_values
 WHERE type = N'P' ORDER BY number
)
SELECT CONVERT(NVARCHAR(MAX), N'') + N'
INSERT #Metrics SELECT 1, 1, GETDATE(), *
 FROM sys.dm_io_virtual_file_stats(DB_ID(''dd' + RTRIM(number+1) + '''), 2);
GO
INSERT dbo.TheTable DEFAULT VALUES;
GO 500000
INSERT #Metrics SELECT 1, 2, GETDATE(), *
 FROM sys.dm_io_virtual_file_stats(DB_ID(''dd' + RTRIM(number+1) + '''), 2);'
FROM x;

I ran this test and then looked at the #Metrics table with the following query:

SELECT
 [database] = db_name(m1.database_id),
 num_writes = m2.num_of_writes - m1.num_of_writes,
 write_bytes = m2.num_of_bytes_written - m1.num_of_bytes_written,
 bytes_per_write = (m2.num_of_bytes_written - m1.num_of_bytes_written)*1.0
 /(m2.num_of_writes - m1.num_of_writes),
 io_stall_ms = m2.io_stall_write_ms - m1.io_stall_write_ms,
 m1.start_time,
 end_time = m2.start_time,
 duration = DATEDIFF(SECOND, m1.start_time, m2.start_time)
FROM #Metrics AS m1
INNER JOIN #Metrics AS m2

ON m1.database_id = m2.database_id
WHERE m1.cycle = 1 AND m2.cycle = 2
AND m1.test = 1 AND m2.test = 1;

This yielded the following results (and I confirmed through multiple tests that the results were

consistent):

Small transactions: Duration and results from sys.dm_io_virtual_file_stats

Definitely some interesting observations here:

o Number of individual write operations was very small for the Delayed Durability

databases (~60X for traditional).

o Total number of bytes written was cut in half using Delayed Durability (I presume

because all of the writes in the traditional case contained a lot of wasted space).

o The number of bytes per write was a lot higher for Delayed Durability. This was not

overly surprising, since the whole purpose of the feature is to bundle writes together in

larger batches.

o The total duration of I/O stalls was volatile, but roughly an order of magnitude lower for

Delayed Durability. The stalls under fully durable transactions were much more sensitive

to the type of disk.

o If anything hasn't convinced you so far, the duration column is very telling. Fully durable

batches that take two minutes are more are cut almost in half.

The start/end time columns allowed me to focus on the Performance Advisor dashboard for the precise

period where these transactions were happening, where we can draw a lot of additional visual

indicators:

SQL Sentry Performance Advisor dashboard

Further observations here:

o On several graphs, you can clearly see exactly when the non-Delayed Durability portion

of the batch took over (~5:24:32 PM).

o There is no observable impact to CPU or memory when using Delayed Durability.

o You can see a tremendous impact to batches/transactions per second in the first graph

under SQL Server Activity.

o SQL Server waits go through the roof when the fully durable transactions started. These

were comprised almost exclusively of WRITELOG waits, with a small number

ofPAGEIOLOATCH_EX and PAGEIOLATCH_UP waits for good measure.

o The total number of log flushes throughout the Delayed Durability operations was quite

small (low 100s/sec), while this jumped to over 4,000/sec for the traditional behavior

(and slightly lower for the HDD duration of the test).

Fewer, larger transactions

For the next test, I wanted to see what would happen if we performed fewer operations, but made sure

each statement affected a larger amount of data. I wanted this batch to run against each database:

CREATE TABLE dbo.Rnd
(
 batch TINYINT,
 TheID INT
);

INSERT dbo.Rnd SELECT TOP (1000) 1, TheID FROM dbo.TheTable ORDER BY NEWID();

http://sqlsentry.com/products/performance-advisor/sql-server-performance

INSERT dbo.Rnd SELECT TOP (10) 2, TheID FROM dbo.TheTable ORDER BY NEWID();
INSERT dbo.Rnd SELECT TOP (300) 3, TheID FROM dbo.TheTable ORDER BY NEWID();
GO

INSERT #Metrics SELECT 1, GETDATE(), *
FROM sys.dm_io_virtual_file_stats(DB_ID('dd1'), 2);
GO
UPDATE t SET TheDate = DATEADD(MINUTE, 1, TheDate)
 FROM dbo.TheTable AS t
 INNER JOIN dbo.Rnd AS r
 ON t.TheID = r.TheID
 WHERE r.batch = 1;
GO 10000
UPDATE t SET RowGuid = NEWID()
 FROM dbo.TheTable AS t
 INNER JOIN dbo.Rnd AS r
 ON t.TheID = r.TheID
 WHERE r.batch = 2;
GO 10000
DELETE dbo.TheTable WHERE TheID IN (SELECT TheID FROM dbo.Rnd WHERE batch = 3);
DELETE dbo.TheTable WHERE TheID IN (SELECT TheID+1 FROM dbo.Rnd WHERE batch = 3);
DELETE dbo.TheTable WHERE TheID IN (SELECT TheID-1 FROM dbo.Rnd WHERE batch = 3);
GO
INSERT #Metrics SELECT 2, GETDATE(), *
 FROM sys.dm_io_virtual_file_stats(DB_ID('dd1'), 2);

So again I used the lazy method to produce 8 copies of this script, one per database:

;WITH x AS (SELECT TOP (8) number FROM master..spt_values WHERE type = N'P' ORDER BY
number)
SELECT N'
USE dd' + RTRIM(Number+1) + ';
GO

CREATE TABLE dbo.Rnd
(
 batch TINYINT,
 TheID INT
);

INSERT dbo.Rnd SELECT TOP (1000) 1, TheID FROM dbo.TheTable ORDER BY NEWID();
INSERT dbo.Rnd SELECT TOP (10) 2, TheID FROM dbo.TheTable ORDER BY NEWID();
INSERT dbo.Rnd SELECT TOP (300) 3, TheID FROM dbo.TheTable ORDER BY NEWID();
GO

INSERT #Metrics SELECT 2, 1, GETDATE(), *
 FROM sys.dm_io_virtual_file_stats(DB_ID(''dd' + RTRIM(number+1) + ''', 2);
GO
UPDATE t SET TheDate = DATEADD(MINUTE, 1, TheDate)
 FROM dbo.TheTable AS t
 INNER JOIN dbo.rnd AS r
 ON t.TheID = r.TheID
 WHERE r.cycle = 1;
GO 10000
UPDATE t SET RowGuid = NEWID()
 FROM dbo.TheTable AS t
 INNER JOIN dbo.rnd AS r
 ON t.TheID = r.TheID

 WHERE r.cycle = 2;
GO 10000
DELETE dbo.TheTable WHERE TheID IN (SELECT TheID FROM dbo.rnd WHERE cycle = 3);
DELETE dbo.TheTable WHERE TheID IN (SELECT TheID+1 FROM dbo.rnd WHERE cycle = 3);
DELETE dbo.TheTable WHERE TheID IN (SELECT TheID-1 FROM dbo.rnd WHERE cycle = 3);
GO
INSERT #Metrics SELECT 2, 2, GETDATE(), *
 FROM sys.dm_io_virtual_file_stats(DB_ID(''dd' + RTRIM(number+1) + '''), 2);'
FROM x;

I ran this batch, then changed the query against #Metrics above to look at the second test instead of the

first. The results:

database writes bytes bytes/write io_stall_ms start_time end_time
duration

(seconds)

dd1 20,970 1,271,911,936 60,653.88 12,577
2014-04-26

17:41:21

2014-04-26

17:43:46
145

dd2 20,997 1,272,145,408 60,587.00 14,698
2014-04-26

17:43:46

2014-04-26

17:46:11
145

dd3 20,973 1,272,982,016 60,696.22 12,085
2014-04-26

17:46:11

2014-04-26

17:48:33
142

dd4 20,958 1,272,064,512 60,695.89 11,795
2014-04-26

17:48:33

2014-04-26

17:50:56
143

dd5 30,138 1,282,231,808 42,545.35 7,402
2014-04-26

17:50:56

2014-04-26

17:53:23
147

dd6 30,138 1,282,260,992 42,546.31 7,806
2014-04-26

17:53:23

2014-04-26

17:55:53
150

dd7 30,129 1,281,575,424 42,536.27 9,888
2014-04-26

17:55:53

2014-04-26

17:58:25
152

dd8 30,130 1,281,449,472 42,530.68 11,452
2014-04-26

17:58:25

2014-04-26

18:00:55
150

Larger transactions: Duration and results from sys.dm_io_virtual_file_stats

This time, the impact of Delayed Durability is much less noticeable. We see a slightly smaller number of

write operations, at a slightly larger number of bytes per write, with the total bytes written almost

identical. In this case we actually see the I/O stalls are higher for Delayed Durability, and this likely

accounts for the fact that the durations were almost identical as well.

From the Performance Advisor dashboard, we some similarities with the previous test, and some stark

differences as well:

SQL Sentry Performance Advisor dashboard

One of the big differences to point out here is that the delta in wait stats is not quite as pronounced as

with the previous test – there is still a much higher frequency of WRITELOG waits for the fully durable

batches, but nowhere near the levels seen with the smaller transactions. Another thing you can spot

immediately is that the previously observed impact on batches and transactions per second is no longer

present. And finally, while there are more log flushes with fully durable transactions than when delayed,

this disparity is far less pronounced than with the smaller transactions.

Conclusion

It should be clear that there are certain workload types that may benefit greatly from Delayed Durability

– provided, of course, that you have a tolerance for data loss. This feature is not restricted to In-

Memory OLTP, is available on all editions of SQL Server 2014, and can be implemented with little to no

code changes. It can certainly be a powerful technique if your workload can support it. But again, you

will need to test your workload to be sure that it will benefit from this feature, and also strongly

consider whether this increases your exposure to the risk of data loss.

As an aside, this may seem to the SQL Server crowd like a fresh new idea, but in truth Oracle introduced

this as "Asynchronous Commit" in 2006 (see COMMIT WRITE ... NOWAIT as documented

here and blogged about in 2007). And the idea itself has been around for nearly 3 decades; see Hal

Berenson's brief chronicle of its history.

Next Time

One idea that I have batted around is to try to improve the performance of tempdb by forcing Delayed

Durability there. One special property of tempdb that makes it such a tempting candidate is that it is

transient by nature – anything in tempdb is designed, explicitly, to be tossable in the wake of a wide

variety of system events. I am saying this now without having any idea if there is a workload shape

where this will work out well; but I do plan to try it out, and if I find anything interesting, you can be sure

I will post about it here.

http://sqlsentry.com/products/performance-advisor/sql-server-performance
http://www.oracle-base.com/articles/10g/commit-10gr2.php
http://www.oracle-base.com/articles/10g/commit-10gr2.php
http://www.techrepublic.com/article/trade-risk-for-speed-with-oracle-10gs-asynchronous-commit/
http://hal2020.com/2014/03/06/sql-server-2014-delayed-durabilitylazy-commit/
http://hal2020.com/2014/03/06/sql-server-2014-delayed-durabilitylazy-commit/

Selecting a Processor for SQL Server 2014 – Part 1
By Glenn Berry

Just about a year ago, I wrote Selecting a Processor for SQL Server 2012. Since SQL Server 2014 is due to

be released sometime in early 2014 (according to Mary Jo Foley), it seems like a good time to revisit this

subject, and see what might have changed over the past twelve months.

My assumption is that SQL Server 2014 will use the same core-based licensing model that SQL Server

2012 does, since I have not heard any public announcements otherwise. I would not be surprised to see

some minor price increases in the license cost per core, but I would be very surprised to see any major

changes to how core-based licensing works. I do hope that Microsoft will make some changes to

the artificially low hardware license limits for SQL Server Standard Edition.

The difference in SQL Server 2014 licensing costs between a good processor choice and a bad processor

choice can more than pay for your hardware and at least a portion of your storage subsystem in many

cases, so this is something you need to pay attention to as a database professional. Don’t just let “Shon

the server guy” pick what processors to buy for your new database server!

Two-Socket Servers

Over the past year, Intel has released the 22nm Intel Xeon E5-2600 v2 Product Family (Ivy Bridge-EP) of

processors for two-socket servers. Currently, there are 22 different processors in this family, which

seems like an overwhelming number of choices. When you think about how SQL Server 2012/2014

licensing works, and you want the best performance possible for the lowest license cost, you can pretty

quickly narrow down that list to just five processors. These are the twelve-core Xeon E5-2697 v2, the

ten-core Xeon E5-2690 v2, the eight-core Xeon E5-2667 v2, the six-core Xeon E5-2643 v2, or the four-

core Xeon E5-2637 v2. Table 1 shows the relevant specifications for these five processors.

Model Cores Base Speed Turbo Speed L3 Cache Size Cost

E5-2697 v2 12 2.7GHz 3.5GHz 30MB $2,614.00

E5-2690 v2 10 3.0GHz 3.6GHz 25MB $2,057.00

E5-2667 v2 8 3.3GHz 4.0GHz 25MB $2,057.00

E5-2643 v2 6 3.5GHz 3.8GHz 25MB $1,552.00

E5-2637 v2 4 3.5GHz 3.8GHz 15MB $996.00

Table 1: Recommended Xeon E5-2600 v2 Processor Models for SQL Server 2012/2014

You might be wondering how I can so quickly discard so many of Intel’s new Xeon E5-2600 v2 processor

models. You need to keep in mind that only physical cores count for licensing purposes (on non-

virtualized servers). If there are multiple models from the same product family with the same physical

core count, you should prefer the one with the highest base clock speed, turbo clock speed, the highest

Intel QPI speed and the largest shared- L3 cache size.

By those criteria, we get the five processor models shown in Table 1. Your choice then comes down to

your desired physical core count for each processor, which drives your SQL Server 2014 licensing costs.

http://www.sqlperformance.com/2013/01/system-configuration/selecting-a-processor-for-sql-server-2012
http://news.cnet.com/8301-10805_3-57587338-75/microsoft-gives-timetable-for-windows-blue-servers/
http://www.sqlperformance.com/2013/08/sql-memory/common-sense-licensing-changes-for-sql-server-2014-standard-edition
http://ark.intel.com/products/series/75291
http://ark.intel.com/products/75283/
http://ark.intel.com/products/75279/
http://ark.intel.com/products/75273/
http://ark.intel.com/products/75268/
http://ark.intel.com/products/75792/

You might notice that the lower core-count processors tend to have higher base clock speeds than their

higher core count brethren, which is actually quite significant for single-threaded processor

performance. Another factor to notice is that some of the lower core count models have the same L3

cache size as the next higher core count processor in the table, which gives each physical core a larger

portion of the L3 cache to work with (since the L3 cache is shared between all of the cores). Having a

larger L3 cache is very helpful for database server performance, since L3 cache is significantly faster than

main memory access.

Bearing all of this in mind helps you narrow down your choices even further. You need to consider your

workload and your budget as you make your final processor choice. If you want the best single-threaded

processor performance (which is very important for OLTP workloads), and the overall magnitude of your

workload (in terms of number of concurrent users or batch requests per second) is on the smaller side,

you should be focused on the E5-2667 v2, E5-2643 v2 or the E5-2637 v2.

Your final choice might be constrained by your software license budget, since each Enterprise physical

core license will cost $6,874.00 (at least with SQL Server 2012 Enterprise Edition pricing). Quite often,

financial considerations may guide you to lower core count model. For example, in most situations, I

would have no problem with someone picking a six-core E5-2643 v2 instead of an eight-core E5-2667 v2,

and saving $27,496.00 in software license costs! That would pay for the server itself, with money left

over.

Another strategy might be valid if you were trying to replace an older four-socket server with a two

socket server and you were concerned about whether the two socket server could handle the total

concurrent workload. In that situation, you might want to choose the twelve-core E5-2697 v2. Another

choice could be two new two-socket servers that each had two of the significantly faster six-core E5-

2643 v2 processors (assuming you could split your workload between two database servers).

Just for comparison’s sake, here are the same specifications for the three best choices of the 19 previous

generation 32nm Intel Xeon E5-2600 Product Family (Sandy Bridge-EP) processors, in Table 2.

Model Cores Base Speed Turbo Speed L3 Cache Size Cost

E5-2690 8 2.9GHz 3.8GHz 20MB $2,057.00

E5-2667 6 2.9GHz 3.5GHz 15MB $1,552.00

E5-2643 4 3.3GHz 3.5GHz 10MB $885.00

Table 2: Recommended Xeon E5-2600 Processor Models for SQL Server 2012

What you may notice from comparing Table 1 to Table 2 is that you are getting a nice increase in base

and turbo clock speeds, along with larger L3 cache sizes for the same cost, when you compare

equivalent processor models from both generations (that have the same core counts). On top of that,

there are some small architectural improvements between 32nm Sandy Bridge-EP and 22nm Ivy Bridge-

EP that give you a 5-10% performance boost in most benchmarks. Once again, this means that you do

not want to let “Shon the server guy” pick an older Sandy Bridge-EP processor for your new database

server.

http://ark.intel.com/products/series/61422
http://ark.intel.com/products/64596/
http://ark.intel.com/products/64589/
http://ark.intel.com/products/64587/

In Part Two of this series, I will talk about the upcoming 22nm Intel Xeon E7-4800 v2 Product Family (Ivy

Bridge-EX) for four-socket servers that is due to be released during the first quarter of 2014. These will

be a huge improvement over the much older 32nm Intel Xeon E7-4800 Product Family (Westmere-EX),

which is a long overdue development that will narrow the performance gap between two-socket servers

and four-socket servers.

http://ark.intel.com/products/series/53671/

Selecting a Processor for SQL Server 2014 – Part 2
By Glenn Berry

Back in January, I wrote Selecting a Processor for SQL Server 2014 – Part 1. Now, with the recent

announcement of a General Availability (GA) date of April 1, 2014 for SQL Server 2014, it is time to cover

part two of this series.

Four-Socket Servers

The big news since January is the release of the new 22nm Intel Xeon E7-4800 v2 Product Family (Ivy

Bridge-EX) processors on February 16, 2014. Currently, there are eight different processors in this

product family. If you think about how SQL Server 2014 core-based licensing works, and you want the

best performance possible for the lowest license cost, you can pretty quickly narrow down that list to

just three interesting processors for SQL Server. These are the fifteen-core Xeon E7-4890 v2, the twelve-

core Xeon E7-4860 v2, and the ten-core Xeon E7-4830 v2. Table 1 shows some of the relevant

specifications for these three processors.

Model Cores Base Speed Turbo Speed L3 Cache Size Cost

E7-4890 v2 15 2.8GHz 3.4GHz 37.5MB $6,619.00

E7-4860 v2 12 2.6GHz 3.2GHz 30MB $3,838.00

E7-4830 v2 10 2.2GHz 2.7GHz 20MB $2,059.00

Table 1: Recommended Xeon E7-4800 v2 Processor Models for SQL Server 2012/2014

Intel has two lower-cost, fifteen-core models in the family (the Xeon E7-4880 v2 and the Xeon E7-4870

v2), but both of these have pretty significant reductions in clock speed and/or L3 cache size. They also

have a lower-cost twelve-core model (the Xeon E7-4850 v2) that has a significant reduction in clock

speed and L3 cache size. Finally, there is a low-cost eight-core Xeon E7-4820 v2 and a low-cost six-core

Xeon E7-4809 v2, which are both hobbled by very low clock speeds and relatively small L3 cache sizes.

For reasons known only to Intel, they do not have "frequency optimized," lower core count processors in

the Xeon E7-4800 v2 Product Family. In fact they have just the opposite situation, since the base and

turbo clock speeds drop off pretty dramatically as the core counts go down. The amount of shared L3

cache per physical core also goes down as the core counts get lower with this line of processors. This

makes it much less feasible to purposely pick a lower core-count processor than it is with the Xeon E5-

2600 v2 Product Family.

Since Microsoft does not care (for licensing purposes) whether you have a fast physical processor core

or a slow physical processor core, you are best served from a performance and scalability perspective by

getting the best physical processor core you can for a given physical core count processor. But what

does this argument look like from a capital cost perspective? After all, we do have a responsibility to

make sound business decisions as part of our selection process. There is a seemingly significant cost

difference between these three processors, as shown in Table 2.

http://www.sqlperformance.com/2014/01/system-configuration/selecting-a-processor-for-sql-server-2014-1
http://blogs.technet.com/b/microsoft_blog/archive/2014/03/18/sql-server-2014-released-to-manufacturers-will-be-generally-available-april-1.aspx
http://blogs.technet.com/b/microsoft_blog/archive/2014/03/18/sql-server-2014-released-to-manufacturers-will-be-generally-available-april-1.aspx
http://ark.intel.com/products/series/75243/
http://ark.intel.com/products/75251/
http://ark.intel.com/products/75249/
http://ark.intel.com/products/75247/

Model Cores Base Speed Turbo Speed L3 Cache Size Cost

E7-4890 v2 15 2.8GHz 3.4GHz 37.5MB $6,619.00

E7-4880 v2 15 2.5GHz 3.1GHz 37.5MB $5,506.00

E7-4870 v2 15 2.3GHz 2.9GHz 30MB $4,394.00

Table 2: Three Xeon E7 Processor Models Compared

Choosing the slower Xeon E7-4880 v2 processor instead of the E7-4890 v2 processor would save you

$4,452.00 in a four-socket server (assuming the server vendor does not take a markup on the processors

over Intel’s price). Choosing the even slower Xeon E7-4870 v2 processor instead of the E7-4890 v2

processor would save you $8,900.00 in a four-socket server. That seems like a lot of money, but if you

look at the total cost of the server, including software license costs, it is actually pretty insignificant.

A fifteen-core processor in a four-socket server will require 60 total SQL Server 2014 Enterprise Edition

core licenses that cost $6,874.00 each, for a total SQL Server license cost of $412,440.00. If you fill all 96

memory slots in this new four socket server with relatively affordable 16GB DDR3 DIMMs , you will

spend about $18,432.00 on memory. If you were to get relatively pricey 32GB DIMMs, you would spend

about $76,800.00 on 3TB of memory. You are also looking at perhaps $15-20K more in other fixed costs

for this four-socket server, for the chassis, power supplies, HBAs, NICs, RAID controllers, OS licenses, etc.

Saving $4,452.00-$8,900.00 on a roughly $500K purchase is not going to be significant to most

organizations, especially when they understand how much performance and scalability they will be

losing for such a small savings.

There is a recent TPC-E benchmark submission for a four-socket IBM System x3850 X6 system that has

four Intel Xeon E7-4890 v2 processors that has an actual score of 5576.27 (which is also the highest TPC-

E score ever). By doing some simple arithmetic, we can come up with some credible estimated TPC-E

scores for the other two lower speed, fifteen-core processors.

I take the average difference in the base clock speed and the turbo clock speed for each processor, and

multiply the actual TPC-E score for the E7-4890 v2 by that to come up with an initial estimate. So for

example, multiplying 5576.27 times .906 gives a TPC-E estimate of 5052.10 for the E7-4880 v2

processor. Since the L3 cache is the same size between those two processors, we are done with the E7-

4880 v2 processor.

We do the same thing for the slower E7-4870 v2 processor, so 5576.27 times .837 gives a TPC-E estimate

of 4667.11. Since the shared L3 cache is significantly smaller in the E7-4870 v2 processor, I also subtract

another 10% (which is just an educated guess), to come up with a final TPC-E estimate of 4200.40 for the

E7-4870 v2 processor.

These simple calculations are only valid since these three processors are all from the same processor

family and generation, with the same core count, and all of their other specifications are identical.

http://ark.intel.com/products/75251/
http://ark.intel.com/products/75773/
http://ark.intel.com/products/75250/

Model TPC-E Score Base Speed Turbo Speed L3 Cache/Core

E7-4890 v2 5576.27 100% 100% 2.5MB

E7-4880 v2 5052.10 89.3% 91.8% 2.5MB

E7-4870 v2 4200.40 82.1% 85.3% 2.0MB

Table 3: Estimated TPC-E Scores for Three Xeon E7 Processors

As you can see from this exercise, you are giving up about 10% of your performance and scalability to

save $4,452.00 on a roughly $500K investment if you choose the Xeon E7-4870 v2 processor instead of

the Xeon E7-4890 v2 processor, meaning you are giving up 10% of your performance to save about 1%

of the cost of the system. The picture is even worse if you include the I/O subsystem cost for a system

like this.

http://ark.intel.com/products/75251/
http://ark.intel.com/products/75773/
http://ark.intel.com/products/75250/

Index
Berry, Glenn

Making the Case for Regular SQL Server Servicing

Using Geekbench 3 to Evaluate Database Server Performance

How much RAM Does Your New Database Server Need?

SQL Server Database Server Hardware Upgrade Case Study

General Database Server Build and Deployment Instructions

Selecting a Processor for SQL Server 2014 – Part 1

Selecting a Processor for SQL Server 2014 – Part 2

Comparing Windows Azure Virtual Machine Performance

Bertrand, Aaron
Prepare a new VM for SQL Server 2014

SQL Server 2014 : Native backup encryption

Hekaton with a twist: In-memory TVPs – Part 1

Hekaton with a twist: In-memory TVPs – Part 2

Hekaton with a twist: In-memory TVPs – Part 3

A couple of small issues with Hekaton samples

How not to call Hekaton natively compiled stored procedures

Following a single-transaction deadlock across SQL Server versions

Some great news for Standard customers in SQL Server 2014

Delayed Durability in SQL Server 2014

Dude, who owns that #temp table?

The overhead of #temp table creation tracking

Kehayias, Jonathan
Impact of the query_post_execution_showplan Extended Event

Looking at Database Snapshot Performance

VMware CPU Hot Plug vNUMA Effects on SQL Server

An Introduction to Asynchronous Processing with Service Broker

Configuring Service Broker for Asynchronous Processing
Nevarez, Benjamin

A First Look at the NEW SQL Server Cardinality Estimator

SQL Server 2014 Incremental Statistics
Randal, Paul

The Myth that DROP and TRUNCATE TABLE are Non-Logged

Transaction Log Monitoring

Avoiding Knee-Jerk Performance Troubleshooting

Knee-Jerk Wait Statistics : SOS_SCHEDULER_YIELD

Sack, Joe
The Case of the Cardinality Estimate Red Herring

Troubleshooting SQL Server CPU Performance Issues

Observer Overhead and Wait Type Symptoms

Exploring SQL Server 2014 SELECT INTO Parallelism

Exploring Partition-Level Online Index Operations in SQL Server 2014

Exploring Low Priority Lock Wait Options in SQL Server 2014

Stellato, Erin
Sample Size and the Duration of UPDATE STATISTICS: Does It Matter?

Understanding What sp_updatestats Really Updates

What Virtual Filestats Do, and Do Not, Tell You About I/O Latency

Performance Issues: The First Encounter

Performance Testing Methodologies: Discovering a New Way

Tracking Automatic Updates to Statistics

How Automatic Updates to Statistics Can Affect Query Performance

White, Paul
Indexed Views and Statistics

Cardinality Estimation for Multiple Predicates

The ACID Properties of Statements & Transactions

The Serializable Isolation Level

The Repeatable Read Isolation Level

The Read Committed Isolation Level

Read Committed Snapshot Isolation

Data Modifications under Read Committed Snapshot Isolation

The SNAPSHOT Isolation Level

Interesting Things about INSTEAD OF Triggers

