

High Performance Techniques for Microsoft SQL Server Volume 4

Editor-in-chief:
Aaron Bertrand

Authors:

Aaron Bertrand
Benjamin Nevarez

Erin Stellato
Glenn Berry
Paul Randal
Paul White
Tim Radney

eBook Lead:

Michael Kuras

Copyright © 2015 SQL Sentry Inc
All Rights Reserved

Foreword
As the Editor-in-Chief of SQLPerformance.com, I am proud to offer the 4th edition of our eBook, which is

a collection of articles organized to give you insight into a wide variety of performance issues relating to

SQL Server. From deep insights into the optimizer from Paul White and Benjamin Nevarez, to great

details on indexes and statistics from Erin Stellato, to hefty musings on various wait stats from Paul

Randal, there is a lot on offer here for just about every database professional.

I’d like to once again thank Michael Kuras for his tireless efforts in assembling this eBook, Randy Seeds

for another of his creative cover designs, our fantastic set of authors, and of course our readers and the

great SQL Server community, who continue to motivate us to aim high.

Thank you.

Aaron Bertrand

Table of Contents
Foreword

Table of Contents

Database Design and Structure

Should new index columns be in the key, or included?

T-SQL Tuesday #64: One Trigger or Many?

T-SQL Tuesday #65: Teach Something New

Considerations Around Column Order in Indexes and Sorts

Allocation Order Scans

Unexpected Clustered Index Fragmentation

Mitigating Index Fragmentation

Query Tuning and Troubleshooting

Tuning: A Good Place to Start

Grouped Concatenation in SQL Server

Grouped Concatenation: Ordering and Removing Duplicates

Avoiding Sorts with Merge Join Concatenation

Stop making SQL Server do your dirty work

Indexed View Maintenance in Execution Plans

An Indexed View Bug with Scalar Aggregates

Internals of the Seven SQL Server Sorts-Part 1

Internals of the Seven SQL Server Sorts-Part 2

Performance Tuning the Whole Query Plan

Multiple Plans for an “Identical” Query

Different Plans for “Identical” Servers

Bad Habits: Counting rows the hard way

Rewriting Queries to Improve Performance

Pagination with OFFSET/FETCH: A Better Way

The Read Uncommitted Isolation Level

The SQL Server Query Store

Statistics & Cardinality

Another Way to View Automatic Updates to Statistics

A Subquery Cardinal Estimation Bug

Another Reason to Avoid sp_updatestats

Incremental Statistics are NOT used by the Query Optimizer

Improving Partition Maintenance with Incremental Statistics

Administration, Maintenace, and System Configuration

SQL Server Agent Alerts

Dealing with high severity errors in SQL Servers

Using Geekbench 3.2 to Test Large Database Servers

Proactive SQL Server Health Checks, Part 1: Disk Space

Proactive SQL Server Health Checks, Part 2: Maintenance

Proactive SQL Server Health Checks, Part 3: Instance and Database Settings

Monitoring Read/Write Latency

Sequential Throughput Speeds and Feeds

More online operations available now-or soon

Knee-Jerk Performance Tuning: Just Add an SSD

Bad Habits: Focusing only on disk space when choosing keys

Azure and Virtualization

Comparing Windows Azure Virtual Machine Performance, Part 1

Comparing Windows Azure Virtual Machine Performance, Part 2

Running SQL Server 2014 on an Azure Virtual Machine

Risk When Using Dynamic Memory within Hyper-V

Index

Database Design and Structure
Should new index columns be in the key, or included?
By Erin Stellato

SQL Server 2005 added the ability to include nonkey columns in a nonclustered index. In SQL Server

2000 and earlier, for a nonclustered index, all columns defined for an index were key columns, which

meant they were part of every level of the index, from the root down to the leaf level. When a column is

defined as an included column, it is part of the leaf level only. Books Online notes the following benefits

of included columns:

 They can be data types not allowed as index key columns.

 They are not considered by the Database Engine when calculating the number of index key

columns or index key size.

For example, a varchar(max) column cannot be part of an index key, but it can be an included column.

Further, that varchar(max) column doesn't count against the 900-byte (or 16-column) limit imposed for

the index key.

The documentation also notes the following performance benefit:

An index with nonkey columns can significantly improve query performance when all columns in the query

are included in the index either as key or nonkey columns. Performance gains are achieved because the

query optimizer can locate all the column values within the index; table or clustered index data is not

accessed resulting in fewer disk I/O operations.

We can infer that whether the index columns are key columns or nonkey columns, we get an

improvement in performance compared to when all columns are not part of the index. But, is there a

performance difference between the two variations?

The Setup

I installed a copy of the AdventuresWork2012 database and verified the indexes for the

Sales.SalesOrderHeader table using Kimberly Tripp's version of sp_helpindex:

USE [AdventureWorks2012];

GO

EXEC sp_SQLskills_SQL2012_helpindex N'Sales.SalesOrderHeader';

Default indexes for Sales.SalesOrderHeader

http://sqlperformance.com/2014/07/sql-indexes/new-index-columns-key-vs-include?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/07/sql-indexes/new-index-columns-key-vs-include?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://msdn.microsoft.com/en-us/library/ms190806.aspx
http://msftdbprodsamples.codeplex.com/releases/view/55330
http://www.sqlskills.com/blogs/kimberly/use-this-new-sql-server-2012-rewrite-for-sp_helpindex/
http://cdn.sqlperformance.com/wp-content/uploads/2014/07/es_key_0.png

We'll start with a straight-forward query for testing that retrieves data from multiple columns:

SELECT [CustomerID], [SalesPersonID], [SalesOrderID],

 DATEDIFF(DAY, [OrderDate], [ShipDate]) AS [DaysToShip], [SubTotal]

FROM [Sales].[SalesOrderHeader]

WHERE [CustomerID] BETWEEN 11000 and 11200;

If we execute this against the AdventureWorks2012 database using SQL Sentry Plan Explorer and check

the plan and the Table I/O output, we see that we get a clustered index scan with 689 logical reads:

Execution plan from original query

(In Management Studio, you could see the I/O metrics using SET STATISTICS IO ON;.)

The SELECT has a warning icon, because the optimizer recommends an index for this query:

http://www.sqlsentry.com/products/plan-explorer/sql-server-query-view?ad=sqlperf-sk-pe&utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2014/07/es_key_1.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/07/es_key_0a.png

USE [AdventureWorks2012];

GO

CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]

ON [Sales].[SalesOrderHeader] ([CustomerID])

INCLUDE ([OrderDate],[ShipDate],[SalesPersonID],[SubTotal]);

Test 1

We will first create the index the optimizer recommends (named NCI1_included), as well as the variation

with all the columns as key columns (named NCI1):

CREATE NONCLUSTERED INDEX [NCI1]

ON [Sales].[SalesOrderHeader]([CustomerID], [SubTotal], [OrderDate], [ShipDate],

[SalesPersonID]);

GO

CREATE NONCLUSTERED INDEX [NCI1_included]

ON [Sales].[SalesOrderHeader]([CustomerID])

INCLUDE ([SubTotal], [OrderDate], [ShipDate], [SalesPersonID]);

GO

If we re-run the original query, once hinting it with NCI1, and once hinting it with NCI1_included, we see

a plan similar to the original, but this time there's an index seek of each nonclustered index, with

equivalent values for Table I/O, and similar costs (both about 0.006):

Original query with index seeks – key on the left, include on the right

(The scan count is still 1 because the index seek is actually a range scan in disguise.)

Now, the AdventureWorks2012 database isn't representative of a production database in terms of size,

and if we look at the number of pages in each index, we see they’re exactly the same:

SELECT

 [Table] = N'SalesOrderHeader',

 [Index_ID] = [ps].[index_id],

 [Index] = [i].[name],

 [ps].[used_page_count],

http://cdn.sqlperformance.com/wp-content/uploads/2014/07/es_key_2.png

 [ps].[row_count]

FROM [sys].[dm_db_partition_stats] AS [ps]

INNER JOIN [sys].[indexes] AS [i]

 ON [ps].[index_id] = [i].[index_id]

 AND [ps].[object_id] = [i].[object_id]

WHERE [ps].[object_id] = OBJECT_ID(N'Sales.SalesOrderHeader');

Size of indexes on Sales.SalesOrderHeader

If we're looking at performance, it's ideal (and more fun) to test with a larger data set.

Test 2

I have a copy of the AdventureWorks2012 database that has a SalesOrderHeader table with over 200

million rows (script HERE), so let’s create the same nonclustered indexes in that database and re-run the

queries:

USE [AdventureWorks2012_Big];

GO

CREATE NONCLUSTERED INDEX [Big_NCI1]

ON [Sales].[Big_SalesOrderHeader](CustomerID, SubTotal, OrderDate, ShipDate, SalesPersonID);

GO

CREATE NONCLUSTERED INDEX [Big_NCI1_included]

ON [Sales].[Big_SalesOrderHeader](CustomerID)

INCLUDE (SubTotal, OrderDate, ShipDate, SalesPersonID);

GO

SELECT [CustomerID], [SalesPersonID],[SalesOrderID],

 DATEDIFF(DAY, [OrderDate], [ShipDate]) AS [DaysToShip], [SubTotal]

FROM [Sales].[Big_SalesOrderHeader] WITH (INDEX (Big_NCI1))

WHERE [CustomerID] between 11000 and 11200;

SELECT [CustomerID], [SalesPersonID],[SalesOrderID],

 DATEDIFF(DAY, [OrderDate], [ShipDate]) AS [DaysToShip], [SubTotal]

FROM [Sales].[Big_SalesOrderHeader] WITH (INDEX (Big_NCI1_included))

WHERE [CustomerID] between 11000 and 11200;

http://cdn.sqlperformance.com/wp-content/uploads/2013/09/Create_Tables_PartitioningAW2012.zip
http://cdn.sqlperformance.com/wp-content/uploads/2014/07/4_index_size.png

Original query with index seeks against Big_NCI1 (l) and Big_NCI1_Included (r)

Now we get some data. The query returns over 6 million rows, and seeking each index requires just over

32,000 reads, and the estimated cost is the same for both queries (31.233). No performance differences

yet, and if we check the size of the indexes, we see that the index with the included columns has 5,578

fewer pages:

SELECT

 [Table] = N'Big_SalesOrderHeader',

 [Index_ID] = [ps].[index_id],

 [Index] = [i].[name],

 [ps].[used_page_count],

 [ps].[row_count]

FROM [sys].[dm_db_partition_stats] AS [ps]

INNER JOIN [sys].[indexes] AS [i]

 ON [ps].[index_id] = [i].[index_id]

 AND [ps].[object_id] = [i].[object_id]

WHERE [ps].[object_id] = OBJECT_ID(N'Sales.Big_SalesOrderHeader');

Size of indexes on Sales.Big_SalesOrderHeader

If we dig into this a big further and check dm_dm_index_physical_stats, we can see that difference

exists in the intermediate levels of the index:

SELECT

 [ps].[index_id],

 [Index] = [i].[name],

 [ps].[index_type_desc],

 [ps].[index_depth],

 [ps].[index_level],

 [ps].[page_count],

 [ps].[record_count]

FROM [sys].[dm_db_index_physical_stats](DB_ID(),

 OBJECT_ID('Sales.Big_SalesOrderHeader'), 5, NULL, 'DETAILED') AS [ps]

http://cdn.sqlperformance.com/wp-content/uploads/2014/07/es_key_3.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/07/7_index_size_large.png

INNER JOIN [sys].[indexes] AS [i]

 ON [ps].[index_id] = [i].[index_id]

 AND [ps].[object_id] = [i].[object_id];

SELECT

 [ps].[index_id],

 [Index] = [i].[name],

 [ps].[index_type_desc],

 [ps].[index_depth],

 [ps].[index_level],

 [ps].[page_count],

 [ps].[record_count]

FROM [sys].[dm_db_index_physical_stats](DB_ID(),

 OBJECT_ID('Sales.Big_SalesOrderHeader'), 6, NULL, 'DETAILED') AS [ps]

INNER JOIN [sys].[indexes] [i]

 ON [ps].[index_id] = [i].[index_id]

 AND [ps].[object_id] = [i].[object_id];

Size of indexes (level-specific) on Sales.Big_SalesOrderHeader

The difference between the intermediate levels of the two indexes is 43 MB, which may not be

significant, but I'd probably still be inclined to create the index with included columns to save space –

both on disk and in memory. From a query perspective, we still don't see a big change in performance

between the index with all the columns in the key and the index with the included columns.

Test 3

For this test, let's change the query and add a filter for [SubTotal] >= 100 to the WHERE clause:

SELECT [CustomerID],[SalesPersonID],[SalesOrderID],

 DATEDIFF(DAY, [OrderDate], [ShipDate]) AS [DaysToShip], [SubTotal]

FROM [Sales].[Big_SalesOrderHeader] WITH (INDEX (Big_NCI1))

WHERE CustomerID = 11091

AND [SubTotal] >= 100;

SELECT [CustomerID], [SalesPersonID],[SalesOrderID],

http://cdn.sqlperformance.com/wp-content/uploads/2014/07/8_index_stats_large.png

 DATEDIFF(DAY, [OrderDate], [ShipDate]) AS [DaysToShip], [SubTotal]

FROM [Sales].[Big_SalesOrderHeader] WITH (INDEX (Big_NCI1_included))

WHERE CustomerID = 11091

AND [SubTotal] >= 100;

Execution plan of query with SubTotal predicate against both indexes

Now we see a difference in I/O (95 reads versus 1,560), cost (0.848 vs 1.55), and a subtle but

noteworthy difference in the query plan. When using the index with all the columns in the key, the seek

predicate is the CustomerID and the SubTotal:

Seek predicate against NCI1

http://cdn.sqlperformance.com/wp-content/uploads/2014/07/es_key_4.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/07/11_seekpredicate.png

Because SubTotal is the second column in the index key, the data is ordered and the SubTotal exists in

the intermediate levels of the index. The engine is able to seek directly to the first record with a

CustomerID of 11091 and SubTotal greater than or equal to 100, and then read through the index until

no more records for CustomerID 11091 exist.

For the index with the included columns, the SubTotal only exists in the leaf level of the index, so

CustomerID is the seek predicate, and SubTotal is a residual predicate (just listed as Predicate in the

screen shot):

Seek predicate and residual predicate against NCI1_included

The engine can seek directly to the first record where CustomerID is 11091, but then it has to look at

every record for CustomerID 11091 to see if the SubTotal is 100 or higher, because the data is ordered

by CustomerID and SalesOrderID (clustering key).

Test 4

We'll try one more variation of our query, and this time we'll add an ORDER BY:

SELECT [CustomerID],[SalesPersonID],[SalesOrderID],

 DATEDIFF(DAY, [OrderDate], [ShipDate]) AS [DaysToShip], [SubTotal]

FROM [Sales].[Big_SalesOrderHeader] WITH (INDEX (Big_NCI1))

http://cdn.sqlperformance.com/wp-content/uploads/2014/07/12_seek_residual_predicate.png

WHERE CustomerID = 11091

ORDER BY [SubTotal];

SELECT [CustomerID],[SalesPersonID],[SalesOrderID],

 DATEDIFF(DAY, [OrderDate], [ShipDate]) AS [DaysToShip], [SubTotal]

FROM [Sales].[Big_SalesOrderHeader] WITH (INDEX (Big_NCI1_included))

WHERE CustomerID = 11091

ORDER BY [SubTotal];

Execution plan of query with SORT against both indexes

Again we have a change in I/O (though very slight), a change in cost (1.5 vs 9.3), and much larger change

in the plan shape; we also see a larger number of scans (1 vs 9). The query requires the data to be sorted

by SubTotal; when SubTotal is part of the index key it is sorted, so when the records for CustomerID

11091 are retrieved, they are already in the requested order.

When SubTotal exists as an included column, the records for CustomerID 11091 must be sorted before

they can be returned to the user, therefore the optimizer interjects a Sort operator in the query. As a

result, the query that uses the index Big_NCI1_included also requests (and is given) a memory grant of

29,312 KB, which is notable (and found in the properties of the plan).

Summary

The original question we wanted to answer was whether we would see a performance difference when

a query used the index with all columns in the key, versus the index with most of the columns included

in the leaf level. In our first set of tests there was no difference, but in our third and fourth tests there

was. It ultimately depends on the query. We only looked at two variations – one had an additional

predicate, the other had an ORDER BY – many more exist.

What developers and DBAs need to understand is that there are some great benefits to including

columns in an index, but they will not always perform the same as indexes that have all columns in the

key. It may be tempting to move columns that are not part of predicates and joins out of the key, and

just include them, to reduce the overall size of the index. However, in some cases this requires more

resources for query execution and may degrade performance. The degradation may be insignificant; it

may not be…you will not know until you test. Therefore, when designing an index, it’s important to think

about the columns after the leading one – and understand whether they need to be part of the key (e.g.

because keeping the data ordered will provide benefit) or if they can serve their purpose as included

columns.

http://cdn.sqlperformance.com/wp-content/uploads/2014/07/es_key_5.png

As is typical with indexing in SQL Server, you have to test your queries with your indexes to determine

the best strategy. It remains an art and a science – trying to find the minimum number of indexes to

satisfy as many queries as possible.

T-SQL Tuesday #64: One Trigger or Many?
By Aaron Bertrand

It's that Tuesday of the month – you know, the one when the blogger block party known as T-SQL

Tuesday happens. This month it is hosted by Russ Thomas (@SQLJudo), and the topic is, "Calling All

Tuners and Gear Heads." I'm going to treat a performance-related problem here, though I do apologize

that it might not be fully in line with the guidelines Russ set out in his invitation (I'm not going to use

hints, trace flags or plan guides).

At SQLBits last week, I gave a presentation on triggers, and my good friend and fellow MVP Erland

Sommarskog happened to attend. At one point I suggested that before creating a new trigger on a table,

you should check to see if any triggers already exist, and consider combining the logic instead of adding

an additional trigger. My reasons were primarily for code maintainability, but also for performance.

Erland asked if I had ever tested to see if there was any additional overhead in having multiple triggers

fire for the same action, and I had to admit that, no, I hadn't done anything extensive. So I'm going to do

that now.

In AdventureWorks2014, I created a simple set of tables that basically represent sys.all_objects (~2,700

rows) and sys.all_columns (~9,500 rows). I wanted to measure the effect on the workload of various

approaches to updating both tables – essentially you have users updating the columns table, and you

use a trigger to update a different column in the same table, and a few columns in the objects table.

 T1: Baseline: Assume that you can control all data access through a stored procedure; in this

case, the updates against both tables can be performed directly, with no need for triggers. (This

isn't practical in the real world, because you can't reliably prohibit direct access to the tables.)

 T2: Single trigger against other table: Assume that you can control the update statement

against the affected table and add other columns, but the updates to the secondary table need

to be implemented with a trigger. We'll update all three columns with one statement.

 T3: Single trigger against both tables: In this case, we have a trigger with two statements, one

that updates the other column in the affected table, and one that updates all three columns in

the secondary table.

 T4: Single trigger against both tables: Like T3, but this time, we have a trigger with four

statements, one that updates the other column in the affected table, and a statement for each

column updated in the secondary table. This might be the way it's handled if the requirements

are added over time and a separate statement is deemed safer in terms of regression testing.

 T5: Two triggers: One trigger updates just the affected table; the other uses a single statement

to update the three columns in the secondary table. This might be the way it's done if the other

triggers aren't noticed or if modifying them is prohibited.

 T6: Four triggers: One trigger updates just the affected table; the other three update each

column in the secondary table. Again, this might be the way it's done if you don't know the

other triggers exist, or if you're afraid to touch the other triggers due to regression concerns.

http://sqlperformance.com/2015/03/t-sql-queries/one-trigger-or-many?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://twitter.com/SQLJudo
https://sqljudo.wordpress.com/2015/03/02/tsql-tue-64-calling-all-tuners-and-gear-heads/
https://sqljudo.wordpress.com/2015/03/02/tsql-tue-64-calling-all-tuners-and-gear-heads/
http://sqlbits.com/
http://sqlbits.com/Sessions/Event14/Five_Ways_to_Write_More_Effective_Triggers
http://sommarskog.se/
http://sommarskog.se/

Here is the source data we're dealing with:

-- sys.all_objects:

SELECT * INTO dbo.src FROM sys.all_objects;

CREATE UNIQUE CLUSTERED INDEX x ON dbo.src([object_id]);

GO

-- sys.all_columns:

SELECT * INTO dbo.tr1 FROM sys.all_columns;

CREATE UNIQUE CLUSTERED INDEX x ON dbo.tr1([object_id], column_id);

-- repeat 5 times: tr2, tr3, tr4, tr5, tr6

Now, for each of the 6 tests, we're going to run our updates 1,000 times, and measure the length of

time

T1: Baseline

This is the scenario where we're lucky enough to avoid triggers (again, not very realistic). In this case,

we'll be measuring the reads and duration of this batch. I put /*real*/ into the query text so that I can

easily pull the stats for just these statements, and not any statements from within the triggers, since

ultimately the metrics roll up to the statements that invoke the triggers. Also note that the actual

updates I'm making do not really make any sense, so ignore that I'm setting the collation to the

server/instance name and the object's principal_id to the current session's session_id.

UPDATE /*real*/ dbo.tr1 SET name += N'',

 collation_name = @@SERVERNAME

 WHERE name LIKE '%s%';

UPDATE /*real*/ s SET modify_date = GETDATE(), is_ms_shipped = 0, principal_id = @@SPID

 FROM dbo.src AS s

 INNER JOIN dbo.tr1 AS t

 ON s.[object_id] = t.[object_id]

 WHERE t.name LIKE '%s%';

GO 1000

T2: Single Trigger

For this we need the following simple trigger, which only updates dbo.src:

CREATE TRIGGER dbo.tr_tr2

ON dbo.tr2

AFTER UPDATE

AS

BEGIN

 SET NOCOUNT ON;

 UPDATE s SET modify_date = GETDATE(), is_ms_shipped = 0, principal_id = SUSER_ID()

 FROM dbo.src AS s

 INNER JOIN inserted AS i

 ON s.[object_id] = i.[object_id];

END

GO

Then our batch only needs to update the two columns in the primary table:

UPDATE /*real*/ dbo.tr2 SET name += N'', collation_name = @@SERVERNAME

 WHERE name LIKE '%s%';

GO 1000

T3: Single trigger against both tables

For this test, our trigger looks like this:

CREATE TRIGGER dbo.tr_tr3

ON dbo.tr3

AFTER UPDATE

AS

BEGIN

 SET NOCOUNT ON;

 UPDATE t SET collation_name = @@SERVERNAME

 FROM dbo.tr3 AS t

 INNER JOIN inserted AS i

 ON t.[object_id] = i.[object_id];

 UPDATE s SET modify_date = GETDATE(), is_ms_shipped = 0, principal_id = @@SPID

 FROM dbo.src AS s

 INNER JOIN inserted AS i

 ON s.[object_id] = i.[object_id];

END

GO

And now the batch we're testing merely has to update the original column in the primary table; the

other one is handled by the trigger:

UPDATE /*real*/ dbo.tr3 SET name += N''

 WHERE name LIKE '%s%';

GO 1000

T4: Single trigger against both tables

This is just like T3, but now the trigger has four statements:

CREATE TRIGGER dbo.tr_tr4

ON dbo.tr4

AFTER UPDATE

AS

BEGIN

 SET NOCOUNT ON;

 UPDATE t SET collation_name = @@SERVERNAME

 FROM dbo.tr4 AS t

 INNER JOIN inserted AS i

 ON t.[object_id] = i.[object_id];

 UPDATE s SET modify_date = GETDATE()

 FROM dbo.src AS s

 INNER JOIN inserted AS i

 ON s.[object_id] = i.[object_id];

 UPDATE s SET is_ms_shipped = 0

 FROM dbo.src AS s

 INNER JOIN inserted AS i

 ON s.[object_id] = i.[object_id];

 UPDATE s SET principal_id = @@SPID

 FROM dbo.src AS s

 INNER JOIN inserted AS i

 ON s.[object_id] = i.[object_id];

END

GO

The test batch is unchanged:

UPDATE /*real*/ dbo.tr4 SET name += N''

 WHERE name LIKE '%s%';

GO 1000

T5: Two triggers

Here we have one trigger to update the primary table, and one trigger to update the secondary table:

CREATE TRIGGER dbo.tr_tr5_1

ON dbo.tr5

AFTER UPDATE

AS

BEGIN

 SET NOCOUNT ON;

 UPDATE t SET collation_name = @@SERVERNAME

 FROM dbo.tr5 AS t

 INNER JOIN inserted AS i

 ON t.[object_id] = i.[object_id];

END

GO

CREATE TRIGGER dbo.tr_tr5_2

ON dbo.tr5

AFTER UPDATE

AS

BEGIN

 SET NOCOUNT ON;

 UPDATE s SET modify_date = GETDATE(), is_ms_shipped = 0, principal_id = @@SPID

 FROM dbo.src AS s

 INNER JOIN inserted AS i

 ON s.[object_id] = i.[object_id];

END

GO

The test batch is again very basic:

UPDATE /*real*/ dbo.tr5 SET name += N''

 WHERE name LIKE '%s%';

GO 1000

T6: Four triggers

This time we have a trigger for each column that is affected; one in the primary table, and three in the

secondary tables.

CREATE TRIGGER dbo.tr_tr6_1

ON dbo.tr6

AFTER UPDATE

AS

BEGIN

 SET NOCOUNT ON;

 UPDATE t SET collation_name = @@SERVERNAME

 FROM dbo.tr6 AS t

 INNER JOIN inserted AS i

 ON t.[object_id] = i.[object_id];

END

GO

CREATE TRIGGER dbo.tr_tr6_2

ON dbo.tr6

AFTER UPDATE

AS

BEGIN

 SET NOCOUNT ON;

 UPDATE s SET modify_date = GETDATE()

 FROM dbo.src AS s

 INNER JOIN inserted AS i

 ON s.[object_id] = i.[object_id];

END

GO

CREATE TRIGGER dbo.tr_tr6_3

ON dbo.tr6

AFTER UPDATE

AS

BEGIN

 SET NOCOUNT ON;

 UPDATE s SET is_ms_shipped = 0

 FROM dbo.src AS s

 INNER JOIN inserted AS i

 ON s.[object_id] = i.[object_id];

END

GO

CREATE TRIGGER dbo.tr_tr6_4

ON dbo.tr6

AFTER UPDATE

AS

BEGIN

 SET NOCOUNT ON;

 UPDATE s SET principal_id = @@SPID

 FROM dbo.src AS s

 INNER JOIN inserted AS i

 ON s.[object_id] = i.[object_id];

END

GO

And the test batch:

UPDATE /*real*/ dbo.tr6 SET name += N''

 WHERE name LIKE '%s%';

GO 1000

Measuring workload impact

Finally, I wrote a simple query against sys.dm_exec_query_stats to measure reads and duration for each

test:

SELECT

 [cmd] = SUBSTRING(t.text, CHARINDEX(N'U', t.text), 23),

 avg_elapsed_time = total_elapsed_time / execution_count * 1.0,

 total_logical_reads

FROM sys.dm_exec_query_stats AS s

CROSS APPLY sys.dm_exec_sql_text(s.sql_handle) AS t

http://msdn.microsoft.com/en-us/library/ms189741.aspx

WHERE t.text LIKE N'%UPDATE /*real*/%'

ORDER BY cmd;

Results

I ran the tests 10 times, collected the results, and averaged everything. Here is how it broke down:

Test/Batch Average Duration

(microseconds)

Total Reads

(8K pages)

T1: UPDATE /*real*/ dbo.tr1 … 22,608 205,134

T2: UPDATE /*real*/ dbo.tr2 … 32,749 11,331,628

T3: UPDATE /*real*/ dbo.tr3 … 72,899 22,838,308

T4: UPDATE /*real*/ dbo.tr4 … 78,372 44,463,275

T5: UPDATE /*real*/ dbo.tr5 … 88,563 41,514,778

T6: UPDATE /*real*/ dbo.tr6 … 127,079 100,330,753

And here is a graphical representation of the duration:

Conclusion

It is clear that, in this case, there is some substantial overhead for each trigger that gets invoked – all of

these batches ultimately affected the same number of rows, but in some cases the same rows were

touched multiple times. I will probably perform further follow-on testing to measure the difference

when the same row is never touched more than once – a more complicated schema, perhaps, where 5

or 10 other tables have to be touched every time, and these different statements could be in a single

http://cdn.sqlperformance.com/wp-content/uploads/2015/03/tr_1.png

trigger or in multiple. My guess is that the overhead differences will be driven more by things like

concurrency and the number of rows affected than by the overhead of the trigger itself – but we shall

see.

Want to try the demo yourself? Download the script here.

http://cdn.sqlperformance.com/wp-content/uploads/2015/03/AB_SQLPerformance_TSQLTuesday64.sql_.zip

T-SQL Tuesday #65: Teach Something New
By Aaron Bertrand

This month's T-SQL Tuesday is being hosted by Mike Donnelly (@SQLMD), and he sums up the topic as

follows:

The topic this month is straight forward, but very open ended. You must learn something new and then

write a blog post explaining it.

Well, from the moment Mike announced the topic, I didn't really set out to learn anything new, and as

the weekend approached and I knew Monday was going to assault me with jury duty, I thought I was

going to have to sit this month out.

Then, Martin Smith taught me something I either never knew, or knew long ago but have forgotten

(sometimes you don't know what you don't know, and sometimes you can't remember what you never

knew and what you can't remember). My recollection was that changing a column from NOT NULL to

NULL should be a metadata-only operation, with writes to any page being deferred until that page is

updated for other reasons, since the NULL bitmap wouldn't really need to exist until at least one row

could become NULL.

On that same post, @ypercube also reminded me of this pertinent quote from Books Online (typo and

all):

Altering a column from NOT NULL to NULL is not supported as an online operation when the altered

column is references by nonclustered indexes.

"Not an online operation" can be interpreted as "not a metadata-only operation" – meaning it will

actually be a size-of-data operation (the larger your index, the longer it will take).

I set out to prove this with a pretty simple (but lengthy) experiment against a specific target column to

convert from NOT NULL to NULL. I would create 3 tables, all with a clustered primary key, but each one

with a different non-clustered index. One would have the target column as a key column, the second as

an INCLUDE column, and the third wouldn't reference the target column at all.

Here are my tables and how I populated them:

CREATE TABLE dbo.test1

(

 a INT NOT NULL, b INT NOT NULL, c BIGINT NOT NULL,

 CONSTRAINT pk_t1 PRIMARY KEY (a,b)

);

GO

CREATE NONCLUSTERED INDEX ix1 ON dbo.test1(b,c);

GO

CREATE TABLE dbo.test2

(

 a INT NOT NULL, b INT NOT NULL, c BIGINT NOT NULL,

 CONSTRAINT pk_t2 PRIMARY KEY (a,b)

http://sqlperformance.com/2015/04/sql-indexes/teach-something-new?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
https://sqlmd.wordpress.com/2015/04/07/t-sql-tuesday-065-teach-something-new/
http://twitter.com/SQLMD
http://dba.stackexchange.com/a/97751/1186

);

GO

CREATE NONCLUSTERED INDEX ix2 ON dbo.test2(b) INCLUDE(c);

GO

CREATE TABLE dbo.test3

(

 a INT NOT NULL, b INT NOT NULL, c BIGINT NOT NULL,

 CONSTRAINT pk_t3 PRIMARY KEY (a,b)

);

GO

CREATE NONCLUSTERED INDEX ix3 ON dbo.test3(b);

GO

INSERT dbo.test1(a,b,c) -- repeat for test2 / test3

 SELECT n1, n2, ABS(n2)-ABS(n1)

 FROM

 (

 SELECT TOP (100000) s1.[object_id], s2.[object_id]

 FROM master.sys.all_objects AS s1

 CROSS JOIN master.sys.all_objects AS s2

 GROUP BY s1.[object_id], s2.[object_id]

) AS n(n1, n2);

Each table had 100,000 rows, the clustered indexes had 310 pages, and the non-clustered indexes had

either 272 pages (test1 and test2) or 174 pages (test3). (These values are easy to obtain from

sys.dm_db_index_physical_stats.)

Next, I needed a simple way to capture operations that were logged at the page level – I chose

sys.fn_dblog(), though I could have dug deeper and looked at pages directly. I didn't bother messing

with LSN values to pass to the function, since I wasn't running this in production and didn't care much

about performance, so after the tests I just dumped the results of the function, excluding any data that

was logged prior to the ALTER TABLE operations.

-- establish an exclusion set

SELECT * INTO #x FROM sys.fn_dblog(NULL, NULL);

Now I could run my tests, which were a lot simpler than the setup.

ALTER TABLE dbo.test1 ALTER COLUMN c BIGINT NULL;

ALTER TABLE dbo.test2 ALTER COLUMN c BIGINT NULL;

ALTER TABLE dbo.test3 ALTER COLUMN c BIGINT NULL;

Now I could examine the operations that were logged in each case:

SELECT AllocUnitName, [Operation], Context, c = COUNT(*)

 FROM

 (

 SELECT * FROM sys.fn_dblog(NULL, NULL)

 WHERE [Operation] = N'LOP_FORMAT_PAGE'

 AND AllocUnitName LIKE N'dbo.test%'

 EXCEPT

 SELECT * FROM #x

) AS x

 GROUP BY AllocUnitName, [Operation], Context

 ORDER BY AllocUnitName, [Operation], Context;

The results seem to suggest that every leaf page of the non-clustered index is touched for the cases

where the target column was mentioned in the index in any way, but no such operations occur for the

case where the target column is not mentioned in any non-clustered index:

In fact, in the first two cases, new pages are allocated (you can validate that with DBCC IND, as Spörri did

in his answer), so the operation can occur online, but that doesn't mean it's fast (since it still has to write

out a copy of all that data, and make the NULL bitmap change as part of writing out each new page, and

log all of that activity).

I think most people would suspect that changing a column from NOT NULL to NULL would be metadata-

only in all scenarios, but I have shown here that this is not true if the column is referenced by a non-

clustered index (and similar things happen whether it is a key or INCLUDE column). Perhaps this

operation can also be forced to be ONLINE in Azure SQL Database today, or it will be possible in the next

major version? This won't necessarily make the actual physical operations happen any faster, but it will

prevent blocking as a result.

I didn't test that scenario (and analysis of whether it is really online is tougher in Azure anyway), nor did

I test it on a heap. Something I can revisit in a future post. In the meantime, be careful about any

assumptions you might make about metadata-only operations.

http://dba.stackexchange.com/a/97750/1186
http://dba.stackexchange.com/a/97750/1186
http://sqlperformance.com/2015/02/sql-performance/more-online-operations?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2015/02/sql-performance/more-online-operations?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2015/02/sql-performance/more-online-operations?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2015/04/tst65a.png

Considerations Around Column Order in Indexes and Sorts
By Erin Stellato

When users request data from a system, they usually like to see it in a specific order… even when

they're returning thousands of rows. As many DBAs and developers know, ORDER BY can introduce

havoc into a query plan, because it requires the data to be sorted. This can sometimes require a SORT

operator as part of query execution, which can be a costly operation, particularly if estimates are off and

it spills to disk. In an ideal world, the data is already sorted thanks to an index (indexes and sorts are

very complementary). We often talk about creating a covering index to satisfy a query – so that the

optimizer doesn't have to go back to the base table or clustered index to get additional columns. And

you might have heard people say that the order of the columns in the index matters. Have you ever

considered how it affects your SORT operations?

Examining ORDER BY and Sorts

We'll start with a fresh copy of the AdventureWorks2014 database on a SQL Server 2014 instance

(version 12.0.2000). If we run a simple SELECT query against Sales.SalesOrderHeader with no ORDER BY,

we see a plain old Clustered Index Scan (using SQL Sentry Plan Explorer):

SELECT [CustomerID], [SalesOrderID], [OrderDate], [SubTotal]

FROM [Sales].[SalesOrderHeader];

Query with no ORDER BY, clustered index scan

Now let's add an ORDER BY to see how the plan changes:

SELECT [CustomerID], [SalesOrderID], [OrderDate], [SubTotal]

FROM [Sales].[SalesOrderHeader]

ORDER BY [CustomerID];

Query with an ORDER BY, clustered index scan and a sort

In addition to the Clustered Index Scan, we now have a Sort introduced by the optimizer, and its

estimated cost is significantly higher than that of the scan. Now, estimated cost is just estimated, and

http://sqlperformance.com/2014/08/sql-indexes/considerations-indexes-and-sorts?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/08/sql-indexes/considerations-indexes-and-sorts?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://www.sqlsentry.com/products/plan-explorer/sql-server-query-view?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/1_scan_no_orderby.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/2_scan_with_sort.png

we cannot say with absolutely certainty here that the Sort took 79.6% of the cost of the query. To really

understand how expensive the Sort is, we would need to look at IO STATISTICS as well, which is beyond

today's goal.

Now if this was a query that was executed frequently in your environment, you would probably consider

adding an index to support it. In this case, there is no WHERE clause, we're just retrieving four columns,

and ordering by one of them. A logical first attempt at an index would be:

CREATE NONCLUSTERED INDEX [IX_SalesOrderHeader_CustomerID_OrderDate_SubTotal]

ON [Sales].[SalesOrderHeader](

[CustomerID] ASC)

INCLUDE (

[OrderDate], [SubTotal]);

We'll re-run our query after adding the index which has all the columns we want, and remember that

the index has done the work to sort the data. We now see an Index Scan against our new nonclustered

index:

Query with an ORDER BY, the new, nonclustered index is scanned

This is good news. But what happens if someone alters that query – either because users can specify

what columns they want to order by, or because a change was requested of a developer? For example,

maybe users want to see the CustomerIDs and SalesOrderIDs in descending order:

SELECT [CustomerID], [SalesOrderID], [OrderDate], [SubTotal]

FROM [Sales].[SalesOrderHeader]

ORDER BY [CustomerID] DESC, [SalesOrderID] DESC;

Query with two columns in the ORDER BY, the new, nonclustered index is scanned

We have the same plan; no Sort operator was added. If we look at the index using Kimberly Tripp's

sp_helpindex (some columns collapsed to save space), we can see why the plan didn't change:

http://www.sqlskills.com/blogs/kimberly/use-this-new-sql-server-2012-rewrite-for-sp_helpindex/
http://www.sqlskills.com/blogs/kimberly/use-this-new-sql-server-2012-rewrite-for-sp_helpindex/
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/3_scan_new_NCI.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/4_scan_two_col_sort.png

Output of sp_helpindex

The key column for the index is CustomerID, but since SalesOrderID is the key column for the clustered

index, it is part of the index key as well, thus the data is sorted by CustomerID, then SalesOrderID. The

query requested the data sorted by those two columns, in descending order. The index was created with

both columns ascending, but because it's a doubly-linked list, the index can be read backward. You can

see this in the Properties pane in Management Studio for the nonclustered index scan operator:

Properties pane of the nonclustered index scan, showing it was backwards

Great, no issues with that query…but what about this one:

SELECT [CustomerID], [SalesOrderID], [OrderDate], [SubTotal]

FROM [Sales].[SalesOrderHeader]

ORDER BY [CustomerID] DESC, [SalesOrderID] ASC;

Query with two column in the ORDER BY, and a sort is added

Our SORT operator reappears, because the data coming from the index is not sorted in the order

requested. We'll see the same behavior if we sort on one of the included columns:

SELECT [CustomerID], [SalesOrderID], [OrderDate], [SubTotal]

FROM [Sales].[SalesOrderHeader]

ORDER BY [CustomerID] ASC, [OrderDate] ASC;

http://cdn.sqlperformance.com/wp-content/uploads/2014/08/5_sphelpoutput.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/6_properties.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/7_scan_sort.png

Query with two column in the ORDER BY, and a sort is added

What happens if we (finally) add a predicate, and change our ORDER BY slightly?

SELECT [CustomerID], [SalesOrderID], [OrderDate], [SubTotal]

FROM [Sales].[SalesOrderHeader]

WHERE [CustomerID] = 13464

ORDER BY [SalesOrderID];

Query with a single predicate and an ORDER BY

This query is ok because again, the SalesOrderID is part of the index key. For this one CustomerID, the

data is already ordered by SalesOrderID. What if we query for a range of CustomerIDs, sorted by

SalesOrderIDs?

SELECT [CustomerID], [SalesOrderID], [OrderDate], [SubTotal]

FROM [Sales].[SalesOrderHeader]

WHERE [CustomerID] BETWEEN 13464 AND 13466

ORDER BY [SalesOrderID];

Query with a range of values in the predicate and an ORDER BY

Rats, our SORT is back. The fact that the data is ordered by CustomerID only helps in seeking the index

to find that range of values; for the ORDER BY SalesOrderID, the optimizer has to interject the Sort to

put the data in the requested order.

http://cdn.sqlperformance.com/wp-content/uploads/2014/08/8_scan_sort_2.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/9_with_predicate.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/10_with_pred_sort.png

Now at this point, you might be wondering why I'm fixated on the Sort operator appearing in query

plans. It's because it's expensive. It can be expensive in terms of resources (memory, IO) and/or

duration.

Query duration can be affected by a Sort because it is a stop-and-go operation. The entire set of data

has to be sorted before the next operation in the plan can occur. If only a few rows of data have to be

ordered, that's not such a big deal. If it's thousands or millions of rows? Now we're waiting.

In addition to overall query duration, we also have to think about resource use. Let's take the 31,465

rows we've been working with and push them into a table variable, then run that initial query with the

ORDER BY on CustomerID:

DECLARE @t TABLE (CustomerID INT, SalesOrderID INT, OrderDate DATETIME, SubTotal MONEY);

INSERT @t SELECT [CustomerID], [SalesOrderID], [OrderDate], [SubTotal]

FROM [Sales].[SalesOrderHeader];

SELECT [CustomerID], [SalesOrderID], [OrderDate], [SubTotal]

FROM @t

ORDER BY [CustomerID];

Query against the table variable, with the sort

Our SORT is back, and this time it has a warning (note the yellow triangle with the exclamation mark).

Warnings are not good. If we look at the Properties of the sort, we can see warning, "Operator used

tempdb to spill data during execution with spill level 1":

http://cdn.sqlperformance.com/wp-content/uploads/2014/08/11_table-variable-sort.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/12_sort-warning.png

Sort warning

This isn't something I want to see in a plan. The optimizer made an estimate of how much space it would

need in memory to sort the data, and it requested that memory. But when it actually had all the data

and went to sort it, the engine realized there wasn't enough memory (the optimizer asked for too

little!), so the Sort operation spilled. In some cases, this can spill to disk, which means reads and writes –

which are slow. Not only are we waiting just to get the data in order, it's even slower because we can't

do it all in memory. Why didn't the optimizer ask for enough memory? It had a bad estimate about the

data it needed to sort:

Estimate of 1 row versus actual of 31,465 rows

In this case I forced a bad estimate by using a table variable. There are known issues with statistics

estimates and table variables (Aaron Bertrand has a great post on options for trying to address this), and

here, the optimizer believed only 1 row was going to be returned from the table scan, not 31,465.

Options

So what can you, as a DBA or developer, do to avoid SORTs in your query plans? The quick answer is,

"Don't order your data." But that's not always realistic. In some cases, you can offload that sorting to the

client, or to an application layer – but users still have to wait to sort the data at that layer. In the

situations where you cannot alter how the application works, you can start by looking at your indexes.

If you support an application that allows users to run ad-hoc queries, or change the sort order so they

can see the data ordered how they want…you're going to have the hardest time (but it isn't a lost cause

so don't stop reading yet!). You cannot index for every option. It's inefficient and you will create more

problems than you solve. Your best bet here is to talk to the users (I know, sometimes it's scary to leave

http://sqlperformance.com/author/abertrand?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/06/t-sql-queries/table-variable-perf-fix?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/13_estimate_actual.png

your corner of the woods, but give it a try). For the queries the users run most often, find out how they

typically like to see the data. Yes, you can get this from the plan cache too – you can retrieve queries

and plans until your heart's content to see what they're doing. But it's faster to talk to the users. The

added benefit is that you can explain why you're asking, and why that idea to "sort on all the columns

because I can" isn't such a good one. Knowing is half the battle. If you can spend some time educating

your power users, and the users that train new folks, you might be able to do some good.

If you support an application with limited ORDER BY options, then you can do some real analysis. Review

what ORDER BY variations exist, determine which combinations are executed most often, and index to

support those queries. You probably won't hit every one, but you can still make an impact. You can take

it one step further by talking to your developers and educating them on the problem, and how to

address it.

Finally, when you're looking at query plans with SORT operations, don't just focus on removing the Sort.

Look at where the Sort occurs in the plan. If it happens way on the left of the plan, and is typically a few

rows, there may be other areas with a bigger improvement factor on which to focus. The Sort on the left

is the pattern we focused on today, but a Sort doesn't always occur because of an ORDER BY. If you see

a Sort on the far right of the plan, and there are a lot of rows moving through that part of the plan, you

know you've found a good place to start tuning.

Allocation Order Scans
By Paul White

When an execution plan includes a scan of a b-tree index structure, the storage engine may be able to

choose between two physical access strategies when the plan is executed:

1. Follow the index b-tree structure; or,

2. locate pages using internal page allocation information.

Where a choice is available, the storage engine makes the runtime decision on each execution. A plan

recompilation is not required for it to change its mind.

The b-tree strategy starts at the root of the tree, descends to an extreme edge of the leaf level

(depending on whether the scan is forward or backward), then follows leaf-level page links until the

other end of the index is reached. The allocation strategy uses Index Allocation Map (IAM) structures to

locate database pages allocated to the index. Each IAM page maps allocations to a 4GB interval in a

single physical database file, so scanning the IAM chains associated with an index tends to access index

pages in physical file order (at least as far as SQL Server can tell).

The main differences between the two strategies are:

1. A b-tree scan can deliver rows to the query processor in index key order; an IAM-driven scan

cannot;

2. a b-tree scan may not be able to issue large read-ahead I/O requests if logically contiguous index

pages are not also physically contiguous (e.g. as a result of page splitting in the index).

A b-tree scan is always available for an index. The conditions often cited for allocation order scans to be

available are:

1. The query plan must allow an unordered scan of the index;

2. the index must be at least 64 pages in size; and,

3. either a TABLOCK or NOLOCK hint must be specified.

The first condition simply means that the query optimizer must have marked the scan with the

Ordered:False property. Marking the scan Ordered:False means that correct results from the execution

plan do not require the scan to return rows in index key order (though it may do so if it is convenient or

otherwise necessary).

The second condition (size) applies only to SQL Server 2005 and later. It reflects the fact that there is a

certain start-up cost to performing an IAM-driven scan, so there needs to be a minimum number of

pages for the potential savings to repay the initial investment. The “64 pages” refers to the value of

data_pages for the IN_ROW_DATA allocation unit only, as reported in sys.allocation_units.

Of course, there can only be a payoff from an allocation order scan if the possibly-larger read-ahead

considerations actually come into play, but SQL Server does not currently consider this factor. In

particular, it does not account for how much of the index is currently in memory, nor does it care how

fragmented the index is.

http://sqlperformance.com/2015/01/t-sql-queries/allocation-order-scans?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.sqlskills.com/blogs/paul/inside-the-storage-engine-iam-pages-iam-chains-and-allocation-units/
http://msdn.microsoft.com/en-us/library/ms189792.aspx

The third condition is probably the least complete description in the list. Hints are not in fact required,

though they can be used to meet the real requirements: The data must be guaranteed not to change

during the scan, or (more controversially) we must indicate that we do not care about potentially

inaccurate results, by performing the scan at the read uncommitted isolation level.

Even with these clarifications, the list of conditions for an allocation-ordered scan is still not complete.

There are a number of important caveats and exceptions, which we will come to shortly.

Demo

The following query uses the AdventureWorks sample database:

CHECKPOINT;

DBCC DROPCLEANBUFFERS;

GO

SELECT

 P.BusinessEntityID,

 P.PersonType

FROM Person.Person AS P;

Note that the Person table contains 3,869 pages. The post-execution (actual) plan is as follows (shown in

SQL Sentry Plan Explorer):

In terms of the allocation-order scanning requirements we have so far:

 The plan has the required Ordered:False property; and,

 the table has more than 64 pages; but,

http://msftdbprodsamples.codeplex.com/
http://www.sqlsentry.com/products/plan-explorer/sql-server-query-view?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

 we have done nothing to ensure the data cannot change during the scan. Assuming our session

is using the default read committed isolation level, the scan is not being performed at the read

uncommitted isolation level either.

As a consequence, we would expect this scan to be performed by scanning the b-tree rather than being

IAM-driven. The query results indicate that this is likely true:

The rows are returned in Clustered Index key order (by BusinessEntityID). I should state clearly that this

result ordering is absolutely not guaranteed, and should not be relied on. Ordered results are only

guaranteed by an appropriate top-level ORDER BY clause.

Nevertheless, the observed output order is circumstantial evidence that the scan was performed this

time by following the clustered index b-tree structure. If more evidence is needed, we can attach a

debugger and look at the code path SQL Server is executing during the scan:

The call stack clearly shows the scan following the b-tree.

Adding a table lock hint

We now modify the query to include a table-lock hint:

CHECKPOINT;

DBCC DROPCLEANBUFFERS;

SELECT

 P.BusinessEntityID,

 P.PersonType

FROM Person.Person AS P

 WITH (TABLOCK);

At the default locking read committed isolation level, the shared table-level lock prevents any possible

concurrent modifications to the data. With all three preconditions for IAM-driven scans met, we would

now expect SQL Server to use an allocation-order scan. The execution plan is the same as before, so I

won’t repeat it, but the query results certainly look different:

The results are still apparently ordered by BusinessEntityID, but the starting point (10866) is different.

Indeed, if we scroll down the results, we soon encounter sections that are more obviously out of key

order:

The partial ordering is due to the allocation-order scan processing a whole index page at a time. The

results within a page happen to be returned ordered by the index key, but the order of the scanned

pages is now different. Again, I should stress that the results may look different for you: there is no

guarantee of output order, even within a page, without a top-level ORDER BY on the original query.

http://sqlperformance.com/2014/04/t-sql-queries/the-read-committed-isolation-level?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

For comparison with the call stack shown earlier, this is a stack trace obtained while SQL Server was

processing the query with the TABLOCK hint:

Stepping on a little further through the execution:

Clearly, SQL Server is performing an allocation-ordered scan when the table lock is specified. It is a

shame there is no indication in a post-execution plan of which type of scan was used at runtime. As a

reminder, the type of scan is chosen by the storage engine, and can change between executions without

a plan recompilation.

Other ways to meet the third condition

I said before that to get an IAM-driven scan, we need to ensure the data cannot change underneath the

scan while it is in progress, or we need to run the query at the read uncommitted isolation level. We

have seen that a table lock hint at locking read committed isolation is sufficient to meet the first of

those requirements, and it is easy to show that using a NOLOCK/READUNCOMMITTED hint also enables

an allocation-order scan with the demo query.

In fact there are many ways to meet the third condition, including:

 Altering the index to only allow table locks;

 making the database read-only (so data is guaranteed not to change); or,

 changing the session isolation level to READ UNCOMMITTED.

There are, however, much more interesting variations on this theme that mean we need to amend the

three conditions stated previously…

Row-versioning isolation levels

Enable read committed snapshot isolation (RCSI) on the AdventureWorks database, and run the test

with the TABLOCK hint again (at read committed isolation):

ALTER DATABASE AdventureWorks2012

SET READ_COMMITTED_SNAPSHOT ON

 WITH ROLLBACK IMMEDIATE;

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

http://sqlperformance.com/2014/05/t-sql-queries/read-committed-snapshot-isolation?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

GO

CHECKPOINT;

DBCC DROPCLEANBUFFERS;

GO

SELECT

 P.BusinessEntityID,

 P.PersonType

FROM Person.Person AS P

 WITH (TABLOCK);

GO

ALTER DATABASE AdventureWorks2012

SET READ_COMMITTED_SNAPSHOT OFF

 WITH ROLLBACK IMMEDIATE;

With RCSI active, an index-ordered scan is used with TABLOCK, not the allocation-order scan we saw just

before. The reason is the TABLOCK hint specifies a table-level shared lock, but with RCSI enabled, no

shared locks are taken. Without the shared table lock, we have not met the requirement to prevent

concurrent modifications to the data while the scan is in progress, so an allocation-ordered scan cannot

be used.

Achieving an allocation-ordered scan when RCSI is enabled is possible, however. One way is to use a

TABLOCKX hint (for a table-level exclusive lock) instead of TABLOCK. We could also retain the TABLOCK

hint and add another one like READCOMMITTEDLOCK, or REPEATABLE READ or SERIALIZABLE … and so

on. All these work by preventing the possibility of concurrent modifications by taking a shared table

lock, at the cost of losing the benefits of RCSI. We can also still achieve an allocation-order scan using a

NOLOCK or READUNCOMMITTED hint, of course.

The situation under snapshot isolation (SI) is very similar to RCSI, and not explored in detail for space

reasons.

TABLESAMPLE always* performs an allocation-order scan

The TABLESAMPLE clause is an interesting exception to many of the things we have discussed so far.

Specifying a TABLESAMPLE clause always* results in an allocation-order scan, even under RCSI or SI, and

even without hints. To be clear about it, the allocation-order scan that results from using TABLESAMPLE

retains RCSI/SI semantics – the scan uses row versions and reading does not block writing (and vice

versa).

A second surprise is that TABLESAMPLE always* performs an IAM-driven scan even if the table has

fewer than 64 pages. This makes some sense because the documentation at least hints that the SYSTEM

sampling method uses the IAM structure (so there is no choice but to do an allocation-order scan):

SYSTEM Is an implementation-dependent sampling method specified by ISO standards. In SQL Server,

this is the only sampling method available and is applied by default. SYSTEM applies a page-based

sampling method in which a random set of pages from the table is chosen for the sample, and all the

rows on those pages are returned as the sample subset.

http://sqlperformance.com/2014/06/sql-performance/the-snapshot-isolation-level?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://msdn.microsoft.com/en-nz/library/ms177634.aspx

* An exception occurs if the ROWS or PERCENT specification in the TABLESAMPLE clause works out to

mean 100% of the table. Specifying more ROWS than the metadata indicates are currently in the table

will not work either. Using TABLESAMPLE SYSTEM (100 PERCENT) or equivalent will not force an

allocation-order scan.

CHECKPOINT;

DBCC DROPCLEANBUFFERS;

GO

SELECT

 P.BusinessEntityID,

 P.PersonType

FROM Person.Person AS P

 TABLESAMPLE SYSTEM (50 ROWS)

 REPEATABLE (12345678)

 --WITH (TABLOCK);

Results:

The effect of TOP and SET ROWCOUNT

In short, neither of these has any effect on the decision to use an allocation-order scan or not. This may

seem surprising in cases where it is "obvious" that fewer than 64 pages will be scanned.

For example, the following queries both use an IAM-driven scan to return 5 rows from a scan:

SELECT TOP (5)

 P.BusinessEntityID,

 P.PersonType

FROM Person.Person AS P WITH (TABLOCK)

SET ROWCOUNT 5;

SELECT

 P.BusinessEntityID,

 P.PersonType

FROM Person.Person AS P WITH (TABLOCK)

SET ROWCOUNT 0;

The results are the same for both:

This means that TOP and SET ROWCOUNT queries might incur the overhead of setting up an allocation-

order scan, even if fewer than 64 pages are scanned. In mitigation, more complex TOP queries with

selective predicates pushed into the scan could still benefit from an allocation-order scan. If the scan

must process 10,000 pages to find the first 5 rows that match, an allocation-order scan could still be a

win.

Preventing all* allocation-order scans instance-wide

This is not something you would ever likely do intentionally, but there is a server setting that will

prevent allocation-order scans for all* user queries in all databases.

Unlikely as it may seem, the setting in question is the cursor threshold server configuration option,

which has the following description in Books Online:

The cursor threshold option specifies the number of rows in the cursor set at which cursor keysets are

generated asynchronously. When cursors generate a keyset for a result set, the query optimizer

estimates the number of rows that will be returned for that result set. If the query optimizer estimates

that the number of returned rows is greater than this threshold, the cursor is generated asynchronously,

allowing the user to fetch rows from the cursor while the cursor continues to be populated. Otherwise,

the cursor is generated synchronously, and the query waits until all rows are returned.

If the cursor threshold option is set to anything other than –1 (the default), no allocation-order scans

will occur for user queries in any database on the SQL Server instance.

In other words, if asynchronous cursor population is enabled, no IAM-driven scans for you.

* The exception is (non-100%) TABLESAMPLE queries. The internal queries generated by the system for

statistics creation and statistics updates also continue to use allocation-ordered scans.

http://msdn.microsoft.com/en-us/library/ms175817.aspx

CHECKPOINT;

DBCC DROPCLEANBUFFERS;

GO

-- WARNING! Disables allocation-order scans instance-wide

EXECUTE sys.sp_configure

 @configname = 'cursor threshold',

 @configvalue = 5000;

RECONFIGURE WITH OVERRIDE;

GO

-- Would normally result in an allocation-order scan

SELECT

 P.BusinessEntityID,

 P.PersonType

FROM Person.Person AS P

 WITH (READUNCOMMITTED);

GO

-- Reset to default allocation-order scans

EXECUTE sys.sp_configure

 @configname = 'cursor threshold',

 @configvalue = -1;

RECONFIGURE WITH OVERRIDE;

Results (no allocation-order scan):

One can only guess that asynchronous cursor population does not work well with allocation-order scans

for some reason. It is entirely unexpected that this restriction would affect all non-cursor user queries

as well though. Perhaps it is too hard for SQL Server to detect if a query is running as part of an

externally-issued API cursor? Who knows.

It would be nice if this side-effect were officially documented somewhere, though it is hard to know

exactly where it should go in Books Online. I wonder how many production systems out there are not

using allocation-order scans because of this? Maybe not many, but you never know.

To wrap things up, here is a summary. An allocation-ordered scan is available if:

1. The server option cursor threshold is set to –1 (the default); and,

2. the query plan scan operator has the Ordered:False property; and,

3. the total data_pages of the IN_ROW_DATA allocation units is at least 64; and,

4. either:

a. SQL Server has an acceptable guarantee that concurrent modifications are impossible;

or,

b. the scan is running at the read uncommitted isolation level.

Regardless of all the above, a scan with a TABLESAMPLE clause always uses allocation-ordered scans

(with the one technical exception noted in the main text).

Unexpected Clustered Index Fragmentation
By Paul Randal

In a departure from my ‘knee-jerk performance tuning’ series, I’d like to discuss how index

fragmentation can creep up on you under some circumstances.

What is Index Fragmentation?

Most people think of ‘index fragmentation’ as meaning the problem where the index leaf pages are out

of order – the index leaf page with the next key value is not the one that’s physically contiguous in the

data file to the index leaf page currently being examined. This is called logical fragmentation (and some

people refer to it as external fragmentation – a confusing term that I don’t like).

Logical fragmentation happens when an index leaf page is full and space is required on it, either for an

insert or to make an existing record longer (from updating a variable-length column). In that case, the

Storage Engine creates a new, empty page and moves 50 % of the rows (usually, but not always) from

the full page to the new page. This operation creates space in both pages, allowing the insert or update

to proceed, and is called a page split. There are interesting pathological cases involving repeated page

splits from a single operation and page splits that cascade up the index levels, but they’re beyond the

scope of this post.

When a page split occurs, it usually causes logical fragmentation because the new page that’s allocated

is highly unlikely to be physically contiguous to the one that’s being split. When an index has lots of

logical fragmentation, index scans are slowed down because the physical reads of the necessary pages

cannot be done as efficiently (using multi-page ‘readahead’ reads) when the leaf pages are not stored in

order in the data file.

That’s the basic definition of index fragmentation, but there’s a second kind of index fragmentation that

most people don’t consider: low page density (sometimes call internal fragmentation, again, a confusing

term I don’t like).

Page density is a measure of how much data is stored on an index leaf page. When a page split occurs

with the usual 50/50 case, each leaf page (the splitting one and the new one) are left with a page

density of only 50%. The lower the page density, the more empty space there is in the index and so the

more disk space and buffer pool memory you can think of as being wasted. I blogged about this problem

a few years back and you can read about it here.

Now that I’ve given a basic definition of the two kinds of index fragmentation, I’m going to refer to them

collectively as simply ‘fragmentation.’

For the remainder of this post I’d like to discuss three cases where clustered indexes can become

fragmented even if you’re avoiding operations that would obviously cause fragmentation (i.e. random

inserts and updating records to be longer).

Fragmentation from Deletes

“How can a delete from a clustered index leaf page cause a page split?” you might be asking. It won’t,

under normal circumstances (and I sat thinking about it for a few minutes to make sure there wasn’t

http://sqlperformance.com/2015/03/sql-indexes/unexpected-fragmentation?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/?s=knee-jerk&utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.sqlskills.com/blogs/paul/performance-issues-from-wasted-buffer-pool-memory/

some weird pathological case! But see the section below…) However, deletes can cause page density to

get progressively lower.

Imagine the case where the clustered index has a bigint identity key value, so inserts will always go to

the right-hand side of the index and will never, ever be inserted into an earlier portion of the index

(barring someone reseeding the identity value – potentially very problematic!). Now imagine that the

workload deletes records from the table that are no longer required, after which the background ghost

cleanup task will reclaim the space on the page and it will become free space.

In the absence of any random inserts (impossible in our scenario unless someone reseeds the identity or

specifies a key value to use after enabling SET IDENTITY INSERT for the table), no new records will ever

use the space that was freed from the deleted records. This means that the average page density of the

earlier portions of the clustered index will steadily decrease, leading to increasing amount of wasted

disk space and buffer pool memory as I described earlier.

Deletes can cause fragmentation, as long as you consider page density as part of ‘fragmentation.’

Fragmentation from Snapshot Isolation

SQL Server 2005 introduced two new isolation levels: snapshot isolation and read-committed snapshot

isolation. These two have slightly different semantics, but basically allow queries to see a point-in-time

view of a database, and for lock-collision-free selects. That’s a vast simplification, but it’s enough for my

purposes.

To facilitate these isolation levels, the development team at Microsoft that I led implemented a

mechanism called versioning. The way that versioning works is that whenever a record changes, the pre-

change version of the record is copied into the version store in tempdb, and the changed recorded gets

a 14-byte versioning tag added on the end of it. The tag contains a pointer to the previous version of the

record, plus a timestamp that can be used to determine what is the correct version of a record for a

particular query to read. Again, hugely simplified, but it’s only the addition of the 14-bytes that we’re

interested in.

So whenever a record changes when either of these isolation levels is in effect, it may expand by 14

bytes if there isn’t already a versioning tag for the record. What if there isn’t enough space for the extra

14 bytes on the index leaf page? That’s right, a page split will occur, causing fragmentation.

Big deal, you might think, as the record is changing anyway so if it was changing size anyway then a page

split would probably have occurred. No – that logic only holds if the record change was to increase the

size of a variable-length column. A versioning tag will be added even if a fixed-length column is updated!

That’s right – when versioning is in play, updates to fixed-length columns can cause a record to expand,

potentially causing a page split and fragmentation. What's even more interesting is that a delete will

also add the 14-byte tag, so a delete in a clustered index could cause a page split when versioning is in

use!

The bottom line here is that enabling either form of snapshot isolation can lead to fragmentation

suddenly starting to occur in clustered indexes where previously there was no possibility of

fragmentation.

Fragmentation from Readable Secondaries

The last case I want to discuss is using readable secondaries, part of the availability group feature that

was added in SQL Server 2012.

When you enable a readable secondary, all queries you do against the secondary replica are converted

to using snapshot isolation under the covers. This prevents the queries from blocking the constant

replaying of log records from the primary replica, as the recovery code acquires locks as it goes along.

To do this, there needs to be 14-byte versioning tags on records on the secondary replica. There’s a

problem, because all replicas need to be identical, so that the log replay works. Well, not quite. The

versioning tag contents aren’t relevant as they’re only used on the instance that created them. But the

secondary replica can’t add versioning tags, making records longer, as that would change the physical

layout of records on a page and break the log replaying. If the versioning tags were already there

though, it could use the space without breaking anything.

So that’s exactly what happens. The Storage Engine makes sure that any needed versioning tags for the

secondary replica are already there, by adding them on the primary replica!

As soon as a readable secondary replica of a database is created, any update to a record in the primary

replica causes the record to have an empty 14-byte tag added, so that the 14-bytes is properly

accounted for in all the log records. The tag isn’t used for anything (unless snapshot isolation is enabled

on the primary replica itself), but the fact that it’s created causes the record to expand, and if the page is

already full then…

Yes, enabling a readable secondary causes the same effect on the primary replica as if you enabled

snapshot isolation on it – fragmentation.

Summary

Don’t think that because you’re avoiding using GUIDs as cluster keys and avoiding updating variable-

length columns in your tables then your clustered indexes will be immune to fragmentation. As I’ve

described above, there are other workload and environmental factors that can cause fragmentation

problems in your clustered indexes that you need to be aware of.

Now don’t knee-jerk and think that you shouldn’t delete records, shouldn’t use snapshot isolation, and

shouldn’t use readable secondaries. You just have to be aware that they can all cause fragmentation and

know how to detect, remove, and mitigate it.

SQL Sentry has a cool tool, Fragmentation Manager, which you can use as an add-on to Performance

Advisor to help figure out where fragmentation problems are and then address them. You may be

surprised at the fragmentation you find when you check! As a quick example, here I can visually see –

down to the individual partition level – how much fragmentation exists, how quickly it got that way, any

patterns that exist, and the actual impact it has on wasted memory in the system:

http://www.sqlsentry.com/products/fragmentation-manager/sql-server-index-analysis-and-defrag?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

SQL Sentry Fragmentation Manager data

http://cdn.sqlperformance.com/wp-content/uploads/2015/03/frag-ss-a.png

Mitigating Index Fragmentation
By Paul Randal

Last month I wrote about unexpected clustered index fragmentation so, this time, I'd like to discuss

some of the things you can do to avoid index fragmentation happening. I'll assume you've read the

previous post and are familiar with the terms I defined there, and throughout the rest of this article,

when I say 'fragmentation' I'm referring to both the logical fragmentation and low page density

problems.

Choose a Good Cluster Key

The most expensive data structure to operate on to remove fragmentation is the clustered index of a

table, because it's the biggest structure as it contains all the table data. From a fragmentation

perspective, it makes sense to choose a cluster key that matches the table insert pattern, so there's no

possibility of an insert happening on a page where there's no space and hence causing a page split and

introducing fragmentation.

What constitutes the best cluster key for any given table is a matter of much debate, but in general you

won't go wrong if your cluster key has the following simple properties:

 Narrow (i.e. as few columns as possible)

 Static (i.e. you don't ever update it)

 Unique

 Ever-increasing

It's the ever-increasing property which is the most important for fragmentation prevention, as it avoids

random inserts that can cause page splits on already-full pages. Examples of such a key choice are int

identity and bigint identity columns, or even a sequential GUID from the NEWSEQUENTIALID() function.

With these types of keys, new rows will have a key value guaranteed to be higher than all others in the

table, and so the new row's insertion point will be at the end of the right-most page in the clustered

index structure. Eventually the new rows will fill that page up and another page will be added to the

right-hand side of the index, but with no damaging page split occurring.

Now, if you have a clustered index key that's not ever-increasing, it may be a very complex and

unpalatable procedure to change it to an ever-increasing one, so don't worry – instead you can use a fill

factor like I discuss below.

By the way, for a much deeper insight into choosing a cluster key and all the ramifications of it, check

out Kimberly's Clustering Key blog category (read from the bottom up).

Don't Update Index Key Columns

Whenever a key column is updated, it's not just a simple in-place update, although many places online

and in books say that it is (they're wrong). A key column cannot be updated in place as the new key

value would then mean that the row is in the wrong key order for the index. Instead a key column

update is translated into a full row delete plus a full row insert with the new key value. If the page where

http://sqlperformance.com/2015/04/sql-indexes/mitigating-index-fragmentation?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2015/03/sql-indexes/unexpected-fragmentation?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.sqlskills.com/blogs/kimberly/category/clustering-key/

the new row will be inserted does not have enough space on it, a page split will happen, causing

fragmentation.

Avoiding key column updates should be easy to do for the clustered index, as it's a poor design that calls

for updating the cluster key of a table row. For nonclustered indexes though, it's unavoidable if updates

to the table happen to involve columns on which there is a nonclustered index. For those cases, you'll

need to use a fill factor.

Don't Update Variable-Length Columns

This one's easier said than done. If you have to use variable-length columns and it's possible that they

get updated, then it's possible that they may grow and so require more space for the updated row,

leading to a page split if the page is already full.

There are a few things you could do to avoid fragmentation in this case:

 Use a fill factor

 Use a fixed-length column instead, if the overhead of all the extra padding bytes is less of a

problem than fragmentation or using a fill factor

 Use a placeholder value to 'reserve' space for the column – this is a trick you can use if the

application enters a new row and then comes back to fill in some of the details, causing variable-

length column expansion

 Perform a delete plus insert instead of an update

Use a Fill Factor

As you can see, many of the ways to avoid fragmentation are unpalatable as they involve application or

schema changes, and so using a fill factor is an easy way to mitigate fragmentation.

An index fill factor is a setting for the index that specifies how much empty space to leave on each leaf-

level page when the index is created, rebuilt, or reorganized. The idea is that there's enough free space

on the page to allow random inserts or row growths (from a versioning tag being added or updated

variable-length columns) without the page filling up and requiring a page split. However, eventually the

page will fill up, and so periodically the free space needs to be refreshed by rebuilding or reorganizing

the index (generally called performing index maintenance). The trick is in finding the right fill factor to

use, along with the right periodicity of index maintenance.

You can read more about setting a fill factor in MSDN here. Don't fall into the trap of setting the fill

factor for the entire instance (using sp_configure) as that means that all indexes will be rebuilt or

reorganized using that fill factor value, even those indexes that don't have any fragmentation problems.

You don't want your large clustered indexes, with nice ever-increasing keys, to all have 30% of their leaf-

level space wasted preparing for random inserts that will never happen. It's much better to figure out

which indexes are actually affected by fragmentation and only set a fill factor for those.

There's no right answer or magic formula I can give you for this. The generally-accepted practice is to

put a fill factor of 70 (meaning leave 30% free space) in place for those indexes where fragmentation is a

https://msdn.microsoft.com/en-us/library/ms177459.aspx

problem, monitor how quickly fragmentation occurs, and then modify either the fill factor or the index

maintenance frequency (or both).

Yes, this means you're deliberately wasting space in the indexes to avoid fragmentation, but that's a

good trade-off to make given how expensive page splits are and how detrimental fragmentation can be

for performance. And yes, in spite of what some might say, this is still important even if you're using

SSDs.

Summary

There are some simple things you can do to avoid fragmentation happening, but as soon as you get into

nonclustered indexes, or use snapshot isolation or readable secondaries, fragmentation rears its ugly

head and you need to try to prevent it.

Now don't knee-jerk and think that you should set a fill factor of 70 on all your instances – you need to

choose and set them carefully, as I described above.

And don't forget about SQL Sentry Fragmentation Manager, which you can use (as an add-on to

Performance Advisor) to help figure out where fragmentation problems are and then address them. For

example, on the Indexes tab, you can easily sort your indexes by highest fragmentation first (and, if you

like, apply a filter to the row count column, to ignore your smaller tables):

And then see if those indexes are using the default fill factor (0%), or perhaps a non-default fill factor,

which might not be a good match for your data and DML patterns. I'll let you guess which ones in the

above screen shot I would be most interested in investigating. Implementing more appropriate index fill

factors is the simplest way to address any problems you spot.

https://www.sqlskills.com/blogs/jonathan/does-index-fragmentation-matter-with-ssds/
https://www.sqlskills.com/blogs/jonathan/does-index-fragmentation-matter-with-ssds/
http://www.sqlsentry.com/products/fragmentation-manager/sql-server-index-analysis-and-defrag?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2015/04/frag_1.png

Query Tuning and Troubleshooting
Tuning: A Good Place to Start
By Tim Radney

I regularly get asked the question, "Where do I start when it comes to trying to tune a SQL Server

instance?" My first response is to ask them about the configuration of their instance. If certain things are

not configured properly then starting to look at long-running or high-cost queries right away could be

wasted effort.

I have blogged about common things administrators miss where I share many of the settings that

administrators should change from a default installation of SQL Server. For performance-related items, I

tell them they should check the following:

 Memory settings

 Updating statistics

 Index maintenance

 MAXDOP and cost threshold for parallelism

 tempdb best practices

 Optimize for ad hoc workloads

Once I get past the configuration items, I ask if they have looked at file and wait statistics as well as high-

cost queries. Most of the time the response is "no" - with an explanation that they aren't sure how find

that information.

Typically the common compliant when someone's stating they need to tune a SQL Server is that it's

running slow. What does slow mean? Is it a certain report, a specific application, or everything? Did it

just start happening, or has it been getting worse over time? I start by asking the usual triage questions

of what the memory, CPU, and disk utilization is compared to when things are normal, did the problem

just start happening, and what recently changed. Unless the client is capturing a baseline, they don't

have metrics to compare against to know if current stats are abnormal.

Nearly every SQL Server that I work on hosts more than one user database. When a client reports that

the SQL Server is running slow, most of the time they are concerned about a specific application that is

causing issues for their customers. A knee-jerk reaction is to immediately focus on that particular

database, however often times another process could be consuming valuable resources and the

application's database is being impacted. For example, if you have a large reporting database and

someone kicked off a massive report that saturates the disk, spikes CPU, and flushes the plan cache, you

can bet that the other user databases would slow down while that report is being generated.

I always like to start by looking at the file stats. For SQL Server 2005 and up, you can query the

sys.dm_io_virtual_file_stats DMV to get I/O statistics for each data and log file. This DMV replaced the

fn_virtualfilestats function. To capture the file stats, I like to use a script that Paul Randal put together:

capturing IO latencies for a period of time. This script will capture a baseline and, 30 minutes later

(unless you change the duration in the WAITFOR DELAY section), capture the stats and calculate the

http://sqlperformance.com/author/timradney?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
https://www.sqlskills.com/blogs/tim/common-things-administrators-miss/
http://www.sqlskills.com/blogs/paul/capturing-io-latencies-period-time/

deltas between them. Paul's script also does a bit of math to determine the read and write latencies,

which makes it much easier for us to read and understand.

On my laptop I restored a copy of the AdventureWorks2014 database onto a USB drive so that I would

have slower disk speeds; I then kicked off a process to generate a load against it. You can see the results

below where my write latency for my data file is 240ms and write latency for my log file is 46ms.

Latencies this high are troublesome.

Anything over 20ms should be considered bad, as I shared in a previous post: monitoring read/write

latency. My read latency is decent, but the AdventureWorks2014 database is suffering from slow writes.

In this case I would investigate what is generating the writes as well as investigating my I/O subsystem

performance. If this had been excessively high read latencies I would start investigating query

performance (why is it doing so many reads, for instance from missing indexes), as well as overall I/O

subsystem performance.

It is important to know the overall performance of your I/O subsystem, and the best way to know what

it's capable of is by benchmarking it. Glenn Berry talks about this in his article analyzing I/O performance

for SQL Server. Glenn explains latency, IOPS, and throughput and shows off CrystalDiskMark which is a

free tool that you can use to baseline your storage.

After finding out how the file stats are performing, I like to look at wait stats by using the DMV

sys.dm_os_wait_stats, which returns information about all the waits that occurred. For this I turn to

another script that Paul Randal provides in his capturing wait statistics for a period of time blog post.

Paul's script does a little math for us again but, more importantly, it excludes a lot of the benign waits

that we typically don't care about. This script also has a WAITFOR DELAY and is set to 30 minutes.

Reading wait stats can be a bit more tricky: You can have waits that appear to be high based on

percentage, but the average wait is so low that it isn't anything to worry about.

I kicked off the same load process and captured my wait stats, which I have shown below. For

explanations for many of these wait types you can read another one of Paul's blog posts, wait statistics,

or please tell me where it hurts, plus some of his posts on this blog.

http://sqlperformance.com/2015/03/io-subsystem/monitoring-read-write-latency?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2015/03/io-subsystem/monitoring-read-write-latency?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2015/05/io-subsystem/analyzing-io-performance-for-sql-server?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2015/05/io-subsystem/analyzing-io-performance-for-sql-server?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.sqlskills.com/blogs/paul/capturing-wait-statistics-period-time/
http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/
http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/
http://sqlperformance.com/author/paulrandal?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/wp-content/uploads/2015/06/tr_filestats.png

In this contrived output, the PAGEIOLATCH waits could be indicating a bottleneck with my I/O

subsystem, but could also be a memory issue, table scans instead seeks, or a host of other issues. In my

case, we know it is a disk issue, since I am storing the database on a USB stick. The LCK_M_S wait time is

very high, however there is only one instance of the wait. My WRITELOG is also higher than I would like

to see, but is understandable knowing the latency issues with the USB stick. This also shows CXPACKET

waits, and it would be easy to have a knee-jerk reaction and think you have a parallelism/MAXDOP

issue, however the AvgWait_S counter very low. Be careful when using waits for troubleshooting. Let it

be a guide to tell you things that aren't the problem as well as giving you a direction of where to go look

for issues. Proper troubleshooting is correlating behaviors from multiple areas to narrow down the

problem.

After looking at the file and wait statistics I then start digging into the high cost queries based on the

issues I found. For this I turn to Glenn Berry's Diagnostic Information Queries. These sets of queries are

the go-to scripts that many consultants use. Glenn and the community are constantly providing updates

to make them as informational and robust as possible. One of my favorite queries is the top cached

queries by execution count. I love finding queries or stored procedures that have high execution_count

coupled with high total_logical_reads. If those queries have tuning opportunities then you can quickly

make a big difference to the server. Also included in the scripts are top cached SPs by total logical reads

and top cached SPs by total physical reads. Both of these are good for looking for high reads with high

execution counts so you can reduce the number of I/Os.

In addition to Glenn's scripts, I like to use Adam Machanic's sp_whoisactive to see what is currently

running.

There is a lot more to performance tuning than just looking at file and wait stats and high-cost queries,

however that's where I like to start. It is a way to quickly triage an environment to start determining

what's causing the issue. There is no completely fool proof way to tune: what every production DBA

needs is a checklist of things to run through to eliminate and a really good collection of scripts to run

through to analyze the health of the system. Having a baseline is key to quickly ruling out normal vs.

abnormal behavior. My good friend Erin Stellato has an entire course on Pluralsight called SQL Server:

Benchmarking and Baselining if you need help with setting up and capturing your baseline.

Better yet, get a state-of-the-art tool like SQL Sentry Performance Advisor that will not only collect and

store historical information for profiling and trending, and give easy access to all of the details

mentioned above and more, but it also gives the ability to compare activity to built-in or user-defined

baselines, efficiently maintain indexes without lifting a finger, and alert or automate responses based on

a very robust custom conditions architecture. The following screen shot depicts the historical view of

the Performance Advisor dashboard, with disk waits in orange, database I/O at the bottom right, and

baselines comparing the current and previous period on every graph:

http://www.sqlskills.com/blogs/glenn/category/dmv-queries/
http://sqlblog.com/blogs/adam_machanic/default.aspx
http://sqlblog.com/blogs/adam_machanic/archive/2012/03/22/released-who-is-active-v11-11.aspx
http://www.pluralsight.com/courses/sqlserver-benchmarking
http://www.pluralsight.com/courses/sqlserver-benchmarking
http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://blogs.sqlsentry.com/greggonzalez/sql-sentry-v8-baselines-from-every-angle/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://blogs.sqlsentry.com/loriedwards/fragmentation-manager-an-overview/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://blogs.sqlsentry.com/GregGonzalez/sql-sentry-v8-intelligent-alerting-redefined/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/wp-content/uploads/2015/06/tr_waitstats.png

Quality monitoring tools are not free, but they provide a ton of functionality and support that allow you
to focus on the performance issues on your servers, instead of focusing on queries, jobs, and alerts that
may allow you to focus on your performance issues - but only once you get them right. There is often
great value in not re-inventing the wheel.

http://thebertrandfamily.com/2012/04/20/re-blog-the-cost-of-reinventing-the-wheel/
http://www.sqlsentry.com/images/performance-advisor/performance-advisor-baseline-lg.png

Grouped Concatenation in SQL Server
By Aaron Bertrand

Grouped concatenation is a common problem in SQL Server, with no direct and intentional features to

support it (like XMLAGG in Oracle, STRING_AGG or ARRAY_TO_STRING(ARRAY_AGG()) in PostgreSQL,

and GROUP_CONCAT in MySQL). It has been requested, but no success yet, as evidenced in these

Connect items:

 Connect #247118 : SQL needs version of MySQL group_Concat function (Postponed)

 Connect #728969 : Ordered Set Functions – WITHIN GROUP Clause (Active)

What is Grouped Concatenation?

For the uninitiated, grouped concatenation is when you want to take multiple rows of data and

compress them into a single string (usually with delimiters like commas, tabs, or spaces). Some might

call this a "horizontal join." A quick visual example demonstrating how we would compress a list of pets

belonging to each family member, from the normalized source to the "flattened" output:

There have been many ways to solve this problem over the years; here are just a few, based on the

following sample data:

CREATE TABLE dbo.FamilyMemberPets

(

 Name SYSNAME,

 Pet SYSNAME,

 PRIMARY KEY(Name,Pet)

);

INSERT dbo.FamilyMemberPets(Name,Pet) VALUES

(N'Madeline',N'Kirby'),

(N'Madeline',N'Quigley'),

(N'Henry', N'Piglet'),

(N'Lisa', N'Snowball'),

(N'Lisa', N'Snowball II');

I am not going to demonstrate an exhaustive list of every grouped concatenation approach ever

conceived, as I want to focus on a few aspects of my recommended approach, but I do want to point out

a few of the more common ones:

http://sqlperformance.com/2014/08/t-sql-queries/sql-server-grouped-concatenation?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://connect.microsoft.com/SQLServer/feedback/details/247118/sql-needs-version-of-mysql-group-concat-function
http://connect.microsoft.com/SQLServer/feedback/details/728969/feature-request-ordered-set-functions-within-group-clause
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/gcat1.png

Scalar UDF

CREATE FUNCTION dbo.ConcatFunction

(

 @Name SYSNAME

)

RETURNS NVARCHAR(MAX)

WITH SCHEMABINDING

AS

BEGIN

 DECLARE @s NVARCHAR(MAX);

 SELECT @s = COALESCE(@s + N', ', N'') + Pet

 FROM dbo.FamilyMemberPets

 WHERE Name = @Name

 ORDER BY Pet;

 RETURN (@s);

END

GO

SELECT Name, Pets = dbo.ConcatFunction(Name)

 FROM dbo.FamilyMemberPets

 GROUP BY Name

 ORDER BY Name;

Note: there is a reason we don't do this:

SELECT DISTINCT Name, Pets = dbo.ConcatFunction(Name)

 FROM dbo.FamilyMemberPets

 ORDER BY Name;

With DISTINCT, the function is run for every single row, then duplicates are removed; with GROUP BY,

the duplicates are removed first.

Common Language Runtime (CLR)

This uses the GROUP_CONCAT_S function found at http://groupconcat.codeplex.com/:

SELECT Name, Pets = dbo.GROUP_CONCAT_S(Pet, 1)

 FROM dbo.FamilyMemberPets

 GROUP BY Name

 ORDER BY Name;

Recursive CTE

There are several variations on this recursion; this one pulls out a set of distinct names as the anchor:

http://groupconcat.codeplex.com/

;WITH x as

(

 SELECT Name, Pet = CONVERT(NVARCHAR(MAX), Pet),

 r1 = ROW_NUMBER() OVER (PARTITION BY Name ORDER BY Pet)

 FROM dbo.FamilyMemberPets

),

a AS

(

 SELECT Name, Pet, r1 FROM x WHERE r1 = 1

),

r AS

(

 SELECT Name, Pet, r1 FROM a WHERE r1 = 1

 UNION ALL

 SELECT x.Name, r.Pet + N', ' + x.Pet, x.r1

 FROM x INNER JOIN r

 ON r.Name = x.Name

 AND x.r1 = r.r1 + 1

)

SELECT Name, Pets = MAX(Pet)

 FROM r

 GROUP BY Name

 ORDER BY Name

 OPTION (MAXRECURSION 0);

Cursor

Not much to say here; cursors are usually not the optimal approach, but this may be your only choice if

you are stuck on SQL Server 2000:

DECLARE @t TABLE(Name SYSNAME, Pets NVARCHAR(MAX),

 PRIMARY KEY (Name));

INSERT @t(Name, Pets)

 SELECT Name, N''

 FROM dbo.FamilyMemberPets GROUP BY Name;

DECLARE @name SYSNAME, @pet SYSNAME, @pets NVARCHAR(MAX);

DECLARE c CURSOR LOCAL FAST_FORWARD

 FOR SELECT Name, Pet

 FROM dbo.FamilyMemberPets

 ORDER BY Name, Pet;

OPEN c;

FETCH c INTO @name, @pet;

WHILE @@FETCH_STATUS = 0

BEGIN

 UPDATE @t SET Pets += N', ' + @pet

 WHERE Name = @name;

 FETCH c INTO @name, @pet;

END

CLOSE c; DEALLOCATE c;

SELECT Name, Pets = STUFF(Pets, 1, 1, N'')

 FROM @t

 ORDER BY Name;

GO

Quirky Update

Some people *love* this approach; I don't comprehend the attraction at all.

DECLARE @Name SYSNAME, @Pets NVARCHAR(MAX);

DECLARE @t TABLE(Name SYSNAME, Pet SYSNAME, Pets NVARCHAR(MAX),

 PRIMARY KEY (Name, Pet));

INSERT @t(Name, Pet)

 SELECT Name, Pet FROM dbo.FamilyMemberPets

 ORDER BY Name, Pet;

UPDATE @t SET @Pets = Pets = COALESCE(

 CASE COALESCE(@Name, N'')

 WHEN Name THEN @Pets + N', ' + Pet

 ELSE Pet END, N''),

 @Name = Name;

SELECT Name, Pets = MAX(Pets)

 FROM @t

 GROUP BY Name

 ORDER BY Name;

FOR XML PATH

Quite easily my preferred method, at least in part because it is the only way to *guarantee* order

without using a cursor or CLR. That said, this is a very raw version that fails to address a couple of other

inherent problems I will discuss further on:

SELECT Name, Pets = STUFF((SELECT N', ' + Pet
 FROM dbo.FamilyMemberPets AS p2

 WHERE p2.name = p.name
 ORDER BY Pet
 FOR XML PATH(N'')), 1, 2, N'')
FROM dbo.FamilyMemberPets AS p
GROUP BY Name
ORDER BY Name;

I've seen a lot of people mistakenly assume that the new CONCAT() function introduced in SQL Server

2012 was the answer to these feature requests. That function is only meant to operate against columns

or variables in a single row; it cannot be used to concatenate values across rows.

More on FOR XML PATH

FOR XML PATH('') on its own is not good enough – it has known problems with XML entitization. For

example, if you update one of the pet names to include an HTML bracket or an ampersand:

UPDATE dbo.FamilyMemberPets

 SET Pet = N'Qui>gle&y'

 WHERE Pet = N'Quigley';

These get translated to XML-safe entities somewhere along the way:

Qui>gle&y

So I always use PATH, TYPE).value(), as follows:

SELECT Name, Pets = STUFF((SELECT N', ' + Pet

 FROM dbo.FamilyMemberPets AS p2

 WHERE p2.name = p.name

 ORDER BY Pet

 FOR XML PATH(N''), TYPE).value(N'.[1]', N'nvarchar(max)'), 1, 2, N'')

FROM dbo.FamilyMemberPets AS p

GROUP BY Name

ORDER BY Name;

I also always use NVARCHAR, because you never know when some underlying column will contain

Unicode (or later be changed to do so).

You may see the following varieties inside .value(), or even others:

... TYPE).value(N'.', ...

... TYPE).value(N'(./text())[1]', ...

These are interchangeable, all ultimately representing the same string; the performance differences

between them (more below) were negligible and possibly completely nondeterministic.

http://msdn.microsoft.com/en-us/library/hh231515(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/hh231515(v=sql.110).aspx

Another issue you may come across is certain ASCII characters that are not possible to represent in XML;

for example, if the string contains the character 0x001A (CHAR(26)), you will get this error message:

Msg 6841, Level 16, State 1, Line 51

FOR XML could not serialize the data for node 'NoName' because it contains a character (0x001A) which

is not allowed in XML. To retrieve this data using FOR XML, convert it to binary, varbinary or image data

type and use the BINARY BASE64 directive.

This seems pretty complicated to me, but hopefully you don't have to worry about it because you're not

storing data like this or at least you're not trying to use it in grouped concatenation. If you are, you may

have to fall back to one of the other approaches.

Performance

The above sample data makes it easy to prove that these methods all do what we expect, but it is hard

to compare them meaningfully. So I populated the table with a much larger set:

TRUNCATE TABLE dbo.FamilyMemberPets;

INSERT dbo.FamilyMemberPets(Name,Pet)

 SELECT o.name, c.name

 FROM sys.all_objects AS o

 INNER JOIN sys.all_columns AS c

 ON o.[object_id] = c.[object_id]

 ORDER BY o.name, c.name;

For me, this was 575 objects, with 7,080 total rows; the widest object had 142 columns. Now again,

admittedly, I did not set out to compare every single approach conceived in the history of SQL Server;

just the few highlights I posted above. Here were the results:

You may notice a couple of contenders missing; the UDF using DISTINCT and the recursive CTE were so

off the charts that they would skew the scale. Here are the results of all seven approaches in tabular

form:

Approach Duration

(milliseconds)

FOR XML PATH 108.58

CLR 80.67

Quirky Update 278.83

UDF (GROUP BY) 452.67

UDF (DISTINCT) 5,893.67

Cursor 2,210.83

Recursive CTE 70,240.58

Average duration, in milliseconds, for all approaches

Also note that the variations on FOR XML PATH were tested independently but showed very minor

differences so I just combined them for the average. If you really want to know, the .[1] notation worked

out fastest in my tests; YMMV.

http://cdn.sqlperformance.com/wp-content/uploads/2014/08/gcat2.png

Conclusion

If you are not in a shop where CLR is a roadblock in any way, and especially if you're not just dealing with

simple names or other strings, you should definitely consider the CodePlex project. Don't try and re-

invent the wheel, don't try unintuitive tricks and hacks to make CROSS APPLY or other constructs work

just a little faster than the non-CLR approaches above. Just take what works and plug it in. And heck,

since you get the source code too, you can improve upon it or extend it if you like.

If CLR is an issue, then FOR XML PATH is likely your best option, but you'll still need to watch out for

tricky characters. If you are stuck on SQL Server 2000, your only feasible option is the UDF (or similar

code not wrapped in a UDF).

Grouped Concatenation: Ordering and Removing Duplicates
By Aaron Bertrand

In my last post, I showed some efficient approaches to grouped concatenation. This time around, I

wanted to talk about a couple of additional facets of this problem that we can accomplish easily with the

FOR XML PATH approach: ordering the list, and removing duplicates.

There are a few ways that I have seen people want the comma-separated list to be ordered. Sometimes

they want the item in the list to be ordered alphabetically; I showed that already in my previous post.

But sometimes they want it sorted by some other attribute that's actually not being introduced in the

output; for example, maybe I want to order the list by most recent item first. Let's take a simple

example, where we have an Employees table and a CoffeeOrders table. Let's just populate one person's

orders for a few days:

CREATE TABLE dbo.Employees

(

 EmployeeID INT PRIMARY KEY,

 Name NVARCHAR(128)

);

INSERT dbo.Employees(EmployeeID, Name) VALUES(1, N'Jack');

CREATE TABLE dbo.CoffeeOrders

(

 EmployeeID INT NOT NULL REFERENCES dbo.Employees(EmployeeID),

 OrderDate DATE NOT NULL,

 OrderDetails NVARCHAR(64)

);

INSERT dbo.CoffeeOrders(EmployeeID, OrderDate, OrderDetails)

 VALUES(1,'20140801',N'Large double double'),

 (1,'20140802',N'Medium double double'),

 (1,'20140803',N'Large Vanilla Latte'),

 (1,'20140804',N'Medium double double');

If we use the existing approach without specifying an ORDER BY, we get an arbitrary ordering (in this

case, it is most likely the case that you will see the rows in the order they were inserted, but don't

depend on that with larger data sets, more indexes, etc.):

SELECT e.Name, Orders = STUFF((SELECT N', ' + c.OrderDetails

 FROM dbo.CoffeeOrders AS c

 WHERE c.EmployeeID = e.EmployeeID

 FOR XML PATH, TYPE).value(N'.[1]', N'nvarchar(max)'), 1, 2, N'')

FROM dbo.Employees AS e

GROUP BY e.EmployeeID, e.Name;

Results (remember, you may get *different* results unless you specify an ORDER BY):

http://sqlperformance.com/2014/08/t-sql-queries/sql-server-grouped-concatenation-2?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/08/t-sql-queries/sql-server-grouped-concatenation-2?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/08/t-sql-queries/sql-server-grouped-concatenation?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

Name | Orders

Jack | Large double double, Medium double double, Large Vanilla Latte, Medium double double

If we want to order the list alphabetically, it's simple; we just add ORDER BY c.OrderDetails:

SELECT e.Name, Orders = STUFF((SELECT N', ' + c.OrderDetails

 FROM dbo.CoffeeOrders AS c

 WHERE c.EmployeeID = e.EmployeeID

 ORDER BY c.OrderDetails -- only change

 FOR XML PATH, TYPE).value(N'.[1]', N'nvarchar(max)'), 1, 2, N'')

FROM dbo.Employees AS e

GROUP BY e.EmployeeID, e.Name;

Results:

Name | Orders

Jack | Large double double, Large Vanilla Latte, Medium double double, Medium double double

We can also order by a column that does not appear in the result set; for example, we can order by most

recent coffee order first:

SELECT e.Name, Orders = STUFF((SELECT N', ' + c.OrderDetails

 FROM dbo.CoffeeOrders AS c

 WHERE c.EmployeeID = e.EmployeeID

 ORDER BY c.OrderDate DESC -- only change

 FOR XML PATH, TYPE).value(N'.[1]', N'nvarchar(max)'), 1, 2, N'')

FROM dbo.Employees AS e

GROUP BY e.EmployeeID, e.Name;

Results:

Name | Orders

Jack | Medium double double, Large Vanilla Latte, Medium double double, Large double double

Another thing we often want to do is remove duplicates; after all, there is little reason to see "Medium

double double" twice. We can eliminate that by using GROUP BY:

SELECT e.Name, Orders = STUFF((SELECT N', ' + c.OrderDetails

 FROM dbo.CoffeeOrders AS c

 WHERE c.EmployeeID = e.EmployeeID

 GROUP BY c.OrderDetails -- removed ORDER BY and added GROUP BY here

 FOR XML PATH, TYPE).value(N'.[1]', N'nvarchar(max)'), 1, 2, N'')

FROM dbo.Employees AS e

GROUP BY e.EmployeeID, e.Name;

Now, this *happens* to order the output alphabetically, but again you can't rely on this:

Name | Orders

Jack | Large double double, Large Vanilla Latte, Medium double double

If you want to guarantee that ordering this way, you can simply add an ORDER BY again:

SELECT e.Name, Orders = STUFF((SELECT N', ' + c.OrderDetails

 FROM dbo.CoffeeOrders AS c

 WHERE c.EmployeeID = e.EmployeeID

 GROUP BY c.OrderDetails

 ORDER BY c.OrderDetails -- added ORDER BY

 FOR XML PATH, TYPE).value(N'.[1]', N'nvarchar(max)'), 1, 2, N'')

FROM dbo.Employees AS e

GROUP BY e.EmployeeID, e.Name;

Results are the same (but I'll repeat, this is just a coincidence in this case; if you want this order, always

say so):

Name | Orders

Jack | Large double double, Large Vanilla Latte, Medium double double

But what if we want to eliminate duplicates *and* sort the list by most recent coffee order first? Your

first inclination might be to keep the GROUP BY and just change the ORDER BY, like this:

SELECT e.Name, Orders = STUFF((SELECT N', ' + c.OrderDetails

 FROM dbo.CoffeeOrders AS c

 WHERE c.EmployeeID = e.EmployeeID

 GROUP BY c.OrderDetails

 ORDER BY c.OrderDate DESC -- changed ORDER BY

 FOR XML PATH, TYPE).value(N'.[1]', N'nvarchar(max)'), 1, 2, N'')

FROM dbo.Employees AS e

GROUP BY e.EmployeeID, e.Name;

That won't work, since the OrderDate is not grouped or aggregated as part of the query:

Msg 8127, Level 16, State 1, Line 64

Column "dbo.CoffeeOrders.OrderDate" is invalid in the ORDER BY clause because it is not contained in

either an aggregate function or the GROUP BY clause.

A workaround, which admittedly makes the query a little uglier, is to group the orders separately first,

and then only take the rows with the max date for that coffee order per employee:

Results:

Name | Orders

Jack | Medium double double, Large Vanilla Latte, Large double double

This accomplishes both of our goals: we've eliminated duplicates, and we've ordered the list by

something that's not actually in the list.

Performance

You might be wondering how badly these methods perform against a more robust data set. I'm going to

populate our table with 100,000 rows, see how they do without any additional indexes, and then run

the same queries again with a little bit of index tuning to support our queries. So first, getting 100,000

rows spread across 1,000 employees:

-- clear out our tiny sample data

DELETE dbo.CoffeeOrders;

DELETE dbo.Employees;

-- create 1000 fake employees

INSERT dbo.Employees(EmployeeID, Name)

SELECT TOP (1000)

 EmployeeID = ROW_NUMBER() OVER (ORDER BY t.[object_id]),

 Name = LEFT(t.name + c.name, 128)

FROM sys.all_objects AS t

INNER JOIN sys.all_columns AS c

ON t.[object_id] = c.[object_id];

-- create 100 fake coffee orders for each employee

-- we may get duplicates in here for name

INSERT dbo.CoffeeOrders(EmployeeID, OrderDate, OrderDetails)

SELECT e.EmployeeID,

 OrderDate = DATEADD(DAY, ROW_NUMBER() OVER

 (PARTITION BY e.EmployeeID ORDER BY c.[guid]), '20140630'),

 LEFT(c.name, 64)

 FROM dbo.Employees AS e

 CROSS APPLY

 (

 SELECT TOP (100) name, [guid] = NEWID()

 FROM sys.all_columns

 WHERE [object_id] < e.EmployeeID

 ORDER BY NEWID()

) AS c;

Now let's just run each of our queries twice, and see what the timing is like on the second try (we'll take

a leap of faith here, and assume that – in an ideal world – we'll be working with a primed cache). I ran

these in SQL Sentry Plan Explorer, since it's the easiest way I know of to time and compare a bunch of

individual queries:

Duration and other runtime metrics for different FOR XML PATH approaches

These timings (duration is in milliseconds) really aren't that bad at all IMHO, when you think about

what's actually being done here. The most complicated plan, at least visually, seemed to be the one

where we removed duplicates and sorted by most recent order:

Execution plan for grouped and sorted query

But even the most expensive operator here – the XML table-valued function – seems to be all CPU (even

though I will freely admit that I'm not sure how much of the actual work is exposed in the query plan

details):

http://www.sqlsentry.com/products/plan-explorer/sql-server-query-view?ad=sqlperf-emp-ab-pe&utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/gc_2_a.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/gc_2_b.png

Operator properties for the XML table-valued function

"All CPU" is typically okay, since most systems are I/O-bound and/or memory-bound, not CPU-bound. As

I say quite often, in most systems I'll trade some of my CPU headroom for memory or disk any day of the

week (one of the reasons I like OPTION (RECOMPILE) as a solution to pervasive parameter sniffing

issues).

That said, I do strongly encourage you to test these approaches against similar results you can get from

the GROUP_CONCAT CLR approach on CodePlex, as well as performing the aggregation and sorting at

the presentation tier (particularly if you are keeping the normalized data in some sort of caching layer).

http://groupconcat.codeplex.com/
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/gc_2_c.png

Avoiding Sorts with Merge Join Concatenation
By Paul White

The SQL Server query execution engine has two ways to implement a logical 'union all' operation, using

the Concatenation and Merge Join Concatenation physical operators. While the logical operation is the

same, there are important differences between the two physical operators that can make a tremendous

difference to the efficiency of your execution plans.

The query optimizer does a reasonable job of choosing between the two options in many cases, but it is

a long way from perfect in this area. This article describes the query tuning opportunities presented by

Merge Join Concatenation, and details the internal behaviours and considerations you need to be aware

of to make the most of it.

Concatenation

The Concatenation operator is relatively simple: its output is the result of fully reading from each of its

inputs in sequence. The Concatenation operator is an n-ary physical operator, meaning it can have '2…n'

inputs. To illustrate, let's revisit the AdventureWorks-based example from my previous article,

"Rewriting Queries to Improve Performance":

SELECT *

INTO dbo.TH

FROM Production.TransactionHistory;

CREATE UNIQUE CLUSTERED INDEX CUQ_TransactionID

ON dbo.TH (TransactionID);

CREATE NONCLUSTERED INDEX IX_ProductID

ON dbo.TH (ProductID);

The following query lists product and transaction IDs for six particular products:

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 870 UNION ALL

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 873 UNION ALL

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 921 UNION ALL

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 712 UNION ALL

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 707 UNION ALL

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 711;

It produces an execution plan featuring a Concatenation operator with six inputs, as seen in SQL Sentry

Plan Explorer:

http://sqlperformance.com/2014/09/t-sql-queries/avoiding-sorts-merge-join-concatenation?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/09/t-sql-queries/avoiding-sorts-merge-join-concatenation?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://msftdbprodsamples.codeplex.com/
http://sqlperformance.com/2014/09/sql-plan/rewriting-queries-improve-performance?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.sqlsentry.com/products/plan-explorer/sql-server-query-view?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.sqlsentry.com/products/plan-explorer/sql-server-query-view?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

The plan above features a separate Index Seek for each listed product ID, in the same order as specified

in the query (reading top down). The topmost Index Seek is for product 870, the next one down is for

product 873, then 921 and so on. None of that is guaranteed behaviour of course, it is just something

interesting to observe.

I mentioned before that the Concatenation operator forms its output by reading from its inputs in

sequence. When this plan is executed, there is a good chance that the result set will shows rows for

product 870 first, then 873, 921, 712, 707, and finally product 711. Again, this is not guaranteed because

we did not specify an ORDER BY clause, but it does show how Concatenation operates internally.

An SSIS "Execution Plan"

For reasons that will make sense in a moment, consider how we might design an SSIS package to

perform the same task. We could certainly also write the whole thing as a single T-SQL statement in

SSIS, but the more interesting option is to create a separate data source for each product, and use an

SSIS "Union All" component in place of the SQL Server Concatenation operator:

Now imagine we need the final output from that data flow in Transaction ID order. One option would be

to add an explicit Sort component after the Union All:

That would certainly do the job, but a skilled and experienced SSIS designer would realize there is a

better option: read the source data for each product in Transaction ID order (utilizing the index), then

use an order-preserving operation to combine the sets.

In SSIS, the component that combines rows from two sorted data flows into a single sorted data flow is

called "Merge". A redesigned SSIS Data Flow that uses Merge to return the desired rows in Transaction

ID order follows:

Note that we need five separate Merge components because Merge is a binary component, unlike the

SSIS "Union All" component, which was n-ary. The new Merge flow produces results in Transaction ID

order, without requiring an expensive (and blocking) Sort component. Indeed, if we try to add a Sort on

Transaction ID after the final Merge, SSIS shows a warning to let us know the stream is already sorted in

the desired fashion:

The point of the SSIS example can now be revealed. Look at the execution plan chosen by the SQL Server

query optimizer when we ask it to return the original T-SQL query results in Transaction ID order (by

adding an ORDER BY clause):

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 870 UNION ALL

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 873 UNION ALL

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 921 UNION ALL

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 712 UNION ALL

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 707 UNION ALL

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 711

ORDER BY TransactionID;

The similarities to the SSIS Merge package are striking; even down to the need for five binary "Merge"

operators. The one important difference is that SSIS has separate components for "Merge Join" and

"Merge" whereas SQL Server uses the same core operator for both.

To be clear, the Merge Join (Concatenation) operators in the SQL Server execution plan are not

performing a join; the engine merely reuses the same physical operator to implement order-preserving

union all.

Writing Execution Plans in SQL Server

SSIS does not have a data flow specification language, nor an optimizer to turn such a specification into

an executable Data Flow Task. It is up to the SSIS package designer to realize that an order-preserving

Merge is possible, set component properties (such as sort keys) appropriately, then compare

performance. This requires more effort (and skill) on the designer's part, but it does provide a very fine

degree of control.

The situation in SQL Server is the opposite: we write a query specification using the T-SQL language,

then depend on the query optimizer to explore implementation options and choose an efficient one. We

do not have the option to construct an execution plan directly. Most of the time, this is highly desirable:

SQL Server would no doubt be rather less popular if every query required us to write an SSIS-style

package.

Nevertheless (as explained in my previous post), the plan chosen by the optimizer can be sensitive to

the T-SQL used to describe the desired results. Repeating the example from that article, we could have

written the original T-SQL query using an alternative syntax:

SELECT ProductID, TransactionID

FROM dbo.TH

WHERE ProductID IN (870, 873, 921, 712, 707, 711)

ORDER BY TransactionID;

http://sqlperformance.com/2014/09/sql-plan/rewriting-queries-improve-performance?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

This query specifies exactly the same result set as before, but the optimizer does not consider an order-

preserving (merge concatenation) plan, choosing to scan the Clustered Index instead (a much less

efficient option):

Leveraging Order Preservation in SQL Server

Avoiding unnecessary sorting can lead to significant efficiency gains, whether we are talking about SSIS

or SQL Server. Achieving this goal can be more complicated and difficult in SQL Server because we do

not have such fine-grained control over the execution plan, but there are still things we can do.

Specifically, understanding how the SQL Server Merge Join Concatenation operator works internally can

help us to continue writing clear, relational T-SQL, while encouraging the query optimizer to consider

order-preserving (merging) processing options where appropriate.

How Merge Join Concatenation Works

A regular Merge Join requires both inputs to be sorted on the join keys. Merge Join Concatenation, on

the other hand, simply merges two already-ordered streams into a single ordered stream – there is no

join, as such.

This begs the question: what exactly is the 'order' that is preserved?

In SSIS, we have to set sort key properties on the Merge inputs to define the ordering. SQL Server has no

equivalent to this. The answer to the question above is a little complicated, so we will take it step by

step.

Consider the following example, which requests a merge concatenation of two unindexed heap tables

(the simplest case):

DECLARE @T1 AS TABLE (c1 int, c2 int, c3 int);

DECLARE @T2 AS TABLE (c1 int, c2 int, c3 int);

SELECT * FROM @T1 AS T1

UNION ALL

SELECT * FROM @T2 AS T2

OPTION (MERGE UNION);

These two tables have no indexes, and there is no ORDER BY clause. What ordering will the merge join

concatenation 'preserve'? To give you a moment to think about that, let's first look at the execution plan

produced for the query above in SQL Server versions before 2012:

There is no Merge Join Concatenation, despite the query hint: prior to SQL Server 2012, this hint only

works with UNION, not UNION ALL. To get a plan with the desired merge operator, we need to disable

the implementation of a logical UNION ALL (UNIA) using the Concatenation (CON) physical operator.

Please note that the following is undocumented and not supported for production use:

DECLARE @T1 AS TABLE (c1 int, c2 int, c3 int);

DECLARE @T2 AS TABLE (c1 int, c2 int, c3 int);

SELECT * FROM @T1 AS T1

UNION ALL

SELECT * FROM @T2 AS T2

OPTION (QUERYRULEOFF UNIAtoCON);

That query produces the same plan as SQL Server 2012 and 2014 do with the MERGE UNION query hint

alone:

Perhaps unexpectedly, the execution plan features explicit sorts on both inputs to the merge. The sort

properties are:

It makes sense that an order-preserving merge requires a consistent input ordering, but why did it

choose (c1, c2, c3) instead of, say (c3, c1, c2) or (c2, c3, c1)? As a starting point, merge concatenation

inputs are sorted on the output projection list. The select-star in the query expands to (c1, c2, c3) so that

is the order chosen.

Sort by Merge Output Projection List

To further illustrate the point, we can expand the select-star ourselves (as we should!) choosing a

different order (c3, c2, c1) while we are at it:

DECLARE @T1 AS TABLE (c1 int, c2 int, c3 int);

DECLARE @T2 AS TABLE (c1 int, c2 int, c3 int);

SELECT c3, c2, c1 FROM @T1 AS T1

UNION ALL

SELECT c3, c2, c1 FROM @T2 AS T2

OPTION (MERGE UNION);

The sorts now change to match (c3, c2, c1):

Again, the query output order (assuming we were to add some data to the tables) is not guaranteed to

be sorted as shown, because we have no ORDER BY clause. These examples are intended simply to show

how the optimizer selects an initial input sort order, in the absence of any other reason to sort.

Conflicting Sort Orders

Now consider what happens if we leave the projection list as (c3, c2, c1) and add a requirement to order

the query results by (c1, c2, c3). Will the inputs to the merge still sort on (c3, c2, c1) with a post-merge

sort on (c1, c2, c3) to satisfy the ORDER BY?

DECLARE @T1 AS TABLE (c1 int, c2 int, c3 int);

DECLARE @T2 AS TABLE (c1 int, c2 int, c3 int);

SELECT c3, c2, c1 FROM @T1 AS T1

UNION ALL

SELECT c3, c2, c1 FROM @T2 AS T2

ORDER BY c1, c2, c3

OPTION (MERGE UNION);

No. The optimizer is smart enough to avoid sorting twice:

Sorting both inputs on (c1, c2, c3) is perfectly acceptable to the merge concatenation, so no double sort

is required.

Note that this plan does guarantee that the order of results will be (c1, c2, c3). The plan looks the same

as the earlier plans without ORDER BY, but not all the internal details are presented in user-visible

execution plans.

The effect of uniqueness

When choosing a sort order for the merge inputs, the optimizer is also affected by any uniqueness

guarantees that exist. Consider the following example, with five columns, but note the different column

orders in the UNION ALL operation:

DECLARE @T1 AS TABLE (c1 int, c2 int, c3 int, c4 int, c5 int);

DECLARE @T2 AS TABLE (c1 int, c2 int, c3 int, c4 int, c5 int);

SELECT c5, c1, c2, c4, c3 FROM @T1 AS T1

UNION ALL

SELECT c5, c4, c3, c2, c1 FROM @T2 AS T2

OPTION (MERGE UNION);

The execution plan includes sorts on (c5, c1, c2, c4, c3) for table @T1 and (c5, c4, c3, c2, c1) for table

@T2:

To demonstrate the effect of uniqueness on these sorts, we will add a UNIQUE constraint to column c1

in table T1, and column c4 in table T2:

DECLARE @T1 AS TABLE (c1 int UNIQUE, c2 int, c3 int, c4 int, c5 int);

DECLARE @T2 AS TABLE (c1 int, c2 int, c3 int, c4 int UNIQUE, c5 int);

SELECT c5, c1, c2, c4, c3 FROM @T1 AS T1

UNION ALL

SELECT c5, c4, c3, c2, c1 FROM @T2 AS T2

OPTION (MERGE UNION);

The point about uniqueness is that the optimizer knows that it can stop sorting as soon as it encounters

a column that is guaranteed to be unique. Sorting by additional columns after a unique key is

encountered will not affect the final sort order, by definition.

With the UNIQUE constraints in place, the optimizer can simplify the (c5, c1, c2, c4, c3) sort list for T1 to

(c5, c1) because c1 is unique. Similarly, the (c5, c4, c3, c2, c1) sort list for T2 is simplified to (c5, c4)

because c4 is a key:

Parallelism

The simplification due to a unique key is not perfectly implemented. In a parallel plan, the streams are

partitioned so that all rows for the same instance of the merge end up on the same thread. This data set

partitioning is based on the merge columns, and not simplified by the presence of a key.

The following script uses unsupported trace flag 8649 to generate a parallel plan for the previous query

(which is unchanged otherwise):

DECLARE @T1 AS TABLE (c1 int UNIQUE, c2 int, c3 int, c4 int, c5 int);

DECLARE @T2 AS TABLE (c1 int, c2 int, c3 int, c4 int UNIQUE, c5 int);

SELECT c5, c1, c2, c4, c3 FROM @T1 AS T1

UNION ALL

SELECT c5, c4, c3, c2, c1 FROM @T2 AS T2

OPTION (MERGE UNION, QUERYTRACEON 8649);

http://sqlblog.com/blogs/paul_white/archive/2011/12/23/forcing-a-parallel-query-execution-plan.aspx

The sort lists are simplified as before, but the Repartition Streams operators still partition over all

columns. If this simplification were implemented consistently, the repartitioning operators would also

operate on (c5, c1) and (c5, c4) alone.

Problems with non-unique indexes

The way the optimizer reasons about the sorting requirements for merge concatenation can result in

unnecessary sort problems, as the next example shows:

CREATE TABLE #T1 (c1 int, c2 int, c3 int, c4 int, c5 int);

CREATE TABLE #T2 (c1 int, c2 int, c3 int, c4 int, c5 int);

CREATE CLUSTERED INDEX cx ON #T1 (c1);

CREATE CLUSTERED INDEX cx ON #T2 (c1);

SELECT * FROM #T1 AS T1

UNION ALL

SELECT * FROM #T2 AS T2

ORDER BY c1

OPTION (MERGE UNION);

DROP TABLE #T1, #T2;

Looking at the query and available indexes, we would expect an execution plan that performs an

ordered scan of the clustered indexes, using merge join concatenation to avoid the need for any sorting.

This expectation is fully justified, because the clustered indexes provide the ordering specified in the

ORDER BY clause. Unfortunately, the plan we actually get includes two sorts:

There is no good reason for these sorts, they only appear because the query optimizer's logic is

imperfect. The merge output column list (c1, c2, c3, c4, c5) is a superset of the ORDER BY, but there is no

unique key to simplify that list. As a result of this gap in the optimizer's reasoning, it concludes that the

merge requires its input sorted on (c1, c2, c3, c4, c5).

We can verify this analysis by modifying the script to make one of the clustered indexes unique:

CREATE TABLE #T1 (c1 int, c2 int, c3 int, c4 int, c5 int);

CREATE TABLE #T2 (c1 int, c2 int, c3 int, c4 int, c5 int);

CREATE CLUSTERED INDEX cx ON #T1 (c1);

CREATE UNIQUE CLUSTERED INDEX cx ON #T2 (c1);

SELECT * FROM #T1 AS T1

UNION ALL

SELECT * FROM #T2 AS T2

ORDER BY c1

OPTION (MERGE UNION);

DROP TABLE #T1, #T2;

The execution plan now only has a sort above the table with the non-unique index:

If we now make both clustered indexes unique, no sorts appear:

CREATE TABLE #T1 (c1 int, c2 int, c3 int, c4 int, c5 int);

CREATE TABLE #T2 (c1 int, c2 int, c3 int, c4 int, c5 int);

CREATE UNIQUE CLUSTERED INDEX cx ON #T1 (c1);

CREATE UNIQUE CLUSTERED INDEX cx ON #T2 (c1);

SELECT * FROM #T1 AS T1

UNION ALL

SELECT * FROM #T2 AS T2

ORDER BY c1;

DROP TABLE #T1, #T2;

With both indexes unique, the initial merge input sort lists can be simplified to column c1 alone. The

simplified list then matches the ORDER BY clause exactly, so no sorts are needed in the final plan:

Notice we do not even need the query hint in this last example to get the optimal execution plan.

Final Thoughts

Eliminating sorts in an execution plan can be tricky. In some cases, it can be as simple as modifying an

existing index (or providing a new one) to deliver rows in the required order. The query optimizer does a

reasonable job overall when appropriate indexes are available.

In (many) other cases however, avoiding sorts can require a much deeper understanding of the

execution engine, the query optimizer, and plan operators themselves. Avoiding sorts is undoubtedly an

advanced query tuning topic, but also an incredibly rewarding one when everything comes right.

Stop making SQL Server do your dirty work
By Aaron Bertrand

I often see "problems" that involve requirements for SQL Server to perform "dirty work" like:

 In my trigger I need to copy a file to/from the network

 My stored procedure needs to FTP a file

 After the backup finishes I need SQL Server to zip it, make a copy, and then archive it

 When a customer is added, I want to create a new database, and do a bunch of stuff in Active

Directory

 My SQL Server Agent job needs to scan a directory for files, and perform bulk inserts when it

finds new ones

This is not an exhaustive list; I could probably fill a page. The point is that performing these tasks from

within SQL Server presents significant obstacles:

Security

Typically, for anything where you deem SQL Server needs file system or other OS-level access, you are

going to either (a) give explicit carte blanche rights to the SQL Server service account (and/or the SQL

Agent / proxy accounts), or (b) just set SQL Server service accounts to run as an existing domain account

that already has all of those rights. This is the "easy" solution – now, instead of individually granting

access to this folder and that share and this other resource, you just wipe your hands because they're

already domain admins. Next you enable server-level settings that are disabled by default but are

standing in your way of accomplishing one or more of the above tasks (e.g. xp_cmdshell).

I don't think I have to explain the level of exposure these actions can represent. Or what kind of

problems can happen if this is an actual employee account, and that employee goes away – or

determines that he/she is disgruntled before they go away. Yikes. I've seen several cases where a

common account is used for all the SQL Servers. Guess what happens if/when you need to change the

password for a domain account that is being actively used by dozens or hundreds of SQL Server

instances? Never mind how often it will happen if you don't exclude that user from password reset

policies?

Performance

In addition to security issues, going outside of the database server can introduce delays while SQL Server

relies on some external process it has no control over. Does the database transaction really need to wait

for a file to be compressed and copied, or for an FTP transfer to complete, or for your backup domain

controller to respond? How does this compound when several users are performing similar tasks, all

competing for the same bandwidth and/or disk heads? Also you must consider that once SQL Server has

told some batch file to do something, then the containing transaction is rolled back, you can't roll back

the external action.

http://sqlperformance.com/2014/09/system-configuration/stop-making-sql-server-dirty-work?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

The Answer

Well, usually – and there are always exceptions – the answer is to use external processes for these tasks

that really are external to SQL Server. Use PowerShell, use C#, use batch files; heck, use VBScript. Think

about which of these tasks really need to be handled *immediately* and while the transaction is still

active – I suspect not many. Build a queue table for these, and write to the queue table inside the

transaction (which will be rolled back if the transaction is not successful). Then, have a background task

or script that consumes rows from the queue table, performs the associated task(s), and deletes or

marks each row as completed. Added bonus: SQL Server Agent isn't required here, so you can use any

enterprise scheduler, and the methodology still works with SQL Server Express.

Indexed View Maintenance in Execution Plans
By Paul White

Though they come with many restrictions and some important implementation caveats, indexed views

are still a very powerful SQL Server feature when correctly employed in the right circumstances. One

common use is to provide a pre-aggregated view of underlying data, giving users the ability to query

results directly without incurring the costs of processing the underlying joins, filters, and aggregates

every time a query is executed.

Although new Enterprise Edition features like columnar storage and batch mode processing have

transformed the performance characteristics of many large queries of this type, there is still no faster

way to obtain a result than to avoid all the underlying processing completely, no matter how efficient

that processing might have become.

Before indexed views (and their more limited cousins, computed columns) were added to the product,

database professionals would sometimes write complex multi-trigger code to present the results of an

important query in a real table. This sort of arrangement is notoriously difficult to get right in all

circumstances, particularly where concurrent changes to the underlying data are frequent.

The indexed views feature makes all this much easier, where it is sensibly and correctly applied. The

database engine takes care of everything needed to ensure data read from an indexed view matches the

underlying query and table data at all times.

Incremental Maintenance

SQL Server keeps indexed view data synchronized with the underlying query by automatically updating

the view indexes appropriately whenever data changes in the base tables. The cost of this maintenance

activity is borne by the process changing the base data. The extra operations needed to maintain the

view indexes are silently added to the execution plan for the original insert, update, delete, or merge

operation. In the background, SQL Server also takes care of more subtle issues concerning transaction

isolation, for example ensuring correct handling for transactions running under snapshot or read

committed snapshot isolation.

Constructing the extra execution plan operations needed to maintain the view indexes correctly is not a

trivial matter, as anyone who has attempted a "summary table maintained by trigger code"

implementation will know. The complexity of the task is one of the reasons that indexed views have so

many restrictions. Limiting the supported surface area to inner joins, projections, selections (filters), and

the SUM and COUNT_BIG aggregates reduces the implementation complexity considerably.

Indexed views are maintained incrementally. This means the query processor determines the net effect

of the base table changes on the view, and applies only those changes necessary to bring the view up to

date. In simple cases, it can calculate the necessary deltas from just the base table changes and the data

currently stored in the view. Where the view definition contains joins, the indexed view maintenance

portion of the execution plan will need to access the joined tables as well, but this can usually be

performed efficiently, given appropriate base table indexes.

To simplify the implementation further, SQL Server always uses the same basic plan shape (as a starting

point) to implement indexed view maintenance operations. The normal facilities provided by the query

http://sqlperformance.com/2015/03/sql-plan/indexed-view-maintenance-in-execution-plans?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

optimizer are employed to simplify and optimize the standard maintenance shape as appropriate. We

will now turn to an example to help bring these concepts together.

Example 1 – Single Row Insert

Suppose we have the following simple table and indexed view:

CREATE TABLE dbo.T1

(

 GroupID integer NOT NULL,

 Value integer NOT NULL

);

GO

INSERT dbo.T1

 (GroupID, Value)

VALUES

 (1, 1),

 (1, 2),

 (2, 3),

 (2, 4),

 (2, 5);

GO

CREATE VIEW dbo.IV

WITH SCHEMABINDING

AS

SELECT

 T1.GroupID,

 SumValue = SUM(T1.Value),

 NumRows = COUNT_BIG(*)

FROM dbo.T1 AS T1

WHERE

 T1.GroupID BETWEEN 1 AND 5

GROUP BY

 T1.GroupID;

GO

CREATE UNIQUE CLUSTERED INDEX cuq

ON dbo.IV (GroupID);

After that script is run, the data in the sample table looks like this:

And the Indexed view contains:

The simplest example of an indexed view maintenance plan for this setup occurs when we add a single

row to the base table:

INSERT dbo.T1

 (GroupID, Value)

VALUES

 (3, 6);

The execution plan for this insert is shown below:

Following the numbers in the diagram, the operation of this execution plan proceeds as follows:

1. The Table Insert operator adds the new row to the base table. This is the only plan operator

associated with the base table insert; all remaining operators are concerned with the

maintenance of the indexed view.

2. The Eager Table Spool saves the inserted row data to temporary storage.

3. The Sequence operator ensures the top branch of the plan runs to completion before the next

branch in the Sequence is activated. In this special case (inserting a single row), it would be valid

to remove the Sequence (and the spools at positions 2 and 4), directly connecting the Stream

Aggregate input to the output of the Table Insert. This possible optimization is not implemented,

so the Sequence and Spools remain.

4. This Eager Table Spool is associated with the spool at position 2 (it has a Primary Node ID

property that provides this link explicitly). The spool replays rows (one row in the present case)

from the same temporary storage written to by the primary spool. As mentioned above, the

spools and positions 2 and 4 are unnecessary, and feature simply because they exist in the

generic template for indexed view maintenance.

http://cdn.sqlperformance.com/wp-content/uploads/2015/03/image2.png

5. The Stream Aggregate computes the sum of Value column data in the inserted set, and counts

the number of rows present per view-key group. The output is the incremental data needed to

keep the view synchronized with the base data. Note, the Stream Aggregate does not have a

Group By element because the query optimizer knows only a single value is being processed.

However, the optimizer does not apply similar logic to replace the aggregates with projections

(the sum of a single value is just the value itself, and the count will always be one for a single

row insert). Computing the sum and count aggregates for a single row of data is not an

expensive operation, so this missed optimization is not much to be concerned about.

6. The join relates each calculated incremental change to an existing key in the indexed view. The

join is an outer join because the newly-inserted data might not correspond to any existing data

in the view.

7. This operator locates the row to be modified in the view.

8. The Compute Scalar has two important responsibilities. First, it determines whether each

incremental change will affect an existing row in the view, or whether a new row will have to be

created. It does this by checking to see if the outer join produced a null from the view side of the

join. Our sample insert is for group 3, which does not currently exist in the view, so a new row

will be created. The second function of the Compute Scalar is to calculate new values for the

view columns. If a new row is to be added to the view, this is simply the result of the

incremental sum from the Stream Aggregate. If an existing row in the view is to be updated, the

new value is the existing value in the view row plus the incremental sum from the Stream

Aggregate.

9. This Eager Table Spool is for Halloween Protection. It is required for correctness when an insert

operation affects a table that is also referenced on the data access side of the query. It is

technically not required if the single-row maintenance operation results in an update to an

existing view row, but it remains in the plan anyway.

10. The final operator in the plan is labelled as an Update operator, but it will perform either an

Insert or an Update for each row it receives depending on the value of the "action code" column

added by the Compute Scalar at node 8. More generally, this update operator is capable of

inserts, updates, and deletes.

There is quite a bit of detail there, so to summarize:

 The aggregate groups data changes by the unique clustered key of the view. It computes the net

effect of the base table changes on each column per key.

 The outer join connects the per-key incremental changes to existing rows in the view.

 The compute scalar calculates whether a new row should be added to the view, or an existing

row updated. It computes the final column values for the view insert or update operation.

 The view update operator inserts a new row or updates an existing one as directed by the action

code.

http://sqlperformance.com/2013/02/t-sql-queries/halloween-problem-part-2?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

Example 2 – Multi-row Insert

Believe it or not, the single-row base table insert execution plan discussed above was subject to a

number of simplifications. Although some possible further optimizations were missed (as noted), the

query optimizer still managed to remove some operations from the general indexed view maintenance

template, and reduce the complexity of others.

Several of these optimizations were allowed because we were inserting just a single row, but others

were enabled because the optimizer was able to see the literal values being added to the base table. For

example, the optimizer could see that the group value inserted would pass the predicate in the WHERE

clause of the view.

If we now insert two rows, with the values "hidden" in local variables, we get a slightly more complex

plan:

DECLARE

 @Group1 integer = 4,

 @Value1 integer = 7,

 @Group2 integer = 5,

 @Value2 integer = 8;

INSERT dbo.T1

 (GroupID, Value)

VALUES

 (@Group1, @Value1),

 (@Group2, @Value2);

The new or changed operators are annotated as before:

1. The Constant Scan provides the values to insert. Previously, an optimization for single-row

inserts allowed this operator to be omitted.

2. A explicit Filter operator is now required to check that the groups inserted to the base table

match the WHERE clause in the view. As it happens, both new rows will pass the test, but the

optimizer cannot see the values in the variables to know this in advance. Additionally, it would

not be safe to cache a plan that skipped this filter because a future reuse of the plan could have

different values in the variables.

3. A Sort is now required to ensure the rows arrive at the Stream Aggregate in group order. The

sort was previously removed because it is pointless to sort one row.

http://cdn.sqlperformance.com/wp-content/uploads/2015/03/image3.png

4. The Stream Aggregate now has a "group by" property, matching the unique clustered key of the

view.

5. This Sort is required to present rows in view-key, action code order, which is required for correct

operation of the Collapse operator. Sort is a fully blocking operator so there is no longer any

need for an Eager Table Spool for Halloween Protection.

6. The new Collapse operator combines an adjacent insert and delete on the same key value into a

single update operation. This operator is not actually required in this case, because no deletion

action codes can be generated (only inserts and updates). This appears to be an oversight, or

perhaps something left in for safety reasons. The automatically-generated parts of an update

query plan can become extremely complex, so it is hard know for sure.

The properties of the Filter (derived from the view's WHERE clause) are:

The Stream Aggregate groups by the view key, and computes the sum and count aggregates per group:

The Compute Scalar identifies the action to take per row (insert or update in this case), and computes

the value to insert or update in the view:

http://sqlperformance.com/2013/02/sql-plan/halloween-problem-part-4?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2013/02/sql-plan/halloween-problem-part-4?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2015/03/image6.png

The action code is given an expression label of [Act1xxx]. Valid values are 1 for an update, 3 for a delete,

and 4 for an insert. This action expression results in an insert (code 4) if no matching row was found in

the view (i.e. the outer join returned a null for the NumRows column). If a matching row was found, the

action code is 1 (update).

Note that NumRows is the name given to the required COUNT_BIG(*) column in the view. In a plan that

could result in deletions from the view, the Compute Scalar would detect when this value would become

zero (no rows for the current group) and generate a delete action code (3).

The remaining expressions maintain the sum and count aggregates in the view. Notice though that the

expression labels [Expr1009] and [Expr1010] are not new; they refer to the labels created by the Stream

Aggregate. The logic is straightforward: if a matching row was not found, the new value to insert is just

the value computed at the aggregate. If a matching row in the view was found, the updated value is the

current value in the row plus the increment computed by the aggregate.

Finally, the view update operator (shown as a Clustered Index Update in SSMS) shows the action column

reference ([Act1013] defined by the Compute Scalar):

Example 3 – Multi-row Update

So far we have only looked at inserts to the base table. The execution plans for a deletion are very

similar, with just a few minor differences in the detailed calculations. This next example therefore moves

on to look at the maintenance plan for a base table update:

DECLARE

 @Group1 integer = 1,

 @Group2 integer = 2,

 @Value integer = 1;

UPDATE dbo.T1

SET Value = Value + @Value

WHERE GroupID IN (@Group1, @Group2);

As before, this query uses variables to hide literal values from the optimizer, preventing some

simplifications from being applied. It is also careful to update two separate groups, preventing

optimizations that can be applied when the optimizer knows only a single group (a single row of the

indexed view) will be affected. The annotated execution plan for the update query is below:

http://cdn.sqlperformance.com/wp-content/uploads/2015/03/image7.png

The changes and point of interest are:

1. The new Split operator turns each base table row update into a separate delete and insert

operation. Each update row is split into two separate rows, doubling the number of rows after

this point in the plan. Split is part of the split-sort-collapse pattern needed to protect against

incorrect transient unique key violation errors.

2. The Stream Aggregate is modified to account for incoming rows that can specify either a delete

or an insert (due to the Split, and determined by an action code column in the row). An insert

row contributes the original value in sum aggregates; the sign is reversed for delete action rows.

Similarly, the row count aggregate here counts insert rows as +1 and delete rows as –1.

3. The Compute Scalar logic is also modified to reflect that the net effect of the changes per group

might require an eventual insert, update, or delete action against the materialized view. It is not

actually possible for this particular update query to result in a row being inserted or deleted

against this view, but the logic required to deduce that is beyond the optimizer's current

reasoning abilities. A slightly different update query or view definition could indeed result in a

mixture of insert, delete, and update view actions.

4. The Collapse operator is highlighted purely for its role in the split-sort-collapse pattern

mentioned above. Note that it only collapses deletes and inserts on the same key; unmatched

deletes and inserts after the Collapse are perfectly possible (and quite usual).

As before, the key operator properties to look at to understand the indexed view maintenance work are

the Filter, Stream Aggregate, Outer Join, and Compute Scalar.

Example 4 – Multi-row Update with Joins

To complete the overview of indexed view maintenance execution plans, we will need a new example

view that joins several tables together, and includes a projection in the select list:

CREATE TABLE dbo.E1 (g integer NULL, a integer NULL);

CREATE TABLE dbo.E2 (g integer NULL, a integer NULL);

CREATE TABLE dbo.E3 (g integer NULL, a integer NULL);

GO

INSERT dbo.E1 (g, a) VALUES (1, 1);

INSERT dbo.E2 (g, a) VALUES (1, 1);

INSERT dbo.E3 (g, a) VALUES (1, 1);

GO

CREATE VIEW dbo.V1

http://blogs.msdn.com/b/craigfr/archive/2007/09/06/maintaining-unique-indexes.aspx
http://cdn.sqlperformance.com/wp-content/uploads/2015/03/image8.png

WITH SCHEMABINDING

AS

SELECT

 g = E1.g,

 sa1 = SUM(ISNULL(E1.a, 0)),

 sa2 = SUM(ISNULL(E2.a, 0)),

 sa3 = SUM(ISNULL(E3.a, 0)),

 cbs = COUNT_BIG(*)

FROM dbo.E1 AS E1

JOIN dbo.E2 AS E2

 ON E2.g = E1.g

JOIN dbo.E3 AS E3

 ON E3.g = E2.g

WHERE

 E1.g BETWEEN 1 AND 5

GROUP BY

 E1.g;

GO

CREATE UNIQUE CLUSTERED INDEX cuq

ON dbo.V1 (g);

To ensure correctness, one of the indexed view requirements is that a sum aggregate cannot operate on

an expression that might evaluate to null. The view definition above uses ISNULL to meet that

requirement. A sample update query that produces a pretty comprehensive index maintenance plan

component is shown below, together with the execution plan it produces:

UPDATE dbo.E1

SET g = g + 1,

 a = a + 1;

The plan looks quite large and complicated now, but most of the elements are exactly as we have

already seen. The key differences are:

1. The top branch of the plan includes a number of extra Compute Scalar operators. These could

be more compactly arranged, but essentially they are present to capture the pre-update values

of the non-grouping columns. The Compute Scalar to the left of the Table Update captures the

post-update value of column "a", with the ISNULL projection applied.

http://cdn.sqlperformance.com/wp-content/uploads/2015/03/image9.png

2. The new Compute Scalars in this area of the plan compute the value produced by the ISNULL

expression on each source table. In general, projections on the joined tables in the view will be

represented by Compute Scalars here. The sorts in this area of the plan are present purely

because the optimizer chose a merge join strategy for cost reasons (remember, merge requires

join-key sorted input).

3. The two join operators are new, and simply implement the joins in the view definition. These

joins always appear before the Stream Aggregate that computes the incremental effect of the

changes on the view. Note that a change to a base table can result in a row that used to meet

the join criteria no longer joining, and vice versa. All these potential complexities are handled

correctly (given the indexed view restrictions) by the Stream Aggregate producing a summary of

the changes per view key after the joins have been performed.

Final Thoughts

That last plan represents pretty much the full template for maintaining an indexed view, though the

addition of nonclustered indexes to the view would add additional operators spooled off the output of

the view update operator as well. Aside from an extra Split (and a Sort and Collapse combination if the

view's nonclustered index is unique), there is nothing very special about this possibility. Adding an

output clause to the base table query can also produce some interesting extra operators, but again,

these are not particular to indexed view maintenance per se.

To summarise the complete overall strategy:

 Base table changes are applied as normal; pre-update values may be captured.

 A split operator may be used to transform updates into delete/insert pairs.

 An eager spool saves base table change information to temporary storage.

 All tables in the view are accessed, except the updated base table (which is read from the

spool).

 Projections in the view are represented by Compute Scalars.

 Filters in the view are applied. Filters may be pushed into scans or seeks as residuals.

 Joins specified in the view are performed.

 An aggregate computes net incremental changes grouped by clustered view key.

 The incremental change set is outer joined to the view.

 A Compute Scalar calculates an action code (insert/update/delete against the view) for each

change, and computes the actual values to be inserted or updated. The computational logic is

based on the output of the aggregate and the result of the outer join to the view.

 Changes are sorted into view key and action code order, and collapsed to updates as

appropriate.

 Finally, the incremental changes are applied to the view itself.

As we have seen, the normal set of tools available to the query optimizer are still applied to the

automatically-generated parts of the plan, meaning that one or more of the steps above may be

simplified, transformed, or removed entirely. However, the basic shape and operation of the plan

remains intact.

If you have been following along with the code examples, you can use the following script to clean up:

DROP VIEW dbo.V1;

DROP TABLE dbo.E3, dbo.E2, dbo.E1;

DROP VIEW dbo.IV;

DROP TABLE dbo.T1;

An Indexed View Bug with Scalar Aggregates
By Paul White

The general strategy the SQL Server database engine uses to keep an indexed view synchronized with its

base tables – which I described in more detail in my last post – is to perform incremental maintenance of

the view whenever a data-changing operation occurs against one of the tables referenced in the view. In

broad terms, the idea is to:

1. Collect information about the base table changes

2. Apply the projections, filters, and joins defined in the view

3. Aggregate the changes per indexed view clustered key

4. Decide whether each change should result in an insert, update, or delete against the view

5. Compute the values to change, add, or remove in the view

6. Apply the view changes

Or, even more succinctly (albeit at the risk of gross simplification):

 Compute the incremental view effects of the original data modifications;

 Apply those changes to the view

This is usually a much more efficient strategy than rebuilding the whole view after every underlying data

change (the safe but slow option), but it does rely on the incremental update logic being correct for

every conceivable data change, against every possible indexed view definition.

As the title suggests, this article is concerned with an interesting case where the incremental-update

logic breaks down, resulting in a corrupt indexed view that no longer matches the underlying data.

Before we get to the bug itself, we need to quickly review scalar and vector aggregates.

Scalar and Vector Aggregates

In case you are not familiar with the term, there are two types of aggregate. An aggregate that is

associated with a GROUP BY clause (even if the group by list is empty) is known as a vector aggregate.

An aggregate without a GROUP BY clause is known as a scalar aggregate.

Whereas a vector aggregate is guaranteed to produce a single output row for each group present in the

data set, scalar aggregates are a bit different. Scalar aggregates always produce a single output row,

even if the input set is empty.

Vector aggregate example

The following AdventureWorks example computes two vector aggregates (a sum and a count) on an

empty input set:

-- There are no TransactionHistory records for ProductID 848

-- Vector aggregate produces no output rows

SELECT COUNT_BIG(*)

http://sqlperformance.com/2015/04/sql-indexes/an-indexed-view-bug-with-scalar-aggregates?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2015/03/sql-plan/indexed-view-maintenance-in-execution-plans?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlblog.com/blogs/paul_white/archive/2012/03/12/fun-with-aggregates.aspx
http://msftdbprodsamples.codeplex.com/

FROM Production.TransactionHistory AS TH

WHERE TH.ProductID = 848

GROUP BY TH.ProductID;

SELECT SUM(TH.Quantity)

FROM Production.TransactionHistory AS TH

WHERE TH.ProductID = 848

GROUP BY TH.ProductID;

These queries produce the following output (no rows):

The result is the same, if we replace the GROUP BY clause with an empty set (requires SQL Server 2008

or later):

-- Equivalent vector aggregate queries with

-- an empty GROUP BY column list

-- (SQL Server 2008 and later required)

-- Still no output rows

SELECT COUNT_BIG(*)

FROM Production.TransactionHistory AS TH

WHERE TH.ProductID = 848

GROUP BY ();

SELECT SUM(TH.Quantity)

FROM Production.TransactionHistory AS TH

WHERE TH.ProductID = 848

GROUP BY ();

The execution plans are identical in both cases as well. This is the execution plan for the count query:

Zero rows input to the Stream Aggregate, and zero rows out. The sum execution plan looks like this:

Again, zero rows into the aggregate, and zero rows out. All good simple stuff so far.

Scalar aggregates

Now look what happens if we remove the GROUP BY clause from the queries completely:

-- Scalar aggregate (no GROUP BY clause)

-- Returns a single output row from an empty input

SELECT COUNT_BIG(*)

FROM Production.TransactionHistory AS TH

WHERE TH.ProductID = 848;

SELECT SUM(TH.Quantity)

FROM Production.TransactionHistory AS TH

WHERE TH.ProductID = 848;

Instead of an empty result, the COUNT aggregate produces a zero, and the SUM returns a NULL:

The count execution plan confirms that zero input rows produce a single row of output from the Stream

Aggregate:

The sum execution plan is even more interesting:

The Stream Aggregate properties show a count aggregate being computed in addition to the sum we

asked for:

The new Compute Scalar operator is used to return NULL if the count of rows received by the Stream

Aggregate is zero, otherwise it returns the sum of the data encountered:

This might all seem a bit strange, but this is how it works:

 A vector aggregate of zero rows returns zero rows;

 A Scalar aggregate always produces exactly one row of output, even for an empty input;

 The scalar count of zero rows is zero; and

 The scalar sum of zero rows is NULL (not zero).

The important point for our present purposes is that scalar aggregates always produce a single row of

output, even if it means creating one out of nothing. Also, the scalar sum of zero rows is NULL, not zero.

These behaviours are all "correct" by the way. Things are the way they are because the SQL Standard

originally did not define the behaviour of scalar aggregates, leaving it up to the implementation. SQL

Server preserves its original implementation for backward compatibility reasons. Vector aggregates have

always had well-defined behaviours.

Indexed Views and Vector Aggregation

Now consider a simple indexed view incorporating a couple of (vector) aggregates:

CREATE TABLE dbo.T1

(

 GroupID integer NOT NULL,

 Value integer NOT NULL

);

GO

INSERT dbo.T1

 (GroupID, Value)

VALUES

 (1, 1),

 (1, 2),

 (2, 3),

 (2, 4),

 (2, 5),

 (3, 6);

GO

CREATE VIEW dbo.IV

WITH SCHEMABINDING

AS

SELECT

 T1.GroupID,

 GroupSum = SUM(T1.Value),

 RowsInGroup = COUNT_BIG(*)

FROM dbo.T1 AS T1

GROUP BY

 T1.GroupID;

GO

CREATE UNIQUE CLUSTERED INDEX cuq

ON dbo.IV (GroupID);

The following queries show the content of the base table, the result of querying the indexed view, and

the result of running the view query on the table underlying the view:

-- Sample data

SELECT * FROM dbo.T1 AS T1;

-- Indexed view contents

SELECT * FROM dbo.IV AS IV WITH (NOEXPAND);

-- Underlying view query results

SELECT * FROM dbo.IV AS IV OPTION (EXPAND VIEWS);

The results are:

As expected, the indexed view and underlying query return exactly the same results. The results will

continue to remain synchronized after any and all possible changes to the base table T1. To remind

ourselves how this all works, consider the simple case of adding a single new row to the base table:

INSERT dbo.T1

 (GroupID, Value)

VALUES

 (4, 100);

The execution plan for this insert contains all the logic needed to keep the indexed view synchronized:

http://cdn.sqlperformance.com/wp-content/uploads/2015/03/image19.png

The major activities in the plan are:

1. The Stream Aggregate computes the changes per indexed view key

2. The Outer Join to the view links the change summary to the target view row, if any

3. The Compute Scalar decides whether each change will require an insert, update, or deletion

against the view, and computes the necessary values.

4. The view update operator physically performs each change to the view clustered index.

There are some plan differences for different change operations against the base table (e.g. updates and

deletions), but the broad idea behind keeping the view synchronized remains the same: aggregate the

changes per view key, find the view row if it exists, then perform a combination of insert, update, and

delete operations on the view index as necessary.

No matter what changes you make to the base table in this example, the indexed view will remain

correctly synchronized – the NOEXPAND and EXPAND VIEWS queries above will always return the same

result set. This is how things should always work.

Indexed Views and Scalar Aggregation

Now try this example, where the indexed view uses scalar aggregation (no GROUP BY clause in the

view):

DROP VIEW dbo.IV;

DROP TABLE dbo.T1;

GO

CREATE TABLE dbo.T1

(

 GroupID integer NOT NULL,

 Value integer NOT NULL

);

GO

INSERT dbo.T1

 (GroupID, Value)

VALUES

 (1, 1),

 (1, 2),

 (2, 3),

 (2, 4),

 (2, 5),

 (3, 6);

GO

CREATE VIEW dbo.IV

WITH SCHEMABINDING

AS

SELECT

 TotalSum = SUM(T1.Value),

 NumRows = COUNT_BIG(*)

FROM dbo.T1 AS T1;

GO

CREATE UNIQUE CLUSTERED INDEX cuq

ON dbo.IV (NumRows);

This is a perfectly legal indexed view; no errors are encountered when creating it. There is one clue that

we might be doing something a little strange, though: when it comes time to materialize the view by

creating the required unique clustered index, there isn't an obvious column to choose as the key.

Normally, we would choose the grouping columns from the view's GROUP BY clause, of course.

The script above arbitrarily chooses the NumRows column. That choice isn't important. Feel free to

create the unique clustered index how ever you choose. The view will always contain exactly one row

because of the scalar aggregates, so there is no chance of a unique key violation. In that sense, the

choice of view index key is redundant, but nevertheless required.

Reusing the test queries from the previous example, we can see that the indexed view works correctly:

SELECT * FROM dbo.T1 AS T1;

SELECT * FROM dbo.IV AS IV OPTION (EXPAND VIEWS);

SELECT * FROM dbo.IV AS IV WITH (NOEXPAND);

Inserting a new row to the base table (as we did with the vector aggregate indexed view) continues to

work correctly as well:

INSERT dbo.T1

 (GroupID, Value)

VALUES

 (4, 100);

The execution plan is similar, but not quite identical:

The main differences are:

1. This new Compute Scalar is there for the same reasons as when we compared vector and scalar

aggregation results earlier: it ensures a NULL sum is returned (instead of zero) if the aggregate

operates on an empty set. This is the required behaviour for a scalar sum of no rows.

2. The Outer Join seen previously has been replaced by an Inner Join. There will always be exactly

one row in the indexed view (due to the scalar aggregation) so there is no question of needing

an outer join to test if a view row matches or not. The one row present in the view always

represents the entire set of data. This Inner Join has no predicate, so it is technically a cross join

(to a table with a guaranteed single row).

3. The Sort and Collapse operators are present for technical reasons covered in my previous article

on indexed view maintenance. They do not affect the correct operation of the indexed view

maintenance here.

In fact, many different types of data-changing operations can be performed successfully against the base

table T1 in this example; the effects will be correctly reflected in the indexed view. The following change

operations against the base table can all be performed while keeping the indexed view correct:

 Delete existing rows

 Update existing rows

 Insert new rows

This might seem like a comprehensive list, but it isn't.

The Bug Revealed

The issue is rather subtle, and relates (as you should be expecting) to the different behaviours of vector

and scalar aggregates. The key points are that a scalar aggregate will always produce an output row,

even if it receives no rows on its input, and the scalar sum of an empty set is NULL, not zero.

To cause a problem, all we need do is insert or delete no rows in the base table.

That statement is not as crazy as it might at first sound.

The point is that an insert or delete query that affects no base table rows will still update the view,

because the scalar Stream Aggregate in the indexed view maintenance portion of the query plan will

produce an output row even when it is presented with no input. The Compute Scalar that follows the

Stream Aggregate will also generate a NULL sum when the count of rows is zero.

The following script demonstrates the bug in action:

-- So we can undo

BEGIN TRANSACTION;

-- Show the starting state

SELECT * FROM dbo.T1 AS T1;

SELECT * FROM dbo.IV AS IV OPTION (EXPAND VIEWS);

SELECT * FROM dbo.IV AS IV WITH (NOEXPAND);

-- A table variable intended to hold new base table rows

DECLARE @NewRows AS table (GroupID integer NOT NULL, Value integer NOT NULL);

-- Insert to the base table (no rows in the table variable!)

INSERT dbo.T1

SELECT NR.GroupID,NR.Value

FROM @NewRows AS NR;

-- Show the final state

SELECT * FROM dbo.T1 AS T1;

SELECT * FROM dbo.IV AS IV OPTION (EXPAND VIEWS);

SELECT * FROM dbo.IV AS IV WITH (NOEXPAND);

-- Undo the damage

ROLLBACK TRANSACTION;

The output of that script is shown below:

The final state of the indexed view's Total Sum column does not match the underlying view query or the

base table data. The NULL sum has corrupted the view, which can be confirmed by running DBCC

CHECKTABLE (on the indexed view).

The execution plan responsible for the corruption is shown below:

Zooming in shows the zero-rows input to the Stream Aggregate and the one-row output:

If you want to try the corruption script above with a delete instead of an insert, here is an example:

-- No rows match this predicate

DELETE dbo.T1

WHERE Value BETWEEN 10 AND 50;

The delete affects no base table rows, but still changes the indexed view's sum column to NULL.

Generalizing the Bug

You can probably come up with any number of insert, and delete base table queries that affect no rows,

and cause this indexed view corruption. However, the same basic issue applies to a broader class of

problem than just inserts and deletes that affect no base table rows.

It is possible, for example, to produce the same corruption using an insert that does add rows to the

base table. The essential ingredient is that no added rows should qualify for the view. This will result in

an empty input to the Stream Aggregate, and the corruption-causing NULL row output from the

following Compute Scalar.

One way to achieve this is to include a WHERE clause in the view that rejects some of the base table

rows:

ALTER VIEW dbo.IV

WITH SCHEMABINDING

AS

SELECT

 TotalSum = SUM(T1.Value),

 NumRows = COUNT_BIG(*)

FROM dbo.T1 AS T1

WHERE

 -- New!

 T1.GroupID BETWEEN 1 AND 3;

GO

CREATE UNIQUE CLUSTERED INDEX cuq

ON dbo.IV (NumRows);

Given the new restriction on group IDs included in the view, the following insert will add rows to the

base table, but still corrupt the indexed view will a NULL sum:

-- So we can undo

BEGIN TRANSACTION;

-- Show the starting state

SELECT * FROM dbo.IV AS IV OPTION (EXPAND VIEWS);

SELECT * FROM dbo.IV AS IV WITH (NOEXPAND);

-- The added row does not qualify for the view

INSERT dbo.T1

 (GroupID, Value)

VALUES

 (4, 100);

-- Show the final state

SELECT * FROM dbo.IV AS IV OPTION (EXPAND VIEWS);

SELECT * FROM dbo.IV AS IV WITH (NOEXPAND);

-- Undo the damage

ROLLBACK TRANSACTION;

The output shows the now-familiar index corruption:

A similar effect can be produced using a view that contains one or more inner joins. As long as rows

added to the base table are rejected (for example by failing to join), the Stream Aggregate will receive

no rows, the Compute Scalar will generate a NULL sum, and the indexed view will be likely become

corrupted.

Final Thoughts

This problem happens not to occur for update queries (at least as far as I can tell) but this appears to be

more by accident than design – the problematic Stream Aggregate is still present in potentially-

vulnerable update plans, but the Compute Scalar that generates the NULL sum is not added (or perhaps

optimized away). Please let me know if you manage to reproduce the bug using an update query.

Until this bug is corrected (or, perhaps, scalar aggregates become disallowed in indexed views) be very

careful about using aggregates in an indexed view without a GROUP BY clause.

This article was prompted by a Connect item submitted by Vladimir Moldovanenko, who was kind

enough to leave a comment on an old blog post of mine (which concerns a different indexed view

corruption caused by the MERGE statement). Vladimir was using scalar aggregates in an indexed view

for sound reasons, so don't be too quick to judge this bug as an edge case that you will never encounter

in a production environment! My thanks to Vladimir for alerting me to his Connect item.

https://connect.microsoft.com/SQLServer/feedback/details/1190408/a-bug-with-indexed-view-noexpand-query-results-after-update-data-modification-even-after-kb2756471-update-and-view-re-creation
http://sqlblog.com/blogs/paul_white/archive/2013/02/06/incorrect-results-with-indexed-views.aspx

Internals of the Seven SQL Server Sorts-Part 1
By Paul White

As far as graphical execution plans are concerned, there is just one icon for a physical sort in SQL Server:

This same icon is used for the three logical sort operators: Sort, Top N Sort, and Distinct Sort:

Going a level deeper, there are four different implementations of Sort in the execution engine (not

counting batch sorting for optimized loop joins, which is not a full sort, and not visible in plans anyway).

If you are using SQL Server 2014, the number of execution engine Sort implementations increases to

seven:

1. CQScanSortNew

2. CQScanTopSortNew

3. CQScanIndexSortNew

4. CQScanPartitionSortNew (SQL Server 2014 only)

5. CQScanInMemSortNew

6. In-Memory OLTP (Hekaton) natively compiled procedure Top N Sort (SQL Server 2014 only)

7. In-Memory OLTP (Hekaton) natively compiled procedure General Sort (SQL Server 2014 only)

This article looks at these sort implementations and when each is used in SQL Server. Part one covers

the first four items on the list.

1. CQScanSortNew

This is the most general sort class, used when none of the other available options is applicable. General

sort uses a workspace memory grant reserved just before query execution begins. This grant is

proportional to cardinality estimates and average row size expectations, and cannot be increased after

query execution begins.

The current implementation appears to use a variety of internal merge sort (perhaps binary merge sort),

transitioning to external merge sort (with multiple passes if necessary) if the reserved memory turns out

to be insufficient. External merge sort uses physical tempdb space for sort runs that do not fit in memory

http://sqlperformance.com/2015/04/sql-plan/internals-of-the-seven-sql-server-sorts-part-1?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://technet.microsoft.com/en-us/library/ms175913.aspx
http://technet.microsoft.com/en-us/library/ms191158.aspx
http://www.queryprocessor.com/batch-sort-and-nested-loops/
http://blogs.msdn.com/b/sqlqueryprocessing/archive/2010/02/16/understanding-sql-server-memory-grant.aspx
http://en.wikipedia.org/wiki/Merge_sort

(commonly known as a sort spill). General sort may also be configured to apply distinctness during the

sorting operation.

The following partial stack trace shows an example of the CQScanSortNew class sorting strings using an

internal merge sort:

In execution plans, Sort provides information about the fraction of the overall query workspace memory

grant that is available to the Sort when reading records (the input phase), and the fraction available

when sorted output is being consumed by parent plan operators (the output phase).

The memory grant fraction is a number between 0 and 1 (where 1 = 100% of the granted memory) and

is visible in SSMS by highlighting the Sort and looking in the Properties window. The example below was

taken from a query with only a single Sort operator, so it has the full query workspace memory grant

available during both input and output phases:

The memory fractions reflect the fact that during its input phase, Sort has to share the overall query

memory grant with concurrently-executing memory-consuming operators below it in the execution

plan. Similarly, during the output phase, Sort has to share granted memory with concurrently-executing

memory-consuming operators above it in the execution plan.

The query processor is smart enough to know that some operators are blocking (stop-and-go),

effectively marking boundaries where the memory grant can be recycled and reused. In parallel plans,

the memory grant fraction available to a general Sort is split evenly between threads, and cannot be

rebalanced at runtime in case of skew (a common cause of spilling in parallel sort plans).

SQL Server 2012 and later includes additional information about the minimum workspace memory grant

required to initialize memory-consuming plan operators, and the desired memory grant (the "ideal"

amount of memory estimated to be needed to complete the whole operation in memory). In a post-

http://msdn.microsoft.com/en-us/library/gg415714.aspx
http://www.sqlskills.com/blogs/joe/memory-grant-execution-plan-statistics/

execution ("actual") execution plan, there is also new information about any delays in acquiring the

memory grant, the maximum amount of memory actually used, and how the memory reservation was

distributed across NUMA nodes.

The following AdventureWorks examples all use a CQScanSortNew general sort:

-- An Ordinary Sort (CQScanSortNew)

SELECT

 P.FirstName,

 P.MiddleName,

 P.LastName

FROM Person.Person AS P

ORDER BY

 P.FirstName,

 P.MiddleName,

 P.LastName;

-- Distinct Sort (also CQScanSortNew)

SELECT DISTINCT

 P.FirstName,

 P.MiddleName,

 P.LastName

FROM Person.Person AS P

ORDER BY

 P.FirstName,

 P.MiddleName,

 P.LastName;

-- Same query expressed using GROUP BY

-- Same Distinct Sort (CQScanSortNew) execution plan

SELECT

 P.FirstName,

 P.MiddleName,

 P.LastName

FROM Person.Person AS P

GROUP BY

 P.FirstName,

 P.MiddleName,

 P.LastName

ORDER BY

 P.FirstName,

 P.MiddleName,

 P.LastName;

The first query (a non-distinct sort) produces the following execution plan:

The second and third (equivalent) queries produce this plan:

CQScanSortNew can be used for both logical general Sort and logical Distinct Sort.

2. CQScanTopSortNew

CQScanTopSortNew is a subclass of CQScanSortNew used to implement a Top N Sort (as the name

suggests). CQScanTopSortNew delegates much of the core work to CQScanSortNew, but modifies the

detailed behaviour in different ways, depending on the value of N.

For N > 100, CQScanTopSortNew is essentially just a regular CQScanSortNew sort that automatically

stops producing sorted rows after N rows. For N <= 100, CQScanTopSortNew retains only the current

Top N results during the sort operation, and keeps track of the lowest key value that currently qualifies.

For example, during an optimized Top N Sort (where N <= 100) the call stack features RowsetTopN

whereas with the general sort in section 1 we saw RowsetSorted:

For a Top N Sort where N > 100, the call stack at the same stage of execution is the same as the general

sort seen earlier:

Notice that the CQScanTopSortNew class name does not appear in either of those stack traces. This is

simply due to the way sub-classing works. At other points during the execution of these queries,

CQScanTopSortNew methods (e.g. Open, GetRow, and CreateTopNTable) do appear explicitly on the call

stack. As an example, the following was taken at a later point in query execution and does show the

CQScanTopSortNew class name:

Top N Sort and the Query Optimizer

The query optimizer knows nothing about Top N Sort, which is an execution engine operator only. When

the optimizer produces an output tree with a physical Top operator immediately above a (non-distinct)

physical Sort, a post-optimization rewrite can collapse the two physical operations into a single Top N

Sort operator. Even in the N > 100 case, this represents a saving over passing rows iteratively between a

Sort output and a Top input.

The following query uses a couple of undocumented trace flags to show the optimizer output and the

post-optimization rewrite in action:

SELECT TOP (10)

 P.FirstName,

 P.MiddleName,

 P.LastName

FROM Person.Person AS P

ORDER BY

 P.FirstName,

 P.MiddleName,

 P.LastName

OPTION (QUERYTRACEON 3604, QUERYTRACEON 8607, QUERYTRACEON 7352);

The optimizer's output tree shows separate physical Top and Sort operators:

After the post-optimization rewrite, the Top and Sort have been collapsed into a single Top N Sort:

The graphical execution plan for the T-SQL query above shows the single Top N Sort operator:

Breaking the Top N Sort rewrite

The Top N Sort post-optimization rewrite can only collapse an adjacent Top and non-distinct Sort into a

Top N Sort. Adding DISTINCT (or the equivalent GROUP BY clause) to the query above will prevent the

Top N Sort rewrite:

SELECT DISTINCT TOP (10)

 P.FirstName,

 P.MiddleName,

 P.LastName

FROM Person.Person AS P

ORDER BY

 P.FirstName,

 P.MiddleName,

 P.LastName;

The final execution plan for this query features separate Top and Sort (Distinct Sort) operators:

The Sort there is the general CQScanSortNew class running in distinct mode as seen in section 1 earlier.

A second way to prevent the rewrite to a Top N Sort is to introduce one or more additional operators

between the Top and the Sort. For example:

SELECT TOP (10)

 P.FirstName,

 P.MiddleName,

 P.LastName,

 rn = RANK() OVER (ORDER BY P.FirstName)

FROM Person.Person AS P

ORDER BY

 P.FirstName,

 P.MiddleName,

 P.LastName;

The query optimizer's output now happens to have an operation between the Top and the Sort, so a Top

N Sort is not generated during the post-optimization rewrite phase:

The execution plan is:

The compute sequence (implemented as two Segments and a Sequence Project) between the Top and

Sort prevents the collapse of the Top and Sort to a single Top N Sort operator. Correct results will still be

obtained from this plan of course, but execution may be a little less efficient than it could have been

with the combined Top N Sort operator.

3. CQScanIndexSortNew

CQScanIndexSortNew is used only for sorting in DDL index building plans. It reuses some of the general

sort facilities we have already seen, but adds specific optimizations for index insertions. It is also the

only sort class that can dynamically request more memory after execution has begun.

Cardinality estimation is often accurate for an index building plan because the total number of rows in

the table is usually a known quantity. That is not to say that memory grants for index building plan sorts

will always be accurate; it just makes it a little less easy to demo. So, the following example uses an

undocumented, but reasonably well-known, extension to the UPDATE STATISTICS command to fool the

optimizer into thinking the table we are building an index on only has one row:

-- Test table

CREATE TABLE dbo.People

(

 FirstName dbo.Name NOT NULL,

 LastName dbo.Name NOT NULL

);

GO

-- Copy rows from Person.Person

INSERT dbo.People WITH (TABLOCKX)

(

 FirstName,

 LastName

)

SELECT

 P.FirstName,

 P.LastName

FROM Person.Person AS P;

GO

-- Pretend the table only has 1 row and 1 page

UPDATE STATISTICS dbo.People

WITH ROWCOUNT = 1, PAGECOUNT = 1;

GO

-- Index building plan

CREATE CLUSTERED INDEX cx

ON dbo.People (LastName, FirstName);

GO

-- Tidy up

DROP TABLE dbo.People;

The post-execution ("actual") execution plan for the index build does not show a warning for a spilled

sort (when run on SQL Server 2012 or later) despite the 1-row estimate and the 19,972 rows actually

sorted:

Confirmation that the initial memory grant was dynamically expanded comes from looking at the root

iterator's properties. The query was initially granted 1024KB of memory, but ultimately consumed

1576KB:

The dynamic increase in granted memory can also be tracked using the Debug channel Extended Event

sort_memory_grant_adjustment. This event is generated each time the memory allocation is

dynamically increased. If this event is being monitored, we can capture a stack trace when it is

published, either via Extended Events (with some awkward configuration and a trace flag) or from an

attached debugger, as below:

Dynamic memory grant expansion can also help with parallel index build plans where the distribution of

rows across threads is uneven. The amount of memory that can be consumed this way is not unlimited,

however. SQL Server checks each time an expansion is needed to see if the request is reasonable given

the resources available at that time.

Some insight to this process can be obtained by enabling undocumented trace flag 1504, together with

3604 (for message output to the console) or 3605 (output to the SQL Server error log). If the index build

plan is parallel, only 3605 is effective because parallel workers cannot send trace messages cross-thread

to the console.

The following section of trace output was captured while building a moderately large index on a SQL

Server 2014 instance with limited memory:

Memory expansion for the sort proceeded until the request was considered infeasible, at which point it

was determined that enough memory was already held for a single-pass sort spill to complete.

4. CQScanPartitionSortNew

This class name might suggest that this type of sort is used for partitioned table data, or when building

indexes on partitioned tables, but neither of those is actually the case. Sorting partitioned data uses

CQScanSortNew or CQScanTopSortNew as normal; sorting rows for insertion to a partitioned index

generally uses CQScanIndexSortNew as seen in section 3.

The CQScanPartitionSortNew sort class is only present in SQL Server 2014. It is only used when sorting

rows by partition id, prior to insertion into a partitioned clustered columnstore index. Note that it is only

used for partitioned clustered columnstore; regular (non-partitioned) clustered columnstore insert plans

do not benefit from a sort.

Inserts into a partitioned clustered columnstore index will not always feature a sort. It is a cost-based

decision that depends on the estimated number of rows to be inserted. If the optimizer estimates that it

is worth sorting the inserts by partition to optimize I/O, the columnstore insert operator will have the

DMLRequestSort property set to true, and a CQScanPartitionSortNew sort may appear in the execution

plan.

The demo in this section uses a permanent table of sequential numbers. If you do not have one of those,

the following script can be used to create one:

-- Itzik Ben-Gan's row generator

WITH

 L0 AS (SELECT 1 AS c UNION ALL SELECT 1),

 L1 AS (SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B),

 L2 AS (SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B),

 L3 AS (SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B),

 L4 AS (SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B),

 L5 AS (SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B),

 Nums AS (SELECT ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS n FROM L5)

SELECT

 -- Destination column type integer NOT NULL

 ISNULL(CONVERT(integer, N.n), 0) AS n

INTO dbo.Numbers

FROM Nums AS N

WHERE N.n >= 1

AND N.n <= 1000000

OPTION (MAXDOP 1);

GO

ALTER TABLE dbo.Numbers

ADD CONSTRAINT PK_Numbers_n

PRIMARY KEY CLUSTERED (n)

WITH (SORT_IN_TEMPDB = ON, MAXDOP = 1, FILLFACTOR = 100);

The demo itself involves creating a partitioned clustered columnstore indexed table, and inserting

enough rows (from the Numbers table above) to convince the optimizer to use a pre-insert partition

sort:

CREATE PARTITION FUNCTION PF (integer)

AS RANGE RIGHT

FOR VALUES (1000, 2000, 3000);

GO

CREATE PARTITION SCHEME PS

AS PARTITION PF

ALL TO ([PRIMARY]);

GO

-- A partitioned heap

CREATE TABLE dbo.Partitioned

(

 col1 integer NOT NULL,

 col2 integer NOT NULL DEFAULT ABS(CHECKSUM(NEWID())),

 col3 integer NOT NULL DEFAULT ABS(CHECKSUM(NEWID()))

)

ON PS (col1);

GO

-- Convert heap to partitioned clustered columnstore

CREATE CLUSTERED COLUMNSTORE INDEX ccsi

ON dbo.Partitioned

ON PS (col1);

GO

-- Add rows to the partitioned clustered columnstore table

INSERT dbo.Partitioned (col1)

SELECT N.n

FROM dbo.Numbers AS N

WHERE N.n BETWEEN 1 AND 4000;

The execution plan for the insert shows the sort used to ensure rows arrive at the clustered columnstore

insert iterator in partition id order:

A call stack captured while the CQScanPartitionSortNew sort was in progress is shown below:

There is something else interesting about this sort class. Sorts normally consume their entire input in

their Open method call. After sorting, they return control to their parent operator. Later, the sort starts

to produce sorted output rows one at a time in the usual way via GetRow calls. CQScanPartitionSortNew

is different, as you can see in the call stack above: It does not consume its input during its Open method

– it waits until GetRow is called by its parent for the first time.

Not every sort on partition id that appears in an execution plan inserting rows into a partitioned

clustered columnstore index will be a CQScanPartitionSortNew sort. If the sort appears immediately to

the right of the columnstore index insert operator, the chances are very good that it is a

CQScanPartitionSortNew sort.

Finally, CQScanPartitionSortNew is one of only two sort classes that sets the Soft Sort property exposed

when Sort operator execution plan properties are generated with undocumented trace flag 8666

enabled:

The meaning of "soft sort" in this context is unclear. It is tracked as a property in the query optimizer's

framework, and seems likely to be related to optimized partitioned data inserts, but determining exactly

what it means requires further research. In the meantime, this property can be used to infer that a Sort

is implemented with CQScanPartitionSortNew without attaching a debugger. The meaning of the

InMemory property flag shown above will be covered in part 2. It does not indicate whether a regular

sort was performed in memory or not.

Summary of Part One

 CQScanSortNew is the general sort class used when no other option is applicable. It appears

uses a variety of internal merge sort in memory, transitioning to external merge sort using

tempdb if granted memory workspace turns out to be insufficient. This class can be used for

General Sort and Distinct Sort.

 CQScanTopSortNew implements Top N Sort. Where N <= 100, an in-memory internal merge sort

is performed, and never spills to tempdb. Only the current top n items are retained in memory

during the sort. For N > 100 CQScanTopSortNew is equivalent to a CQScanSortNew sort that

automatically stops after N rows have been output. An N > 100 sort can spill to tempdb if

necessary.

 The Top N Sort seen in execution plans is a post-query-optimization rewrite. If the query

optimizer produces an output tree with an adjacent Top and non-distinct Sort, this rewrite can

collapse the two physical operators into a single Top N Sort operator.

 CQScanIndexSortNew is used only in index building DDL plans. It is the only standard sort class

that can dynamically acquire more memory during execution. Index building sorts can still spill

to disk in some circumstances, including when SQL Server decides a requested memory increase

is not compatible with the current workload.

 CQScanPartitionSortNew is only present in SQL Server 2014 and is used only to optimize inserts

to a partitioned clustered columnstore index. It delivers a "soft sort".

Internals of the Seven SQL Server Sorts-Part 2
By Paul White

The seven SQL Server sort implementation classes are:

1. CQScanSortNew

2. CQScanTopSortNew

3. CQScanIndexSortNew

4. CQScanPartitionSortNew (SQL Server 2014 only)

5. CQScanInMemSortNew

6. In-Memory OLTP (Hekaton) natively compiled procedure Top N Sort (SQL Server 2014 only)

7. In-Memory OLTP (Hekaton) natively compiled procedure General Sort (SQL Server 2014 only)

The first four types were covered in part one of this article.

5. CQScanInMemSortNew

This sort class has a number of interesting features, some of them unique:

 As the name suggests, it always sorts entirely in memory; it will never spill to tempdb

 Sorting is always performed using quicksort qsort_s in the standard C run-time library

MSVCR100

 It can perform all three logical sort types: General, Top N, and Distinct Sort

 It can be used for clustered columnstore per-partition soft sorts (see section 4 in part 1)

 The memory it uses may be cached with the plan rather than being reserved just before

execution

 It can be identified as an in-memory sort in execution plans

 A maximum of 500 values can be sorted

 It is never used for index-building sorts (see section 3 in part 1)

CQScanInMemSortNew is a sort class you will not encounter often. Since it always sorts in memory using

a standard library quicksort algorithm, it would not be a good choice for general database sorting tasks.

In fact, this sort class is only used when all its inputs are runtime constants (including @variable

references). From an execution plan perspective, that means the input to the Sort operator must be a

Constant Scan operator, as the examples below demonstrate:

-- Regular Sort on system scalar functions

SELECT X.i

FROM

(

http://sqlperformance.com/2015/05/sql-plan/internals-of-the-seven-sql-server-sorts-part-2?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2015/04/sql-plan/internals-of-the-seven-sql-server-sorts-part-1?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://msdn.microsoft.com/en-us/library/4xc60xas.aspx
http://msdn.microsoft.com/en-us/library/vstudio/abx4dbyh(v=vs.100).aspx
http://sqlperformance.com/2015/04/sql-plan/internals-of-the-seven-sql-server-sorts-part-1?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2015/04/sql-plan/internals-of-the-seven-sql-server-sorts-part-1?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

 SELECT @@TIMETICKS UNION ALL

 SELECT @@TOTAL_ERRORS UNION ALL

 SELECT @@TOTAL_READ UNION ALL

 SELECT @@TOTAL_WRITE

) AS X (i)

ORDER BY X.i;

-- Distinct Sort on constant literals

WITH X (i) AS

(

 SELECT 3 UNION ALL

 SELECT 1 UNION ALL

 SELECT 1 UNION ALL

 SELECT 2

)

SELECT DISTINCT X.i

FROM X

ORDER BY X.i;

-- Top N Sort on variables, constants, and functions

DECLARE

 @x integer = 1,

 @y integer = 2;

SELECT TOP (1)

 X.i

FROM

(

 VALUES

 (@x), (@y), (123),

 (@@CONNECTIONS)

) AS X (i)

ORDER BY X.i;

The execution plans are:

A typical call stack during sorting is shown below. Notice the call to qsort_s in the MSVCR100 library:

All three execution plans shown above are in-memory sorts using CQScanInMemSortNew with inputs

small enough for the sort memory to be cached. This information is not exposed by default in execution

plans, but it can be revealed using undocumented trace flag 8666. When that flag is active, additional

properties appear for the Sort operator:

The cache buffer is limited to 62 rows in this example as demonstrated below:

-- Cache buffer limited to 62 rows

SELECT X.i

FROM

(

 VALUES

 (001),(002),(003),(004),(005),(006),(007),(008),(009),(010),

 (011),(012),(013),(014),(015),(016),(017),(018),(019),(020),

 (021),(022),(023),(024),(025),(026),(027),(028),(029),(030),

 (031),(032),(033),(034),(035),(036),(037),(038),(039),(040),

 (041),(042),(043),(044),(045),(046),(047),(048),(049),(050),

 (051),(052),(053),(054),(055),(056),(057),(058),(059),(060),

 (061),(062)--, (063)

) AS X (i)

ORDER BY X.i;

Uncomment the final item in that script to see the Sort cache buffer property change from 1 to 0:

https://msdn.microsoft.com/en-us/library/4xc60xas.aspx
https://msdn.microsoft.com/en-us/library/vstudio/abx4dbyh(v=vs.100).aspx

When the buffer is not cached, the in-memory sort must allocate memory as it initializes and as required

as it reads rows from its input. When a cached buffer can be used, this memory allocation work is

avoided.

The following script can be used to demonstrate that the maximum number of items for a

CQScanInMemSortNew in-memory quicksort is 500:

SELECT X.i

FROM

(

 VALUES

 (001),(002),(003),(004),(005),(006),(007),(008),(009),(010),

 (011),(012),(013),(014),(015),(016),(017),(018),(019),(020),

 (021),(022),(023),(024),(025),(026),(027),(028),(029),(030),

 (031),(032),(033),(034),(035),(036),(037),(038),(039),(040),

 (041),(042),(043),(044),(045),(046),(047),(048),(049),(050),

 (051),(052),(053),(054),(055),(056),(057),(058),(059),(060),

 (061),(062),(063),(064),(065),(066),(067),(068),(069),(070),

 (071),(072),(073),(074),(075),(076),(077),(078),(079),(080),

 (081),(082),(083),(084),(085),(086),(087),(088),(089),(090),

 (091),(092),(093),(094),(095),(096),(097),(098),(099),(100),

 (101),(102),(103),(104),(105),(106),(107),(108),(109),(110),

 (111),(112),(113),(114),(115),(116),(117),(118),(119),(120),

 (121),(122),(123),(124),(125),(126),(127),(128),(129),(130),

 (131),(132),(133),(134),(135),(136),(137),(138),(139),(140),

 (141),(142),(143),(144),(145),(146),(147),(148),(149),(150),

 (151),(152),(153),(154),(155),(156),(157),(158),(159),(160),

 (161),(162),(163),(164),(165),(166),(167),(168),(169),(170),

 (171),(172),(173),(174),(175),(176),(177),(178),(179),(180),

 (181),(182),(183),(184),(185),(186),(187),(188),(189),(190),

 (191),(192),(193),(194),(195),(196),(197),(198),(199),(200),

 (201),(202),(203),(204),(205),(206),(207),(208),(209),(210),

 (211),(212),(213),(214),(215),(216),(217),(218),(219),(220),

 (221),(222),(223),(224),(225),(226),(227),(228),(229),(230),

 (231),(232),(233),(234),(235),(236),(237),(238),(239),(240),

 (241),(242),(243),(244),(245),(246),(247),(248),(249),(250),

 (251),(252),(253),(254),(255),(256),(257),(258),(259),(260),

 (261),(262),(263),(264),(265),(266),(267),(268),(269),(270),

 (271),(272),(273),(274),(275),(276),(277),(278),(279),(280),

 (281),(282),(283),(284),(285),(286),(287),(288),(289),(290),

 (291),(292),(293),(294),(295),(296),(297),(298),(299),(300),

 (301),(302),(303),(304),(305),(306),(307),(308),(309),(310),

 (311),(312),(313),(314),(315),(316),(317),(318),(319),(320),

 (321),(322),(323),(324),(325),(326),(327),(328),(329),(330),

 (331),(332),(333),(334),(335),(336),(337),(338),(339),(340),

 (341),(342),(343),(344),(345),(346),(347),(348),(349),(350),

 (351),(352),(353),(354),(355),(356),(357),(358),(359),(360),

 (361),(362),(363),(364),(365),(366),(367),(368),(369),(370),

 (371),(372),(373),(374),(375),(376),(377),(378),(379),(380),

 (381),(382),(383),(384),(385),(386),(387),(388),(389),(390),

 (391),(392),(393),(394),(395),(396),(397),(398),(399),(400),

 (401),(402),(403),(404),(405),(406),(407),(408),(409),(410),

 (411),(412),(413),(414),(415),(416),(417),(418),(419),(420),

 (421),(422),(423),(424),(425),(426),(427),(428),(429),(430),

 (431),(432),(433),(434),(435),(436),(437),(438),(439),(440),

 (441),(442),(443),(444),(445),(446),(447),(448),(449),(450),

 (451),(452),(453),(454),(455),(456),(457),(458),(459),(460),

 (461),(462),(463),(464),(465),(466),(467),(468),(469),(470),

 (471),(472),(473),(474),(475),(476),(477),(478),(479),(480),

 (481),(482),(483),(484),(485),(486),(487),(488),(489),(490),

 (491),(492),(493),(494),(495),(496),(497),(498),(499),(500)

--, (501)

) AS X (i)

ORDER BY X.i;

Again, uncomment the last item to see the InMemory Sort property change from 1 to 0. When this

happens, CQScanInMemSortNew is replaced by either CQScanSortNew (see section 1) or

CQScanTopSortNew (section 2). A non-CQScanInMemSortNew sort may still be performed in memory, of

course, it just uses a different algorithm, and is allowed to spill to tempdb if necessary.

6. In-Memory OLTP natively compiled stored procedure Top N Sort

The current implementation of In-Memory OLTP (previously code-named Hekaton) natively-compiled

stored procedures uses a priority queue followed by qsort_s for Top N Sorts, when the following

conditions are met:

 The query contains TOP (N) with an ORDER BY clause

 The value of N is a constant literal (not a variable)

 N has a maximum value of 8192; although

 The presence of joins or aggregations may reduce the 8192 value as documented here

http://en.wikipedia.org/wiki/Priority_queue#Equivalence_of_priority_queues_and_sorting_algorithms
http://msdn.microsoft.com/en-us/library/4xc60xas.aspx
http://msdn.microsoft.com/en-nz/library/dn452279.aspx#los

The following code creates a Hekaton table containing 4000 rows:

CREATE DATABASE InMemoryOLTP;

GO

-- Add memory optimized filegroup

ALTER DATABASE InMemoryOLTP

ADD FILEGROUP InMemoryOLTPFileGroup

CONTAINS MEMORY_OPTIMIZED_DATA;

GO

-- Add file (adjust path if necessary)

ALTER DATABASE InMemoryOLTP

ADD FILE

(

 NAME = N'IMOLTP',

 FILENAME = N'C:\Program Files\Microsoft SQL

Server\MSSQL12.SQL2014\MSSQL\DATA\IMOLTP.hkf'

)

TO FILEGROUP InMemoryOLTPFileGroup;

GO

USE InMemoryOLTP;

GO

CREATE TABLE dbo.Test

(

 col1 integer NOT NULL,

 col2 integer NOT NULL,

 col3 integer NOT NULL,

 CONSTRAINT PK_dbo_Test

 PRIMARY KEY NONCLUSTERED HASH (col1)

 WITH (BUCKET_COUNT = 8192)

)

WITH

(

 MEMORY_OPTIMIZED = ON,

 DURABILITY = SCHEMA_ONLY

);

GO

-- Add numbers from 1-4000 using

-- Itzik Ben-Gan's number generator

WITH

 L0 AS (SELECT 1 AS c UNION ALL SELECT 1),

 L1 AS (SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B),

 L2 AS (SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B),

 L3 AS (SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B),

 L4 AS (SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B),

 L5 AS (SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B),

 Nums AS (SELECT ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS n FROM L5)

INSERT dbo.Test

 (col1, col2, col3)

SELECT

 N.n,

 ABS(CHECKSUM(NEWID())),

 ABS(CHECKSUM(NEWID()))

FROM Nums AS N

WHERE N.n BETWEEN 1 AND 4000;

The next script creates a suitable Top N Sort in a natively-compiled stored procedure:

-- Natively-compiled Top N Sort stored procedure

CREATE PROCEDURE dbo.TestP

WITH EXECUTE AS OWNER, SCHEMABINDING, NATIVE_COMPILATION

AS

BEGIN ATOMIC

WITH

(

 TRANSACTION ISOLATION LEVEL = SNAPSHOT,

 LANGUAGE = N'us_english'

)

 SELECT TOP (2) T.col2

 FROM dbo.Test AS T

 ORDER BY T.col2

END;

GO

EXECUTE dbo.TestP;

The estimated execution plan is:

A call stack captured during execution shows the insert to the priority queue in progress:

http://en.wikipedia.org/wiki/Priority_queue

After the priority queue build is complete, the next call stack shows a final pass through the standard

library quicksort:

The xtp_p_* library shown in those call stacks is the natively-compiled dll for the stored procedure, with

source code saved on the local SQL Server instance. The source code is automatically-generated from

the stored procedure definition. For example, the C file for this native stored procedure contains the

following fragment:

This is as close as we can get to having access to SQL Server source code.

7. In-Memory OLTP natively compiled stored procedure Sort

Natively-compiled procedures do not currently support Distinct Sort, but non-distinct general sorting is

supported, without any restrictions on the size of the set. To demonstrate, we will first add 6,000 rows

to the test table, giving a total of 10,000 rows:

WITH

 L0 AS (SELECT 1 AS c UNION ALL SELECT 1),

 L1 AS (SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B),

 L2 AS (SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B),

 L3 AS (SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B),

 L4 AS (SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B),

 L5 AS (SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B),

 Nums AS (SELECT ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS n FROM L5)

INSERT dbo.Test

 (col1, col2, col3)

SELECT

 N.n,

http://blogs.msdn.com/b/igorpag/archive/2014/01/15/sql-server-2014-inside-hekaton-natively-compiled-stored-procedures.aspx

 ABS(CHECKSUM(NEWID())),

 ABS(CHECKSUM(NEWID()))

FROM Nums AS N

WHERE N.n BETWEEN 4001 AND 10000;

Now we can drop the previous test procedure (natively-compiled procedures cannot currently be

altered) and create a new one that performs an ordinary (not top-n) sort of the 10,000 rows:

DROP PROCEDURE dbo.TestP;

GO

CREATE PROCEDURE dbo.TestP

WITH EXECUTE AS OWNER, SCHEMABINDING, NATIVE_COMPILATION

AS

BEGIN ATOMIC

WITH

(

 TRANSACTION ISOLATION LEVEL = SNAPSHOT,

 LANGUAGE = N'us_english'

)

 SELECT T.col2

 FROM dbo.Test AS T

 ORDER BY T.col2

END;

GO

EXECUTE dbo.TestP;

The estimated execution plan is:

Tracing the execution of this sort shows that it starts by generating multiple small sorted runs using

standard library quicksort again:

Once that process is complete, the sorted runs are merged, using a priority queue scheme:

Again, the C source code for the procedure shows some of the details:

Summary of Part 2

 CQScanInMemSortNew is always an in-memory quicksort. It is limited to 500 rows from a

Constant Scan, and may cache its sort memory for small inputs. A sort can be identified as a

CQScanInMemSortNew sort using execution plan properties exposed by trace flag 8666.

 Hekaton native compiled Top N Sort requires a constant literal value for N <= 8192 and sorts

using a priority queue followed by a standard quicksort

 Hekaton native compiled General Sort can sort any number of rows, using standard library

quicksort to generate sort runs, and a priority queue merge sort to combine runs. It does not

support Distinct Sort.

http://cdn.sqlperformance.com/wp-content/uploads/2015/04/image191.png

Performance Tuning the Whole Query Plan
By Paul White

Execution plans provide a rich source of information that can help us identify ways to improve the

performance of important queries. People often look for things like large scans and lookups as a way to

identify potential data access path optimizations. These issues can often be quickly resolved by creating

a new index or extending an existing one with more included columns.

We can also use post-execution plans to compare actual with expected row counts between plan

operators. Where these are found to be significantly at variance, we can try to provide better statistical

information to the optimizer by updating existing statistics, creating new statistics objects, utilizing

statistics on computed columns, or perhaps by breaking a complex query up into less-complex

component parts.

Beyond that, we can also look at expensive operations in the plan, particularly memory-consuming ones

like sorting and hashing. Sorting can sometimes be avoided through indexing changes. Other times, we

might have to refactor the query using syntax that favours a plan that preserves a particular desired

ordering.

Sometimes, performance will still not be good enough even after all these performance tuning

techniques are applied. A possible next step is to think a bit more about the plan as a whole. This means

taking a step back, trying to understand the overall strategy chosen by the query optimizer, to see if we

can identify an algorithmic improvement.

This article explores this latter type of analysis, using a simple example problem of finding unique

column values in a moderately large data set. As is often the case in analogous real-world problems, the

column of interest will have relatively few unique values, compared with the number of rows in the

table. There are two parts to this analysis: creating the sample data, and writing the distinct-values

query itself.

Creating the Sample Data

To provide the simplest possible example, our test table has just a single column with a clustered index

(this column will hold duplicate values so the index cannot be declared unique):

CREATE TABLE dbo.Test

(

 data integer NOT NULL,

);

GO

CREATE CLUSTERED INDEX cx

ON dbo.Test (data);

To pick some numbers out of the air, we will choose to load ten million rows in total, with an even

distribution over a thousand distinct values. A common technique to generate data like this is to cross

join some system tables and apply the ROW_NUMBER function. We will also use the modulo operator to

limit the generated numbers to the desired distinct values:

http://sqlperformance.com/2014/10/t-sql-queries/performance-tuning-whole-plan?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/09/sql-plan/rewriting-queries-improve-performance?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/09/sql-plan/rewriting-queries-improve-performance?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

INSERT dbo.Test WITH (TABLOCK)

 (data)

SELECT TOP (10000000)

 (ROW_NUMBER() OVER (ORDER BY (SELECT 0)) % 1000) + 1

FROM master.sys.columns AS C1 WITH (READUNCOMMITTED)

CROSS JOIN master.sys.columns AS C2 WITH (READUNCOMMITTED)

CROSS JOIN master.sys.columns C3 WITH (READUNCOMMITTED);

The estimated execution plan for that query is as follows (click the image to enlarge it if necessary):

This takes around 30 seconds to create the sample data on my laptop. That is not an enormous length of

time by any means, but it is still interesting to consider what we might do to make this process more

efficient…

Plan Analysis

We will start by understanding what each operation in the plan is there for.

The section of the execution plan to the right of the Segment operator is concerned with manufacturing

rows by cross joining system tables:

http://cdn.sqlperformance.com/wp-content/uploads/2014/10/image.png

The Segment operator is there in case the window function had a PARTITION BY clause. That is not the

case here, but it features in the query plan anyway. The Sequence Project operator generates the row

numbers, and the Top limits the plan output to ten million rows:

The Compute Scalar defines the expression that applies the modulo function and adds one to the result:

We can see how the Sequence Project and Compute Scalar expression labels relate using Plan Explorer's

Expressions tab:

This gives us a more complete feel for the flow of this plan: the Sequence Project numbers the rows and

labels the expression Expr1050; the Compute Scalar labels the result of the modulo and plus-one

computation as Expr1052. Notice also the implicit conversion in the Compute Scalar expression. The

destination table column is of type integer, whereas the ROW_NUMBER function produces a bigint, so a

narrowing conversion is necessary.

The next operator in the plan is a Sort. According to the query optimizer's costing estimates, this is

expected to be the most expensive operation (88.1% estimated):

http://www.sqlsentry.com/products/plan-explorer/sql-server-query-view?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

It might not be immediately obvious why this plan features sorting, since there is no explicit ordering

requirement in the query. The Sort is added to the plan to ensure rows arrive at the Clustered Index

Insert operator in clustered index order. This promotes sequential writes, avoids page splitting, and is

one of the pre-requisites for minimally-logged INSERT operations.

These are all potentially good things, but the Sort itself is rather expensive. Indeed, checking the post-

execution ("actual") execution plan reveals the Sort also ran out of memory at execution time and had

to spill to physical tempdb disk:

The Sort spill occurs despite the estimated number of rows being exactly right, and despite the fact the

query was granted all the memory it asked for (as seen in the plan properties for the root INSERT node):

Sort spills are also indicated by the presence of IO_COMPLETION waits in the Plan Explorer PRO wait

stats tab:

http://www.sqlsentry.com/products/plan-explorer/sql-server-query-view?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

Finally for this plan analysis section, notice the DML Request Sort property of the Clustered Index Insert

operator is set true:

This flag indicates that the optimizer requires the sub-tree below the Insert to provide rows in index key

sorted order (hence the need for the problematic Sort operator).

Avoiding the Sort

Now that we know why the Sort appears, we can test to see what happens if we remove it. There are

ways we could rewrite the query to "fool" the optimizer into thinking fewer rows would be inserted (so

sorting would not be worthwhile) but a quick way to avoid the sort directly (for experimental purposes

only) is to use undocumented trace flag 8795. This sets the DML Request Sort property to false, so rows

are no longer required to arrive at the Clustered Index Insert in clustered key order:

TRUNCATE TABLE dbo.Test;

GO

INSERT dbo.Test WITH (TABLOCK)

 (data)

SELECT TOP (10000000)

 ROW_NUMBER() OVER (ORDER BY (SELECT 0)) % 1000

FROM master.sys.columns AS C1 WITH (READUNCOMMITTED)

CROSS JOIN master.sys.columns AS C2 WITH (READUNCOMMITTED)

CROSS JOIN master.sys.columns C3 WITH (READUNCOMMITTED)

OPTION (QUERYTRACEON 8795);

The new post-execution query plan is as follows (click the image to enlarge):

The Sort operator has gone, but the new query runs for over 50 seconds (compared with 30 seconds

before). There are a couple of reasons for this. First, we lose any possibility of minimally-logged inserts

because these require sorted data (DML Request Sort = true). Second, a large number of "bad" page

splits will occur during the insert. In case that seems counter-intuitive, remember that although the

ROW_NUMBER function numbers rows sequentially, the effect of the modulo operator is to present a

repeating sequence of numbers 1…1000 to the Clustered Index Insert.

The same fundamental issue occurs if we use T-SQL tricks to lower the expected row count to avoid the

sort instead of using the unsupported trace flag.

Avoiding the Sort II

Looking at the plan as a whole, it seems clear we would like to generate rows in a way that avoids an

explicit sort, but which still reaps the benefits of minimal logging and bad page split avoidance. Put

simply: we want a plan that presents rows in clustered key order, but without sorting.

Armed with this new insight, we can express our query in a different way. The following query generates

each number from 1 to 1000 and cross joins that set with 10,000 rows to produce the required degree

of duplication. The idea is to generate an insert set that presents 10,000 rows numbered '1' then 10,000

numbered '2' … and so on.

TRUNCATE TABLE dbo.Test;

GO

INSERT dbo.Test WITH (TABLOCK)

 (data)

SELECT

 N.number

FROM

(

 SELECT SV.number

 FROM master.dbo.spt_values AS SV WITH (READUNCOMMITTED)

 WHERE SV.[type] = N'P'

 AND SV.number >= 1

 AND SV.number <= 1000

) AS N

CROSS JOIN

(

 SELECT TOP (10000)

 Dummy = NULL

http://cdn.sqlperformance.com/wp-content/uploads/2014/10/image10.png

 FROM master.sys.columns AS C1 WITH (READUNCOMMITTED)

 CROSS JOIN master.sys.columns AS C2 WITH (READUNCOMMITTED)

 CROSS JOIN master.sys.columns C3 WITH (READUNCOMMITTED)

) AS C;

Unfortunately, the optimizer still produces a plan with a sort:

There is not much to be said in the optimizer's defense here, this is just a daft plan. It has chosen to

generate 10,000 rows then cross join those with numbers from 1 to 1000. This does not allow the

natural order of the numbers to be preserved, so the sort cannot be avoided.

Avoiding the Sort – Finally!

The strategy the optimizer missed is to take the numbers 1…1000 first, and cross join each number with

10,000 rows (making 10,000 copies of each number in sequence). The expected plan would avoid a sort

by using a nested loops cross join that preserves the order of the rows on the outer input.

We can achieve this outcome by forcing the optimizer to access the derived tables in the order specified

in the query, using the FORCE ORDER query hint:

TRUNCATE TABLE dbo.Test;

GO

INSERT dbo.Test WITH (TABLOCK)

 (data)

SELECT

 N.number

FROM

(

 SELECT SV.number

 FROM master.dbo.spt_values AS SV WITH (READUNCOMMITTED)

 WHERE SV.[type] = N'P'

 AND SV.number >= 1

 AND SV.number <= 1000

) AS N

CROSS JOIN

(

 SELECT TOP (10000)

http://cdn.sqlperformance.com/wp-content/uploads/2014/10/image11.png

 Dummy = NULL

 FROM master.sys.columns AS C1 WITH (READUNCOMMITTED)

 CROSS JOIN master.sys.columns AS C2 WITH (READUNCOMMITTED)

 CROSS JOIN master.sys.columns C3 WITH (READUNCOMMITTED)

) AS C

OPTION (FORCE ORDER);

Finally, we get the plan we were after:

This plan avoids an explicit sort while still avoiding "bad" page splits and enabling minimally-logged

inserts to the clustered index (assuming the database is not using the FULL recovery model). It loads all

ten million rows in about 9 seconds on my laptop (with a single 7200 rpm SATA spinning disk). This

represents a marked efficiency gain over the 30-50 second elapsed time seen before the rewrite.

Finding the Distinct Values

Now we have the sample data created, we can turn our attention to writing a query to find the distinct

values in the table. A natural way to express this requirement in T-SQL is as follows:

SELECT DISTINCT data

FROM dbo.Test WITH (TABLOCK)

OPTION (MAXDOP 1);

The execution plan is very simple, as you would expect:

This takes around 2900 ms to run on my machine, and requires 43,406 logical reads:

http://cdn.sqlperformance.com/wp-content/uploads/2014/10/image12.png

Removing the MAXDOP (1) query hint generates a parallel plan:

This completes in about 1500 ms (but with 8,764 ms of CPU time consumed), and 43,804 logical reads:

The same plans and performance result if we use GROUP BY instead of DISTINCT.

A Better Algorithm

The query plans shown above read all values from the base table and process them through a Stream

Aggregate. Thinking of the task as a whole, it seems inefficient to scan all 10 million rows when we know

there are relatively few distinct values.

A better strategy might be to find the single lowest value in the table, then find the next highest, and so

on until we run out of values. Crucially, this approach lends itself to singleton-seeking into the index

rather than scanning every row.

We can implement this idea in a single query using a recursive CTE, where the anchor part finds the

lowest distinct value, then the recursive part finds the next distinct value and so on. A first attempt at

writing this query is:

WITH RecursiveCTE

AS

(

 -- Anchor

 SELECT data = MIN(T.data)

 FROM dbo.Test AS T

 UNION ALL

 -- Recursive

 SELECT MIN(T.data)

 FROM dbo.Test AS T

 JOIN RecursiveCTE AS R

 ON R.data < T.data

)

SELECT data

FROM RecursiveCTE

OPTION (MAXRECURSION 0);

Unfortunately, that syntax does not compile:

Ok, so aggregate functions are not allowed. Instead of using MIN, we can write the same logic using TOP

(1) with an ORDER BY:

WITH RecursiveCTE

AS

(

 -- Anchor

 SELECT TOP (1)

 T.data

 FROM dbo.Test AS T

 ORDER BY

 T.data

 UNION ALL

 -- Recursive

 SELECT TOP (1)

 T.data

 FROM dbo.Test AS T

 JOIN RecursiveCTE AS R

 ON R.data < T.data

 ORDER BY T.data

)

SELECT

 data

FROM RecursiveCTE

OPTION (MAXRECURSION 0);

Still no joy.

It turns out that we can get around these restrictions by rewriting the recursive part to number the

candidate rows in the required order, then filter for the row that is numbered 'one'. This might seem a

little circuitous, but the logic is exactly the same:

WITH RecursiveCTE

AS

(

 -- Anchor

 SELECT TOP (1)

 data

 FROM dbo.Test AS T

 ORDER BY

 T.data

 UNION ALL

 -- Recursive

 SELECT R.data

 FROM

 (

 -- Number the rows

 SELECT

 T.data,

 rn = ROW_NUMBER() OVER (

 ORDER BY T.data)

 FROM dbo.Test AS T

 JOIN RecursiveCTE AS R

 ON R.data < T.data

) AS R

 WHERE

 -- Only the row that sorts lowest

 R.rn = 1

)

SELECT

 data

FROM RecursiveCTE

OPTION (MAXRECURSION 0);

This query does compile, and produces the following post-execution plan:

Notice the Top operator in the recursive part of the execution plan (highlighted). We cannot write a T-

SQL TOP in the recursive part of a recursive common table expression, but that does not mean the

http://cdn.sqlperformance.com/wp-content/uploads/2014/10/image19.png

optimizer cannot use one! The optimizer introduces the Top based on reasoning about the number of

rows it will need to check to find the one numbered '1'.

The performance of this (non-parallel) plan is much better than the Stream Aggregate approach. It

completes in around 50 ms, with 3007 logical reads against the source table (and 6001 rows read from

the spool worktable), compared with the previous best of 1500ms (8764 ms CPU time at DOP 8) and

43,804 logical reads:

Conclusion

It is not always possible to achieve breakthroughs in query performance by considering individual query

plan elements on their own. Sometimes, we need to analyze the strategy behind the whole execution

plan, then think laterally to find a more efficient algorithm and implementation.

Multiple Plans for an “Identical” Query
By Aaron Bertrand

I often see people struggle with SQL Server when they are seeing two different execution plans for what

they believe is the same query. Usually this is discovered after other observations, such as vastly

different execution times. I say they believe it is the same query because, sometimes it is, and

sometimes it isn't.

One of the most common cases is when they are testing a query in SSMS and getting a different plan

than the one they get from their application. There are potentially two factors at play here (which could

also be relevant when the comparison is NOT between the application and SSMS):

1. The application almost always has different SET settings than SSMS (these are things like

ARITHABORT, ANSI_NULLS and QUOTED_IDENTIFIER). This forces SQL Server to store the two

plans separately; Erland Sommarskog has treated this in great detail in his article, Slow in the

Application, Fast in SSMS?

2. The parameters used by the application when its copy of the plan was first compiled could have

been very different, and led to a different plan, than those used the first time the query was run

from SSMS – this is known as parameter sniffing. Erland talks about that in depth too, and I am

not going to regurgitate his recommendations, but summarize by reminding you that testing the

application's query in SSMS is not always useful, since it's quite unlikely to be an apples-to-

apples test.

There are a couple of other scenarios that are a little more obscure that I bring up in my Bad Habits &

Best Practices talk. These are cases where the plans aren't different, but there are multiple copies of the

same plan bloating the plan cache. I thought I should mention them here because they always catch so

many people by surprise.

cAsE and whitespace are important

SQL Server hashes the query text into a binary format, which means that every single character in the

query text is crucial. Let's take the following simple queries:

USE AdventureWorks2014;

DBCC FREEPROCCACHE WITH NO_INFOMSGS;

GO

SELECT StoreID FROM Sales.Customer;

GO -- original query

GO

SELECT StoreID FROM Sales.Customer;

GO ----^---- extra space

GO

SELECT storeid FROM sales.customer;

GO ---- lower case names

GO

select StoreID from Sales.Customer;

GO ---- lower case keywords

http://sqlperformance.com/2014/11/t-sql-queries/multiple-plans-identical-query?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.sommarskog.se/query-plan-mysteries.html
http://www.sommarskog.se/query-plan-mysteries.html

GO

These generate the exact same results, obviously, and generate the exact same plan. However, if we

look at what we have in the plan cache:

SELECT t.[text], p.size_in_bytes, p.usecounts

 FROM sys.dm_exec_cached_plans AS p

 CROSS APPLY sys.dm_exec_sql_text(p.plan_handle) AS t

 WHERE LOWER(t.[text]) LIKE N'%sales'+'.'+'customer%';

The results are unfortunate:

So, in this case, it is clear that case and whitespace are very important. I talked about this in much more

detail last May.

Schema references are important

I've blogged before about the importance of specifying the schema prefix when referencing any object,

but at the time I wasn't fully aware that it also had plan cache implications as well.

Let's take a look at a very simple case where we have two users with different default schemas, and they

run the exact same query text, failing to reference the object by its schema:

USE AdventureWorks2014;

DBCC FREEPROCCACHE WITH NO_INFOMSGS;

GO

CREATE USER SQLPerf1 WITHOUT LOGIN WITH DEFAULT_SCHEMA = Sales;

CREATE USER SQLPerf2 WITHOUT LOGIN WITH DEFAULT_SCHEMA = Person;

GO

CREATE TABLE dbo.AnErrorLog(id INT);

GRANT SELECT ON dbo.AnErrorLog TO SQLPerf1, SQLPerf2;

GO

EXECUTE AS USER = N'SQLPerf1';

GO

SELECT id FROM AnErrorLog;

GO

REVERT;

http://sqlperformance.com/2013/05/t-sql-queries/another-argument-for-stored-procedures?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlblog.com/blogs/aaron_bertrand/archive/2009/10/11/bad-habits-to-kick-avoiding-the-schema-prefix.aspx
http://cdn.sqlperformance.com/wp-content/uploads/2014/11/cAsE.png

GO

EXECUTE AS USER = N'SQLPerf2';

GO

SELECT id FROM AnErrorLog;

GO

REVERT;

GO

Now, if we take a look at the plan cache, we can pull in sys.dm_exec_plan_attributes to see exactly why

we are getting two different plans for identical queries:

SELECT t.[text], p.size_in_bytes, p.usecounts,

 [schema_id] = pa.value,

 [schema] = s.name

FROM sys.dm_exec_cached_plans AS p

CROSS APPLY sys.dm_exec_sql_text(p.plan_handle) AS t

CROSS APPLY sys.dm_exec_plan_attributes(p.plan_handle) AS pa

INNER JOIN sys.schemas AS s ON s.[schema_id] = pa.value

WHERE t.[text] LIKE N'%AnError'+'Log%'

AND pa.attribute = N'user_id';

Results:

And if you run it all again but add the dbo. prefix to both queries, you will see there is only one plan that

gets used twice. This becomes a very compelling argument for always fully referencing objects.

SET settings redux

As a side note, you can use a similar approach to determine if SET settings are different for two or more

versions of the same query. In this case we are investigating the queries involved with multiple plans

generated by different calls to the same stored procedure, but you could also identify them by the query

text or query hash.

SELECT p.plan_handle, p.usecounts, p.size_in_bytes,

 set_options = MAX(a.value)

FROM sys.dm_exec_cached_plans AS p

CROSS APPLY sys.dm_exec_sql_text(p.plan_handle) AS t

CROSS APPLY sys.dm_exec_plan_attributes(p.plan_handle) AS a

WHERE t.objectid = OBJECT_ID(N'dbo.procedure_name')

AND a.attribute = N'set_options'

GROUP BY p.plan_handle, p.usecounts, p.size_in_bytes;

http://cdn.sqlperformance.com/wp-content/uploads/2014/11/prefix.png

If you have multiple results here then you should see different values for set_options (which is a

bitmask). That's just the start; I'm going to cop out here and tell you that you can determine what set of

options are enabled for each plan by unpacking the value according to the "Evaluating Set Options"

section here. Yes, I'm that lazy.

Conclusion

There are several reasons why you may see different plans for the same query (or what you think is the

same query). In most cases you can isolate the cause pretty easily; the challenge is often knowing to

look for it in the first place. In my next post, I will talk about a slightly different subject: why a database

restored to an "identical" server might yield different plans for the same query.

http://msdn.microsoft.com/en-us/library/ms189472.aspx
http://msdn.microsoft.com/en-us/library/ms189472.aspx

Different Plans for “Identical” Servers
By Aaron Bertrand

In my last post, "Multiple Plans for an 'Identical' Query," I talked about the case where you are getting

two different plans for what you think is the same query, as well as the case where you are getting two

copies of the same plan (and might not even know it). As we examined there, "identical" can be a pretty

strong word.

Another scenario that throws people for a loop is the case where they restore a database to a different

server – say, restore a production database to an "identical" test server – and they get different

performance characteristics or different plans for the same query (no quotes this time – I'm really

talking about truly identical queries).

Are the servers truly "identical"?

These guys may look similar, but they're not quite identical.

If you come across this scenario, the first thing you need to ask yourself is whether these two servers

really are identical. Some things to check:

 Version – Many optimizer and query behavior changes are pushed through service packs and

cumulative updates. Often I have seen people say, "Well, they're both 2008!" – when, in fact,

one was 2008 and the other was 2008 R2, or they were at different service packs or even

cumulative update levels. Since a lot of people reading @@VERSION mistake the operating

system service pack information for the SQL Server service pack information, I would say the

following is better:

SELECT SERVERPROPERTY(N'ProductVersion');

I can't stress enough the importance of using the exact same version to perform true, apples-to-apples

tests. If you're using SQL Server 2012 or better, you can check our build posts (SQL Server 2012 | SQL

Server 2014) to determine the service pack or cumulative update required to make sure the versions

match.

 Edition – While hopefully you are using the same edition on both servers (or equivalent, since

aside from licensing, Developer and Evaluation are the same as Enterprise), mismatches here

can lead to very different behavior. For example, different editions have different compute

capacities for various features, and then there are subtler things like the ability to use an

indexed view without the NOEXPAND hint or perform schema changes or index maintenance

online. You can compare editions using:

 SELECT SERVERPROPERTY(N'Edition');

CPU count – SQL Server definitely uses the number of schedulers available during the process of

producing an execution plan, and there is no denying that the number of cores can affect actual runtime

performance (let's leave out clock speed, since that is rarely a significant factor in query performance).

Don't just validate the number of cores physically installed in the underlying server, but also check SQL

Server's error log for the number of CPUs SQL Server can actually use due to licensing. Even forgetting

http://sqlperformance.com/2014/12/sql-plan/different-plans-identical-servers?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/11/t-sql-queries/multiple-plans-identical-query?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://blogs.sqlsentry.com/team-posts/latest-builds-sql-server-2012/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://blogs.sqlsentry.com/team-posts/latest-builds-sql-server-2014/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://blogs.sqlsentry.com/team-posts/latest-builds-sql-server-2014/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://msdn.microsoft.com/en-us/library/ms143760.aspx
http://msdn.microsoft.com/en-us/library/ms143760.aspx

raw core count, on a NUMA system, artificial restrictions here can lead to very different performance

profiles. For more information, see Brent Ozar's recent post, "Why Core-Based Licensing Matters for

Performance Tuning." Edition ties in here as well, since in SQL Server 2012 and 2014, Standard Edition

can only use 16 cores no matter what your settings or physical hardware might lead you to believe.

Other settings that can influence CPU-based plan choice and performance differently include Resource

Governor, server-wide MAXDOP, CPU affinity, and cost threshold for parallelism.

 Amount of memory – Like CPUs, the optimizer makes plan choices based on the amount of

memory available. And like CPUs, I'm not just talking about the amount of RAM installed in the

system, but the amount of memory granted to SQL Server, and how much it is truly using. Check

the max server memory settings, but also the performance counters for total and target

memory, and even DBCC MEMORYSTATUS. Other things you may want to review include

Resource Governor settings and Lock Pages in Memory. There is also a setting that, if different

between two servers, can have a significant effect on how much of the plan cache is in use for

the same set of queries: optimize for ad hoc workloads. Kimberly Tripp has a great post on this:

Plan cache and optimizing for adhoc workloads. Finally, if the server is virtual, be aware that the

environment can play a part here – especially when VM memory settings do not match

production or are dynamic.

 Buffer pool / plan cache – When you restore the database on the test server, there are a bunch

of things that simply aren't ready for you right away. The buffer pool does not contain any of the

data that may have existed in the source server – so there will be additional I/O required to

prime the data into memory the first time it's queried. And if the buffer pool is restricted

differently than production due to some of the factors above, it may not be possible to achieve

the same performance patterns even after running the query multiple times – Paul White

(@SQL_Kiwi) talks about this in his answer on Database Administrators. Also, the plan cache

won't contain any of the plans that existed in production, so at the very least – even if the same

plan ultimately gets compiled (which may not happen due to different parameters than when

the plan was compiled on the original server) – you will have additional compilation costs. And

those can change if you have any plan-affecting trace flags in place, too.

 Disk subsystem – While the speed and size of the disk(s) being used won't directly affect plan

choice, they certainly can influence observed performance, which can make you wonder why

the same query, with the same plan, runs so much faster on one system than the other. I/O is

typically SQL Server's biggest bottleneck, and it is quite rare that a test server really has the

exact same underlying subsystem as its production equivalent. So, if you are seeing performance

differences between the two systems, and the plans and other hardware elements are the

same, this might be the next best place to check. And don't forget that, as of SQL Server 2014,

Resource Governor may place constraints on your I/O performance.

 Trace flags – Check the list of global trace flags set on both servers; there are several that can

affect optimization, plan behavior, and perceived performance, even if all of the above settings

http://www.brentozar.com/archive/2014/11/core-based-licensing-matters-performance-tuning/
http://www.brentozar.com/archive/2014/11/core-based-licensing-matters-performance-tuning/
http://www.simple-talk.com/sql/database-administration/great-sql-server-debates-lock-pages-in-memory/
http://www.sqlskills.com/blogs/kimberly/plan-cache-and-optimizing-for-adhoc-workloads/
http://twitter.com/SQL_Kiwi
http://dba.stackexchange.com/a/54002/1186
http://msdn.microsoft.com/en-us/library/bb510411(v=sql.120).aspx#RG

are identical. Here are 10 common and notable ones (though this is absolutely not an

endorsement to turn any of these on without thorough regression testing):

Flag Explanation

834 Enables large pages in the buffer pool.

2301 Coerces the optimizer to spend more time trying to find an optimal plan.

2312 Forces SQL Server 2014's new cardinality estimator.

2335 Causes more conservative memory grants.

2453 Forces OPTION (RECOMPILE) for queries referencing table variables.

2861 Allows SQL Server to cache trivial / zero-cost plans.

4136 Effectively, adds OPTIMIZE FOR UNKNOWN to all queries (to thwart parameter sniffing).

4199 An umbrella containing a whole slew of optimizer fixes.

8744 Disables pre-fetching for nested loops.

9481 Turns off SQL Server 2014's new cardinality estimator.

That list of trace flags is by no means exhaustive; there are many others, including

undocumented ones I've been asked not to mention. If you are using others not listed above

(and can't explain why), you might find clues in KB #920093, KB #2964518, Trace Flags (MSDN)

or Trace Flags in SQL Server (TechNet). You will also find some valuable insight in various posts

by Paul White, either here, or over on sqlblog.com.

 Concurrency – Presumably the test system is used for things other than whatever you're

currently testing. And unless you are performing a replay of some sort, it also likely has a very

different workload profile. These differences in workload can obviously have a direct impact on

the availability of resources to service the requests you're testing, and in turn the perceived

performance of those requests. Don't forget to check for other services that may not exist in

production, or exist but are used in different ways (such as Analysis Services, Reporting Services,

Windows services, and even your own applications). Conversely there may be services like this

in production that affect performance there, or additional overhead on the instance itself that

isn't mimicked in test: aside from the actual production workload, think about things like

tracing, extended events, high-impact monitoring, change tracking, change data capture,

auditing, service broker, index maintenance, backup jobs, DBCC checks, mirroring, replication,

availability groups, and the list goes on and on…

Are the databases still "identical"?

Assuming all of the hardware and workload variables match up well enough, it can still be challenging to

ensure that the databases remain the same. If you are performing a backup / restore onto the test

system, the new database starts out as identical to the source (except for physical location and security).

http://sqlblog.com/blogs/joe_chang/archive/2013/09/17/lock-pages-in-memory-and-large-page-extensions.aspx
http://blogs.msdn.com/b/ianjo/archive/2006/04/24/582219.aspx
http://sqlperformance.com/2013/12/t-sql-queries/a-first-look-at-the-new-sql-server-cardinality-estimator?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://support.microsoft.com/kb/2413549
http://sqlperformance.com/2014/06/t-sql-queries/table-variable-perf-fix?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlmag.com/database-performance-tuning/avoid-using-trace-flag-2861-cache-zero-cost-query-plans
http://kejser.org/trace-flag-4136-2/
http://support.microsoft.com/kb/974006
http://support.microsoft.com/kb/920093
http://sqlperformance.com/2014/06/t-sql-queries/table-variable-perf-fix?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://support.microsoft.com/kb/920093
http://support.microsoft.com/kb/2964518
http://technet.microsoft.com/en-us/library/ms188396.aspx
http://social.technet.microsoft.com/wiki/contents/articles/13105.trace-flags-in-sql-server.aspx
http://sqlperformance.com/author/paulwhitenzgmail-com?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlblog.com/blogs/paul_white/default.aspx

But as soon as you start touching it in any way, it very quickly deviates from the production copy, since

you could do any or all of the following:

 Change data, schema, or both.

 Inadvertently kick off an auto-update of statistics.

 Manually add, defragment or rebuild indexes, or create or update statistics.

 Change database settings like compatibility level, isolation level, forced parameterization,

selective XML indexes, or any of the options named "Auto"-<anything>. (Heck, even data and log

file locations and growth settings can affect query performance, and this includes tempdb.)

 Empty the plan cache, the buffer pool, or both, directly or as a side effect of other events (such

as a RECONFIGURE or a service restart).

Also, once you start generating new query plans, even before any of the above changes take place, you

have to remember that they may be based on data that is different than the data used to generate plans

for the same queries in production. As an example, cardinality when the plan was compiled in

production could have skewed significantly between that point and the time of the backup, meaning the

new plan will be generated based on different statistics and histogram information.

These things diverge even further if this is not, in fact, a recent restore – but rather two schemas and

data sets you're keeping synced in other ways (such as manual deployments of schema and/or data

changes, or even replication). Due to disk space limitations, you may also have taken only a subset of

production data, or even a stats-only clone – these differences in data will almost certainly lead to

different performance characteristics for all but the simplest of queries, even if you do luck out and get

the same plans for some.

Are the queries really "identical"?

Even if everything above checks out, there are still scenarios where you are getting a different plan

because of session settings (you may be using a different copy of SSMS, with different settings, or a

different client tool altogether), or different default schemas (you may be connecting to the test server

as a different Windows or SQL auth login, for example). I talked a lot about these things in my previous

post.

Conclusion

While there are ways to mitigate some differences (check out DBCC OPTIMIZER_WHATIF for fooling your

test server into believing phenomenal things about the underlying hardware), the truth is that it is going

to be very challenging to make two servers perform reliably and consistently identical, and that there

are potentially dozens of reasons why you may get different plans or different performance on two

similar (or even identical) servers.

http://sqlperformance.com/2014/11/t-sql-queries/multiple-plans-identical-query?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/11/t-sql-queries/multiple-plans-identical-query?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.mssqltips.com/sqlservertip/3303/usage-of-dbcc-optimizerwhatif-for-sql-server-query-tuning/

Bad Habits: Counting rows the hard way
By Aaron Bertrand

[See an index of all bad habits / best practices posts]

One of the slides in my recurring Bad Habits & Best Practices presentation is entitled "Abusing

COUNT(*)." I see this abuse quite a bit out in the wild, and it takes several forms.

How many rows in the table?

I usually see this:

SELECT @count = COUNT(*) FROM dbo.tablename;

SQL Server has to run a blocking scan against the entire table in order to derive this count. That is

expensive. This information is stored in the catalog views and DMVs, and you can obtain it without all of

that I/O or blocking:

SELECT @count = SUM(p.rows)

 FROM sys.partitions AS p

 INNER JOIN sys.tables AS t

 ON p.[object_id] = t.[object_id]

 INNER JOIN sys.schemas AS s

 ON t.[schema_id] = s.[schema_id]

 WHERE p.index_id IN (0,1) -- heap or clustered index

 AND t.name = N'tablename'

 AND s.name = N'dbo';

(You can get the same information from sys.dm_db_partition_stats, but in that case change p.rows to

p.row_count (yay consistency!). In fact, this is the same view that sp_spaceused uses to derive the count

– and while it is much easier to type than the above query, I recommend against using it just to derive a

count because of all of the extra calculations it does – unless you want that information, too. Also note

that it uses metadata functions that do not obey your outer isolation level, so you could end up waiting

on blocking when you call this procedure.)

Now, it's true that these views are not 100%, to-the-microsecond accurate. Unless you're using a heap, a

more reliable result can be obtained from the sys.dm_db_index_physical_stats() column record_count

(yay consistency again!), however this function can have a performance impact, can still block, and may

be even more expensive than a SELECT COUNT(*) – it has to do the same physical operations, but has to

calculate additional information depending on the mode (such as fragmentation, which you don't care

about in this case). The warning in the documentation tells part of the story, relevant if you are using

Availability Groups (and likely affects Database Mirroring in a similar way):

If you query sys.dm_db_index_physical_stats on a server instance that is hosting an AlwaysOn readable

secondary replica, you might encounter a REDO blocking issue. This is because this dynamic

management view acquires an IS lock on the specified user table or view that can block requests by a

REDO thread for an X lock on that user table or view.

http://sqlperformance.com/2014/10/t-sql-queries/bad-habits-count-the-hard-way?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://blogs.sqlsentry.com/aaronbertrand/bad-habits-revival/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://msdn.microsoft.com/en-us/library/ms188776.aspx
http://blogs.sqlsentry.com/aaronbertrand/bad-habits-metadata-helper-functions/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://technet.microsoft.com/en-us/library/ms188917.aspx

The documentation also explains why this number might not be reliable for a heap (and also gives them

a quasi-pass for the rows vs. records inconsistency):

For a heap, the number of records returned from this function might not match the number of rows that

are returned by running a SELECT COUNT(*) against the heap. This is because a row may contain

multiple records. For example, under some update situations, a single heap row may have a forwarding

record and a forwarded record as a result of the update operation. Also, most large LOB rows are split

into multiple records in LOB_DATA storage.

So I would lean toward sys.partitions as the way to optimize this, sacrificing some marginal bit of

accuracy.

"But I can't use the DMVs; my count needs to be super accurate!"

A "super accurate" count is actually pretty meaningless. Let's consider that your only option for a "super

accurate" count is to lock the entire table and prohibit anyone from adding or deleting any rows (but

without preventing shared reads), e.g.:

SELECT @count = COUNT(*) FROM dbo.table_name WITH (TABLOCK); -- not TABLOCKX!

So, your query is humming along, scanning all of the data, working toward that "perfect" count.

Meanwhile, write requests are getting blocked, and waiting. Suddenly, when your accurate count is

returned, your locks on the table are released, and all those write requests that were queued up and

waiting, start firing off all kinds of inserts, updates and deletes against your table. How "super accurate"

is your count now? Was it worth getting an "accurate" count that is already horribly obsolete? If the

system isn't busy, then this isn't so much of an issue – but if the system isn't busy, I'd argue pretty

strongly that the DMVs will be pretty darned accurate.

You could have used NOLOCK instead, but that just means writers can change the data while you're

reading it, and leads to other problems, too (I talked about this recently). It's okay for a lot of ballparks,

but not if your goal is accuracy. The DMVs will be right on (or at least much closer) in a lot of scenarios,

and further away in very few (in fact none that I can think of).

Finally, you could use Read Committed Snapshot Isolation. Kendra Little has a fantastic post about the

snapshot isolation levels, but I'll repeat the list of caveats I mentioned in my NOLOCK article:

o Sch-S locks still need to be taken even under RCSI.

o Snapshot isolation levels use row versioning in tempdb, so you really need to test the

impact there.

o RCSI can't use efficient allocation order scans; you will see range scans instead.

o Paul White (@SQL_Kiwi) has some great posts you should read about these isolation

levels:

 Read Committed Snapshot Isolation

http://blogs.sqlsentry.com/aaronbertrand/bad-habits-nolock-everywhere/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.brentozar.com/archive/2013/01/implementing-snapshot-or-read-committed-snapshot-isolation-in-sql-server-a-guide/
http://www.brentozar.com/archive/2013/01/implementing-snapshot-or-read-committed-snapshot-isolation-in-sql-server-a-guide/
http://blogs.sqlsentry.com/aaronbertrand/bad-habits-nolock-everywhere/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://twitter.com/SQL_Kiwi
http://sqlperformance.com/2014/05/t-sql-queries/read-committed-snapshot-isolation?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

 Data Modifications under Read Committed Snapshot Isolation

 The SNAPSHOT Isolation Level

In addition, even with RCSI, getting the "accurate" count takes time (and additional resources in

tempdb). By the time the operation is finished, is the count still accurate? Only if nobody has touched

the table in the meantime. So one of the benefits of RCSI (readers don't block writers) is wasted.

How many rows match a WHERE clause?

This is a slightly different scenario – you need to know how many rows exist for a certain subset of the

table. You can't use the DMVs for this, unless the WHERE clause matches a filtered index or completely

covers an exact partition (or multiple).

If your WHERE clause is dynamic, you could use RCSI, as described above.

If your WHERE clause isn't dynamic, you could use RCSI as well, but you could also consider one of these

options:

 Filtered index – for example if you have a simple filter like is_active = 1 or status < 5, then you

could build an index like this:

CREATE INDEX ix_f ON dbo.table_name(leading_pk_column) WHERE is_active = 1;

Now, you can get pretty accurate counts from the DMVs, since there will be entries representing this

index (you just have to identify the index_id instead of relying on heap(0)/clustered index(1)). You do

need to consider some of the weaknesses of filtered indexes, however.

 Indexed view - for example if you are often counting orders by customer, an indexed view could

help (though please don't take this as a generic endorsement that "indexed views improve all

queries!"):

CREATE VIEW dbo.view_name

WITH SCHEMABINDING

AS

 SELECT

 customer_id,

 customer_count = COUNT_BIG(*)

 FROM dbo.table_name

 GROUP BY customer_id;

GO

CREATE UNIQUE CLUSTERED INDEX ix_v ON dbo.view_name(customer_id);

Now, the data in the view will be materialized, and the count is guaranteed to be synchronized with the

table data (there are a couple of obscure bugs where this is not true, such as this one with MERGE, but

generally this is reliable). So now you can get your counts per customer (or for a set of customers) by

querying the view, at a much lower query cost (1 or 2 reads):

http://sqlperformance.com/2014/05/t-sql-queries/data-modifications-under-rcsi?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/06/sql-performance/the-snapshot-isolation-level?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2013/04/t-sql-queries/filtered-indexes?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2013/02/t-sql-queries/another-merge-bug?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

SELECT customer_count FROM dbo.view_name WHERE customer_id = <x>;

 There is no free lunch, though. You need to consider the overhead of maintaining an indexed

view and the impact it will have on the write portion of your workload. If you don't run this type

of query very often, it's unlikely to be worth the trouble.

Does at least one row match a WHERE clause?

This, too, is a slightly different question. But I often see this:

IF (SELECT COUNT(*) FROM dbo.table_name WHERE <some clause>) > 0

Since you obviously don't care about the actual count, you only care if at least one row exists, I really

think you should change it to the following:

IF EXISTS (SELECT 1 FROM dbo.table_name WHERE <some clause>)

This at least has a chance of short-circuiting before the end of the table is reached, and will almost

always out-perform the COUNT variation (though there are some cases where SQL Server is smart

enough to convert IF (SELECT COUNT...) > 0 to a simpler IF EXISTS()). In the absolute worst case scenario,

where no row is found (or the first row is found on the very last page in the scan), the performance is

going to be the same.

Rewriting Queries to Improve Performance
By Paul White

In a perfect world, it would not matter which particular T-SQL syntax we chose to express a query. Any

semantically identical construction would lead to exactly the same physical execution plan, with exactly

the same performance characteristics.

To achieve that, the SQL Server query optimizer would need to know every possible logical equivalence

(assuming we could ever know them all), and be given the time and resources to explore all the options.

Given the enormous number of possible ways we can express the same requirement in T-SQL, and the

huge number of possible transformations, the combinations quickly become unmanageable for all but

the very simplest cases.

A "perfect world" with complete syntax-independence might not seem quite so perfect to users that

have to wait days, weeks, or even years for a modestly-complex query to compile. So the query

optimizer compromises: it explores some common equivalences and tries hard to avoid spending more

time on compilation and optimization than it saves in execution time. Its goal can be summarized as

trying to find a reasonable execution plan in a reasonable time, while consuming reasonable resources.

One result of all this is that execution plans are often sensitive to the written form of the query. The

optimizer does have some logic to quickly transform some widely-used equivalent constructions to a

common form, but these abilities are neither well documented nor (anywhere near) comprehensive.

We can certainly maximize our chances of getting a good execution plan by writing simpler queries,

providing useful indexes, maintaining good statistics, and confining ourselves to more relational

concepts (e.g. by avoiding cursors, explicit loops, and non-inline functions) but this is not a complete

solution. Neither is it possible to say that one T-SQL construction will always produce a better execution

plan that a semantically-identical alternative.

My usual advice is to start with the simplest relational query form that meets your needs, using

whatever T-SQL syntax you find preferable. If the query does not perform to requirements after physical

optimization (e.g. indexing), it can be worth trying to express the query in a slightly different way, while

retaining the original semantics. This is the tricky part. Which part of the query should you try to

rewrite? Which rewrite should you try? There is no simple one-size-fits-all answer to these questions.

Some of it comes down to experience, though knowing a bit about query optimization and execution

engine internals can be a useful guide as well.

Example

This example uses the AdventureWorks TransactionHistory table. The script below makes a copy of the

table and creates a clustered and non-clustered index. We will not be modifying the data at all; this step

is just to make the indexing clear (and to give the table a shorter name):

SELECT *

INTO dbo.TH

FROM Production.TransactionHistory;

CREATE UNIQUE CLUSTERED INDEX CUQ_TransactionID

http://sqlperformance.com/2014/09/sql-plan/rewriting-queries-improve-performance?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

ON dbo.TH (TransactionID);

CREATE NONCLUSTERED INDEX IX_ProductID

ON dbo.TH (ProductID);

The task is to produce a list of product and history IDs for six particular products. One way to express the

query is:

SELECT ProductID, TransactionID

FROM dbo.TH

WHERE ProductID IN (520, 723, 457, 800, 943, 360);

This query returns 764 rows using the following execution plan (shown in SQL Sentry Plan Explorer):

This simple query qualifies for TRIVIAL plan compilation. The execution plan features six separate index

seek operations in one:

Eagle-eyed readers will have noticed that the six seeks are listed in ascending product ID order, not in

the (arbitrary) order specified in the original query's IN list. Indeed, if you run the query yourself, you are

quite likely to observe results being returned in ascending product ID order. The query is not guaranteed

to return results in that order of course, because we did not specify a top-level ORDER BY clause. We can

however add such an ORDER BY clause, without changing the execution plan produced in this case:

SELECT ProductID, TransactionID

FROM dbo.TH

WHERE ProductID IN (520, 723, 457, 800, 943, 360)

ORDER BY ProductID;

I won't repeat the execution plan graphic, because it is exactly the same: the query still qualifies for a

trivial plan, the seeking operations are exactly the same, and the two plans have exactly the same

estimated cost. Adding the ORDER BY clause cost us precisely nothing, but gained us a guarantee of

result set ordering.

http://www.sqlsentry.com/products/plan-explorer/sql-server-query-view?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlblog.com/blogs/paul_white/archive/2011/02/16/when-is-a-seek-not-a-seek.aspx
http://sqlblog.com/blogs/paul_white/archive/2011/02/16/when-is-a-seek-not-a-seek.aspx

We now have a guarantee that results will be returned in product ID order, but our query does not

currently specify how rows with the same product ID will be ordered. Looking at the results, you might

observe that rows for the same product ID appear to be ordered by transaction ID, ascending.

Without an explicit ORDER BY, this is just another observation (i.e. we cannot rely on this ordering), but

we can modify the query to ensure rows are ordered by transaction ID within each product ID:

SELECT ProductID, TransactionID

FROM dbo.TH

WHERE ProductID IN (520, 723, 457, 800, 943, 360)

ORDER BY ProductID, TransactionID;

Again, the execution plan for this query is exactly the same as before; the same trivial plan with the

same estimated cost is produced. The difference is that the results are now guaranteed to be ordered

first by product ID and then by transaction ID.

Some people might be tempted to conclude that the two previous queries would also always return

rows in this order, because the execution plans are the same. This is not a safe implication, because not

all execution engine details are exposed in execution plans (even in the XML form). Without an explicit

order by clause, SQL Server is free to return the rows in any order, even if the plan looks the same to us

(it could, for example, perform the seeks in the order specified in the query text). The point is the query

optimizer knows about, and can enforce, certain behaviours within the engine that are not visible to

users.

In case you are wondering how our non-unique nonclustered index on Product ID can return rows in

Product and Transaction ID order, the answer is that the nonclustered index key incorporates

Transaction ID (the unique clustered index key). In fact, the physical structure of our nonclustered index

is exactly the same, at all levels, as if we had created the index with the following definition:

CREATE UNIQUE NONCLUSTERED INDEX IX_ProductID

ON dbo.TH (ProductID, TransactionID);

We can even write the query with an explicit DISTINCT or GROUP BY and still get exactly the same

execution plan:

SELECT DISTINCT ProductID, TransactionID

FROM dbo.TH

WHERE ProductID IN (520, 723, 457, 800, 943, 360)

ORDER BY ProductID, TransactionID;

To be clear, this does not require changing the original nonclustered index in any way. As a final

example, note that we can also request results in descending order:

SELECT DISTINCT ProductID, TransactionID

FROM dbo.TH

WHERE ProductID IN (520, 723, 457, 800, 943, 360)

ORDER BY ProductID DESC, TransactionID DESC;

The execution plan properties now show that the index is scanned backward:

Aside from that, the plan is the same – it was produced at the trivial plan optimization stage, and still

has the same estimated cost.

Rewriting the query

There is nothing wrong with the previous query or execution plan, but we might have chosen to express

the query differently:

SELECT ProductID, TransactionID

FROM dbo.TH

WHERE ProductID = 520

OR ProductID = 723

OR ProductID = 457

OR ProductID = 800

OR ProductID = 943

OR ProductID = 360;

Clearly this form specifies exactly the same results as the original, and indeed the new query produces

the same execution plan (trivial plan, multiple seek in one, same estimated cost). The OR form does

perhaps make it slightly clearer that the result is a combination of the results for the six individual

product IDs, which might lead us to try another variation that makes this idea even more explicit:

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 520

UNION ALL

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 723

UNION ALL

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 457

UNION ALL

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 800

UNION ALL

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 943

UNION ALL

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 360;

The execution plan for the UNION ALL query is quite different:

Aside from the obvious visual differences, this plan required cost-based (FULL) optimization (it did not

qualify for a trivial plan), and the estimated cost is (relatively speaking) quite a bit higher, around 0.02

units versus around 0.005 units before.

This goes back to my opening remarks: the query optimizer does not know about every logical

equivalence, and cannot always recognize alternative queries as specifying the same results. The point I

am making at this stage is that expressing this particular query using UNION ALL rather than IN resulted

in a less optimal execution plan.

Second example

This example chooses a different set of six product IDs and requests results in transaction ID order:

SELECT ProductID, TransactionID

FROM dbo.TH

WHERE ProductID IN (870, 873, 921, 712, 707, 711)

ORDER BY TransactionID;

Our nonclustered index cannot provide rows in the requested order, so the query optimizer has a choice

to make between seeking on the nonclustered index and sorting, or scanning the clustered index (which

is keyed on transaction ID alone) and applying the product ID predicates as a residual. The product IDs

listed happen to have a lower selectivity than the previous set, so the optimizer chooses a clustered

index scan in this case:

Because there is a cost-based choice to make, this execution plan did not qualify for a trivial plan. The

estimated cost of the final plan is about 0.714 units. Scanning the clustered index requires 797 logical

reads at execution time.

Perhaps being surprised that the query did not use the product index, we might try forcing a seek of the

nonclustered index using an index hint, or by specifying FORCESEEK:

SELECT ProductID, TransactionID

FROM dbo.TH WITH (FORCESEEK)

WHERE ProductID IN (870, 873, 921, 712, 707, 711)

ORDER BY TransactionID;

This results in an explicit sort by transaction ID. The new sort is estimated to make up 96% of the new

plan's 1.15 unit cost. This higher estimated cost explains why the optimizer chose the apparently-

cheaper clustered index scan when left to its own devices. The I/O cost of the new query is lower

though: when executed, the index seek consumes only 49 logical reads (down from 797).

We might also have chosen to express this query using (the previously unsuccessful) UNION ALL idea:

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 870

UNION ALL

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 873

UNION ALL

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 921

UNION ALL

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 712

UNION ALL

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 707

UNION ALL

SELECT ProductID, TransactionID FROM dbo.TH WHERE ProductID = 711

ORDER BY TransactionID;

The produces the following execution plan (click the image to enlarge in a new window):

This plan may seem more complex, but it has an estimated cost of only 0.099 units, which is much lower

than the clustered index scan (0.714 units) or seek plus sort (1.15 units). In addition, the new plan

consumes only 49 logical reads at execution time – the same as the seek + sort plan, and much lower

than the 797 needed for the clustered index scan.

This time, expressing the query using UNION ALL produced a much better plan, both in terms of

estimated cost and logical reads. The source data set is a bit too small to make a truly meaningful

comparison between query durations or CPU usage, but the clustered index scan takes twice as long

(26ms) as the other two on my system.

The extra sort in the hinted plan is probably harmless in this simple example because it is unlikely to spill

to disk, but many people will prefer the UNION ALL plan anyway because it is non-blocking, avoids a

memory grant, and does not require a query hint.

Conclusion

We have seen that query syntax can affect the execution plan chosen by the optimizer, even though the

queries logically specify exactly the same result set. The same rewrite (e.g. UNION ALL) will sometimes

result in an improvement, and sometimes cause a worse plan to be selected.

Rewriting queries and trying alternate syntax is a valid tuning technique, but some care is needed. One

risk is that future changes to the product might cause the different query form to suddenly stop

producing the better plan, but one could argue that is always a risk, and mitigated by pre-upgrade

testing or the use of plan guides.

There is also a risk of getting carried away with this technique: using 'weird' or 'unusual' query

constructions to obtain a better-performing plan is often a sign that a line has been crossed. Exactly

where the distinction lies between valid alternate syntax and 'unusual/weird' is probably quite

subjective; my own personal guide is to work with equivalent relational query forms, and to keep things

as simple as possible.

http://cdn.sqlperformance.com/wp-content/uploads/2014/08/image8.png

Pagination with OFFSET/FETCH: A Better Way
By Aaron Bertrand

Pagination is a common use case throughout client and web applications everywhere. Google shows you

10 results at a time, your online bank may show 20 bills per page, and bug tracking and source control

software might display 50 items on the screen.

Based on the indexing of the table, the columns needed, and the sort method chosen, paging can be

relatively painless. If you're looking for the "first" 20 customers and the clustered index supports that

sorting (say, a clustered index on an IDENTITY column or DateCreated column), then the query is going

to be pretty efficient. If you need to support sorting that requires non-clustered indexes, and especially

if you have columns needed for output that aren't covered by the index (never mind if there is no

supporting index), the queries can get more expensive. And even the same query (with a different

@PageNumber parameter) can get much more expensive as the @PageNumber gets higher – since

more reads may be required to get to that "slice" of the data.

Some will say that progressing toward the end of the set is something that you can solve by throwing

more memory at the problem (so you eliminate any physical I/O) and/or using application-level caching

(so you're not going to the database at all). Let's assume for the purposes of this post that more memory

isn't always possible, since not every customer can add RAM to a server that's out of memory slots, or

just snap their fingers and have newer, bigger servers ready to go. Especially since some customers are

on Standard Edition, so are capped at 64GB (SQL Server 2012) or 128GB (SQL Server 2014), or are using

even more limited editions such as Express (1GB) or whatever they're calling Azure SQL Database this

week (many different servicing tiers).

So I wanted to look at the common paging approach on SQL Server 2012 – OFFSET / FETCH – and

suggest a variation that will lead to more linear paging performance across the entire set, instead of only

being optimal at the beginning. Which, sadly, is all that a lot of shops will test.

Setup

I'm going to borrow from a recent post, Bad habits : Focusing only on disk space when choosing keys,

where I populated the following table with 1,000,000 rows of random-ish (but not entirely realistic)

customer data:

CREATE TABLE [dbo].[Customers_I]

(

 [CustomerID] [int] IDENTITY(1,1) NOT NULL,

 [FirstName] [nvarchar](64) NOT NULL,

 [LastName] [nvarchar](64) NOT NULL,

 [EMail] [nvarchar](320) NOT NULL,

 [Active] [bit] NOT NULL DEFAULT ((1)),

 [Created] [datetime] NOT NULL DEFAULT (sysdatetime()),

 [Updated] [datetime] NULL,

 CONSTRAINT [C_PK_Customers_I] PRIMARY KEY CLUSTERED ([CustomerID] ASC)

);

GO

CREATE NONCLUSTERED INDEX [C_Active_Customers_I]

http://sqlperformance.com/2015/01/sql-indexes/bad-habits-disk-space?gws_rd=ssl&utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

 ON [dbo].[Customers_I]

 ([FirstName] ASC, [LastName] ASC, [EMail] ASC)

 WHERE ([Active] = 1);

GO

CREATE UNIQUE NONCLUSTERED INDEX [C_Email_Customers_I]

 ON [dbo].[Customers_I]

 ([EMail] ASC);

GO

CREATE NONCLUSTERED INDEX [C_Name_Customers_I]

 ON [dbo].[Customers_I]

 ([LastName] ASC, [FirstName] ASC)

 INCLUDE ([EMail]);

GO

Since I knew I would be testing I/O here, and would be testing from both a warm and cold cache, I made

the test at least a little bit more fair by rebuilding all of the indexes to minimize fragmentation (as would

be done less disruptively, but regularly, on most busy systems that are performing any type of index

maintenance):

ALTER INDEX ALL ON dbo.Customers_I REBUILD WITH (ONLINE = ON);

After the rebuild, fragmentation comes in now at 0.05% – 0.17% for all indexes (index level = 0), pages

are filled over 99%, and the row count / page count for the indexes are as follows:

Index Page Count Row Count

C_PK_Customers_I (clustered index) 19,210 1,000,000

C_Email_Customers_I 7,344 1,000,000

C_Active_Customers_I (filtered index) 13,648 815,235

C_Name_Customers_I 16,824 1,000,000

Indexes, page counts, row counts

This obviously isn't a super-wide table, and I've left compression out of the picture this time. Perhaps I

will explore more configurations in a future test.

Paging Scenarios

Typically, users will formulate a paging query like this (I'm going to leave the old-school, pre-2012

methods out of this post):

SELECT [a_bunch_of_columns]

 FROM dbo.[some_table]

 ORDER BY [some_column_or_columns]

 OFFSET @PageSize * (@PageNumber - 1) ROWS

 FETCH NEXT @PageSize ROWS ONLY;

As I mentioned above, this works just fine if there is an index that supports the ORDER BY and that

covers all of the columns in the SELECT clause (and, for more complex queries, the WHERE and JOIN

clauses). However, the sort costs might be overwhelming with no supporting index, and if the output

columns aren't covered, you will either end up with a whole bunch of key lookups, or you may even get

a table scan in some scenarios.

Let's get more specific. Given the table and indexes above, I wanted to test these scenarios, where we

want to show 100 rows per page, and output all of the columns in the table:

1. Default – ORDER BY CustomerID (clustered index).

2. Phone book – ORDER BY LastName, FirstName (supporting non-clustered index).

3. User-defined – ORDER BY FirstName DESC, EMail (no supporting index).

I wanted to test these methods and compare plans and metrics when – under both warm cache and cold

cache scenarios – looking at page 1, page 500, page 5,000, and page 9,999. So I created these

procedures (differing only by the ORDER BY clause):

CREATE PROCEDURE dbo.Pagination_Test_1 -- ORDER BY CustomerID

 @PageNumber INT = 1,

 @PageSize INT = 100

AS

BEGIN

 SET NOCOUNT ON;

 SELECT CustomerID, FirstName, LastName,

 EMail, Active, Created, Updated

 FROM dbo.Customers_I

 ORDER BY CustomerID

 OFFSET @PageSize * (@PageNumber - 1) ROWS

 FETCH NEXT @PageSize ROWS ONLY OPTION (RECOMPILE);

END

GO

CREATE PROCEDURE dbo.Pagination_Test_2 -- ORDER BY LastName, FirstName

CREATE PROCEDURE dbo.Pagination_Test_3 -- ORDER BY FirstName DESC, EMail

In reality, you will probably just have one procedure that either uses dynamic SQL or a CASE expression

to dictate the order. In either case, you may see best results by using OPTION (RECOMPILE) on the query

to avoid reuse of plans that are optimal for one sorting option but not all. I created separate procedures

here to take those variables away; I added OPTION (RECOMPILE) for these tests to stay away from

parameter sniffing and other optimization issues without flushing the entire plan cache repeatedly.

An alternate approach

A slightly different approach, which I don't see implemented very often, is to locate the "page" we're on

using only the clustering key, and then join to that:

;WITH pg AS

(

 SELECT [key_column]

 FROM dbo.[some_table]

 ORDER BY [some_column_or_columns]

 OFFSET @PageSize * (@PageNumber - 1) ROWS

 FETCH NEXT @PageSize ROWS ONLY

)

SELECT t.[bunch_of_columns]

 FROM dbo.[some_table] AS t

 INNER JOIN pg ON t.[key_column] = pg.[key_column] -- or EXISTS

 ORDER BY [some_column_or_columns];

It's more verbose code, of course, but hopefully it's clear what SQL Server can be coerced into doing:

avoiding a scan, or at least deferring lookups until a much smaller resultset is whittled down. Paul White

(@SQL_Kiwi) investigated a similar approach back in 2010, before OFFSET/FETCH was introduced in the

early SQL Server 2012 betas (I first blogged about it later that year).

Given the scenarios above, I created three more procedures, with the only difference between the

column(s) specified in the ORDER BY clauses (we now need two, one for the page itself, and one for

ordering the result):

CREATE PROCEDURE dbo.Alternate_Test_1 -- ORDER BY CustomerID

 @PageNumber INT = 1,

 @PageSize INT = 100

AS

BEGIN

 SET NOCOUNT ON;

 ;WITH pg AS

 (

 SELECT CustomerID

 FROM dbo.Customers_I

 ORDER BY CustomerID

 OFFSET @PageSize * (@PageNumber - 1) ROWS

 FETCH NEXT @PageSize ROWS ONLY

)

 SELECT c.CustomerID, c.FirstName, c.LastName,

 c.EMail, c.Active, c.Created, c.Updated

 FROM dbo.Customers_I AS c

 WHERE EXISTS (SELECT 1 FROM pg WHERE pg.CustomerID = c.CustomerID)

 ORDER BY c.CustomerID OPTION (RECOMPILE);

END

GO

http://twitter.com/SQL_Kiwi
http://www.sqlservercentral.com/articles/paging/69892/
http://sqlblog.com/blogs/aaron_bertrand/archive/2010/11/10/sql-server-11-denali-using-the-offset-clause.aspx

CREATE PROCEDURE dbo.Alternate_Test_2 -- ORDER BY LastName, FirstName

CREATE PROCEDURE dbo.Alternate_Test_3 -- ORDER BY FirstName DESC, EMail

Note: This may not work so well if your primary key is not clustered – part of the trick that makes this

work better, when a supporting index can be used, is that the clustering key is already in the index, so a

lookup is often avoided.

Testing the clustering key sort

First I tested the case where I didn't expect much variance between the two methods – sorting by the

clustering key. I ran these statements in a batch in SQL Sentry Plan Explorer and observed duration,

reads, and the graphical plans, making sure that each query was starting from a completely cold cache:

SET NOCOUNT ON;

-- default method

DBCC DROPCLEANBUFFERS;

EXEC dbo.Pagination_Test_1 @PageNumber = 1;

DBCC DROPCLEANBUFFERS;

EXEC dbo.Pagination_Test_1 @PageNumber = 500;

DBCC DROPCLEANBUFFERS;

EXEC dbo.Pagination_Test_1 @PageNumber = 5000;

DBCC DROPCLEANBUFFERS;

EXEC dbo.Pagination_Test_1 @PageNumber = 9999;

-- alternate method

DBCC DROPCLEANBUFFERS;

EXEC dbo.Alternate_Test_1 @PageNumber = 1;

DBCC DROPCLEANBUFFERS;

EXEC dbo.Alternate_Test_1 @PageNumber = 500;

DBCC DROPCLEANBUFFERS;

EXEC dbo.Alternate_Test_1 @PageNumber = 5000;

DBCC DROPCLEANBUFFERS;

EXEC dbo.Alternate_Test_1 @PageNumber = 9999;

The results here were not astounding. Over 5 executions the average number of reads are shown here,

showing negligible differences between the two queries, across all page numbers, when sorting by the

clustering key:

The plan for the default method (as shown in SQL Sentry Plan Explorer) in all cases was as follows:

While the plan for the CTE-based method looked like this:

Now, while I/O was the same regardless of caching (just a lot more read-ahead reads in the cold cache

scenario), I measured the duration with a cold cache and also with a warm cache (where I commented

out the DROPCLEANBUFFERS commands and ran the queries multiple times before measuring). These

durations looked like this:

http://www.sqlsentry.com/products/plan-explorer/sql-server-query-view?gws_rd=ssl&utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2015/01/pag_reads_ck.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/01/paging_plan_1_def.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/01/paging_plan_1_alt.png

While you can see a pattern that shows duration increasing as the page number gets higher, keep the

scale in mind: to hit rows 999,801 -> 999,900, we're talking half a second in the worst case and 118

milliseconds in the best case. The CTE approach wins, but not by a whole lot.

Testing the phone book sort

Next, I tested the second case, where the sorting was supported by a non-covering index on LastName,

FirstName. The query above just changed all instances of Test_1 to Test_2. Here were the reads using a

cold cache:

(The reads under a warm cache followed the same pattern – the actual numbers differed slightly, but

not enough to justify a separate chart.)

http://cdn.sqlperformance.com/wp-content/uploads/2015/01/pag_ck_dur.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/01/pag_reads_pb.png

When we're not using the clustered index to sort, it is clear that the I/O costs involved with the

traditional method of OFFSET/FETCH are far worse than when identifying the keys first in a CTE, and

pulling the rest of the columns just for that subset.

Here is the plan for the traditional query approach:

And the plan for my alternate, CTE approach:

Finally, the durations:

http://cdn.sqlperformance.com/wp-content/uploads/2015/01/paging_plan_2_def.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/01/paging_plan_2_alt.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/01/pag_pb_dur.png

The traditional approach shows a very obvious upswing in duration as you march toward the end of the

pagination. The CTE approach also shows a non-linear pattern, but it is far less pronounced and yields

better timing at every page number. We see 117 milliseconds for the second-to-last page, versus the

traditional approach coming in at almost two seconds.

Testing the user-defined sort

Finally, I changed the query to use the Test_3 stored procedures, testing the case where the sort was

defined by the user and did not have a supporting index. The I/O was consistent across each set of tests;

the graph is so uninteresting, I'm just going to link to it. Long story short: there were a little over 19,000

reads in all tests. The reason is because every single variation had to perform a full scan due to the lack

of an index to support the ordering. Here is the plan for the traditional approach:

And while the plan for the CTE version of the query looks alarmingly more complex…

…it actually leads to lower durations in all but one case. Here are the durations:

http://cdn.sqlperformance.com/wp-content/uploads/2015/01/pag_reads_un.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/01/paging_plan_3_def.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/01/paging_plan_3_alt.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/01/pag_un_dur.png

You can see that we can't get linear performance here using either method, but the CTE does come out

on top by a good margin (anywhere from 16% to 65% better) in every single case except the cold cache

query against the first page (where it lost by a whopping 8 milliseconds). Also interesting to note that

the traditional method isn't helped much at all by a warm cache in the "middle" (pages 500 and 5000);

only toward the end of the set is any efficiency worth mentioning.

Higher volume

After individual testing of a few executions and taking averages, I thought it would also make sense to

test a high volume of transactions that would somewhat simulate real traffic on a busy system. So I

created a job with 6 steps, one for each combination of query method (traditional paging vs. CTE) and

sort type (clustering key, phone book, and unsupported), with a 100-step sequence of hitting the four

page numbers above, 10 times each, and 60 other page numbers chosen at random (but the same for

each step). Here is how I generated the job creation script:

SET NOCOUNT ON;

DECLARE @sql NVARCHAR(MAX), @job SYSNAME = N'Paging Test', @step SYSNAME, @command

NVARCHAR(MAX);

;WITH t10 AS (SELECT TOP (10) number FROM master.dbo.spt_values),

f AS (SELECT f FROM (VALUES(1),(500),(5000),(9999)) AS f(f))

SELECT @sql = STUFF((SELECT CHAR(13) + CHAR(10)

 + N'EXEC dbo.p_Test_v @PageNumber = ' + RTRIM(f) + ';'

 FROM

 (

 SELECT f FROM

 (

 SELECT f.f FROM t10 CROSS JOIN f

 UNION ALL

 SELECT TOP (60) f = ABS(CHECKSUM(NEWID())) % 10000

 FROM sys.all_objects

) AS x

) AS y ORDER BY NEWID()

 FOR XML PATH(''),TYPE).value(N'.[1]','nvarchar(max)'),1,0,'');

IF EXISTS (SELECT 1 FROM msdb.dbo.sysjobs WHERE name = @job)

BEGIN

 EXEC msdb.dbo.sp_delete_job @job_name = @job;

END

EXEC msdb.dbo.sp_add_job

 @job_name = @job,

 @enabled = 0,

 @notify_level_eventlog = 0,

 @category_id = 0,

 @owner_login_name = N'sa';

EXEC msdb.dbo.sp_add_jobserver

 @job_name = @job,

 @server_name = N'(local)';

DECLARE c CURSOR LOCAL FAST_FORWARD FOR

SELECT step = p.p + '_' + v.v,

 command = REPLACE(REPLACE(@sql, N'p', p.p), N'v', v.v)

 FROM

 (SELECT v FROM (VALUES('1'),('2'),('3')) AS v(v)) AS v

 CROSS JOIN

 (SELECT p FROM (VALUES('Alternate'),('Pagination')) AS p(p)) AS p

 ORDER BY p.p, v.v;

OPEN c; FETCH c INTO @step, @command;

WHILE @@FETCH_STATUS <> -1

BEGIN

 EXEC msdb.dbo.sp_add_jobstep

 @job_name = @job,

 @step_name = @step,

 @command = @command,

 @database_name = N'IDs',

 @on_success_action = 3;

 FETCH c INTO @step, @command;

END

EXEC msdb.dbo.sp_update_jobstep

 @job_name = @job,

 @step_id = 6,

 @on_success_action = 1; -- quit with success

PRINT N'EXEC msdb.dbo.sp_start_job @job_name = ''' + @job + ''';';

Here is the resulting job step list and one of the step's properties:

I ran the job five times, then reviewed the job history, and here were the average runtimes of each step:

I also correlated one of the executions on the SQL Sentry Event Manager calendar…

http://www.sqlsentry.com/products/event-manager/sql-server-job-schedule-alert-management?gws_rd=ssl&utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2015/01/paging_job.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/01/paging_job_runtimes.png

…with the SQL Sentry Performance Advisor dashboard, and manually marked roughly where each of the

six steps ran. Here is the CPU usage chart from the Windows side of the dashboard:

And from the SQL Server side of the dashboard, the interesting metrics were in the Key Lookups and

Waits graphs:

http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?gws_rd=ssl&utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2015/01/paging_em.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/01/pag_dash_cpu1.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/01/pag_dash_wait1.png

The most interesting observations just from a purely visual perspective:

 CPU is pretty hot, at around 80%, during step 3 (CTE + no supporting index) and step 6

(traditional + no supporting index);

 CXPACKET waits are relatively high during step 3 and to a lesser extent during step 6;

 you can see the massive jump in key lookups, to almost 600,000, in about a one-minute span

(correlating to step 5 – the traditional approach with a phone book-style index).

In a future test – as with my previous post on GUIDs – I'd like to test this on a system where the data

doesn't fit into memory (easy to simulate) and where the disks are slow (not so easy to simulate), since

some of these results probably do benefit from things not eveyr production system has – fast disks and

sufficient RAM. I also should expand the tests to include more variations (using skinny and wide

columns, skinny and wide indexes, a phone book index that actually covers all of the output columns,

and sorting in both directions). Scope creep definitely limited the extent of my testing for this first set of

tests.

Conclusion

Pagination doesn't always have to be painful; SQL Server 2012 certainly makes the syntax easier, but if

you just plug the native syntax in, you might not always see a great benefit. Here I have shown that

slightly more verbose syntax using a CTE can lead to much better performance in the best case, and

arguably negligible performance differences in the worst case. By separating data location from data

retrieval into two different steps, we can see a tremendous benefit in some scenarios, outside of higher

CXPACKET waits in one case (and even then, the parallel queries finished faster than the other queries

displaying little or no waits, so they were unlikely to be the "bad" CXPACKET waits everyone warns you

about).

Still, even the faster method is slow when there is no supporting index. While you may be tempted to

implement an index for every possible sorting algorithm a user might choose, you may want to consider

providing fewer options (since we all know that indexes aren't free). For example, does your application

absolutely need to support sorting by LastName ascending *and* LastName descending? If they want to

go directly to the customers whose last names start with Z, can't they go to the *last* page and work

backward? That's a business and usability decision more than a technical one, just keep it as an option

before slapping indexes on every sort column, in both directions, in order to get the best performance

for even the most obscure sorting options.

The Read Uncommitted Isolation Level
By Paul White

Read uncommitted is the weakest of the four transaction isolation levels defined in the SQL Standard

(and of the six implemented in SQL Server). It allows all three so-called "concurrency phenomena", dirty

reads, non-repeatable reads, and phantoms:

Most database people are aware of these phenomena, at least in outline, but not everyone realises that

they do not fully describe the isolation guarantees on offer; nor do they intuitively describe the different

behaviours one can expect in a specific implementation like SQL Server. More on that later.

Transaction Isolation – the 'I' in ACID

Every SQL command executes within a transaction (explicit, implicit, or auto-commit). Every transaction

has an associated isolation level, which determines how isolated it is from the effects of other

concurrent transactions. This somewhat technical concept has important implications for the way

queries execute and the quality of the results they produce.

Consider a simple query that counts all the rows in a table. If this query could be executed

instantaneously (or with zero concurrent data modifications), there could be only one correct answer:

the number of rows physically present in the table at that moment in time. In reality, executing the

query will take a certain amount of time, and the result will depend on how many rows the execution

engine actually encounters as it traverses whatever physical structure is chosen to access the data.

If rows are being added to (or deleted from) the table by concurrent transactions while the counting

operation is in progress, different results might be obtained depending on whether the row-counting

transaction encounters all, some, or none of those concurrent changes – which in turn depends on the

isolation level of the row-counting transaction.

Depending on isolation level, physical details, and timing of the concurrent operations, our counting

transaction could even produce a result that was never a true reflection of the committed state of the

table at any point of time during the transaction.

Example

http://sqlperformance.com/2015/04/t-sql-queries/the-read-uncommitted-isolation-level?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://en.wikipedia.org/wiki/Isolation_%28database_systems%29#Read_phenomena
http://technet.microsoft.com/en-us/library/ms175127.aspx
http://technet.microsoft.com/en-us/library/ms188317.aspx
http://technet.microsoft.com/en-us/library/ms187878.aspx

Consider a row-counting transaction that starts at time T1, and scans the table from start to end (in

clustered index key order, for the sake of argument). At that moment, there are 100 committed rows in

the table. Some time later (at time T2), our counting transaction has encountered 50 of those rows. At

the same moment, a concurrent transaction inserts two rows to the table, and commits a short time

later at time T3 (before the counting transaction ends). One of the inserted rows happens to fall within

the half of the clustered index structure that our counting transaction has already processed, while the

other inserted row sits in the uncounted portion.

When the row-counting transaction completes, it will report 101 rows in this scenario; 100 rows initially

in the table plus the single inserted row that was encountered during the scan. This result is at odds with

the committed history of the table: there were 100 committed rows at times T1 and T2, then 102

committed rows at time T3. There was never a time when there were 101 committed rows.

The surprising thing (perhaps, depending on how deeply you have thought about these things before) is

that this result is possible at the default (locking) read committed isolation level, and even under

repeatable read isolation. Both those isolation levels are guaranteed to read only committed data, yet

we obtained a result that represents no committed state of the database!

Analysis

The only transaction isolation level that provides complete isolation from concurrency effects is

serializable. The SQL Server implementation of the serializable isolation level means a transaction will

see the latest committed data, as of the moment that the data was first locked for access. In addition,

the set of data encountered under serializable isolation is guaranteed not to change its membership

before the transaction ends.

The row-counting example highlights a fundamental aspect of database theory: we need to be clear

about what a "correct" result means for a database that experiences concurrent modifications, and we

need to understand the trade-offs we are making when selecting an isolation level lower than

serializable.

If we need a point-in-time view of the committed state of the database, we should use snapshot

isolation (for transaction-level guarantees) or read committed snapshot isolation (for statement-level

guarantees). Note though that a point-in-time view means we are not necessarily operating on the

current committed state of the database; in effect, we may be using out-of-date information. On the

other hand, if we are happy with results based on committed data only (albeit possibly from different

points in time), we could choose to stick with the default locking read committed isolation level.

To be sure of producing results (and making decisions!) based on the latest set of committed data, for

some serial history of operations against the database, we would need serializable transaction isolation.

Of course this option is typically the most expensive in terms of resource use and lowered concurrency

(including a heightened risk of deadlocks).

In the row-counting example, both snapshot isolation levels (SI and RCSI) would give a result of 100

rows, representing the count of committed rows at the start of the statement (and transaction in this

case). Running the query at locking read committed or repeatable read isolation could produce a result

of 100, 101, or 102 rows – depending on timing, lock granularity, row insert position, and the physical

http://sqlperformance.com/2014/04/t-sql-queries/the-serializable-isolation-level?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/06/sql-performance/the-snapshot-isolation-level?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/06/sql-performance/the-snapshot-isolation-level?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/05/t-sql-queries/read-committed-snapshot-isolation?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/04/t-sql-queries/the-read-committed-isolation-level?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

access method chosen. Under serializable isolation, the result would be either 100 or 102 rows,

depending on which of the two concurrent transactions is considered to have executed first.

How Bad Is Read Uncommitted?

Having introduced read uncommitted isolation as the weakest of the available isolation levels, you

should be expecting it to offer even lower isolation guarantees than locking read committed (the next

highest isolation level). Indeed it does; but the question is: how much worse than locking read

committed isolation is it?

So that we start with the correct context, here is a list of the main concurrency effects that can be

experienced under the SQL Server default locking read committed isolation level:

 Missing committed rows

 Rows encountered multiple times

 Different versions of the same row encountered in a single statement/query plan

 Committed column data from different points in time in the same row (example)

These concurrency effects are all due to the locking implementation of read committed only taking very

short-term shared locks when reading data. The read uncommitted isolation level goes one step further,

by not taking shared locks at all, resulting in the additional possibility of "dirty reads."

Dirty Reads

As a quick reminder, a "dirty read" refers to reading data that is being changed by another concurrent

transaction (where "change" incorporates insert, update, delete, and merge operations). Put another

way, a dirty read occurs when a transaction reads data that another transaction has modified, before

the modifying transaction has committed or aborted those changes.

Advantages and Disadvantages

The primary advantages of read uncommitted isolation are the reduced potential for blocking and

deadlocking due to incompatible locks (including unnecessary blocking due to lock escalation), and

possibly increased performance (by avoiding the need to acquire and release shared locks).

The most obvious potential drawback of read uncommitted isolation is (as the name suggests) that we

might read uncommitted data (even data that is never committed, in the case of a transaction rollback).

In a database where rollbacks are relatively rare, the question of reading uncommitted data might be

seen as a mere timing issue, since the data in question will surely be committed at some stage, and

probably quite soon. We have already seen timing-related inconsistencies in the row-counting example

(which was operating at a higher isolation level) so one might well question how much of a concern it is

to read data "too soon."

Clearly the answer depends on local priorities and context, but an informed decision to use read

uncommitted isolation certainly seems possible. There is more to think about though. The SQL Server

implementation of the read uncommitted isolation level includes some subtle behaviours that we need

to be aware of before making that "informed choice."

http://sqlperformance.com/2014/04/t-sql-queries/the-read-committed-isolation-level?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://blogs.msdn.com/b/craigfr/archive/2007/05/02/query-plans-and-read-committed-isolation-level.aspx
http://technet.microsoft.com/en-us/library/ms186396.aspx

Allocation Order Scans

Using read uncommitted isolation is taken by SQL Server as a signal that we are prepared to accept the

inconsistencies that might arise as the result of an allocation-ordered scan.

Ordinarily, the storage engine can only choose an allocation-ordered scan if the underlying data is

guaranteed not to change during the scan (because, for example, the database is read-only, or a table

locking hint was specified). However, when read uncommitted isolation is in use, the storage engine

may still choose an allocation-ordered scan even where the underlying data might be modified by

concurrent transactions.

In these circumstances, the allocation-ordered scan can miss some committed data completely, or

encounter other committed data more than once. The emphasis there is on missing or double-counting

committed data (not reading uncommitted data) so it is not a case of "dirty reads" as such. This design

decision (to allow allocation-ordered scans under read uncommitted isolation) is seen by some people

as rather controversial.

As a caveat, I should be clear that the more general risk of missing or double-counting committed rows

is not confined to read uncommitted isolation. It is certainly possible to see similar effects under locking

read committed and repeatable read (as we saw earlier) but this occurs via a different mechanism.

Missing committed rows or encountering them multiple times due to an allocation-ordered scan over

changing data is specific to using read uncommitted isolation.

Reading "Corrupt" Data

Results that seem to defy logic (and even check constraints!) are possible under locking read committed

isolation (again, see this article by Craig Freedman for some examples). To summarize, the point is that

locking read committed can see committed data from different points in time – even for a single row if,

for example, the query plan uses techniques like index intersection.

These results may be unexpected, but they are completely in-line with the guarantee to only read

committed data. There is just no getting away from the fact that higher data consistency guarantees

require higher isolation levels.

Those examples may even be quite shocking, if you have not seen them before. The same outcomes are

possible under read uncommitted isolation, of course, but allowing dirty reads adds an extra dimension:

the results may include committed and uncommitted data from different points in time, even for the

same row.

Going further, it is even possible for a read uncommitted transaction to read a single column value in a

mixed state of committed and uncommitted data. This can occur when reading a LOB value (for

example, xml, or any of the 'max' types) if the value is stored across multiple data pages. An

uncommitted read can encounter committed or uncommitted data from different points in time on

different pages, resulting in a final single-column value that is a mixture of values!

To take an example, consider a single varchar(max) column that initially contains 10,000 'x' characters. A

concurrent transaction updates this value to 10,000 'y' characters. A read uncommitted transaction can

read 'x' characters from one page of the LOB, and 'y' characters from another, resulting in a final read

http://blogs.msdn.com/b/sqlcat/archive/2007/02/01/previously-committed-rows-might-be-missed-if-nolock-hint-is-used.aspx
http://sqlperformance.com/2015/01/t-sql-queries/allocation-order-scans?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://blogs.msdn.com/b/craigfr/archive/2007/05/02/query-plans-and-read-committed-isolation-level.aspx

value containing a mixture of 'x' and 'y' characters. It is hard to argue that this does not represent

reading "corrupt" data.

Demo

Create a clustered table with a single row of LOB data:

CREATE TABLE dbo.Test

(

 RowID integer PRIMARY KEY,

 LOB varchar(max) NOT NULL,

);

INSERT dbo.Test

 (RowID, LOB)

VALUES

 (1, REPLICATE(CONVERT(varchar(max), 'X'), 16100));

In a separate session, run the following script to read the LOB value at read uncommitted isolation:

-- Run this in session 2

SET NOCOUNT ON;

DECLARE

 @ValueRead varchar(max) = '',

 @AllXs varchar(max) = REPLICATE(CONVERT(varchar(max), 'X'), 16100),

 @AllYs varchar(max) = REPLICATE(CONVERT(varchar(max), 'Y'), 16100);

WHILE 1 = 1

BEGIN

 SELECT @ValueRead = T.LOB

 FROM dbo.Test AS T WITH (READUNCOMMITTED)

 WHERE T.RowID = 1;

 IF @ValueRead NOT IN (@AllXs, @AllYs)

 BEGIN

 PRINT LEFT(@ValueRead, 8000);

 PRINT RIGHT(@ValueRead, 8000);

 BREAK;

 END

END;

In the first session, run this script to write alternating values to the LOB column:

-- Run this in session 1

SET NOCOUNT ON;

DECLARE

 @AllXs varchar(max) = REPLICATE(CONVERT(varchar(max), 'X'), 16100),

 @AllYs varchar(max) = REPLICATE(CONVERT(varchar(max), 'Y'), 16100);

WHILE 1 = 1

BEGIN

 UPDATE dbo.Test

 SET LOB = @AllYs

 WHERE RowID = 1;

 UPDATE dbo.Test

 SET LOB = @AllXs

 WHERE RowID = 1;

END;

After a short time, the script in session two will terminate, having read a mixed state for the LOB value,

for example:

This particular issue is confined to reads of LOB column values that are spread across multiple pages, not

because of any guarantees provided by the isolation level, but because SQL Server happens to use page-

level latches to ensure physical integrity. A side-effect of this implementation detail is that it prevents

such "corrupt" data reads if the data for a single read operation happens to reside on a single page.

Depending on the version of SQL Server you have, if "mixed state" data is read for an xml column, you

will either get an error resulting from the possibly-malformed xml result, no error at all, or the

uncommitted-specific error 601, "could not continue scan with NOLOCK due to data movement."

Reading mixed-state data for other LOB types does not generally result in an error message; the

consuming application or query has no way to know it has just experienced the worst kind of dirty read.

To complete the analysis, a non-LOB mixed-state row read as a result of an index intersection is never

reported as an error.

The message here is that if you use read uncommitted isolation, you accept that dirty reads include the

possibility of reading "corrupt" mixed-state LOB values.

The NOLOCK hint

I suppose no discussion of the read uncommitted isolation level would be complete without at least

mentioning this (widely overused and misunderstood) table hint. The hint itself is just a synonym of the

READUNCOMMITTED table hint. It performs exactly the same function: the object to which it is applied

is accessed using read uncommitted isolation semantics (though there is an exception).

As far as the name "NOLOCK" is concerned, it simply means that no shared locks are taken when reading

data. Other locks (schema stability, exclusive locks for data modification and so on) are still taken as

normal.

http://blogs.msdn.com/b/psssql/archive/2009/07/08/q-a-on-latches-in-the-sql-server-engine.aspx
http://msdn.microsoft.com/en-us/library/ms187373.aspx
http://www.mssqltips.com/sqlservertip/3172/avoid-using-nolock-on-sql-server-update-and-delete-statements/

Generally speaking, NOLOCK hints should be about as common as other per-object isolation level table

hints like SERIALIZABLE and READCOMMITTEDLOCK. That is to say: not very common at all, and only

used where there is no good alternative, a well-defined purpose to it, and a complete understanding of

the consequences.

One example of a legitimate use of NOLOCK (or READUNCOMMITTED) is when accessing DMVs or other

system views, where a higher isolation level might cause unwanted contention on non-user data

structures. Another edge-case example might be where a query needs to access a significant portion of a

large table, which is guaranteed to never experience data changes while the hinted query is executing.

There would need to be a good reason not to use snapshot or read committed snapshot isolation

instead, and the expected performance increases would need to be tested, validated, and compared

with, say, using a single shared table lock hint.

The least desirable use of NOLOCK is the one that is unfortunately most common: applying it to every

object in a query as a sort of go-faster magic switch. With the best will in the world, there is just no

better way to make SQL Server code look decidedly amateurish. If you legitimately need read

uncommitted isolation for a query, code block or module, it is probably better to set the session

isolation level appropriately, and supply comments to justify the action.

Final Thoughts

Read uncommitted is a legitimate choice for transaction isolation level, but it does need to be an

informed choice. As a reminder, here are some of the concurrency phenomena possible under the SQL

Server default locking read committed isolation:

 Missing previously committed rows

 Committed rows encountered multiple times

 Different committed versions of the same row encountered in a single statement/query plan

 Committed data from different points in time in the same row (but different columns)

 Committed data reads that appear to contradict enabled and checked constraints

Depending on your point of view, that might be quite a shocking list of possible inconsistencies for the

default isolation level. To that list, read uncommitted isolation adds:

 Dirty reads (encountering data that has not yet, and might never be, committed)

 Rows containing a mixture of committed and uncommitted data

 Missed/duplicate rows due to allocation-ordered scans

 Mixed-state ("corrupt") individual (single-column) LOB values

 Error 601 – "could not continue scan with NOLOCK due to data movement" (example).

If your primary transactional concerns are about the side-effects of locking read-committed isolation –

blocking, locking overhead, reduced concurrency due to lock escalation and so on – you might be better

served by a row-versioning isolation level like read committed snapshot isolation (RCSI) or snapshot

http://blogs.sqlsentry.com/aaronbertrand/bad-habits-nolock-everywhere/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://msdn.microsoft.com/en-us/library/ms173763.aspx
http://msdn.microsoft.com/en-us/library/ms173763.aspx
http://blogs.msdn.com/b/craigfr/archive/2007/06/12/query-failure-with-read-uncommitted.aspx
http://sqlperformance.com/2014/05/t-sql-queries/read-committed-snapshot-isolation?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/06/sql-performance/the-snapshot-isolation-level?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

isolation (SI). These are not free, however, and updates under RCSI in particular have some counter-

intuitive behaviours.

For scenarios that demand the very highest levels of consistency guarantees, serializable remains the

only safe choice. For performance-critical operations on read-only data (for example, large databases

that are effectively read-only between ETL windows), explicitly setting the database to READ_ONLY can

be a good choice as well (shared locks are not taken when the database is read only, and there is no risk

of inconsistency).

There will also be a relatively small number of applications for which read uncommitted isolation is the

right choice. These applications need to be happy with approximate results and the possibility of

occasionally inconsistent, apparently invalid (in terms of constraints), or "arguably corrupt" data. If data

changes relatively infrequently, the risk of these inconsistencies is correspondingly lower as well.

[See the index for the whole series]

http://sqlperformance.com/2014/06/sql-performance/the-snapshot-isolation-level?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/05/t-sql-queries/data-modifications-under-rcsi?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/05/t-sql-queries/data-modifications-under-rcsi?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/04/t-sql-queries/the-serializable-isolation-level?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/07/t-sql-queries/isolation-levels?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

The SQL Server Query Store
By Benjamin Nevarez

Have you ever found a plan regression after a SQL Server upgrade and wanted to know what the

previous execution plan was? Have you ever had a query performance problem due to the fact that a

query unexpectedly got a new execution plan? At the last PASS Summit, Conor Cunningham uncovered a

new SQL Server feature, which can be helpful in solving performance problems related to these and

other changes in execution plans.

This feature, called the Query Store, can help you with performance problems related to plan changes

and will be available soon on SQL Azure and later on the next version of SQL Server. Although it is

expected to be available on the Enterprise Edition of SQL Server, it is not yet known if it will be available

on Standard or any other editions. To understand the benefits of the Query Store, let me talk briefly

about the query troubleshooting process.

Why is a Query Slow?

Once you have detected that a performance problem is because a query is slow, the next step is to find

out why. Obviously not every problem is related to plan changes. There could be multiple reasons why a

query that has been performing well is suddenly slow. Sometimes this could be related to blocking or a

problem with other system resources. Something else may have changed but the challenge may be to

find out what. Many times we don’t have a baseline about system resource usage, query execution

statistics or performance history. And usually we have no idea what the old plan was. It may be the case

that some change, for example, data, schema or query parameters, made the query processor produce a

new plan.

Plan Changes

At the session, Conor used the Picasso Database Query Optimizer Visualizer tool, although didn’t

mention it by name, to show why the plans in the same query changed, and explained the fact that

different plans could be selected for the same query based on the selectivity of their predicates. He even

mentioned that the query optimizer team uses this tool, which was developed by the Indian Institute of

Science. An example of the visualization:

http://sqlperformance.com/2015/02/sql-plan/the-sql-server-query-store?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.sqlpass.org/summit/2014/Sessions/Details.aspx?sid=7217
http://www.sqlpass.org/summit/2014/Sessions/Details.aspx?sid=7217
http://dsl.serc.iisc.ernet.in/projects/PICASSO/

Picasso Database Query Optimizer Visualizer

Each color in the diagram is a different plan, and each plan is selected based on the selectivity of the

predicates. An important fact is when a boundary is crossed in the graph and a different plan is selected,

most of the times the cost and performance of both plans should be similar, as the selectivity or

estimated number of rows only changed slightly. This could happen for example when a new row is

added to a table which qualifies for the used predicate. However, in some cases, mostly due to

limitations in the query optimizer cost model in which it is not able to model something correctly, the

new plan can have a large performance difference compared to the previous one, creating a problem for

your application. By the way, the plans shown on the diagram are the final plan selected by the query

optimizer, don’t confuse this with the many alternatives the optimizer has to consider to select only

one.

An important fact, in my opinion, which Conor didn’t cover directly, was the change of plans due to

regressions after changes on cumulative updates (CUs), service packs, or version upgrades. A major

concern that comes to mind with changes inside the query optimizer is plan regressions. The fear of plan

regressions has been considered the biggest obstacle to query optimizer improvements. Regressions are

problems introduced after a fix has been applied to the query optimizer, and sometimes referred as the

classic “two or more wrongs make a right.” This can happen when, for example, two bad estimations,

one overestimating a value and the second one underestimating it, cancel each other out, luckily giving

a good estimate. Correcting only one of these values may now lead to a bad estimation which may

negatively impact the choice of plan selection, causing a regression.

What Does the Query Store Do?

http://cdn.sqlperformance.com/wp-content/uploads/2015/02/picasso.png

Conor mentioned the Query Store performs and can help with the following:

1. Store the history of query plans in the system;

2. Capture the performance of each query plan over time;

3. Identify queries that have “gotten slower recently”;

4. Allow you to force plans quickly; and,

5. Make sure this works across server restarts, upgrades, and query recompiles.

So this feature not only stores the plans and related query performance information, but can also help

you to easily force an old query plan, which in many cases can solve a performance problem.

How to Use the Query Store

You need to enable the Query Store by using the ALTER DATABASE CURRENT SET QUERY_STORE = ON;

statement. I tried it in my current SQL Azure subscription, but the statement returned an error as it

seems that the feature is not available yet. I contacted Conor and he told me that the feature will be

available soon.

Once the Query Store is enabled, it will start collecting the plans and query performance data and you

can analyze that data by looking at the Query Store tables. I can currently see those tables on SQL Azure

but, since I was not able to enable the Query Store, the catalogs returned no data.

You can analyze the information collected either proactively to understand the query performance

changes in your application, or retroactively in case you have a performance problem. Once you identify

the problem you can use traditional query tuning techniques to try to fix the problem, or you can use

the sp_query_store_force_plan stored procedure to force a previous plan. The plan has to be captured

in the Query Store to be forced, which obviously means it is a valid plan (at least when it was collected;

more on that later) and it was generated by the query optimizer before. To force a plan you need the

plan_id, available in the sys.query_store_plan catalog. Once you look at the different metrics stored,

which are very similar to what is stored for example in sys.dm_exec_query_stats, you can make the

decision to optimize for a specific metric, like CPU, I/O, etc. Then you can simply use a statement like

this:

EXEC sys.sp_query_store_force_plan @query_id = 1, @plan_id = 1;

This is telling SQL Server to force plan 1 on query 1. Technically you could do the same thing using a plan

guide, but it would be more complicated and you would have to manually collect and find the required

plan in the first place.

How Does the Query Store Work?

Actually forcing a plan uses plan guides in the background. Conor mentioned that “when you compile a

query, we implicitly add a USE PLAN hint with the fragment of the XML plan associated with that

statement.” So you no longer need to use a plan guide anymore. Also keep in mind that, same as using a

plan guide, it is not guaranteed to have exactly the forced plan but at least something similar to it. For a

reminder of how plan guides work take a look at this article. In addition, you should be aware that there

are some cases where forcing a plan does not work, a typical example being when the schema has

changed, i.e. if a stored plan uses an index but the index no longer exists. In this case SQL Server can not

force the plan, will perform a normal optimization and it will record the fact that the forcing the plan

operation failed in the sys.query_store_plan catalog.

Architecture

Every time SQL Server compiles or executes a query, a message is sent to the Query Store. This is shown

next.

Query Store Workflow Overview

The compile and execution information is kept in memory first and then saved to disk, depending on the

Query Store configuration (the data is aggregated according to the INTERVAL_LENGTH_MINUTES

parameter, which defaults to one hour, and flushed to disk according to the

DATA_FLUSH_INTERVAL_SECONDS parameter). The data can also be flushed to disk if there is memory

pressure on the system. In any case you will be able to access all of the data, both in memory and disk,

when you run the sys.query_store_runtime_stats catalog.

Catalogs

The collected data is persisted on disk and stored in the user database where the Query Store is enabled

(and settings are stored in sys.database_query_store_options. The Query Store catalogs are:

sys.query_store_query_text Query text information

sys.query_store_query Query text plus the used plan affecting SET options

sys.query_store_plan Execution plans, including history

sys.query_store_runtime_stats Query runtime statistics

sys.query_store_runtime_stats_interval Start and end time for intervals

sys.query_context_settings Query context settings information

Query Store views

https://msdn.microsoft.com/en-us/library/ms190417.aspx
http://cdn.sqlperformance.com/wp-content/uploads/2015/02/clip_image003.jpg

Runtime statistics capture a whole slew of metrics, including the average, last, min, max, and standard

deviation. Here is the full set of columns for sys.query_store_runtime_stats:

runtime_stats_id plan_id runtime_stats_interval_id

execution_type execution_type_d

esc

first_execution_ti

me

last_execution_ti

me

count_executions

avg_duration last_duration min_duration max_duration stdev_duration

avg_cpu_time last_cpu_time min_cpu_time max_cpu_time stdev_cpu_time

avg_logical_io_re

ads

last_logical_io_re

ads

min_logical_io_re

ads

max_logical_io_re

ads

stdev_logical_io_r

eads

avg_logical_io_wr

ites

last_logical_io_wr

ites

min_logical_io_wr

ites

max_logical_io_w

rites

stdev_logical_io_w

rites

avg_physical_io_r

eads

last_physical_io_r

eads

min_physical_io_r

eads

max_physical_io_

reads

stdev_physical_io_

reads

avg_clr_time last_clr_time min_clr_time max_clr_time stdev_clr_time

avg_dop last_dop min_dop max_dop stdev_dop

avg_query_max_

used_memory

last_query_max_

used_memory

min_query_max_

used_memory

max_query_max_

used_memory

stdev_query_max_

used_memory

avg_rowcount last_rowcount min_rowcount max_rowcount stdev_rowcount

Columns in sys.query_store_runtime_stats

This data is only captured when query execution ends. The Query Store also considers the query's SET

options, which can impact the choice of an execution plan, as they affect things like the results of

evaluating constant expressions during the optimization process. I cover this topic in a previous post.

Conclusion

This will definitely be a great feature and something I’d like to try as soon as possible (by the way,

Conor’s demo shows “SQL Server 15 CTP1” but those bits are not publicly available). The Query Store

can be useful for upgrades which could be a CU, service pack, or SQL Server version, as you can analyze

the information collected by the Query Store before and after to see if any query has regressed. (And if

the feature is available in lower editions, you could even do this in a SKU upgrade scenario.) Knowing

this can help you to take some specific action depending on the problem, and one of those solutions

could be to force the previous plan as explained before.

http://www.benjaminnevarez.com/2011/09/parameter-sniffing-and-plan-reuse-affecting-set-options/

Statistics & Cardinality
Another Way to View Automatic Updates to Statistics
By Erin Stellato

Back in April I wrote about some native methods within SQL Server that can be used to track automatic

updates to statistics. The three options I provided were SQL Trace, Extended Events, and snapshots of

sys.dm_db_stats_properties. While these three options remain viable (even in SQL Server 2014, though

my top recommendation is still XE), an additional option I noticed when running some tests recently is

SQL Sentry Plan Explorer.

Many of you use Plan Explorer simply for reading executing plans, which is great. It has numerous

benefits over Management Studio when it comes to reviewing plans – from the little things, like being

able to sort on top operators and easily see cardinality estimate issues, to bigger benefits, like handling

complex and large plans and being able to select one statement within a batch for easier plan review.

But behind the visuals that make it easier to dissect plans, Plan Explorer also offers the ability to execute

a query and view the actual plan (rather than running it in Management Studio and saving it off). And on

top of that, when you run the plan from PE, there is additional information captured that can be useful.

Let's start with the demo that I used in my recent post, How Automatic Updates to Statistics Can Affect

Query Performance. I started with the AdventureWorks2012 database, and I created a copy of the

SalesOrderHeader table with over 200 million rows. The table has a clustered index on SalesOrderID,

and a nonclustered index on CustomerID, OrderDate, SubTotal. [Again: if you are going to do repeated

tests, take a backup of this database at this point to save yourself some time.] I first verified the current

number of rows in the table, and the number of rows that would need to change to invoke an automatic

update:

SELECT

OBJECT_NAME([p].[object_id]) [TableName],

[si].[name] [IndexName],

[au].[type_desc] [Type],

[p].[rows] [RowCount],

([p].[rows]*.20) + 500 [UpdateThreshold],

[au].total_pages [PageCount],

(([au].[total_pages]*8)/1024)/1024 [TotalGB]

FROM [sys].[partitions] [p]

JOIN [sys].[allocation_units] [au] ON [p].[partition_id] = [au].[container_id]

JOIN [sys].[indexes] [si] on [p].[object_id] = [si].object_id and [p].[index_id] =

[si].[index_id]

WHERE [p].[object_id] = OBJECT_ID(N'Sales.Big_SalesOrderHeader');

Big_SalesOrderHeader CIX and NCI Information

I also verified the current statistics header for the index:

http://sqlperformance.com/2014/07/sql-performance/another-way-to-view-auto-statistics?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/07/sql-performance/another-way-to-view-auto-statistics?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/04/extended-events/tracking-auto-stats?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.sqlsentry.com/products/plan-explorer/sql-server-query-view?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/05/sql-performance/auto-stats-effects?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/05/sql-performance/auto-stats-effects?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2014/07/1_tableatstart2.png"

DBCC SHOW_STATISTICS

('Sales.Big_SalesOrderHeader',[IX_Big_SalesOrderHeader_CustomerID_OrderDate_SubTotal]);

NCI Statistics: At Start

The stored procedure that I use for testing was already created, but for completeness the code is listed

below:

CREATE PROCEDURE Sales.usp_GetCustomerStats

@CustomerID INT,

@StartDate DATETIME,

@EndDate DATETIME

AS

BEGIN

 SET NOCOUNT ON;

 SELECT CustomerID, DATEPART(YEAR, OrderDate), DATEPART(MONTH, OrderDate),

COUNT([SalesOrderID]) as Computed

 FROM [Sales].[Big_SalesOrderHeader]

 WHERE CustomerID = @CustomerID

 AND OrderDate BETWEEN @StartDate and @EndDate

 GROUP BY CustomerID, DATEPART(YEAR, OrderDate), DATEPART(MONTH, OrderDate)

 ORDER BY DATEPART(YEAR, OrderDate), DATEPART(MONTH, OrderDate);

END

Previously, I either started a Trace or Extended Events session, or set up my method to snapshot

sys.dm_db_stats_properties to a table. For this example, I just ran the above stored procedure a few

times:

EXEC Sales.usp_GetCustomerStats 11331, '2012-08-01 00:00:00.000', '2012-08-31 23:59:59.997'

GO

EXEC Sales.usp_GetCustomerStats 11330, '2013-01-01 00:00:00.000', '2013-01-31 23:59:59.997'

GO

EXEC Sales.usp_GetCustomerStats 11506, '2012-11-01 00:00:00.000', '2012-11-30 23:59:59.997'

GO

EXEC Sales.usp_GetCustomerStats 17061, '2013-01-01 00:00:00.000', '2013-01-31 23:59:59.997'

GO

EXEC Sales.usp_GetCustomerStats 11711, '2013-03-01 00:00:00.000', '2013-03-31 23:59:59.997'

GO

EXEC Sales.usp_GetCustomerStats 15131, '2013-02-01 00:00:00.000', '2013-02-28 23:59:59.997'

GO

EXEC Sales.usp_GetCustomerStats 29837, '2012-10-01 00:00:00.000', '2012-10-31 23:59:59.997'

GO

EXEC Sales.usp_GetCustomerStats 15750, '2013-03-01 00:00:00.000', '2013-03-31 23:59:59.997'

GO

http://cdn.sqlperformance.com/wp-content/uploads/2014/07/2_stats-at-start.png

I then checked the procedure cache to verify the execution count, and also verified the plan that was

cached:

SELECT

OBJECT_NAME([st].[objectid]),

[st].[text],

[qs].[execution_count],

[qs].[creation_time],

[qs].[last_execution_time],

[qs].[min_worker_time],

[qs].[max_worker_time],

[qs].[min_logical_reads],

[qs].[max_logical_reads],

[qs].[min_elapsed_time],

[qs].[max_elapsed_time],

[qp].[query_plan]

FROM [sys].[dm_exec_query_stats] [qs]

CROSS APPLY [sys].[dm_exec_sql_text]([qs].plan_handle) [st]

CROSS APPLY [sys].[dm_exec_query_plan]([qs].plan_handle) [qp]

WHERE [st].[text] LIKE '%usp_GetCustomerStats%'

AND OBJECT_NAME([st].[objectid]) IS NOT NULL;

Plan Cache Info for the SP: At Start

Query Plan for Stored Procedure, using SQL Sentry Plan Explorer

The plan was created at 2014-09-29 23:23.01.

Next I added 61 million rows to the table to invalidate the current statistics, and once the insert

completed, I checked the row counts:

Big_SalesOrderHeader CIX and NCI Information: After insert of 61 million rows

Before running the stored procedure again, I verified that the execution count had not changed, that the

creation_time was still 2014-09-29 23:23.01 for the plan, and that statistics hadn't updated:

Plan Cache Info for the SP: Immediately After Insert

http://www.sqlsentry.com/products/plan-explorer/sql-server-query-view?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2014/07/3_query_stats.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/04/original_plan.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/07/4_table-after-insert.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/07/3_query_stats.png

NCI Statistics: After Insert

Now, in the previous blog post, I ran the statement in Management Studio, but this time, I ran the query

directly from Plan Explorer, and captured the Actual Plan via PE (option circled in red in the image

below).

Execute Stored Procedure from Plan Explorer

When you execute a statement from PE, you have to enter the instance and database to which you want

to connect, and then you are notified that the query will run and the actual plan will be returned, but

results will not be returned. Note that this is different than Management Studio, where you do see the

results.

After I ran the stored procedure, in the output I not only get the plan, but I see what statements were

executed:

http://cdn.sqlperformance.com/wp-content/uploads/2014/07/5_stats-after-insert.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/07/query-in-PE.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/07/PE_1a.png

Plan Explorer output after execution SP (after insert)

This is pretty cool…in addition to seeing the statement executed in the stored procedure, I also see the

updates to statistics, just as I did when I captured updates using Extended Events or SQL Trace. Along

with the statement execution, we can also see CPU, duration, and IO information. Now – the caveat

here is that I can see this information if I run the statement that invokes the statistics update from Plan

Explorer. That probably won't happen often in your production environment, but you may see this when

you're doing testing (because hopefully your testing doesn't just involve running SELECT queries, but

also involves INSERT/UPDATE/DELETE queries just like you would see in a normal workload). However, if

you're monitoring your environment with a tool like SQL Sentry Performance Advisor, you might see

these updates in Top SQL as long as they exceed the Top SQL collection threshold. Performance Advisor

has default thresholds that queries must exceed before they are captured as Top SQL (e.g. duration

must exceed five (5) seconds), but you can change those and add other thresholds such as reads. In this

example, for testing purposes only, I changed my Top SQL minimum duration threshold to 10

milliseconds and my read threshold to 500, and Performance Advisor was able to capture some of the

statistics updates:

Statistics updates captured by Performance Advisor

That said, whether monitoring can capture these events will ultimately depend on system resources and

the amount of data that has to be read to update the statistic. Your statistics updates may not exceed

these thresholds, so you may have to do more proactive digging to find them.

Summary

I always encourage DBAs to proactively manage statistics – which means that a job is in place to update

statistics on a regular basis. However, even if that job runs every night (which I'm not necessarily

recommending), it's still quite possible that updates to statistics occur automatically throughout the day,

http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2014/07/PA_1a.png

because some tables are more volatile than others and have a high number of modifications. This is not

abnormal, and depending on the size of the table and the amount of modifications, the automatic

updates may not interfere significantly with user queries. But the only way to know is to monitor those

updates – whether you're using native tools or third-party tools – so that you can stay ahead of potential

issues and address them before they escalate.

A Subquery Cardinal Estimation Bug
By Paul White

Consider the following AdventureWorks query that returns history table transaction IDs for product ID

421:

SELECT TH.TransactionID

FROM Production.TransactionHistory AS TH

WHERE TH.ProductID = 421;

The query optimizer quickly finds an efficient execution plan with a cardinality (row count) estimate that

is exactly correct, as shown in SQL Sentry Plan Explorer:

Now say we want to find history transaction IDs for the AdventureWorks product named "Metal Plate

2". There are many ways to express this query in T-SQL. One natural formulation is:

SELECT TH.TransactionID

FROM Production.TransactionHistory AS TH

WHERE TH.ProductID =

(

 SELECT P.ProductID

 FROM Production.Product AS P

 WHERE P.Name = N'Metal Plate 2'

);

The execution plan is as follows:

http://sqlperformance.com/2014/07/sql-plan/subquery-cardinality-estimation-bug?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://msftdbprodsamples.codeplex.com/
http://www.sqlsentry.com/products/plan-explorer/sql-server-query-view??utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

The strategy is:

1. Look up the product ID in the Product table from the name given

2. Locate rows for that product ID in the History table

The estimated number of rows for step 1 is exactly right because the index used is declared as unique

and keyed on the product name alone. The equality test on "Metal Plate 2" is therefore guaranteed to

return exactly one row (or zero rows if we specify a product name that does not exist).

The highlighted 257-row estimate for step two is less accurate: only 13 rows are actually encountered.

This discrepancy arises because the optimizer does not know which particular product ID is associated

with the product named "Metal Plate 2". It treats the value as unknown, generating a cardinality

estimate using average density information. The calculation uses elements from the statistics object

shown below:

DBCC SHOW_STATISTICS

(

 'Production.TransactionHistory',

 'IX_TransactionHistory_ProductID'

)

WITH STAT_HEADER, DENSITY_VECTOR;

The statistics show the table contains 113443 rows with 441 unique product IDs (1 / 0.002267574 =

441). Assuming the distribution of rows across product IDs is uniform, cardinality estimation expects a

product ID to match (113443 / 441) = 257.24 rows on average. As it turns out, the distribution is not

particularly uniform; there are only 13 rows for the "Metal Plate 2" product.

An Aside

You might be thinking that the 257-row estimate should be more accurate. For example, given that

product IDs and names are both constrained to be unique, SQL Server could automatically maintain

information about this one-to-one relationship. It would then know that "Metal Plate 2" is associated

with product ID 479, and use that insight to generate a more accurate estimate using the ProductID

histogram:

DBCC SHOW_STATISTICS

(

 'Production.TransactionHistory',

 'IX_TransactionHistory_ProductID'

)

WITH HISTOGRAM;

An estimate of 13 rows derived this way would have been exactly correct. Nevertheless, the estimate of

257 rows was not an unreasonable one, given the statistical information available and the normal

simplifying assumptions (like uniform distribution) applied by cardinality estimation today. Exact

estimates are always nice, but "reasonable" estimates are perfectly acceptable too.

Combining the two queries

Say we now want to see all transaction history IDs where the product ID is 421 OR the name of the

product is "Metal Plate 2". A natural way to combine the two previous queries is:

SELECT TH.TransactionID

FROM Production.TransactionHistory AS TH

WHERE TH.ProductID = 421

OR TH.ProductID =

(

 SELECT P.ProductID

 FROM Production.Product AS P

 WHERE P.Name = N'Metal Plate 2'

);

The execution plan is a little more complex now, but it still contains recognizable elements of the single-

predicate plans:

The strategy is:

1. Find history records for product 421

2. Look up the product id for the product named "Metal Plate 2"

3. Find history records for the product id found in step 2

4. Combine rows from steps 1 & 3

5. Remove any duplicates (because product 421 might also be the one named "Metal Plate 2")

Steps 1 to 3 are exactly the same as before. The same estimates are produced for the same reasons.

Step 4 is new, but very simple: it concatenates an expected 19 rows with an expected 257 rows, to give

an estimate of 276 rows.

Step 5 is the interesting one. The duplicate-removing Stream Aggregate has an estimated input of 276

rows and an estimated output of 113443 rows*. An aggregate that outputs more rows than it receives

seems impossible, right?

* You will see an estimate of 102099 rows here if you are using the pre-2014 cardinality estimation

model.

The Cardinality Estimation Bug

The impossible Stream Aggregate estimate in our example is caused by a bug in cardinality estimation. It

is an interesting example so we will explore it in a bit of detail.

Subquery Removal

It may surprise you to learn that the SQL Server query optimizer does not work with subqueries directly.

They are removed from the logical query tree early in the compilation process, and replaced with an

equivalent construction that the optimizer is set up to work with and reason about. The optimizer has a

number of rules that remove subqueries. These can be listed by name using the following query (the

referenced DMV is minimally documented, but not supported):

SELECT name

FROM sys.dm_exec_query_transformation_stats

WHERE name LIKE 'RemoveSubq%';

Results (on SQL Server 2014):

The combined test query has two predicates ("selections" in relational terms) on the history table,

connected by OR. One of these predicates includes a subquery. The whole subtree (both predicates and

the subquery) is transformed by the first rule in the list ("remove subquery in selection") to a semi-join

over the union of the individual predicates. While it isn't possible to represent the result of this internal

transformation exactly using T-SQL syntax, it is pretty close to being:

SELECT TH.TransactionID

FROM Production.TransactionHistory AS TH

WHERE EXISTS

(

 SELECT 1

 WHERE TH.ProductID = 421

 UNION ALL

 SELECT 1

 FROM Production.Product AS P

 WHERE P.Name = N'Metal Plate 2'

 AND P.ProductID = TH.ProductID

)

OPTION (QUERYRULEOFF ApplyUAtoUniSJ);

http://msdn.microsoft.com/en-us/library/ms188068.aspx

It is a little unfortunate that my T-SQL approximation of the internal tree after subquery removal

contains a subquery, but in the language of the query processor it doesn't (it is a semi join). If you would

prefer to see the raw internal form instead of my attempt at a T-SQL equivalent, please be assured that

will be along momentarily.

The undocumented query hint included in the T-SQL above is there is to prevent a subsequent

transformation for those of you that want to see the transformed logic in execution plan form. The

annotations below show the positions of the two predicates after transformation:

The intuition behind the transformation is that a history row qualifies if either of the predicates are

satisfied. Regardless of how helpful you find my approximate T-SQL and execution plan illustration, I

hope it is at least reasonably clear that the rewrite expresses the same requirement as the original

query.

I should stress that the optimizer does not literally generate alternate T-SQL syntax or produce complete

execution plans at intermediate stages. The T-SQL and execution plan representations above are

intended purely an aid to comprehension. If you're interested in the raw details, the promised internal

representation of the transformed query tree (slightly edited for clarity/space) is:

Notice the highlighted apply semi join cardinality estimate. It is 113443 rows when using the 2014

cardinality estimator (102099 rows if using the old CE). Bear in mind that the AdventureWorks history

table contains 113443 rows in total, so this represents 100% selectivity (90% for the old CE).

We saw earlier that applying either of these predicates alone results in only a small number of matches:

19 rows for product ID 421, and 13 rows (estimated 257) for "Metal Plate 2". Estimating that the

disjunction (OR) of the two predicates will return all rows in the base table seems entirely bonkers.

Bug Details

The details of the selectivity computation for the semi join are only visible in SQL Server 2014 when

using the new cardinality estimator with (undocumented) trace flag 2363. It's probably possible to see

something similar with Extended Events, but the trace flag output is more convenient to use here. The

relevant section of the output is shown below:

http://sqlperformance.com/2014/01/sql-plan/cardinality-estimation-for-multiple-predicates?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

The cardinality estimator uses the Fixed Join calculator with 100% selectivity. As a consequence, the

estimated output cardinality of the semi join is the same as its input, meaning all 113443 rows from the

history table are expected to qualify.

The exact nature of the bug is that the semi join selectivity computation misses any predicates

positioned beyond a union all in the input tree. In the illustration below, the lack of predicates on the

semi join itself is taken to mean every row will qualify; it ignores the effect of predicates below the

concatenation (union all).

This behaviour is all the more surprising when you consider that selectivity computation is operating on

a tree representation that the optimizer generated itself (the shape of the tree and the positioning of

the predicates is the result of it removing the subquery).

A similar issue occurs with the pre-2014 cardinality estimator, but the final estimate is instead fixed at

90% of the estimated semi join input (for entertaining reasons related to a inversed fixed 10% predicate

estimate that is too much of a diversion to get into).

Examples

As mentioned above, this bug manifests when estimation is performed for a semi join with related

predicates positioned beyond a union all. Whether this internal arrangement occurs during query

optimization depends on the original T-SQL syntax and the precise sequence of internal optimization

operations. The following examples show some cases where the bug does and does not occur:

Example 1

This first example incorporates a trivial change to the test query:

SELECT TH.TransactionID

FROM Production.TransactionHistory AS TH

WHERE TH.ProductID = (SELECT 421) -- The only change

OR TH.ProductID =

(

 SELECT P.ProductID

 FROM Production.Product AS P

 WHERE P.Name = N'Metal Plate 2'

);

The estimated execution plan is:

The final estimate of 403 rows is inconsistent with the nested loops join's input estimates, but it is still a

reasonable one (in the sense discussed earlier). If the bug had been encountered, the final estimate

would be 113443 rows (or 102099 rows when using the pre-2014 CE model).

Example 2

In case you were about to rush out and rewrite all your constant comparisons as trivial subqueries to

avoid this bug, look what happens if we make another trivial change, this time replacing the equality test

in the second predicate with IN. The meaning of the query remains unchanged:

SELECT TH.TransactionID

FROM Production.TransactionHistory AS TH

WHERE TH.ProductID = (SELECT 421) -- Change 1

OR TH.ProductID IN -- Change 2

(

 SELECT P.ProductID

 FROM Production.Product AS P

 WHERE P.Name = N'Metal Plate 2'

);

The bug returns:

Example 3

Although this article has so far concentrated on a disjunctive predicate containing a subquery, the

following example shows that the same query specification expressed using EXISTS and UNION ALL is

also vulnerable:

SELECT TH.TransactionID

FROM Production.TransactionHistory AS TH

WHERE EXISTS

(

 SELECT 1

 WHERE TH.ProductID = 421

 UNION ALL

 SELECT 1

 FROM Production.Product AS P

 WHERE P.Name = N'Metal Plate 2'

 AND P.ProductID = TH.ProductID

);

Execution plan:

Example 4

Here are two more ways to express the same logical query in T-SQL:

SELECT TH.TransactionID

FROM Production.TransactionHistory AS TH

WHERE TH.ProductID = 421

UNION

SELECT TH.TransactionID

FROM Production.TransactionHistory AS TH

WHERE TH.ProductID =

(

 SELECT P.ProductID

 FROM Production.Product AS P

 WHERE P.Name = N'Metal Plate 2'

);

SELECT TH.TransactionID

FROM Production.TransactionHistory AS TH

WHERE TH.ProductID = 421

UNION

SELECT TH.TransactionID

FROM Production.TransactionHistory AS TH

JOIN Production.Product AS P

 ON P.ProductID = TH.ProductID

 AND P.Name = N'Metal Plate 2';

Neither query encounters the bug, and both produce the same execution plan:

These T-SQL formulations happen to produce an execution plan with entirely consistent (and

reasonable) estimates.

Example 5

You may be wondering if the inaccurate estimation is important. In the cases presented so far, it isn't, at

least not directly. Problems arise when the bug occurs in a larger query, and the incorrect estimate

affects optimizer decisions elsewhere. As a minimally-extended example, consider returning the results

of our test query in a random order:

SELECT TH.TransactionID

FROM Production.TransactionHistory AS TH

WHERE TH.ProductID = 421

OR TH.ProductID =

(

 SELECT P.ProductID

 FROM Production.Product AS P

 WHERE P.Name = N'Metal Plate 2'

)

ORDER BY NEWID(); -- New

The execution plan shows the incorrect estimate affects later operations. For example, it is the basis for

the memory grant reserved for the sort:

If you would like to see a more real-world example of this bug's potential impact, take a look at this

recent question from Richard Mansell on the SQLPerformance.com Q & A site,

answers.SQLPerformance.com.

Summary and Final Thoughts

This bug is triggered when the optimizer performs cardinality estimation for a semi join, in specific

circumstances. It is a challenging bug to spot and work around for a number of reasons:

 There is no explicit T-SQL syntax to specify a semi join, so it is hard to know in advance if a

particular query will be vulnerable to this bug.

 The optimizer can introduce a semi join in a wide variety of circumstances, not all of which are

obvious semi join candidates.

 The problematic semi join is often transformed to something else by later optimizer activity, so

we can't even rely on there being a semi join operation in the final execution plan.

 Not every weird-looking cardinality estimate is caused by this bug. Indeed, many examples of

this type are an expected and harmless side-effect of normal optimizer operation.

 The erroneous semi join selectivity estimate will always be 90% or 100% of its input, but this will

not usually correspond to the cardinality of a table used in the plan. Furthermore, the semi join

input cardinality used in the calculation may not even be visible in the final execution plan.

 There are typically many ways to express the same logical query in T-SQL. Some of these will

trigger the bug, while others will not.

These considerations make it difficult to offer practical advice to spot or work around this bug. It is

certainly worthwhile checking execution plans for "outrageous" estimates, and investigating queries

with performance that is much worse than expected, but both of these may have causes that do not

relate to this bug. That said, it worth particularly checking queries that include a disjunction of

predicates and a subquery. As the examples in this article show, this is not the only way to encounter

the bug, but I expect it to be a common one.

http://answers.sqlperformance.com/questions/2009/query-runs-for-40-secs-instead-of-1-after-upgrade.html?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://answers.sqlperformance.com/questions/2009/query-runs-for-40-secs-instead-of-1-after-upgrade.html?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://answers.sqlperformance.com/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2014/06/image55.png

If you're lucky enough to be running SQL Server 2014, with the new cardinality estimator enabled, you

may be able to confirm the bug by manually checking trace flag 2363 output for a fixed 100% selectivity

estimation on a semi join, but this is hardly convenient. You will not want to be using undocumented

trace flags on a production system, naturally.

The Connect bug report for this issue can be found here. Please vote and comment if you would like to

see this issue investigated (and possibly fixed).

https://connect.microsoft.com/SQLServer/feedback/details/906783/incorrect-semi-join-cardinality-estimation

Another Reason to Avoid sp_updatestats
By Erin Stellato

I've blogged previously about why I don't love sp_updatestats. I recently found another reason that it's

not my friend. TL;DR: It doesn't update statistics on indexed views. Now, the documentation doesn't

claim that it does, so there's no bug here. The MSDN documentation clearly states:

Runs UPDATE STATISTICS against all user-defined and internal tables in the current database.

But… how many of you thought about your indexed views and wondered whether those got updated? I

admit I didn't. I forget about indexed views, which is unfortunate because they can be really powerful

when used appropriately. They can also be a nightmare to unravel when you're troubleshooting, but I'm

not going to argue their use today. I just want you to be aware that they don't get updated by

sp_updatestats, and see what options you have.

Setup

Since the World Series just ended, we're going to use the Baseball database for our testing. You can

download it from the SQLskills Resources page. Once restored we'll create a copy of the dbo.Players

table, named dbo.PlayerInfo, load a few thousand rows into it, and then create an indexed view that

joins our new table to the PitchingPost table:

USE [BaseballData];

GO

CREATE TABLE [dbo].[PlayerInfo](

 [lahmanID] [int] NOT NULL,

 [playerID] [varchar](10) NULL DEFAULT (NULL),

 [managerID] [varchar](10) NULL DEFAULT (NULL),

 [hofID] [varchar](10) NULL DEFAULT (NULL),

 [birthYear] [int] NULL DEFAULT (NULL),

 [birthMonth] [int] NULL DEFAULT (NULL),

 [birthDay] [int] NULL DEFAULT (NULL),

 [birthCountry] [varchar](50) NULL DEFAULT (NULL),

 [birthState] [varchar](2) NULL DEFAULT (NULL),

 [birthCity] [varchar](50) NULL DEFAULT (NULL),

 [deathYear] [int] NULL DEFAULT (NULL),

 [deathMonth] [int] NULL DEFAULT (NULL),

 [deathDay] [int] NULL DEFAULT (NULL),

 [deathCountry] [varchar](50) NULL DEFAULT (NULL),

 [deathState] [varchar](2) NULL DEFAULT (NULL),

 [deathCity] [varchar](50) NULL DEFAULT (NULL),

 [nameFirst] [varchar](50) NULL DEFAULT (NULL),

 [nameLast] [varchar](50) NULL DEFAULT (NULL),

 [nameNote] [varchar](255) NULL DEFAULT (NULL),

 [nameGiven] [varchar](255) NULL DEFAULT (NULL),

 [nameNick] [varchar](255) NULL DEFAULT (NULL),

 [weight] [int] NULL DEFAULT (NULL),

 [height] [int] NULL,

http://sqlperformance.com/2014/11/sql-statistics/avoid-sp-updatestats?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2013/07/sql-statistics/statistics-updates?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://msdn.microsoft.com/en-us/library/ms173804.aspx
https://www.sqlskills.com/sql-server-resources/sql-server-demos/

 [bats] [varchar](1) NULL DEFAULT (NULL),

 [throws] [varchar](1) NULL DEFAULT (NULL),

 [debut] [varchar](10) NULL DEFAULT (NULL),

 [finalGame] [varchar](10) NULL DEFAULT (NULL),

 [college] [varchar](50) NULL DEFAULT (NULL),

 [lahman40ID] [varchar](9) NULL DEFAULT (NULL),

 [lahman45ID] [varchar](9) NULL DEFAULT (NULL),

 [retroID] [varchar](9) NULL DEFAULT (NULL),

 [holtzID] [varchar](9) NULL DEFAULT (NULL),

 [bbrefID] [varchar](9) NULL DEFAULT (NULL),

PRIMARY KEY CLUSTERED

([lahmanID] ASC) ON [PRIMARY]

) ON [PRIMARY];

GO

INSERT INTO [dbo].[PlayerInfo]

 ([lahmanID]

 ,[playerID]

 ,[managerID]

 ,[hofID]

 ,[birthYear]

 ,[birthMonth]

 ,[birthDay]

 ,[birthCountry]

 ,[birthState]

 ,[birthCity]

 ,[deathYear]

 ,[deathMonth]

 ,[deathDay]

 ,[deathCountry]

 ,[deathState]

 ,[deathCity]

 ,[nameFirst]

 ,[nameLast]

 ,[nameNote]

 ,[nameGiven]

 ,[nameNick]

 ,[weight]

 ,[height]

 ,[bats]

 ,[throws]

 ,[debut]

 ,[finalGame]

 ,[college]

 ,[lahman40ID]

 ,[lahman45ID]

 ,[retroID]

 ,[holtzID]

 ,[bbrefID])

SELECT [lahmanID]

 ,[playerID]

 ,[managerID]

 ,[hofID]

 ,[birthYear]

 ,[birthMonth]

 ,[birthDay]

 ,[birthCountry]

 ,[birthState]

 ,[birthCity]

 ,[deathYear]

 ,[deathMonth]

 ,[deathDay]

 ,[deathCountry]

 ,[deathState]

 ,[deathCity]

 ,[nameFirst]

 ,[nameLast]

 ,[nameNote]

 ,[nameGiven]

 ,[nameNick]

 ,[weight]

 ,[height]

 ,[bats]

 ,[throws]

 ,[debut]

 ,[finalGame]

 ,[college]

 ,[lahman40ID]

 ,[lahman45ID]

 ,[retroID]

 ,[holtzID]

 ,[bbrefID]

FROM [dbo].[Players]

WHERE [lahmanID] <= 10000;

CREATE VIEW [PlayerPostSeason]

WITH SCHEMABINDING

AS

 SELECT

 [p].[lahmanID],

 [p].[nameFirst],

 [p].[nameLast],

 [p].[debut],

 [p].[finalGame],

 [pp].[yearID],

 [pp].[round],

 [pp].[teamID],

 [pp].[W],

 [pp].[L],

 [pp].[G]

 FROM [dbo].[PlayerInfo] [p]

 JOIN [dbo].[PitchingPost] [pp] ON [p].[playerID] = [pp].[playerID];

CREATE UNIQUE CLUSTERED INDEX [CI_PlayerPostSeason] ON [PlayerPostSeason] ([lahmanID],

[yearID], [round]);

CREATE NONCLUSTERED INDEX [NCI_PlayerPostSeason_Name] ON [PlayerPostSeason] ([nameFirst],

[nameLast]);

If we check statistics for the clustered and nonclustered indexes, we see they exist:

DBCC SHOW_STATISTICS ('PlayerPostSeason', CI_PlayerPostSeason) WITH STAT_HEADER;

GO

DBCC SHOW_STATISTICS ('PlayerPostSeason', NCI_PlayerPostSeason_Name) WITH STAT_HEADER;

GO

Index view statistics after initial creation

Now we'll insert more rows into PlayerInfo:

INSERT INTO [dbo].[PlayerInfo]

 ([lahmanID]

 ,[playerID]

 ,[managerID]

 ,[hofID]

 ,[birthYear]

 ,[birthMonth]

 ,[birthDay]

 ,[birthCountry]

 ,[birthState]

 ,[birthCity]

 ,[deathYear]

 ,[deathMonth]

 ,[deathDay]

 ,[deathCountry]

 ,[deathState]

 ,[deathCity]

 ,[nameFirst]

 ,[nameLast]

 ,[nameNote]

 ,[nameGiven]

 ,[nameNick]

 ,[weight]

 ,[height]

http://cdn.sqlperformance.com/wp-content/uploads/2014/10/1_stats.jpg

 ,[bats]

 ,[throws]

 ,[debut]

 ,[finalGame]

 ,[college]

 ,[lahman40ID]

 ,[lahman45ID]

 ,[retroID]

 ,[holtzID]

 ,[bbrefID])

SELECT [lahmanID]

 ,[playerID]

 ,[managerID]

 ,[hofID]

 ,[birthYear]

 ,[birthMonth]

 ,[birthDay]

 ,[birthCountry]

 ,[birthState]

 ,[birthCity]

 ,[deathYear]

 ,[deathMonth]

 ,[deathDay]

 ,[deathCountry]

 ,[deathState]

 ,[deathCity]

 ,[nameFirst]

 ,[nameLast]

 ,[nameNote]

 ,[nameGiven]

 ,[nameNick]

 ,[weight]

 ,[height]

 ,[bats]

 ,[throws]

 ,[debut]

 ,[finalGame]

 ,[college]

 ,[lahman40ID]

 ,[lahman45ID]

 ,[retroID]

 ,[holtzID]

 ,[bbrefID]

FROM [dbo].[Players]

WHERE [lahmanID] > 10000;

And if we check sys.dm_db_stats_properties, we can see the row modifications:

SELECT

 [sch].[name] AS [Schema],

 [so].[name] AS [ObjectName],

 [so].[type] AS [ObjectType],

 [ss].[name] AS [Statistic],

 [sp].[last_updated] AS [StatsLastUpdated] ,

 [sp].[rows] AS [RowsInTable] ,

 [sp].[rows_sampled] AS [RowsSampled] ,

 [sp].[modification_counter] AS [RowModifications]

FROM [sys].[objects] [so]

JOIN [sys].[stats] [ss] ON [so].[object_id] = [ss].[object_id]

JOIN [sys].[schemas] [sch] ON [so].[schema_id] = [sch].[schema_id]

OUTER APPLY [sys].[dm_db_stats_properties]([so].[object_id],

 [ss].[stats_id]) sp

WHERE [so].[name] = 'PlayerPostSeason';

Rows modified in the indexed view, via sys.dm_db_stats_properties

And just for fun, if we check sys.sysindexes, we can see the modifications there as well:

SELECT [so].[name], [si].[name], [si].[rowcnt], [si].[rowmodctr]

FROM [sys].[sysindexes] [si]

JOIN [sys].[objects] [so] ON [si].[id] = [so].[object_id]

WHERE [so].[name] = 'PlayerPostSeason';

Rows modified in the indexed view, via sys.sysindexes

Now sys.sysindexes is deprecated, but if you remember from my previous post, that's what

sp_updatestats uses to see what's been modified. But… the object list for sys.indexes is driven by the

query against sys.objects, which, if you remember, filters on user tables ('U') and internal tables ('IT'). It

does not include views ('V') in that filter. As such, when we run sp_updatestats and check the output

(not included for brevity), there is no mention of our PlayerPostSeason view.

Therefore, if you have indexed views and you're relying on sp_updatestats to update your statistics,

your view statistics are not getting updated. However, I would guess that most of you have the Auto

Update Statistics option enabled for your databases. This is good, because with this option, view

statistics will update if they've been invalidated. We know we've made over 2000 modifications to the

indexes on PlayerPostSeason. If we query by a first name that's selective, our query plan should use the

NCI_PlayerPostSeason_Name index, and because statistics are out of date, they should get updated.

Let's check:

http://cdn.sqlperformance.com/wp-content/uploads/2014/10/2_modifications_DMF.jpg
http://cdn.sqlperformance.com/wp-content/uploads/2014/10/3_modifications_sysindexes.jpg

SELECT *

FROM [PlayerPostSeason]

WHERE [nameFirst] = 'Madison';

GO

Query plan from SELECT against nonclustered index

We can see in the plan that the NCI_PlayerPostSeason_Name nonclustered index was used, and if we

check statistics:

Statistics after automatic update

Sure enough, the statistics for the nonclustered index have been updated. But of course we don't want

to rely on auto update to manage statistics, we want to be proactive. We've got two options:

 Maintenance Task

 Custom Script

The update statistics maintenance task does update view statistics. This is not specifically called out

anywhere in the UI, but if we create a maintenance plan with the update statistics task and run it, the

statistics for the indexed view are updated. The drawback of update statistics maintenance task is that

it's a sledge-hammer approach. It updates all statistics, regardless of whether it's needed (it's almost as

bad as sp_updatestats). I prefer a custom script, where SQL Server only updates what's been modified. If

you're not into rolling your own script, you can use Ola Hallengren's script. It's common to update

statistics as part of your index rebuilds and reorgs. For example, with Ola's script in the SQL Agent job

you would have:

sqlcmd -E -S $(ESCAPE_SQUOTE(SRVR)) -d master -Q "EXECUTE [dbo].[IndexOptimize] @Databases =

'BaseballData', @FragmentationLow = NULL, @FragmentationMedium = 'INDEX_REORGANIZE',

@FragmentationHigh = 'INDEX_REBUILD', @FragmentationLevel1 = 5, @FragmentationLevel2 = 30,

@UpdateStatistics = 'ALL', @OnlyModifiedStatistics = 'Y', @LogToTable = 'Y'" –b

With this option, if statistics have been modified, they will be updated, and if we check the

[dbo].[IndexOptimize] stored procedure we can see where Ola checks for modifications:

http://cdn.sqlperformance.com/wp-content/uploads/2014/10/4_plan.jpg
http://cdn.sqlperformance.com/wp-content/uploads/2014/10/5_stats_after_update.jpg

-- Has the data in the statistics been modified since the statistics was last updated?

 IF @CurrentStatisticsID IS NOT NULL AND @UpdateStatistics IS NOT NULL AND

@OnlyModifiedStatistics = 'Y'

 BEGIN

 SET @CurrentCommand10 = ''

 IF @LockTimeout IS NOT NULL SET @CurrentCommand10 = 'SET LOCK_TIMEOUT ' +

CAST(@LockTimeout * 1000 AS nvarchar) + '; '

 IF (@Version >= 10.504000 AND @Version < 11) OR @Version >= 11.03000

 BEGIN

 SET @CurrentCommand10 = @CurrentCommand10 + 'USE ' +

QUOTENAME(@CurrentDatabaseName)

 + '; IF EXISTS(SELECT * FROM sys.dm_db_stats_properties (@ParamObjectID,

@ParamStatisticsID)

 WHERE modification_counter > 0) BEGIN SET @ParamStatisticsModified = 1 END'

 END

 ELSE

 BEGIN

 SET @CurrentCommand10 = @CurrentCommand10 + 'IF EXISTS(SELECT * FROM '

 + QUOTENAME(@CurrentDatabaseName) + '.sys.sysindexes sysindexes

 WHERE sysindexes.[id] = @ParamObjectID AND sysindexes.[indid] =

@ParamStatisticsID

 AND sysindexes.[rowmodctr] <> 0) BEGIN SET @ParamStatisticsModified = 1 END'

 END

For versions which support the sys.dm_db_stats_properties DMF, Ola checks it for any statistics that

have been modified, and for versions that do not support the new sys.dm_db_stats_properties DMF,

the sys.sysindexes system table is checked. My only complaint here is that the script behaves the same

way as sp_updatestats: if at least one row has been modified, the statistic will be updated.

If you're not into writing your own code for managing stats, then I would recommend sticking with Ola's

script. But if you do want to target your updates a bit more, then I'd recommend using

sys.dm_db_stats_properties. This DMF is only available for SQL Server 2008R2 SP2 and higher, and SQL

Server 2012 SP1 and higher, so if you're on a lower version, you'll need to use sys.indexes. But for those

of you with access to sys.dm_db_stats_properties, here's a query to get you started:

SELECT

 [sch].[name] AS [Schema],

 [so].[name] AS [ObjectName],

 [so].[type] AS [ObjectType],

 [ss].[name] AS [Statistic],

 [sp].[last_updated] AS [StatsLastUpdated] ,

 [sp].[rows] AS [RowsInTable] ,

 [sp].[rows_sampled] AS [RowsSampled] ,

 CAST(100 * [sp].[rows_sampled] / [sp].[rows] AS DECIMAL (18, 2)) AS [PercentSampled],

 [sp].[modification_counter] AS [RowModifications] ,

 CAST(100 * [sp].[modification_counter] / [sp].[rows] AS DECIMAL(18, 2)) AS

[PercentChange]

FROM [sys].[objects] AS [so]

INNER JOIN [sys].[stats] AS [ss] ON [so].[object_id] = [ss].[object_id]

INNER JOIN [sys].[schemas] AS [sch] ON [so].[schema_id] = [sch].[schema_id]

OUTER APPLY [sys].[dm_db_stats_properties]([so].[object_id], [ss].[stats_id]) AS [sp]

WHERE [so].[type] IN ('U','V')

AND ((CAST(100 * [sp].[modification_counter] / [sp].[rows] AS DECIMAL(18,2)) = 10.0))

ORDER BY CAST(100 * [sp].[modification_counter] / [sp].[rows] AS DECIMAL(18, 2)) DESC;

Note that with sys.objects we filter on tables and views; you could alter this to include system tables.

You can then modify the predicate to only retrieve rows based on the percentage of rows modified, or

perhaps a combination of modification percentage and number of rows (for tables with millions or

billions of rows, that percentage might be lower than for small tables).

Summary

The take home message here is pretty clear: I don't recommend using sp_updatestats to manage

statistics. Statistics are updated when one or more rows have changed (which is an extremely low

threshold for updating stats) and stats for indexed views are not updated. This is not a comprehensive

and efficient method for managing stats…and the update statistics task in a Maintenance Plan isn't

much better. It updates the indexed view statistics, but it updates every statistic, regardless of

modifications. A custom script is really the way to go, but understand that Ola Hallengren's script, if

you're updating based on modification, also updates when only row has been modified (but it at least

gets the indexed views). In the end, for the best control, look to roll your own script for managing

statistics. I've given you the base query to start. If you can block off a couple hours to practice your T-

SQL writing and then test it out, you'll have a working custom script ready for your databases before the

holidays roll around.

Incremental Statistics are NOT used by the Query Optimizer
By Erin Stellato

In my previous post on incremental statistics, a new feature in SQL Server 2014, I demonstrated how

they can help decrease maintenance task duration. This is because statistics can be updated at the

partition level, and the changes merged into the main histogram for the table. I also noted that the

Query Optimizer doesn’t use those partition-level statistics when generating query plans, which may be

something that people were expecting. No documentation exists to state that incremental statistics will,

or will not, be used by the Query Optimizer. So how do you know? You have to test it. :-)

The Setup

The setup for this test will be similar to the one in the last post, but with less data. Note that the default

sizes are smaller for the data files, and the script only loads in a few million rows of data:

USE [AdventureWorks2014_Partition];

GO

/* add filesgroups */

ALTER DATABASE [AdventureWorks2014_Partition] ADD FILEGROUP [FG2011];

ALTER DATABASE [AdventureWorks2014_Partition] ADD FILEGROUP [FG2012];

ALTER DATABASE [AdventureWorks2014_Partition] ADD FILEGROUP [FG2013];

ALTER DATABASE [AdventureWorks2014_Partition] ADD FILEGROUP [FG2014];

ALTER DATABASE [AdventureWorks2014_Partition] ADD FILEGROUP [FG2015];

/* add files */

ALTER DATABASE [AdventureWorks2014_Partition] ADD FILE

(

 FILENAME = N'C:\Databases\AdventureWorks2014_Partition\2011.ndf',

 NAME = N'2011', SIZE = 512MB, MAXSIZE = 2048MB, FILEGROWTH = 512MB

) TO FILEGROUP [FG2011];

ALTER DATABASE [AdventureWorks2014_Partition] ADD FILE

(

 FILENAME = N'C:\Databases\AdventureWorks2014_Partition\2012.ndf',

 NAME = N'2012', SIZE = 512MB, MAXSIZE = 2048MB, FILEGROWTH = 512MB

) TO FILEGROUP [FG2012];

ALTER DATABASE [AdventureWorks2014_Partition] ADD FILE

(

 FILENAME = N'C:\Databases\AdventureWorks2014_Partition\2013.ndf',

 NAME = N'2013', SIZE = 512MB, MAXSIZE = 2048MB, FILEGROWTH = 512MB

) TO FILEGROUP [FG2013];

ALTER DATABASE [AdventureWorks2014_Partition] ADD FILE

(

 FILENAME = N'C:\Databases\AdventureWorks2014_Partition\2014.ndf',

 NAME = N'2014', SIZE = 512MB, MAXSIZE = 2048MB, FILEGROWTH = 512MB

) TO FILEGROUP [FG2014];

http://sqlperformance.com/2015/05/sql-statistics/incremental-statistics-are-not-used-by-the-query-optimizer?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2015/05/sql-statistics/improving-maintenance-incremental-statistics?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

ALTER DATABASE [AdventureWorks2014_Partition] ADD FILE

(

 FILENAME = N'C:\Databases\AdventureWorks2014_Partition\2015.ndf',

 NAME = N'2015', SIZE = 512MB, MAXSIZE = 2048MB, FILEGROWTH = 512MB

) TO FILEGROUP [FG2015];

CREATE PARTITION FUNCTION [OrderDateRangePFN] ([datetime])

AS RANGE RIGHT FOR VALUES

(

 '20110101', --everything in 2011

 '20120101', --everything in 2012

 '20130101', --everything in 2013

 '20140101', --everything in 2014

 '20150101' --everything in 2015

);

GO

CREATE PARTITION SCHEME [OrderDateRangePScheme]

AS

PARTITION [OrderDateRangePFN] TO

([PRIMARY], [FG2011], [FG2012], [FG2013], [FG2014], [FG2015]);

GO

CREATE TABLE [dbo].[Orders]

(

 [PurchaseOrderID] [int] NOT NULL,

 [EmployeeID] [int] NULL,

 [VendorID] [int] NULL,

 [TaxAmt] [money] NULL,

 [Freight] [money] NULL,

 [SubTotal] [money] NULL,

 [Status] [tinyint] NOT NULL,

 [RevisionNumber] [tinyint] NULL,

 [ModifiedDate] [datetime] NULL,

 [ShipMethodID] [tinyint] NULL,

 [ShipDate] [datetime] NOT NULL,

 [OrderDate] [datetime] NOT NULL,

 [TotalDue] [money] NULL

) ON [OrderDateRangePScheme] (OrderDate);

When we create the clustered index for dbo.Orders, we will create it without the

STATISTICS_INCREMENTAL option enabled, so we’ll start with a traditional partitioned table with no

incremental statistics:

ALTER TABLE [dbo].[Orders]

ADD CONSTRAINT [OrdersPK]

PRIMARY KEY CLUSTERED ([OrderDate], [PurchaseOrderID])

ON [OrderDateRangePScheme] ([OrderDate]);

Next we’ll load in about 4 million rows, which takes just under a minute on my machine:

SET NOCOUNT ON;

DECLARE @Loops SMALLINT = 0;

DECLARE @Increment INT = 3000;

WHILE @Loops < 1000

BEGIN

 INSERT [dbo].[Orders]

 ([PurchaseOrderID]

 ,[EmployeeID]

 ,[VendorID]

 ,[TaxAmt]

 ,[Freight]

 ,[SubTotal]

 ,[Status]

 ,[RevisionNumber]

 ,[ModifiedDate]

 ,[ShipMethodID]

 ,[ShipDate]

 ,[OrderDate]

 ,[TotalDue])

 SELECT [PurchaseOrderID] + @Increment

 , [EmployeeID]

 , [VendorID]

 , [TaxAmt]

 , [Freight]

 , [SubTotal]

 , [Status]

 , [RevisionNumber]

 , [ModifiedDate]

 , [ShipMethodID]

 , DATEADD(DAY, 365, [ShipDate])

 , DATEADD(DAY, 365, [OrderDate])

 , [TotalDue] + 365

 FROM [Purchasing].[PurchaseOrderHeader];

 CHECKPOINT;

 SET @Loops = @Loops + 1;

 SET @Increment = @Increment + 5000;

END

After the data load, we’ll update statistics with a FULLSCAN (so we can create a consistent-as-possible

histogram for tests) and then verify what data we have in each partition:

UPDATE STATISTICS [dbo].[Orders] WITH FULLSCAN;

SELECT $PARTITION.[OrderDateRangePFN]([o].[OrderDate]) AS [Partition Number]

 , MIN([o].[OrderDate]) AS [Min_Order_Date]

 , MAX([o].[OrderDate]) AS [Max_Order_Date]

 , COUNT(*) AS [Rows_In_Partition]

FROM [dbo].[Orders] AS [o]

GROUP BY $PARTITION.[OrderDateRangePFN]([o].[OrderDate])

ORDER BY [Partition Number];

Data in each partition after data load

Most of the data is in the 2015 partition, but there’s also data for 2012, 2013, and 2014. And if we check

the output from the undocumented DMV sys.dm_db_stats_properties_internal, we can see that no

partition level statistics exist:

SELECT *

 FROM [sys].[dm_db_stats_properties_internal](OBJECT_ID('dbo.Orders'),1)

 ORDER BY [node_id];

sys.dm_db_stats_properties_internal output showing only one statistic for dbo.Orders

The Test

Testing requires a simple query that we can use to verify that partition elimination occurs, and also

check estimates based on statistics. The query doesn’t return any data, but that doesn’t matter, we’re

interested in what the optimizer thought it would return, based on statistics:

SELECT *

 FROM [dbo].[Orders]

 WHERE [OrderDate] = '2014-04-01';

Query plan for the SELECT statement

http://cdn.sqlperformance.com/wp-content/uploads/2015/05/1_partition_dist.jpg
http://cdn.sqlperformance.com/wp-content/uploads/2015/05/2_dm_db_stats_internal.jpg
http://cdn.sqlperformance.com/wp-content/uploads/2015/05/3_plan.jpg

The plan has a Clustered Index Seek, and if we check the properties, we see that it estimated 4000 rows,

and accessed partition 5, which contains 2014 data.

Estimated and actual information from the Clustered Index Seek

If we look at the histogram for the dbo.Orders table, specifically in the area of April 2014 data, we see

that there is no step for 2014-04-01, so the optimizer estimates the number of rows for that date using

the step for 2014-04-24, where the AVG_RANGE_ROWS is 4000 (for any one value between 2014-02-14

and 2014-04-23 inclusive, the optimizer will estimate that 4000 rows will be returned).

DBCC SHOW_STATISTICS('dbo.Orders','OrdersPK');

http://cdn.sqlperformance.com/wp-content/uploads/2015/05/4_estimates.jpg

Distribution in the dbo.Orders histogram

The estimate and the plan are completely expected. Let’s enable incremental statistics and see what we

get.

ALTER INDEX [OrdersPK] ON [dbo].[Orders]

 REBUILD WITH (STATISTICS_INCREMENTAL = ON);

GO

UPDATE STATISTICS [dbo].[Orders] WITH FULLSCAN;

If we re-run our query against sys.dm_db_stats_properties_internal, we can see the incremental

statistics:

sys.dm_db_stats_properties_internal showing incremental statistics information

Now let’s re-run our query again dbo.Orders, and we’ll run DBCC FREEPROCCACHE first to fully ensure

the plan isn’t re-used:

DBCC FREEPROCCACHE;

GO

SELECT *

 FROM [dbo].[Orders]

 WHERE [OrderDate] = '2014-04-01';

http://cdn.sqlperformance.com/wp-content/uploads/2015/05/5_histogram.jpg
http://cdn.sqlperformance.com/wp-content/uploads/2015/05/6_stats_properties_internal_incremental.jpg

We get the same plan, and the same estimate:

Query plan for the SELECT statement

Estimated and actual information from the Clustered Index Seek

If we check the main histogram for dbo.Orders, we see nearly the same histogram as before:

DBCC SHOW_STATISTICS('dbo.Orders','OrdersPK');

http://cdn.sqlperformance.com/wp-content/uploads/2015/05/3_plan.jpg
http://cdn.sqlperformance.com/wp-content/uploads/2015/05/4_estimates.jpg

Histogram for dbo.Orders, after enabling incremental statistics

Now, let’s check the histogram for the partition with 2014 data (we can do this using undocumented

trace flag 2309, which allows for a partition number to be specified as an additional argument to DBCC

SHOW_STATISTICS):

DBCC TRACEON(2309);

GO

DBCC SHOW_STATISTICS('dbo.Orders','OrdersPK', 6);

Histogram for the 2014 partition of dbo.Orders, after enabling incremental statistics

http://cdn.sqlperformance.com/wp-content/uploads/2015/05/7_histogram2.jpg
http://cdn.sqlperformance.com/wp-content/uploads/2015/05/8_histogram3.jpg

Here we see that, again, there is no step for 2014-04-01, but there are 0 RANGE_ROWS between 2014-

02-13 and 2014-04-05, with an AVG_RANGE_ROWS of 1. If the optimizer was using the histogram for the

partition level statistics, then the estimate for the number of rows for 2014-04-01 would be 1.

Note: The partition identified as used in the query plan is 5, but you’ll notice that the DBCC

SHOW_STATISTICS statement references partition 6. The assumption is an inconsistency in statistics

metadata (a common off-by-one error, likely due to 0-based vs. 1-based counting), which may or may

not be fixed in the future. Understand that the trace flag is not documented at this time, and that it is not

recommended to use in a production environment.

Summary

The addition of incremental statistics in the SQL Server 2014 release is a step in the right direction for

improved cardinality estimates for partitioned tables. However, as we’ve demonstrated, the current

value of incremental statistics is limited to decreased maintenance durations, as those incremental

statistics are not yet used by the Query Optimizer.

Improving Partition Maintenance with Incremental Statistics
By Erin Stellato

SQL Server 2014 brought many new features that DBAs and developers looked forward to testing and

using in their environments, such as the updatable clustered Columnstore index, Delayed Durability, and

Buffer Pool Extensions. A feature not often discussed is incremental statistics. Unless you use

partitioning, this isn’t a feature you can implement. But if you do have partitioned tables in your

database, incremental statistics might have been something you were eagerly anticipating.

Note: Benjamin Nevarez covered some basics related to incremental statistics in his February 2014 post,

SQL Server 2014 Incremental Statistics. And while not much has changed in how this feature works since

his post and the April 2014 release, it seemed a good time to dig into how enabling incremental

statistics can help with maintenance performance.

Incremental statistics are sometimes called partition-level statistics, and this is because for the first

time, SQL Server can automatically create statistics that are specific to a partition. One of the previous

challenges with partitioning was that, even though you could have 1 to n partitions for a table, there was

only one (1) statistic which represented the data distribution across all of those partitions. You could

create filtered statistics for the partitioned table – one statistic for each partition – to provide the query

optimizer with better information about the distribution of data. But this was a manual process, and

required a script to automatically create them for each new partition.

In SQL Server 2014, you use the STATISTICS_INCREMENTAL option to have SQL Server create those

partition-level statistics automatically. However, these statistics are not used as you might think.

I mentioned previously that, prior to 2014, you could create filtered statistics to give the optimizer

better information about the partitions. Those incremental statistics? They aren’t currently used by the

optimizer. The query optimizer still just uses the main histogram that represents the entire table. (Post

to come which will demonstrate this!)

So what’s the point of incremental statistics? If you assume that only data in the most recent partition is

changing, then ideally you only update statistics for that partition. You can do this now with incremental

statistics – and what happens is that information is then merged back into the main histogram. The

histogram for the entire table will update without having to read through the entire table to update

statistics, and this can help with performance of your maintenance tasks.

Setup

We’ll start with creating a partition function and scheme, and then a new table which we will partition.

Note that I created a filegroup for each partition function as you might in a production environment.

You can create the partition scheme on the same filegroup (e.g. PRIMARY) if you cannot easily drop your

test database. Each filegroup is also a few GB in size, as we’re going to add almost 400 million rows.

USE [AdventureWorks2014_Partition];

GO

/* add filesgroups */

ALTER DATABASE [AdventureWorks2014_Partition] ADD FILEGROUP [FG2011];

http://sqlperformance.com/2015/05/sql-statistics/improving-maintenance-incremental-statistics?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/02/sql-statistics/2014-incremental-statistics?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

ALTER DATABASE [AdventureWorks2014_Partition] ADD FILEGROUP [FG2012];

ALTER DATABASE [AdventureWorks2014_Partition] ADD FILEGROUP [FG2013];

ALTER DATABASE [AdventureWorks2014_Partition] ADD FILEGROUP [FG2014];

ALTER DATABASE [AdventureWorks2014_Partition] ADD FILEGROUP [FG2015];

/* add files */

ALTER DATABASE [AdventureWorks2014_Partition] ADD FILE

(

 FILENAME = N'C:\Databases\AdventureWorks2014_Partition\2011.ndf',

 NAME = N'2011', SIZE = 1024MB, MAXSIZE = 4096MB, FILEGROWTH = 512MB

) TO FILEGROUP [FG2011];

ALTER DATABASE [AdventureWorks2014_Partition] ADD FILE

(

 FILENAME = N'C:\Databases\AdventureWorks2014_Partition\2012.ndf',

 NAME = N'2012', SIZE = 512MB, MAXSIZE = 2048MB, FILEGROWTH = 512MB

) TO FILEGROUP [FG2012];

ALTER DATABASE [AdventureWorks2014_Partition] ADD FILE

(

 FILENAME = N'C:\Databases\AdventureWorks2014_Partition\2013.ndf',

 NAME = N'2013', SIZE = 2048MB, MAXSIZE = 4096MB, FILEGROWTH = 512MB

) TO FILEGROUP [FG2013];

ALTER DATABASE [AdventureWorks2014_Partition] ADD FILE

(

 FILENAME = N'C:\Databases\AdventureWorks2014_Partition\2014.ndf',

 NAME = N'2014', SIZE = 2048MB, MAXSIZE = 4096MB, FILEGROWTH = 512MB

) TO FILEGROUP [FG2014];

ALTER DATABASE [AdventureWorks2014_Partition] ADD FILE

(

 FILENAME = N'C:\Databases\AdventureWorks2014_Partition\2015.ndf',

 NAME = N'2015', SIZE = 2048MB, MAXSIZE = 4096MB, FILEGROWTH = 512MB

) TO FILEGROUP [FG2015];

/* create partition function */

CREATE PARTITION FUNCTION [OrderDateRangePFN] ([datetime])

AS RANGE RIGHT FOR VALUES

(

 '20110101', -- everything in 2011

 '20120101', -- everything in 2012

 '20130101', -- everything in 2013

 '20140101', -- everything in 2014

 '20150101' -- everything in 2015

);

GO

/* create partition scheme */

CREATE PARTITION SCHEME [OrderDateRangePScheme]

AS PARTITION [OrderDateRangePFN] TO

 ([PRIMARY], [FG2011], [FG2012], [FG2013], [FG2014], [FG2015]);

GO

/* create the table */

CREATE TABLE [dbo].[Orders]

(

 [PurchaseOrderID] [int] NOT NULL,

 [EmployeeID] [int] NULL,

 [VendorID] [int] NULL,

 [TaxAmt] [money] NULL,

 [Freight] [money] NULL,

 [SubTotal] [money] NULL,

 [Status] [tinyint] NOT NULL,

 [RevisionNumber] [tinyint] NULL,

 [ModifiedDate] [datetime] NULL,

 [ShipMethodID] [tinyint] NULL,

 [ShipDate] [datetime] NOT NULL,

 [OrderDate] [datetime] NOT NULL,

 [TotalDue] [money] NULL

) ON [OrderDateRangePScheme] (OrderDate);

Before we add the data, we’ll create the clustered index, and note that the syntax includes the WITH

(STATISTICS_INCREMENTAL = ON) option:

/* add the clustered index and enable incremental stats */

ALTER TABLE [dbo].[Orders] ADD CONSTRAINT [OrdersPK]

PRIMARY KEY CLUSTERED

(

 [OrderDate],

 [PurchaseOrderID]

)

WITH (STATISTICS_INCREMENTAL = ON)

ON [OrderDateRangePScheme] ([OrderDate]);

What’s interesting to note here is that if you look at the ALTER TABLE entry in MSDN, it does not include

this option. You will only find it in the ALTER INDEX entry… but this works. If you want to follow the

documentation to the letter, you would run:

/* add the clustered index and enable incremental stats */

ALTER TABLE [dbo].[Orders]

ADD CONSTRAINT [OrdersPK]

PRIMARY KEY CLUSTERED

(

 [OrderDate],

 [PurchaseOrderID]

)

https://msdn.microsoft.com/en-us/library/ms190273.aspx
https://msdn.microsoft.com/en-us/library/ms188388.aspx

ON [OrderDateRangePScheme] ([OrderDate]);

GO

ALTER INDEX [OrdersPK] ON [dbo].[Orders] REBUILD WITH (STATISTICS_INCREMENTAL = ON);

Once the clustered index has been created for the partition scheme, we’ll load in our data and then

check to see how many rows exist per partition (note this takes over 7 minutes on my laptop, you may

want to add fewer rows depending on how much storage (and time) you have available):

/* load some data */

SET NOCOUNT ON;

DECLARE @Loops SMALLINT = 0;

DECLARE @Increment INT = 5000;

WHILE @Loops < 10000 -- adjust this to increase or decrease the number

 -- of rows in the table, 10000 = 40 millon rows

BEGIN

 INSERT [dbo].[Orders]

 ([PurchaseOrderID]

 ,[EmployeeID]

 ,[VendorID]

 ,[TaxAmt]

 ,[Freight]

 ,[SubTotal]

 ,[Status]

 ,[RevisionNumber]

 ,[ModifiedDate]

 ,[ShipMethodID]

 ,[ShipDate]

 ,[OrderDate]

 ,[TotalDue]

)

 SELECT

 [PurchaseOrderID] + @Increment

 , [EmployeeID]

 , [VendorID]

 , [TaxAmt]

 , [Freight]

 , [SubTotal]

 , [Status]

 , [RevisionNumber]

 , [ModifiedDate]

 , [ShipMethodID]

 , [ShipDate]

 , [OrderDate]

 , [TotalDue]

 FROM [Purchasing].[PurchaseOrderHeader];

 CHECKPOINT;

 SET @Loops = @Loops + 1;

 SET @Increment = @Increment + 5000;

END

/* Check to see how much data exists per partition */

SELECT

 $PARTITION.[OrderDateRangePFN]([o].[OrderDate]) AS [Partition Number]

 , MIN([o].[OrderDate]) AS [Min_Order_Date]

 , MAX([o].[OrderDate]) AS [Max_Order_Date]

 , COUNT(*) AS [Rows In Partition]

FROM [dbo].[Orders] AS [o]

GROUP BY $PARTITION.[OrderDateRangePFN]([o].[OrderDate])

ORDER BY [Partition Number];

Data per partition

We’ve added data for 2012 through 2015, with significantly more data in 2014 and 2015. Let’s see what

our statistics look like:

DBCC SHOW_STATISTICS ('dbo.Orders',[OrdersPK]);

http://cdn.sqlperformance.com/wp-content/uploads/2015/05/01_partition_dist.jpg

DBCC SHOW_STATISTICS output for dbo.Orders (click to enlarge)

With the default DBCC SHOW_STATISTICS command, we don’t have any information about statistics at

the partition level. Fear not; we are not completely doomed – there is an undocumented dynamic

management function, sys.dm_db_stats_properties_internal. Remember that undocumented means it

is not supported (there is no MSDN entry for the DMF), and that it can change at any time without any

warning from Microsoft. That said, it’s a decent start for getting an idea of what exists for our

incremental statistics:

SELECT *

 FROM [sys].[dm_db_stats_properties_internal](OBJECT_ID('dbo.Orders'),1)

 ORDER BY [node_id];

http://cdn.sqlperformance.com/wp-content/uploads/2015/05/db_stats_props.png

Histogram information from dm_db_stats_properties_internal

This is a lot more interesting. Here we can see proof that partition-level statistics (and more) exist.

Because this DMF is not documented, we have to do some interpretation. For today, we’ll focus on the

first seven rows in the output, where the first row represents the histogram for the entire table (note

the rows value of 40 million), and the subsequent rows represent the histograms for each partition.

Unfortunately, the partition_number value in this histogram does not line up with the partition number

from sys.dm_db_index_physical_stats for right-based partitioning (it does correlate properly for left-

based partitioning). Also note that this output also includes the last_updated and modification_counter

columns, which are helpful when troubleshooting, and it can be used to develop maintenance scripts

that intelligently update statistics based on age or row modifications.

Minimizing maintenance required

The primary value of incremental statistics at this time is the ability to update statistics for a partition

and have those merge into the table-level histogram, without having to update the statistic for the

entire table (and therefore read through the entire table). To see this in action, let’s first update

statistics for the partition which holds the 2015 data, partition 5, and we’ll record the time taken and

snapshot the sys.dm_io_virtual_file_stats DMF before and after to see how much I/O occurs:

SET STATISTICS TIME ON;

SELECT

 fs.database_id, fs.file_id, mf.name, mf.physical_name,

 fs.num_of_bytes_read, fs.num_of_bytes_written

INTO #FirstCapture

FROM sys.dm_io_virtual_file_stats(DB_ID(), NULL) AS fs

INNER JOIN sys.master_files AS mf

ON fs.database_id = mf.database_id

AND fs.file_id = mf.file_id;

UPDATE STATISTICS [dbo].[Orders]([OrdersPK]) WITH RESAMPLE ON PARTITIONS(6);

GO

SELECT

 fs.database_id, fs.file_id, mf.name, mf.physical_name,

 fs.num_of_bytes_read, fs.num_of_bytes_written

INTO #SecondCapture

FROM sys.dm_io_virtual_file_stats(DB_ID(), NULL) AS fs

INNER JOIN sys.master_files AS mf

ON fs.database_id = mf.database_id

AND fs.file_id = mf.file_id;

http://cdn.sqlperformance.com/wp-content/uploads/2015/05/db_stats_props_2.png

SELECT f.file_id, f.name, f.physical_name,

 (s.num_of_bytes_read - f.num_of_bytes_read)/1024 MB_Read,

 (s.num_of_bytes_written - f.num_of_bytes_written)/1024 MB_Written

FROM #FirstCapture AS f

INNER JOIN #SecondCapture AS s

ON f.database_id = s.database_id

AND f.file_id = s.file_id;

Output:

SQL Server Execution Times:

CPU time = 203 ms, elapsed time = 240 ms.

File_stats data after updating one partition

If we look at the sys.dm_db_stats_properties_internal output, we see that last_updated changed for

both the 2015 histogram and the table-level histogram (as well as a few other nodes, which is for later

investigation):

Updated histogram information from dm_db_stats_properties_internal

Now we’ll update statistics with a FULLSCAN for the table, and we’ll snapshot file_stats before and after

again:

SET STATISTICS TIME ON;

SELECT

 fs.database_id, fs.file_id, mf.name, mf.physical_name,

 fs.num_of_bytes_read, fs.num_of_bytes_written

INTO #FirstCapture2

FROM sys.dm_io_virtual_file_stats(DB_ID(), NULL) AS fs

INNER JOIN sys.master_files AS mf

ON fs.database_id = mf.database_id

http://cdn.sqlperformance.com/wp-content/uploads/2015/05/05_filestats-for-partition-udpate.jpg
http://cdn.sqlperformance.com/wp-content/uploads/2015/05/05_histogram.jpg

AND fs.file_id = mf.file_id;

UPDATE STATISTICS [dbo].[Orders]([OrdersPK]) WITH FULLSCAN

SELECT

 fs.database_id, fs.file_id, mf.name, mf.physical_name,

 fs.num_of_bytes_read, fs.num_of_bytes_written

INTO #SecondCapture2

FROM sys.dm_io_virtual_file_stats(DB_ID(), NULL) AS fs

INNER JOIN sys.master_files AS mf

ON fs.database_id = mf.database_id

AND fs.file_id = mf.file_id;

SELECT

 f.file_id, f.name, f.physical_name,

 (s.num_of_bytes_read - f.num_of_bytes_read)/1024 MB_Read,

 (s.num_of_bytes_written - f.num_of_bytes_written)/1024 MB_Written

FROM #FirstCapture2 AS f

INNER JOIN #SecondCapture2 AS s

ON f.database_id = s.database_id

AND f.file_id = s.file_id;

Output:

SQL Server Execution Times:

CPU time = 12720 ms, elapsed time = 13646 ms

Filestats data after updating with a fullscan

The update took significantly longer (13 seconds versus a couple hundred milliseconds) and generated a

lot more I/O. If we check sys.dm_db_stats_properties_internal again, we find that last_updated changed

for all the histograms:

Histogram information from dm_db_stats_properties_internal after a fullscan

http://cdn.sqlperformance.com/wp-content/uploads/2015/05/06_filestats-for-fullscan.jpg
http://cdn.sqlperformance.com/wp-content/uploads/2015/05/06_histogram.jpg

Summary

While incremental statistics are not yet used by the query optimizer to provide information about each

partition, they do provide a performance benefit when managing statistics for partitioned tables. If

statistics only need to be updated for select partitions, just those can be updated. The new information

is then merged into the table-level histogram, providing the optimizer more current information,

without the cost of reading the entire table. Going forward, we hope that those partition-level statistics

will be used by the optimizer. Stay tuned…

Administration, Maintenace, and System Configuration
SQL Server Agent Alerts
By Tim Radney

Being a database administrator has many responsibilities, and knowing what is happening on your SQL

Server is one of them. Being proactive and alerted to errors is one of the traits that makes someone a

great DBA. And I’m not just talking about things failing, which is what most people think of being alerted

about; you can also be alerted about performance problems. Within SQL Server you have the ability to

create SQL Server Agent Alerts (which I’ll just call ‘alerts’ from now on), and this is easily accomplished

using the GUI or T-SQL.

Configuring SQL Server Agent Alerts

To use alerts you must have Database Mail and a SQL Agent Operator configured. Most SQL instances I

have come across already have Database Mail configured for job failure notifications. If you need further

information on setting up this feature, visit the Books Online topic, "Configure Database Mail."

A lesser-known task is configuring the Operator. You can create the Operator using SSMS or T-SQL.

Within SSMS expand SQL Server Agent, right click on Operator and chose New Operator. You will have a

new dialog box open where you can give the operator a name and specify the email address to notify. I

prefer to use a distribution group for the email notifications. Most companies have more than one

person responsible for the SQL environment and if you specify a distribution group then the entire team

can be notified of the alerts. Using distribution groups also makes it much easier to add or remove

people from the alerts.

Below is an example screenshot of the New Operator dialog:

http://sqlperformance.com/2015/02/sql-alert/sql-server-agent-alerts?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://msdn.microsoft.com/en-us/library/hh245116.aspx
http://cdn.sqlperformance.com/wp-content/uploads/2015/02/SQLAlertsImage1.png

I prefer using T-SQL so I can make sure that creating the Operator is part of a server build template.

Example code for creating the above Operator is as follows:

EXEC msdb.dbo.sp_add_operator @name = N'SQL_Alerts',

 @enabled = 1,

 @email_address = N'sql_alerts@mydomain.com';

Once you have Database Mail and the Operator configured you can create the alerts and assign them to

the Operator.

If using SSMS, you can expand SQL Server Agent and then Alerts. By default, no alerts are created. If you

right click and chose New Alert, you will get a screen similar to the figure below:

You will notice that under Severity, there are 25 severity codes. Just like it sounds, error level severity

describes how important the error is. Severity 10 is informational while 19-25 are fatal and you will want

to be notified when those errors arise. If a severity 23 error arose, for example, then you most likely

have corruption in one of your databases. These fatal errors can all impact the performance of your

server, which in turn impacts the customer experience.

http://cdn.sqlperformance.com/wp-content/uploads/2015/02/SQLAlertsImage2.png

There is an additional alert that you need to create, for error 825. Error 825, as Paul Randal describes in

his blog post, is related to an I/O operation that SQL Server had to retry but that eventually succeeds

(whereas errors 823 and 824 indicate that an I/O retry operation was retried and eventually failed).

Error 825 is critical to know about because it is alerting you to I/O issues that could end up becoming

fatal in future. Any retry attempt is bad, you shouldn’t wait until an I/O operation fails to be notified. If

you start getting Error 825 messages, you need to immediately reach out to your storage and hardware

teams.

You can create each of the Alerts by specifying the name and selecting the severity. For Error 825 you

would select Error and type the number. As with the Operator, I prefer to use T-SQL. If I can easily script

a process then it is much easier to reuse and include as part of a server build.

Below you will find the script that I have used on my SQL Server 2014 Developer workstation. This script

creates each of the alerts and adds a notification for the alert to the Operator SQL_Alerts.

EXEC msdb.dbo.sp_add_alert @name = N'Severity 19 Error',

 @message_id = 0, @severity = 19, @include_event_description_in = 0;

EXEC msdb.dbo.sp_add_notification @alert_name = N'Severity 19 Error',

 @operator_name = N'SQL_Alerts', @notification_method = 1;

EXEC msdb.dbo.sp_add_alert @name = N'Severity 20 Error',

 @message_id = 0, @severity = 20, @include_event_description_in = 0;

EXEC msdb.dbo.sp_add_notification @alert_name = N'Severity 20 Error',

 @operator_name = N'SQL_Alerts', @notification_method = 1;

EXEC msdb.dbo.sp_add_alert @name=N'Severity 21 Error',

 @message_id = 0, @severity = 21, @include_event_description_in = 0;

EXEC msdb.dbo.sp_add_notification @alert_name = N'Severity 21 Error',

 @operator_name = N'SQL_Alerts', @notification_method = 1;

EXEC msdb.dbo.sp_add_alert @name = N'Severity 22 Error',

 @message_id = 0, @severity = 22, @include_event_description_in = 0;

EXEC msdb.dbo.sp_add_notification @alert_name = N'Severity 22 Error',

 @operator_name = N'SQL_Alerts', @notification_method = 1;

EXEC msdb.dbo.sp_add_alert @name = N'Severity 23 Error',

 @message_id = 0, @severity = 23, @include_event_description_in = 0;

EXEC msdb.dbo.sp_add_notification @alert_name = N'Severity 23 Error',

 @operator_name = N'SQL_Alerts', @notification_method = 1;

EXEC msdb.dbo.sp_add_alert @name = N'Severity 24 Error',

 @message_id = 0, @severity = 24, @include_event_description_in = 0;

EXEC msdb.dbo.sp_add_notification @alert_name = N'Severity 24 Error',

 @operator_name = N'SQL_Alerts', @notification_method = 1;

http://www.sqlskills.com/blogs/paul/a-little-known-sign-of-impending-doom-error-825/
http://www.sqlskills.com/blogs/paul/a-little-known-sign-of-impending-doom-error-825/

EXEC msdb.dbo.sp_add_alert @name = N'Severity 25 Error',

 @message_id = 0, @severity = 25, @include_event_description_in = 0;

EXEC msdb.dbo.sp_add_notification @alert_name = N'Severity 25 Error',

 @operator_name = N'SQL_Alerts', @notification_method = 1;

EXEC msdb.dbo.sp_add_alert @name = N'Error 825',

 @message_id = 825, @severity = 0, @include_event_description_in = 0;

EXEC msdb.dbo.sp_add_notification @alert_name = N'Error 825',

 @operator_name = N'SQL_Alerts', @notification_method = 1;

If you have followed along, you would have database mail configured, created an Operator to email you

or a distribution group about potential errors, and SQL Server Agent Alerts configured for Severity 19 –

25 and error 825.

This is great. Any time one of those alerts are triggered an email will be sent to your team. In addition to

event alerts, alerts can be configured for a performance condition, as I mentioned in the introduction.

For example, if memory usage exceeds a defined threshold an alert could be triggered. I encourage you

to explore the various performance alerts and create the ones your organization could benefit from. To

find the SQL Server performance condition alerts, in the new alert dialog box, click the drop down box

for Type. There you will see SQL Server performance condition alert listed. Once you chose that option

you can browse the types of objects you can configure a performance condition alert on.

While we assigned an Operator to the alert response, you could also configure the alert to execute a SQL

Agent job. While this gives you some flexibility to have event response task, it doesn’t provide the ability

to have easy conditional alerting.

Using SQL Sentry for Advanced Alerting

For more advanced alerting, you need a better tool. This is where SQL Sentry can help. One of my

favorite SQL Sentry alerting features is the ability to create custom conditions to alert or act when

something has changed within the environment. For example, if someone changed the min or max

memory value, modified maxdop or the cost threshold for parallelism you could get an alert or even kick

off a process. This feature was introduced in SQL Sentry v8, and Greg Gonzalez (blog | @SQLsensei)

blogged about it here: "SQL Sentry v8: Intelligent Alerting Redefined."

With this feature, you can also create custom conditions for different databases within a single alert. If

you attempted this using SQL Agent alerts you would have to create different alerts per database.

Another great alerting feature is the ability to create different alerting schedules. Many organizations

have teams that are responsible during different parts of the day. Some may have the production DBA’s

responsible during the daytime hours with a Network Operations Center covering the night shift, then

an on-call person over the weekends. Wouldn’t it be great to be able to customize an alerting schedule

to notify the proper teams during their hours of responsibility?

http://www.sqlsentry.com/products/solutions-sql-server?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://blogs.sqlsentry.com/author/greggonzalez/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://twitter.com/SQLsensei
http://blogs.sqlsentry.com/greggonzalez/sql-sentry-v8-intelligent-alerting-redefined/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

You can create Alert Windows (as in a window of time) and tie those to different alerts or groups. This

allows different alerts to be active during different times and for different groups to be notified at

different times. This is really cool as it lets your alerting follow a support schedule so the correct people

are notified. Scott Fallen details this feature in a blog post, "Alerting on a Call Schedule with SQL Sentry,"

walking you through creating alerts for various on-call teams.

Another alerting feature of Performance Advisor and Event Manager is the ability to configure other

responses such as executing a Windows process, logging the event to a database or error log, sending an

SNMP trap to another monitoring tool such as SCOM, or even killing a process. Your options are almost

limitless as to what you can have predefined to happen when a certain event occurs. SQL Agent Alerts

are not that customizable.

Summary

The important take away from this post is that you absolutely need to be alerting for errors and

performance conditions. If you don’t have a tool such as SQL Sentry then utilizing SQL Agent Alerts is still

a great start.

http://blogs.sqlsentry.com/scottfallen/alerting-call-schedule-sql-sentry/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

Dealing with high severity errors in SQL Servers
By Tim Radney

In my previous article on SQL Server Agent Alerts, I provided step-by-step instructions on how to set up

and configure SQL Agent alerts for high severity errors 19-25 as well as error 825. In this article, I’m

going to discuss these errors in detail, and share what you should do if they happen in your

environment.

Errors with a severity level of 19 or higher stop the current batch from completing. Errors with a severity

of 20 and higher are fatal errors and terminate the current client connection. These errors may also

impact all of the processes in the database. Fatal errors are exactly what the name implies: the process

that is running is terminated and the client connection is closed.

Severity 19 Errors

A severity 19 error is an error due to lack of a resource. This means that an internal limit (that you can’t

configure) has been exceeded and caused the current batch to end. These errors rarely occur and there

is little that you can do to correct the issue. If a severity 19 error occurs you should contact your primary

support provider; typically, that would be Microsoft.

In all my years of working with SQL Server, I cannot recall any incident where a severity 19 error was

generated. Even searching Bing, I’ve had trouble finding occurrences of the error; the few references I

found were related to an early version of SQL Server, and referenced a bug within SQL Server itself.

Severity 20 Errors

A severity 20 error is a fatal error in the current process. This indicates that a statement encountered a

problem and was terminated. As this only impacts the current process it is very unlikely that the

database itself has been damaged. These errors are tied to an individual statement so you will need to

gather the entire error message and reach out to the person or team responsible for that bit of code.

This could be in-house or possibly the vendor of the application. An example error is:

Error: 18056, Severity 20, State: 29

The client was unable to reuse a session with SPID 123, which had been reset for connection pooling.

For this error I would reach out to the application developer or vendor, since the error is related to a

pooled connection encountering an error when trying to reset. I would also review the SQL Server logs

which may have a more detailed error message regarding what is actually happening to cause the error.

Severity 21 Errors

A severity 21 error is a fatal error in the database that affects all processes using that database.

I have seen this error occur when trying to restore a database using Enterprise features to a Standard

Edition instance, as well as when a database is corrupt and the user tries to access a corrupt page. An

example error message of this type is:

Error: 605, Severity: 21, State 1

Attempt to fetch logical page (1:8574233) in database 'DB_NAME' belongs to object '0', not to object

'Table01'.

http://sqlperformance.com/2015/04/sql-performance/dealing-with-high-severity-errors-in-sql-server?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2015/02/sql-alert/sql-server-agent-alerts?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

When attempting to restore a database that is using Enterprise features to a Standard Edition instance,

you will have to first remove the Enterprise features. For example, if you are using data compression or

change data capture, you will first have to stop using and remove those features from the database,

back up the database, and then restore it to the Standard Edition instance. You can use the DMV

sys.dm_db_persisted_sku_features to check whether you have any Enterprise-only features in use.

For the corruption errors you will need to run DBCC CHECKDB to determine the extent of the corruption

and go from there. If you are fortunate, the error will be in a nonclustered index that you can rebuild

and resolve the issue. If the corruption is more severe, you could be looking at a restore operation. To

better understand corruption and how to resolve various aspects of corruption, I encourage you to

review the various blog post by Paul Randal. Paul has an entire category on corruption that you can view

here:

 http://www.sqlskills.com/blogs/paul/category/corruption/

Running DBCC CHECKDB as part of a regularly-scheduled job against your databases is highly

recommended to detect corruption as early as possible. If you are not regularly checking for corruption,

then you are at a huge risk of not being able to recover the corrupt data.

Severity 22 Errors

A severity 22 error is a fatal error due to table integrity being suspect, basically indicating that the table

or index specified in the message is damaged. Corruption happens and happens often. Our experience is

that the majority of corruption occurs due to an I/O subsystem-related issue. If you run into a severity

22 error, you will need to run DBCC CHECKDB to determine the extent of the damage. An example error

is:

Error: 5180, Severity: 22, State: 1

Could not open XYZ for invalid file ID ## in database. Table or database may be corrupted.

If the error is in a nonclustered index, then you could just rebuild the index and fix the corruption. If the

corruption is in a heap or clustered index, then you will need to restore the database to a consistent

state.

I have seen reports where the corruption was in memory but not on disk. In that case a restart of the

instance or setting the database offline and then online should clear up the error.

Severity 23 Errors

A severity 23 error is another fatal error reporting that the database itself has an integrity issue. The

resolution is much like that of a severity 22 error, where you need to immediately run DBCC CHECKDB to

find the full extent of the damage to the database.

This level of corruption is detected as effecting the entire database. This could be corruption within the

data file itself or corruption within the log file. The details of the error will direct you toward the root

problem. For instance, the following error points out that we would need to restore our database or

attempt to rebuild the log. For consistency, I would restore from my most recent backup and all

available transaction log backups.

https://msdn.microsoft.com/en-us/library/cc280724.aspx
http://www.sqlskills.com/blogs/paul/category/corruption/

Error: 9004, Severity: 23 State: 6

An error occurred while processing the log for database 'db_name'. If possible, restore from backup. If a

backup is not available, it might be necessary to rebuild the log.

Severity 24 Errors

A severity 24 error is a fatal error related to a hardware. This message would occur due to some type of

media failure. The most common of these types of errors I have seen are related to issues with memory

and I/O errors. For example:

Error: 832, Severity: 24, State: 1

A page that should have been constant has changed (expected checksum: <expected value>, actual

checksum: <actual value>, database <db_id>, file <filename>, page <page#>). This usually indicates a

memory failure or other hardware or OS corruption.

When errors like this occur you should contact your system support team to run memory test on your

server and give the server a good health check. This error could be bad memory or a memory scribbler

(a kernel process or something that is changing SQL Server’s memory).

Another example:

Error: 824, Severity: 24, State: 2

SQL Server detected a logical consistency-based I/O error: incorrect pageid (expected 1:123; actual 0:0).

It occurred during a reads of page (1:123) in database ID <id>. Additional messages in the SQL Server

error log or system event log may provide more detail.

This error indicates a consistency error in the primary data file of the database. You would need to

immediately run DBCC CHECKDB to determine the extent of the corruption and take the appropriate

action to repair or restore the database.

Severity 25 Errors

A severity 25 error is a fatal system error. I have heard that severity 25 is more or less a catch-all for

miscellaneous fatal errors. I have only seen this error when related to failed upgrades: something

prevents one of the upgrade scripts from running, and a severity 25 error is thrown. You would get an

error similar to:

Script level upgrade for database 'master' failed because upgrade step 'sqlagent90_sysdbupg.sql'

encountered error 598, state 1, severity 25. This is a serious error condition which might interfere with

regular operation and the database will be taken offline. If the error happened during upgrade of the

'master' database, it will prevent the entire SQL Server instance from starting. Examine the previous

errorlog entries for errors, take the appropriate corrective actions and re-start the database so that the

script upgrade steps run to completion.

In this case, errors prior to this message indicated an incorrect path for the default data location for SQL

Server. Once that was corrected the upgrade ran successfully.

Error 825

Error 825 is often referred to as the read-retry warning, however the condition is for both read and

write operations. This error lets you know that a retry of the operation was needed and how many times

SQL Server had to retry the attempt before it was successful. SQL Server will retry the operations up to

four times, after four retry attempts it will raise an 823 or 824 error. Error 825 messages will be similar

to the following:

A read of the file 'path to file name\db_name.mdf' at offset 0x00000002000 succeeded after failing 2

time(s) with error: incorrect checksum (expected: XYZ; actual ABC). Additional messages in the SQL

Server error log and system event log may provide more detail. This error condition threatens database

integrity and must be corrected. Complete a full database consistency check (DBCC CHECKDB). This error

can be caused by many factors; for more information, see SQL Server Books Online.

These messages are important as they are indicative that you have a larger problem with your disk

subsystem. Troubleshooting methods would be to run DBCC CHECKDB to ensure the database is

consistent, as the error recommends, as well as review the Windows event logs for errors from the

operating system or storage devices. You should get your storage and hardware support team to review

the underlying I/O subsystem for errors as well.

Summary

Having SQL Agent alerts configured is free and easy. Being proactive and responsive to these alerts is

important to help minimize downtime for you and your customers. As you have now learned, many

things can affect SQL Server and the consistency of your databases, and the best defense for being able

to recover from these errors is having good backups and knowing the various repair options for DBCC

CHECKDB. It’s always recommended to run DBCC CHECKDB regularly against your databases to detect

corruption as early as possible, as the quicker you find corruption, the more likely you are to have the

data backed up so that you can restore with no data loss.

Using Geekbench 3.2 to Test Large Database Servers
By Glenn Berry

One of my favorite tools for quickly evaluating and comparing processor and memory performance on a

database server is Geekbench 3.2 from Primate Labs. I like to use Geekbench to put a significant

workload on a new server for a few minutes during the provisioning and configuration process, both to

measure the processor and memory performance and to confirm that power management is set up

correctly and Intel Turbo Boost is being used. If power management is set correctly in Windows and at

the hardware BIOS level, you should see your individual processor core speeds going above the base

clock speed during a Geekbench test run, which shows that Turbo Boost is enabled. With virtual

machines, power management need to be set correctly at the hypervisor level.

Geekbench 3 is a cross-platform, processor and memory benchmark that quickly measures both integer

and floating-point processor performance along with your memory performance on a computer in just a

few minutes, without requiring (or allowing) any configuration whatsoever. You just install Geekbench 3,

unlock your license, and run the program, and you will see the results in roughly two-three minutes. You

can then decide whether you want to upload your results to the Geekbench online database, either

anonymously or using a Geekbench account. By design, Geekbench does not measure I/O performance.

Geekbench 3 has an overall Single-Core Score and an overall Multi-Core Score, along with individual

scores for each one of the twenty-seven tests in the benchmark. The single-core score is very useful for

evaluating single-threaded processor and memory performance, which is very important for SQL Server

OLTP workloads (since most OLTP queries end up only running on a single processor core). The multi-

core score is useful for evaluating the multi-threaded processor and memory performance of the entire

machine, which helps you measure the processor capacity of the machine for concurrent queries.

With SQL Server 2014 core-based licensing, you want to make sure you are getting the best single-

threaded performance possible from each physical processor core that you have to buy a relatively

expensive SQL Server 2014 Enterprise Edition core license for. The Geekbench 3 Single-Core score is one

quick and easy way to measure both single-threaded processor and memory performance.

One issue I have recently seen with high core count servers (above 32 logical cores) is that Geekbench 3

will only use 32 cores when using the 32-bit benchmarks or when using the 64-bit benchmarks from the

Geekbench graphical user interface (at least with older builds of Geekbench 3). If you have a server with

more than 32 logical cores, you will have to use the command line tool to run the 64-bit version of

Geekbench to get it to use all of the cores in your system so that you will get an accurate Multi-Core

score in the benchmark.

It is pretty easy to install the command line tool and run the 64-bit version of Geekbench from the

command line. You simply go to the Tools menu, and select “Install Command Prompt Tool”, and then

click on the Install button as shown in Figure 1:

http://sqlperformance.com/2014/09/system-configuration/geekbench-database-servershttp:/sqlperformance.com/2014/09/system-configuration/geekbench-database-servers?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/09/system-configuration/geekbench-database-servershttp:/sqlperformance.com/2014/09/system-configuration/geekbench-database-servers?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.primatelabs.com/

Figure 1: Installing the Geekbench Command Prompt Tool

Figure 2: Confirmation Dialog After Installing Command Line Tool

After you are done installing the Command Prompt Tool, you will need to actually run the 64-bit version

of Geekbench from a command prompt with the appropriate switches to get the results that you want,

as shown in Figure 3. An example would be geekbench_x86_64 –-verbose –-upload, which turns on

verbose output and automatically uploads the results to the online Geekbench database.

http://cdn.sqlperformance.com/wp-content/uploads/2014/09/image20.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/09/image21.png

Figure 3: Geekbench Command Prompt Example

Figures 4 and 5 show the comparative results for a fast desktop system with a single 22nm, quad-core

Intel Core i7-3770K Ivy Bridge processor and 32GB of RAM, and a fast two-socket system with two 22nm

ten-core Intel Xeon E5-2690 v2 Ivy Bridge-EP processors and 384GB of RAM. Both of these systems are

using Ivy Bridge microarchitecture processors, but the lower core count desktop system is running at a

higher clock speed (both from the stock base clock speed and from some minor overclocking). This

shows up in a significantly higher Single-Core score (3914 vs. 2877), which measures single-threaded

processor and memory performance.

The Multi-Core score (which measures total capacity) is significantly higher for the 40 logical core, two-

socket server compared to the eight logical core desktop system (40883 vs. 15578), but the Multi-Core

score for the server is not five times higher than the desktop system as you might expect. Why is this?

There are several factors in play here. First, the desktop system has fewer cores that are each running

faster than the cores in the server system. All of the desktop cores are on a single physical processor and

NUMA node, which also helps performance. Finally, the desktop memory is running at a higher speed

than the server system, since the two-socket server system has every memory slot populated with 16GB

memory sticks.

http://cdn.sqlperformance.com/wp-content/uploads/2014/09/image22.png

Figure 4: Geekbench 3.2 Results From a Core i7-3770K Ivy Bridge Desktop System

http://cdn.sqlperformance.com/wp-content/uploads/2014/09/image23.png

Figure 5: Geekbench 3.2 Results From a two-socket Intel Xeon E5-2690 v2 System

http://cdn.sqlperformance.com/wp-content/uploads/2014/09/image24.png

Figure 6: Task Manager During a Geekbench Test Run Using All 40 Logical Cores

http://cdn.sqlperformance.com/wp-content/uploads/2014/09/image25.png

Figure 7: CPU-Z During a Geekbench Test Run, Showing Intel Turbo Boost In Effect

Running Geekbench 3 only takes about two-three minutes, and it gives you a wealth of useful

information about your processor and memory performance. Even if you are unable or unwilling to run

Geekbench 3 on your database servers (during a maintenance window or before they are deployed to

production), you can still take advantage of the online Geekbench database of scores to find a similar

system to what you want to evaluate.

When you run Geekbench 3, you should make sure to run the fully licensed 64-bit Pro Version, and you

should be watching Windows Task Manager during the test run to make sure all of your logical cores are

being used during the benchmark test. If necessary, you may need to use the command line version of

the tool to ensure that all of your cores are being used during the test.

http://browser.primatelabs.com/
http://cdn.sqlperformance.com/wp-content/uploads/2014/09/image26.png

Proactive SQL Server Health Checks, Part 1: Disk Space
By Erin Stellato

As 2014 winds down, I’m kicking off a series of posts on proactive SQL Server health checks, based on

one I wrote back at the beginning of this year – Performance Issues: The First Encounter. In that post, I

discussed what I look for first when troubleshooting a performance issue in an unfamiliar environment.

In this series of posts, I want to talk about what I look for when I check in with my long-term customers.

We provide a Remote DBA service, and one of our regular tasks is a monthly “mini” health audit of their

environment. We have monitoring in place and, typically, I’m working on projects, so I’m in the

environment regularly. But as an additional step to make sure we’re not missing anything, once a month

we go through the same data we collect in our standard health audit and look for anything out of the

ordinary. That could be many things, right? Yes! So, let’s start with space.

Whoa, space? Yes, space. Don’t worry, I’ll get to other topics.

What to check

Why would I start with space? Because it’s something I often see neglected, and if you run out of disk

space for your database files, you become extremely limited in what you can do in your database. Need

to add data but can’t grow the file because the disk is full? Sorry, now users can’t add data. Not taking

log backups for some reason, so the transaction log fills up the drive? Sorry, now you can’t modify any

data. Space is critical. We have jobs that monitor free space on disk and in the files, but I still verify the

following for every audit, and compare the values to those from the previous month:

 Size of each log file

 Size of each data file

 Free space in each data file

 Free space on each drive with database files

 Free space on each drive with backup files

Log File Growth

The majority of issues I see related to disk space are because of log file growth. The growth typically

occurs for one of two reasons:

 The database is in FULL recovery and transaction log backups aren’t being taken for some

reason

 Someone runs a single, very large transaction which consumes all existing log space, forcing the

file to grow

I’ve also seen the log file grow as part of index maintenance. For rebuilds, every allocation is logged and

for large indexes, that can generate a significant amount of log. Even with regular transaction log

backups, the log can still grow faster than the backups can occur. To manage the log you need to adjust

backup frequency, or modify your index maintenance methodology.

http://sqlperformance.com/2014/12/io-subsystem/proactive-sql-server-health-checks-1?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/01/system-configuration/performance-issues-the-first-encounter?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

You need to determine why the log file grew, which can be tricky unless you’re tracking it. I have a job

that runs every hour to snapshot log file size and usage:

USE [Baselines];

GO

IF (NOT EXISTS (SELECT *

 FROM INFORMATION_SCHEMA.TABLES

 WHERE TABLE_SCHEMA = 'dbo'

 AND TABLE_NAME = 'SQLskills_TrackLogSpace'))

BEGIN

 CREATE TABLE [dbo].[SQLskills_TrackLogSpace](

 [DatabaseName] [VARCHAR](250) NULL,

 [LogSizeMB] [DECIMAL](38, 0) NULL,

 [LogSpaceUsed] [DECIMAL](38, 0) NULL,

 [LogStatus] [TINYINT] NULL,

 [CaptureDate] [DATETIME2](7) NULL

) ON [PRIMARY];

 ALTER TABLE [dbo].[SQLskills_TrackLogSpace] ADD DEFAULT (SYSDATETIME()) FOR

[CaptureDate];

END

CREATE TABLE #LogSpace_Temp (

 DatabaseName VARCHAR(100),

 LogSizeMB DECIMAL(10,2),

 LogSpaceUsed DECIMAL(10,2),

 LogStatus VARCHAR(1)

);

INSERT INTO #LogSpace_Temp EXEC('dbcc sqlperf(logspace)');

INSERT INTO Baselines.dbo.SQLskills_TrackLogSpace

 (DatabaseName, LogSizeMB, LogSpaceUsed, LogStatus)

 SELECT DatabaseName, LogSizeMB, LogSpaceUsed, LogStatus

 FROM #LogSpace_Temp;

DROP TABLE #LogSpace_Temp;

I use this information to determine when the log file started to grow, and I start looking through the logs

and job history to see what additional information I can find. Log growth should be static – the log

should be appropriately sized and managed through backups (if running in FULL recovery), and if the file

needs to be larger, I need to understand why, and re-size it accordingly.

If you’re dealing with this issue, and you weren’t already proactively tracking file growth events, you

may still be able to figure out what happened. Auto-growth events are captured by SQL Server; SQL

Sentry's Aaron Bertrand blogged about this back in 2007, where he shows how to discover when these

events happened (as long as they were recent enough to still exist in the default trace).

Size and Free Space in Data Files

You have probably already heard that your data files should be pre-sized so they do not have to grow

automatically. If you follow this guidance, you probably haven’t experienced the event where the data

file grows unexpectedly. But if you’re not managing your data files, then you probably have growth

occurring regularly – whether you realize it or not (especially with the default growth settings of 10%

and 1 MB).

There’s a trick to pre-sizing data files – you don’t want to size a database too large, because remember,

if you to restore to, say, a dev or QA environment, the files are sized the same, even if they’re not full of

data. But you still want to manually manage growth. I find that DBAs have the hardest time with new

databases. The business users have no idea about growth rates and how much data is being added, and

that database is a bit of a loose cannon in your environment. You need to pay close attention to these

files until you have a handle on size and expected growth. I use a query that gives information about the

size and free space:

SELECT

 [file_id] AS [File ID],

 [type] AS [File Type],

 substring([physical_name],1,1) AS [Drive],

 [name] AS [Logical Name],

 [physical_name] AS [Physical Name],

 CAST([size] as DECIMAL(38,0))/128. AS [File Size MB],

 CAST(FILEPROPERTY([name],'SpaceUsed') AS DECIMAL(38,0))/128. AS [Space Used MB],

 (CAST([size] AS DECIMAL(38,0))/128) - (CAST(FILEPROPERTY([name],'SpaceUsed') AS

DECIMAL(38,0))/128.) AS [Free Space],

 [max_size] AS [Max Size],

 [is_percent_growth] AS [Percent Growth Enabled],

 [growth] AS [Growth Rate],

 SYSDATETIME() AS [Current Date]

FROM sys.database_files;

Every month, I check the size of the data files and the space used, then decide whether the size needs to

be increased. I also monitor the default trace for growth events, as this tells me exactly when growth

occurs. With the exception of new databases, I can always stay ahead of automatic file growth and

handle it manually. Ok, almost always. Right before the holidays last year, I was notified by a customer’s

IT department about low free space on a drive (hold that thought for the next section). Now, the

notification is based on a threshold of less than 20% free. This drive was over 1TB, so there was about

150GB free when I checked the drive. It wasn’t an emergency, yet, but I needed to understand where

the space had gone.

In checking the database files for one database, I could see that they were full – and the previous month

each file had over 50GB free. I then dug into table sizes, and found that in one table, over 270 million

rows had been added in the past 16 days – totaling over 100GB of data. Turns out there had been a code

http://sqlblog.com/blogs/aaron_bertrand/archive/2007/01/11/reviewing-autogrow-events-from-the-default-trace.aspx

modification and the new code was logging more information than intended. We quickly set up a job to

purge the rows and recover the free space in the files (and they fixed the code). However, I couldn’t

recover disk space – I would have to shrink the files, and that wasn’t an option. I then had to determine

how much space was left on disk and decide if it was an amount I was comfortable with or not. My

comfort level is dependent upon knowing how much data is being added per month – the typical growth

rate. And I only know how much data is being added because I monitor file use and can estimate how

much space will be needed for this month, for this year, and for the next two years.

Drive Space

I mentioned earlier that we have jobs to monitor free space on disk. This is based on a percentage, not a

fixed amount. My general rule of thumb has been to send notifications when less than 10% of the disk is

free, but for some drives, you may need to set that higher. For example, with a 1 TB drive, I get notified

when there is less than 100GB free. With a 100GB drive, I get notified when there is less than 10GB free.

With a 20GB drive… well, you see where I’m going with this. That threshold needs to alert you before

there’s a problem. If I only have 10GB free on a drive that hosts a log file, I might not have enough time

to react before it shows up as a problem for the users – depending on how often I’m checking the free

size space and what the problem is.

It’s very easy to use xp_fixeddrives to check free space, but I wouldn’t recommend this as it is

undocumented and the use of extended stored procedures in general has been deprecated. It also

doesn’t report the total size of each drive, and may not report on all drive types that your databases

may be using. As long as you’re running SQL Server 2008R2 SP1 or higher, you can use the much more

convenient sys.dm_os_volume_stats to get the information you need, at least about the drives where

database files exist:

SELECT DISTINCT

 vs.volume_mount_point AS [Drive],

 vs.logical_volume_name AS [Drive Name],

 vs.total_bytes/1024/1024 AS [Drive Size MB],

 vs.available_bytes/1024/1024 AS [Drive Free Space MB]

FROM sys.master_files AS f

CROSS APPLY sys.dm_os_volume_stats(f.database_id, f.file_id) AS vs

ORDER BY vs.volume_mount_point;

I often see a problem with drive space on volumes that host tempdb. I’ve lost count of the times I’ve had

clients with unexplained tempdb growth. Sometimes it’s just a few GB; most recently it was 200GB.

Tempdb is a tricky beast – there’s no formula to follow when sizing it, and too often it’s placed on a

drive with little free space that can’t handle the crazy event caused by the rookie developer or DBA.

Sizing the tempdb data files requires you to run your workload for a “normal” business cycle to

determine how much it uses tempdb, and then size it accordingly.

I recently heard a suggestion for a way to avoid running out of space on a drive: create a database with

no data, and size the files so they consume however much space you want to “set aside.” Then, if you

run into an issue, just drop the database and viola, you have free space again. Personally, I think this

creates all kind of other issues and wouldn’t recommend it. But if you have storage administrators who

http://msdn.microsoft.com/en-us/library/hh223223%28v=sql.120%29.aspx

don’t like seeing hundreds of unused GBs on a drive, this would be one way to make a drive “look” full.

It reminds me of something I’ve heard a good friend of mine say: “If I can’t work with you, I’ll work

around you.”

Backups

One of the primary tasks of a DBA is to protect the data. Backups are one method used to protect it, and

as such, the drives that hold those backups are an integral part of a DBA’s life. Presumably you’re

keeping one or more backups online, to restore immediately if needed. Your SLA and DR run book help

dictate how many backups you keep online, and you must ensure you have that space available. I

advocate that you also don’t delete old backups until the current backup has completed successfully. It’s

way too easy to fall into the trap of deleting old backups, then running the current backup. But what

happens if the current backup fails? And, what happens if you’re using compression? Wait a second…

compressed backups are smaller right? They are smaller, in the end. But did you know the .bak file size

usually starts out larger than the end size? You can use trace flag 3042 to change this behavior, but you

should be thinking that with backups, you need plenty of space. If your backup is 100GB, and you’re

keeping 3 days’ worth online, you need 300GB for the 3 days of backups, and then probably a healthy

amount (2X current database size) free for the next backup. Yes, this means that at any given time you

will have plenty more than 100GB free on this drive. That’s ok. It’s better than having the delete job

succeed, and the backup job fail, and find out three days later you have no backups at all (I had that

happen to a customer at my previous job).

Most databases just get larger over time, which means that backups get larger as well. Don’t forget to

regularly check the size of the backup files and allocate additional space as needed – having a “200GB

free” policy for a database that has grown to 350GB will not be very helpful. If the space requirements

change, be sure to change any associated alerts, too.

Using Performance Advisor

There are several queries included in this post that you can use for monitoring space, if you need to roll

your own process. But if you happen to have SQL Sentry Performance Advisor in your environment, this

gets a lot easier with Custom Conditions. There are several stock conditions included by default, but you

can also create your own.

Within the SQL Sentry client, open the Navigator, right-click Shared Groups (Global), and select Add

Custom Condition → SQL Sentry. Provide a name and description for the condition, then add a numeric

comparison, and change the type to Repository Query. Enter the query:

SELECT MIN(FreeSpace*100.0/Size)

 FROM SQLSentry.dbo.PerformanceAnalysisDeviceLogicalDisk;

Change Equals to Is less than, and set an Explicit Value of 10. Finally, change the Default Evaluation

Frequency to something less frequent than every 10 seconds. Once a day or once every 12 hours is

probably a good value – you should not need to check free space more often than once a day, but you

can check it as often as you like. The screen shot below shows the final configuration:

http://msdn.microsoft.com/en-us/library/bb964719.aspx
http://msdn.microsoft.com/en-us/library/bb964719.aspx
http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

Once you click save for the condition, you will be asked if you want to assign actions for the custom

condition. The option to Send to Alerting Channels is selected by default, but you may want to perform

other tasks, such as Execute a Job – say, to copy old backups off to another location (if that’s the drive

with low space).

As I mentioned previously, a default of 10% free space for all drives probably isn’t appropriate for every

drive in your environment. You can customize the query for different instances and drives, for example:

SELECT Alert = MAX(CASE

 WHEN Name = N'C:' AND [FreeSpace%] < 10 THEN 1

 WHEN Name = N'S:' AND [FreeSpace%] < 25 THEN 1

 WHEN Name = N'T:' AND [FreeSpace%] < 20 THEN 1

 ELSE 0 END)

FROM

(

 SELECT

 d.Name,

 d.FreeSpace * 100.0/d.Size AS [FreeSpace%]

 FROM SQLSentry.dbo.PerformanceAnalysisDeviceLogicalDisk AS d

 INNER JOIN SQLSentry.dbo.EventSourceConnection AS c

 ON d.DeviceID = c.DeviceID

 WHERE c.ObjectName = N'HANK\SQL2012' -- replace with your server/instance

) AS s;

You can alter and expand this query as necessary for your environment, and then change the

comparison in the condition accordingly (basically evaluating to true if the outcome is ever 1):

http://cdn.sqlperformance.com/wp-content/uploads/2014/12/es_cc1.png

If you want to see Performance Advisor in action, feel free to download a trial.

Note that for both of these conditions, you will only be alerted once, even if multiple drives fall below

your threshold. In complex environments you may want to lean toward a larger number of more specific

conditions to provide more flexible and customized alerting, rather than fewer “catch-all” conditions.

Summary

There are many critical components in a SQL Server environment, and disk space is one that needs to be

proactively monitored and maintained. With just a little bit of planning, this is simple to do, and it

alleviates many unknowns and reactive problem solving. Whether you use your own scripts or a third-

party tool, making sure there is plenty of free space for database files and backups is a problem that’s

easily solvable, and well worth the effort.

http://www.sqlsentry.com/download-trial/trial?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2014/12/es_cc2.png

Proactive SQL Server Health Checks, Part 2: Maintenance
By Erin Stellato

In my last post, I started a series to cover proactive health checks that are vital for your SQL Server. We

started with disk space, and in this post we’ll discuss maintenance tasks. One of the fundamental

responsibilities of a DBA is to ensure that the following maintenance tasks run regularly:

 Backups

 Integrity checks

 Index maintenance

 Statistics updates

My bet is that you already have jobs in place to manage these tasks. And I would also bet that you have

notifications configured to email you and your team if a job fails. If both are true, then you’re already

being proactive about maintenance. And if you’re not doing both, that’s something to fix right now – as

in, stop reading this, download Ola Hallengren’s scripts, schedule them, and make sure you set up

notifications. (Another alternative specific to index maintenance, which we also recommend to

customers, is SQL Sentry Fragmentation Manager.)

If you don’t know if your jobs are set to email you if they fail, use this query:

SELECT [Name], [Description]
 FROM [dbo].[sysjobs]
 WHERE [enabled] = 1
 AND [notify_level_email] NOT IN (2,3)
 ORDER BY [Name];

However, being proactive about maintenance goes one step further. Beyond just making sure your jobs

run, you need to know how long they take. You can use the system tables in msdb to monitor this:

SELECT

 [j].[name] AS [JobName],

 [h].[step_id] AS [StepID],

 [h].[step_name] AS [StepName],

 CONVERT(CHAR(10), CAST(STR([h].[run_date],8, 0) AS DATETIME), 121) AS [RunDate],

 STUFF(STUFF(RIGHT('000000' + CAST ([h].[run_time] AS VARCHAR(6)) ,6),5,0,':'),3,0,':')

 AS [RunTime],

 (([run_duration]/10000*3600 + ([run_duration]/100)%100*60 + [run_duration]%100 + 31) / 60)

 AS [RunDuration_Minutes],

 CASE [h].[run_status]

 WHEN 0 THEN 'Failed'

 WHEN 1 THEN 'Succeeded'

 WHEN 2 THEN 'Retry'

 WHEN 3 THEN 'Cancelled'

 WHEN 4 THEN 'In Progress'

 END AS [ExecutionStatus],

http://sqlperformance.com/2014/12/sql-maintenance/proactive-sql-server-health-checks-2?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/12/io-subsystem/proactive-sql-server-health-checks-1?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
https://ola.hallengren.com/
http://www.sqlsentry.com/products/fragmentation-manager/sql-server-index-analysis-and-defrag?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

 [h].[message] AS [MessageGenerated]

FROM [msdb].[dbo].[sysjobhistory] [h]

INNER JOIN [msdb].[dbo].[sysjobs] [j]

ON [h].[job_id] = [j].[job_id]

WHERE [j].[name] = 'DatabaseBackup - SYSTEM_DATABASES – FULL'

AND [step_id] = 0

ORDER BY [RunDate];

Or, if you’re using Ola’s scripts and logging information, you can query his CommandLog table:

SELECT [DatabaseName], [CommandType], [StartTime], [EndTime],

 DATEDIFF(MINUTE, [StartTime], [EndTime]) AS [Duration_Minutes]

FROM [master].[dbo].[CommandLog]

WHERE [DatabaseName] = 'AdventureWorks2014'

AND [Command] LIKE 'BACKUP DATABASE%'

ORDER BY [StartTime];

The above script lists backup duration for each full backup for the AdventureWorks2014 database. You

can expect that maintenance task durations will slowly increase over time, as databases grow larger. As

such, you’re looking for large increases, or unexpected decreases, in duration. For example, I had a

client with an average backup duration of less than 30 minutes. All of a sudden, backups starting taking

greater than an hour. The database hadn’t changed significantly in size, no settings had changed for the

instance or database, nothing had changed with hardware or disk configuration. A few weeks later,

backup duration dropped back down to less than half an hour. A month after that, they went up again.

We eventually correlated the change in backup duration to failovers between cluster nodes. On one

node, the backups took less than half an hour. On the other, they took over an hour. A little

investigation into the configuration of the NICs and SAN fabric and we were able to pinpoint the

problem.

Understanding the average time of execution for CHECKDB operations is also important. This is

something that Paul talks about in our High Availability and Disaster recovery Immersion Event: you

must know how long CHECKDB normally takes to run, so that if you find corruption and you run a check

on the entire database, you know how long it should take for CHECKDB to complete. When your boss

asks, “How much longer until we know the extent of the problem?” you’ll be able to provide a

quantitative answer of the minimum amount of time you’ll need to wait. If CHECKDB takes longer than

usual, then you know it’s found something (which may not necessarily be corruption; you must always

let the check finish).

Now, if you’re managing hundreds of databases, you don’t want to run the above query for every

database, or every job. Instead, you might just want to find jobs that fall outside the average duration by

a certain percentage, which you can get using this query:

SELECT

 [j].[name] AS [JobName],

 [h].[step_id] AS [StepID],

https://www.sqlskills.com/sql-server-training/iehadr/

 [h].[step_name] AS [StepName],

 CONVERT(CHAR(10), CAST(STR([h].[run_date],8, 0) AS DATETIME), 121) AS [RunDate],

 STUFF(STUFF(RIGHT('000000' + CAST ([h].[run_time] AS VARCHAR(6)) ,6),5,0,':'),3,0,':')

 AS [RunTime],

 (([run_duration]/10000*3600 + ([run_duration]/100)%100*60 + [run_duration]%100 + 31) / 60)

 AS [RunDuration_Minutes],

 [avdur].[Avg_RunDuration_Minutes]

FROM [dbo].[sysjobhistory] [h]

INNER JOIN [dbo].[sysjobs] [j]

ON [h].[job_id] = [j].[job_id]

INNER JOIN

(

 SELECT

 [j].[name] AS [JobName],

 AVG((([run_duration]/10000*3600 + ([run_duration]/100)%100*60 + [run_duration]%100 + 31)

/ 60))

 AS [Avg_RunDuration_Minutes]

 FROM [dbo].[sysjobhistory] [h]

 INNER JOIN [dbo].[sysjobs] [j]

 ON [h].[job_id] = [j].[job_id]

 WHERE [step_id] = 0

 AND CONVERT(DATE, RTRIM(h.run_date)) >= DATEADD(DAY, -60, GETDATE())

 GROUP BY [j].[name]

) AS [avdur]

ON [avdur].[JobName] = [j].[name]

WHERE [step_id] = 0

AND (([run_duration]/10000*3600 + ([run_duration]/100)%100*60 + [run_duration]%100 + 31) /

60)

 > ([avdur].[Avg_RunDuration_Minutes] + ([avdur].[Avg_RunDuration_Minutes] * .25))

ORDER BY [j].[name], [RunDate];

This query lists jobs that took 25% longer than the average. The query will require some tweaking to

provide the specific information you want – some jobs with a small duration (e.g. less than 5 minutes)

will show up if they just take a few extra minutes – that might not be a concern. Nevertheless, this query

is a good start, and realize there are many ways to find deviations – you could also compare each

execution to the previous one and look for jobs that took a certain percentage longer than the previous.

Obviously, job duration is the most logical identifier to use for potential problems – whether it’s a

backup job, an integrity check, or the job that removes fragmentation and updates statistics. I have

found that the largest variation in duration is typically in the tasks to remove fragmentation and update

statistics. Depending on your thresholds for reorg versus rebuild, and the volatility of your data, you may

go days with mostly reorgs, then suddenly have a couple index rebuilds kick in for large tables, where

those rebuilds completely alter the average duration. You may want to change your thresholds for some

indexes, or adjust the fill factor, so that rebuilds occur more often, or less often – depending on the

index and the level of fragmentation. To make these adjustments, you need to look at how often each

index is rebuilt or reorganized, which you can only do if you’re using Ola’s scripts and logging to the

CommandLog table, or if you’ve rolled your own solution and are logging each reorg or rebuild. To look

at this using the CommandLog table, you can start by checking to see which indexes are altered most

often:

SELECT [DatabaseName], [ObjectName], [IndexName], COUNT(*)

 FROM [master].[dbo].[CommandLog] [c]

 WHERE [DatabaseName] = 'AdventureWorks2014'

 AND [Command] LIKE 'ALTER INDEX%'

 GROUP BY [DatabaseName], [ObjectName], [IndexName]

 ORDER BY COUNT(*) DESC;

From this output, you can start to see which tables (and therefore indexes) have the most volatility, and

then determine whether the threshold for reorg versus rebuild needs to be adjusted, or the fill factor

modified.

Making Life Easier

Now, there is an easier solution than writing your own queries, as long as you’re using SQL Sentry Event

Manager (EM). The tool monitors all Agent jobs set up on an instance, and using the calendar view, you

can quickly see which jobs failed, were canceled, or ran longer than usual:

SQL Sentry Event Manager calendar view (with labels added in Photoshop)

You can also drill into individual executions to see how much longer it took a job to run, and there are

also handy runtime graphs allowing you to quickly visualize any patterns in duration anomalies or failure

conditions. In this case, I can see that around every 15 minutes, the runtime duration for this specific job

jumped by almost 400%:

http://www.sqlsentry.com/products/event-manager/sql-server-job-schedule-alert-management?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.sqlsentry.com/products/event-manager/sql-server-job-schedule-alert-management?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2014/12/es-em-1.png

SQL Sentry Event Manager runtime graph

This gives me a clue that I should look into other scheduled jobs that may be causing some concurrency

issues here. I could zoom out on the calendar again to see what other jobs are running around the same

time, or I might not even need to look to recognize that this is some reporting or backup job that runs

against this database.

Summary

I would bet that most of you already have the necessary maintenance jobs in place, and that you also

have notifications set up for job failures. If you’re not familiar with average durations for your jobs, then

that’s your next step in being proactive. Note: you may also need to check to see how long you’re

retaining job history. When looking for deviations in job duration, I prefer to look at a few months’

worth of data, rather than a few weeks. You don’t need to have those run times memorized, but once

you’ve verified you’re keeping enough data to have the history to use for research, then start looking for

variations on a regular basis. In an ideal scenario, the increased run time can alert you to a potential

issue, allowing you to address it before a problem occurs in your production environment.

http://cdn.sqlperformance.com/wp-content/uploads/2014/12/es-em-2.png

Proactive SQL Server Health Checks, Part 3: Instance and Database Settings
By Erin Stellato

Our discussion of proactive tasks that keep your database healthy continues in this post as we tackle

server and database options. You might already be thinking this will be a quick post – who changes

server or database options that often? You would be surprised, especially if you have many people who

have access to the SQL Server. Server and database options should change infrequently – for the most

part these are set at installation and left alone. But every so often there is good reason to make a

change – be it performance-related, due to a change in application code, or perhaps because something

was set incorrectly the first time around. Test these changes first, and capture appropriate metrics

before and after the change. It seems pretty straightforward and obvious, right? You might think so, but

if you don’t have a change management process in place that is strictly followed, it’s not.

In a majority of environments, more than one person has access to SQL Server, and more than one

person has the privileges necessary to change server or database options. If the wrong setting is

changed, the performance impact can be significant. (Have you ever inadvertently set the max memory

setting to a value in GB instead of MB? In case you’re wondering, 128MB is not enough memory needed

for a SQL Server instance to start. Check out Ted Krueger’s post on how to fix this, should you ever make

that mistake.) Other changes can create smaller problems that are still troublesome and sometimes

hard to track down (disabling Auto Create Statistics is a good example). You may think that these

changes would be well-communicated (sometimes you’re so busy putting out fires you forget) or easy to

notice (not always). To avoid this, we track the settings and then, when running our regular checks (or

when troubleshooting an issue), we verify that nothing has changed.

Capturing the Data

Unlike the previous post on maintenance tasks, where we relied on msdb to hold on to the data we

cared about, we have to set up data capture for instance and database settings. We’ll snapshot

sys.configurations and sys.database_info daily to tables in our Baselines database, then use queries to

see if anything changed, and when.

USE [Baselines];

GO

IF OBJECT_ID(N'dbo.SQLskills_ConfigData', N'U') IS NULL

BEGIN

 CREATE TABLE [dbo].[SQLskills_ConfigData]

 (

 [ConfigurationID] [int] NOT NULL ,

 [Name] [nvarchar](35) NOT NULL ,

 [Value] [sql_variant] NULL ,

 [ValueInUse] [sql_variant] NULL ,

 [CaptureDate] [datetime] NOT NULL DEFAULT SYSDATETIME()

) ON [PRIMARY];

GO

CREATE CLUSTERED INDEX [CI_SQLskills_ConfigData]

 ON [dbo].[SQLskills_ConfigData] ([CaptureDate],[ConfigurationID]);

http://sqlperformance.com/2015/02/system-configuration/proactive-sql-server-health-checks-3?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2015/02/system-configuration/proactive-sql-server-health-checks-3?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://blogs.lessthandot.com/index.php/datamgmt/dbadmin/sql-server-services-fail-to/

GO

IF OBJECT_ID(N'dbo.SQLskills_DBData', N'U') IS NULL

BEGIN

 CREATE TABLE [dbo].[SQLskills_DBData]

 (

 [name] [sysname] NOT NULL,

 [database_id] [int] NOT NULL,

 [source_database_id] [int] NULL,

 [owner_sid] [varbinary](85) NULL,

 [create_date] [datetime] NOT NULL,

 [compatibility_level] [tinyint] NOT NULL,

 [collation_name] [sysname] NULL,

 [user_access] [tinyint] NULL,

 [user_access_desc] [nvarchar](60) NULL,

 [is_read_only] [bit] NULL,

 [is_auto_close_on] [bit] NOT NULL,

 [is_auto_shrink_on] [bit] NULL,

 [state] [tinyint] NULL,

 [state_desc] [nvarchar](60) NULL,

 [is_in_standby] [bit] NULL,

 [is_cleanly_shutdown] [bit] NULL,

 [is_supplemental_logging_enabled] [bit] NULL,

 [snapshot_isolation_state] [tinyint] NULL,

 [snapshot_isolation_state_desc] [nvarchar](60) NULL,

 [is_read_committed_snapshot_on] [bit] NULL,

 [recovery_model] [tinyint] NULL,

 [recovery_model_desc] [nvarchar](60) NULL,

 [page_verify_option] [tinyint] NULL,

 [page_verify_option_desc] [nvarchar](60) NULL,

 [is_auto_create_stats_on] [bit] NULL,

 [is_auto_update_stats_on] [bit] NULL,

 [is_auto_update_stats_async_on] [bit] NULL,

 [is_ansi_null_default_on] [bit] NULL,

 [is_ansi_nulls_on] [bit] NULL,

 [is_ansi_padding_on] [bit] NULL,

 [is_ansi_warnings_on] [bit] NULL,

 [is_arithabort_on] [bit] NULL,

 [is_concat_null_yields_null_on] [bit] NULL,

 [is_numeric_roundabort_on] [bit] NULL,

 [is_quoted_identifier_on] [bit] NULL,

 [is_recursive_triggers_on] [bit] NULL,

 [is_cursor_close_on_commit_on] [bit] NULL,

 [is_local_cursor_default] [bit] NULL,

 [is_fulltext_enabled] [bit] NULL,

 [is_trustworthy_on] [bit] NULL,

 [is_db_chaining_on] [bit] NULL,

 [is_parameterization_forced] [bit] NULL,

 [is_master_key_encrypted_by_server] [bit] NOT NULL,

 [is_published] [bit] NOT NULL,

 [is_subscribed] [bit] NOT NULL,

 [is_merge_published] [bit] NOT NULL,

 [is_distributor] [bit] NOT NULL,

 [is_sync_with_backup] [bit] NOT NULL,

 [service_broker_guid] [uniqueidentifier] NOT NULL,

 [is_broker_enabled] [bit] NOT NULL,

 [log_reuse_wait] [tinyint] NULL,

 [log_reuse_wait_desc] [nvarchar](60) NULL,

 [is_date_correlation_on] [bit] NOT NULL,

 [is_cdc_enabled] [bit] NOT NULL,

 [is_encrypted] [bit] NULL,

 [is_honor_broker_priority_on] [bit] NULL,

 [replica_id] [uniqueidentifier] NULL,

 [group_database_id] [uniqueidentifier] NULL,

 [default_language_lcid] [smallint] NULL,

 [default_language_name] [nvarchar](128) NULL,

 [default_fulltext_language_lcid] [int] NULL,

 [default_fulltext_language_name] [nvarchar](128) NULL,

 [is_nested_triggers_on] [bit] NULL,

 [is_transform_noise_words_on] [bit] NULL,

 [two_digit_year_cutoff] [smallint] NULL,

 [containment] [tinyint] NULL,

 [containment_desc] [nvarchar](60) NULL,

 [target_recovery_time_in_seconds] [int] NULL,

 [CaptureDate] [datetime] NOT NULL DEFAULT SYSDATETIME()

) ON [PRIMARY];

GO

CREATE CLUSTERED INDEX [CI_SQLskills_DBData]

 ON [dbo].[SQLskills_DBData] ([CaptureDate],[database_id]);

GO

The script to create the SQLskills_DBData table is compatible with SQL Server 2014. For earlier versions,

you may need to modify base table and snapshot query (see next set of code).

Once you have the tables created, create a job that will execute the following two queries daily. Again,

we wouldn’t expect that these options would change more than once a day, and while we hope no one

would change a setting, then change it back (therefore it wouldn’t show up in a capture), that’s always a

possibility. If you find that this data capture does not suite your needs, because settings change

frequently or temporarily, you may want to implement a trigger or use auditing.

To edit server options via (sp_configure), a login needs the ALTER SETTINGS server-level permission,

which is included if you are a member of the sysadmin or serveradmin roles. To edit most database

settings (ALTER DATABASE SET), you need the ALTER permission in the database, though some options

require additional rights, such as CONTROL SERVER or the server-level option ALTER ANY DATABASE.

/* Statements to use in scheduled job */

https://msdn.microsoft.com/en-us/library/ms188787.aspx

INSERT INTO [dbo].[SQLskills_ConfigData]

(

 [ConfigurationID] ,

 [Name] ,

 [Value] ,

 [ValueInUse]

)

SELECT

 [configuration_id] ,

 [name] ,

 [value] ,

 [value_in_use]

FROM [sys].[configurations];

GO

INSERT INTO [dbo].[SQLskills_DBData]

(

 [name],

 [database_id],

 [source_database_id],

 [owner_sid],

 [create_date],

 [compatibility_level],

 [collation_name],

 [user_access],

 [user_access_desc],

 [is_read_only],

 [is_auto_close_on],

 [is_auto_shrink_on],

 [state],

 [state_desc],

 [is_in_standby],

 [is_cleanly_shutdown],

 [is_supplemental_logging_enabled],

 [snapshot_isolation_state],

 [snapshot_isolation_state_desc],

 [is_read_committed_snapshot_on],

 [recovery_model],

 [recovery_model_desc],

 [page_verify_option],

 [page_verify_option_desc],

 [is_auto_create_stats_on],

 [is_auto_update_stats_on],

 [is_auto_update_stats_async_on],

 [is_ansi_null_default_on],

 [is_ansi_nulls_on],

 [is_ansi_padding_on],

 [is_ansi_warnings_on],

 [is_arithabort_on],

 [is_concat_null_yields_null_on],

 [is_numeric_roundabort_on],

 [is_quoted_identifier_on],

 [is_recursive_triggers_on],

 [is_cursor_close_on_commit_on],

 [is_local_cursor_default],

 [is_fulltext_enabled],

 [is_trustworthy_on],

 [is_db_chaining_on],

 [is_parameterization_forced],

 [is_master_key_encrypted_by_server],

 [is_published],

 [is_subscribed],

 [is_merge_published],

 [is_distributor],

 [is_sync_with_backup],

 [service_broker_guid],

 [is_broker_enabled],

 [log_reuse_wait],

 [log_reuse_wait_desc],

 [is_date_correlation_on],

 [is_cdc_enabled],

 [is_encrypted],

 [is_honor_broker_priority_on],

 [replica_id],

 [group_database_id],

 [default_language_lcid],

 [default_language_name],

 [default_fulltext_language_lcid],

 [default_fulltext_language_name],

 [is_nested_triggers_on],

 [is_transform_noise_words_on],

 [two_digit_year_cutoff],

 [containment],

 [containment_desc],

 [target_recovery_time_in_seconds]

)

SELECT

 [name],

 [database_id],

 [source_database_id],

 [owner_sid],

 [create_date],

 [compatibility_level],

 [collation_name],

 [user_access],

 [user_access_desc],

 [is_read_only],

 [is_auto_close_on],

 [is_auto_shrink_on],

 [state],

 [state_desc],

 [is_in_standby],

 [is_cleanly_shutdown],

 [is_supplemental_logging_enabled],

 [snapshot_isolation_state],

 [snapshot_isolation_state_desc],

 [is_read_committed_snapshot_on],

 [recovery_model],

 [recovery_model_desc],

 [page_verify_option],

 [page_verify_option_desc],

 [is_auto_create_stats_on],

 [is_auto_update_stats_on],

 [is_auto_update_stats_async_on],

 [is_ansi_null_default_on],

 [is_ansi_nulls_on],

 [is_ansi_padding_on],

 [is_ansi_warnings_on],

 [is_arithabort_on],

 [is_concat_null_yields_null_on],

 [is_numeric_roundabort_on],

 [is_quoted_identifier_on],

 [is_recursive_triggers_on],

 [is_cursor_close_on_commit_on],

 [is_local_cursor_default],

 [is_fulltext_enabled],

 [is_trustworthy_on],

 [is_db_chaining_on],

 [is_parameterization_forced],

 [is_master_key_encrypted_by_server],

 [is_published],

 [is_subscribed],

 [is_merge_published],

 [is_distributor],

 [is_sync_with_backup],

 [service_broker_guid],

 [is_broker_enabled],

 [log_reuse_wait],

 [log_reuse_wait_desc],

 [is_date_correlation_on],

 [is_cdc_enabled],

 [is_encrypted],

 [is_honor_broker_priority_on],

 [replica_id],

 [group_database_id],

 [default_language_lcid],

 [default_language_name],

 [default_fulltext_language_lcid],

 [default_fulltext_language_name],

 [is_nested_triggers_on],

 [is_transform_noise_words_on],

 [two_digit_year_cutoff],

 [containment],

 [containment_desc],

 [target_recovery_time_in_seconds]

FROM [sys].[databases];

GO

Checking for Changes

Now that we’re capturing this information, how do we find changes? Knowing that there could be

multiple settings changed, and on different dates, we need a method that looks at each row. This isn’t

hard to do, but it doesn’t generate the prettiest code. For server options, it’s not too bad:

;WITH [f] AS

(

 SELECT

 ROW_NUMBER() OVER (PARTITION BY [ConfigurationID] ORDER BY [CaptureDate] ASC) AS

[RowNumber],

 [ConfigurationID] AS [ConfigurationID],

 [Name] AS [Name],

 [Value] AS [Value],

 [ValueInUse] AS [ValueInUse],

 [CaptureDate] AS [CaptureDate]

 FROM [Baselines].[dbo].[ConfigData]

)

SELECT

 [f].[Name] AS [Setting],

 [f].[CaptureDate] AS [Date],

 [f].[Value] AS [Previous Value],

 [f].[ValueInUse] AS [Previous Value In Use],

 [n].[CaptureDate] AS [Date Changed],

 [n].[Value] AS [New Value],

 [n].[ValueInUse] AS [New Value In Use]

FROM [f]

LEFT OUTER JOIN [f] AS [n]

ON [f].[ConfigurationID] = [n].[ConfigurationID]

AND [f].[RowNumber] + 1 = [n].[RowNumber]

WHERE ([f].[Value] <> [n].[Value] OR [f].[ValueInUse] <> [n].[ValueInUse]);

GO

Changed Instance Settings

For database options, the query is in a stored procedure (because it was so unwieldy), which you can

download here. To run the stored procedure:

http://cdn.sqlperformance.com/wp-content/uploads/2015/02/Create_usp_FindDBSettingChanges.sql_.zip
http://cdn.sqlperformance.com/wp-content/uploads/2015/02/Create_usp_FindDBSettingChanges.sql_.zip
http://cdn.sqlperformance.com/wp-content/uploads/2015/02/instance-changes.jpg

EXEC dbo.usp_FindDBSettingChanges

The output will list the database and the setting that changed, as well as the date:

Changed Database Settings

You can run these queries when performance issues come up, to quickly check if any settings have

changed, or you could be a bit more proactive and run them regularly in a scheduled job that notifies

you if anything has changed. I didn’t include the T-SQL code to send an email using database mail if

there’s a change, but that won’t be hard to do based on the code provided here.

Using Performance Advisor

SQL Sentry Performance Advisor does not track this information by default, but you can still capture the

information in a database, then have PA check to see if any settings have changed, and notify you if they

have. To set this up, create the SQLskills_ConfigData and SQLskillsDBData tables and set up the

scheduled job to insert into those tables on a regular basis. Within the SQL Sentry client, set up a

Custom Condition, as we did in an earlier post in this series, Proactive SQL Server Health Checks, Part 1:

Disk Space post.

Within the Custom Condition, you have two options. First, you could just execute the code provided

which checks historical data to see if anything has changed (and then send a notification if so). Checking

historical data for change is something that you would run daily, as you would with an Agent Job.

Alternatively, you could be more proactive and compare current, running values against the most recent

data on a more frequent basis, e.g. once an hour, to look for changes. Example code to check the

current settings for the instance against the most recent capture:

;WITH [lc] AS

(

 SELECT

 ROW_NUMBER() OVER (PARTITION BY [ConfigurationID] ORDER BY [CaptureDate] ASC) AS

[RowNumber],

 [ConfigurationID] AS [ConfigurationID],

 [Name] AS [Name],

 [Value] AS [Value],

 [ValueInUse] AS [ValueInUse],

 [CaptureDate] AS [CaptureDate]

 FROM [Baselines].[ConfigData]

 WHERE [CaptureDate] = (SELECT MAX([CaptureDate]) FROM [Baselines].[ConfigData])

)

SELECT

 [lc].[Name] AS [Setting],

 [lc].[CaptureDate] AS [Date],

 [lc].[Value] AS [Last Captured Value],

 [lc].[ValueInUse] AS [Last Captured Value In Use],

http://www.sqlsentry.com/products/performance-advisor/sql-serve0r-performancehttp:/chrome:/newtab/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/12/io-subsystem/proactive-sql-server-health-checks-1http:/chrome:/newtab/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/12/io-subsystem/proactive-sql-server-health-checks-1http:/chrome:/newtab/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2015/02/database-changes.jpg

 CURRENT_TIMESTAMP AS [Current Time],

 [c].[Value] AS [Current Value],

 [c].[value_in_use] AS [Current Value In Use]

FROM [sys].[configurations] AS [c]

LEFT OUTER JOIN [lc]

ON [lc].[ConfigurationID] = [c].[configuration_id]

WHERE ([lc].[Value] <> [c].[Value] OR [lc].[ValueInUse] <> [c].[value_in_use]);

GO

Summary

Checking instance and database options is straightforward and obvious, and in some situations this

historical information can save you significant time when troubleshooting. If you’re not capturing this

information anywhere, I encourage you to start; it’s always better to proactively look for issues than to

react when you’re fire-fighting and potentially stressed, unsure of what’s causing a problem in your

production environment.

Monitoring Read/Write Latency
By Tim Radney

Being responsible for the performance of SQL Server can be a daunting task. There are many areas that

we to have to monitor and understand. We are also expected to be able to stay on top of all those

metrics and know what is happening on our servers at all times. I like to ask DBAs what the first thing

that they think about when they hear the phrase “tuning SQL Server;” the overwhelming response I get

is “query tuning.” I agree that tuning queries is very important and is a never-ending task that we face

because workloads are continuously changing.

However there are many other aspects to consider when thinking about SQL Server performance. There

are a lot of instance-, OS- and database-level settings that need to be tweaked from the defaults. Being

a consultant allows me to work in many different lines of business and get exposure to all sorts of

performance issues. When working with a new client I try to always perform a health audit of the server

to know what I am dealing with. While performing these audits, one of the things that I’ve found

repeatedly has been excessive read and write latencies on the disks where SQL Server data and log files

reside.

Read/Write Latency

To view your disk latencies in SQL Server you can quickly and easily query the DMV

sys.dm_io_virtual_file_stats. This DMV accepts two parameters: database_id and file_id. What is

awesome is that you can pass NULL as both values and return the latencies for all files for all databases.

The output columns include:

 database_id

 file_id

 sample_ms

 num_of_reads

 num_of_bytes_read

 io_stall_read_ms

 num_of_writes

 num_of_bytes_written

 io_stall_write_ms

 io_stall

 size_on_disk_bytes

 file_handle

As you can see from the column list, there is really useful information that this DMV retrieves, however

just running SELECT * FROM sys.dm_io_virtual_file_stats(NULL, NULL); doesn’t help much unless you

have memorized your database_ids and can do some math in your head.

http://chrome/newtab/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
https://msdn.microsoft.com/en-us/library/ms190326.aspx

When I query the file stats, I use a query from Paul Randal’s blog post, “How to examine IO subsystem

latencies from within SQL Server.” This script makes the column names easier to read, includes the drive

the file is on, the database name, and the path to the file.

By querying this DMV you can easily tell where the I/O hot spots are for your files. You can see where

the highest write and read latencies are and which databases are the culprits. Knowing this will allow

you to start looking at the tuning opportunities for those specific databases. This could include index

tuning, checking to see if the buffer pool is under memory pressure, possibly moving the database to a

faster portion of the I/O subsystem, or possibly partitioning the database and spreading the filegroups

across other LUNs.

So you run the query and it returns lots of values in ms for latency – which values are okay, and which

are bad?

What values are good or bad?

If you ask SQLskills, we will tell you something along the lines of:

 Excellent: < 1ms

 Very good: < 5ms

 Good: 5 – 10ms

 Poor: 10 – 20ms

 Bad: 20 – 100ms

 Really bad: 100 – 500ms

 OMG!: > 500ms

If you do a Bing search, you will find articles from Microsoft making the recommendations similar to:

 Good: < 10ms

 Okay: 10 – 20ms

 Bad: 20 – 50ms

 Seriously bad: > 50ms

As you can see, there are some slight variations in the numbers, but the consensus is that anything over

20ms can be considered troublesome. With that being said, your average write latency may be 20ms

and that is 100% acceptable for your organization and that is okay. You need to know general I/O

latencies for your system so that, when things do get bad, you know what normal is.

My Read/Write Latencies Are Bad, What Do I Do?

If you are finding that read and write latencies are bad on your server, there are several places you can

start looking for issues. This is not a comprehensive list but some guidance of where to start.

http://www.sqlskills.com/blogs/paul/how-to-examine-io-subsystem-latencies-from-within-sql-server/
http://www.sqlskills.com/blogs/paul/how-to-examine-io-subsystem-latencies-from-within-sql-server/

 Analyze your workload. Is your indexing strategy correct? Not having the proper indexes will

lead to much more data being read from disk. Scans instead of seeks.

 Are your statistics up to date? Bad statistics can make for poor choices for execution plans.

 Do you have parameter sniffing issues that are causing poor execution plans?

 Is the buffer pool under memory pressure, for instance from a bloated plan cache?

 Any network issues? Is your SAN fabric performing correctly? Have your storage engineer

validate pathing and network.

 Move the hot spots to different storage arrays. In some cases it may be a single database or just

a few databases that are causing all the problems. Isolating them to a different set of disk, or

faster high end disk such as SSD’s may be the best logical solution.

 Can you partition the database to move troublesome tables to different disk to spread the load?

Wait Statistics

Just like monitoring your file stats, monitoring your wait stats can tell you a great deal about bottlenecks

in your environment. We are lucky to have another awesome DMV (sys.dm_os_wait_stats) that we can

query that will pull all available wait information collected since the last restart or since the last time the

waits were reset; there are waits related to disk performance too. This DMV will return important

information including:

 wait_type

 waiting_task_count

 wait_time_ms

 max_wait_time_ms

 signal_wait_time_ms

Querying this DMV on my SQL Server 2014 machine returned 771 wait types. SQL Server is always

waiting on something, but there are a lot of waits that we shouldn’t worry ourselves with. For this

reason, I utilize another query from Paul Randal; his blog post, “Wait Statistics, or please tell me where it

hurts,” has an excellent script that excludes a bunch of the waits we don’t really care about. Paul also

lists out many of the common problematic waits as well as offering guidance for the common waits.

Why are wait stats important?

Monitoring for high wait times for certain events will tell you when there are issues going on. You need a

baseline to know what is normal and when things exceed a threshold or pain level. If you have really

high PAGEIOLATCH_XX then you know SQL Server is having to wait for a data page to be read from disk.

This could be disk, memory, workload change or a number of other issues.

A recent client I was working with was seeing some very unusual behavior. When I connected to the

database server and was able to observe the server under a work load, I immediately started checking

file stats, wait stats, memory utilization, tempdb usage, etc. One thing that immediately stood out was

https://msdn.microsoft.com/en-us/library/ms179984.aspx
http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/
http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/

WRITELOG being the most prevalent wait. I know this wait has to do with a log flush to disk and

reminded me of Paul’s series on Trimming the Transaction Log Fat. High WRITELOG waits can usually be

identified by high-write latencies for the transaction log file. So I then used my file stats script to review

the read and write latencies on the disk. I was then able to see high write latency on the data file but not

my log file. In looking at the WRITELOG it was a high wait but the time waiting in ms was extremely low.

However something in the second post of Paul’s series was still in my head. I should look at the auto

growth settings for the database just to rule out “Death by a thousand cuts”. In looking at the database

properties of the database I saw that the data file was set to auto grow by 1MB and the transaction log

set to auto grow by 10%. Both files had nearly 0 unused space. I shared with the client what I found and

how this was killing their performance. We quickly made the appropriate change and testing went

forward, much better by the way. Sadly this is not the only time I have encountered this exact issue.

Another other time a database was 66GB in size, it got there by 1MB growths.

Capturing your data

Many data professionals have created processes to capture file and wait stats on a regular basis for

analysis. Since the wait stats are cumulative, you would want to capture them and compare the deltas

between different times of day or before and after certain processes run. This isn’t too complicated and

there are numerous blog posts available where people share how they accomplished this. The important

part is to be measuring this data so that you can monitor it. How do you know today that things are

better or worse on your database server unless you know the data from yesterday?

How can SQL Sentry help?

I'm glad you asked! SQL Sentry Performance Advisor brings latency and waits front and center on the

dashboard. Any anomalies are easy to spot; you can switch to historical mode and see the previous

trend and compare that to previous periods as well. This can prove to be priceless when analyzing those

“what happened?” moments. Everyone has gotten that call, “Yesterday around 3:00PM the system just

seemed to freeze, can you tell us what happened?” Um, sure, let me pull up Profiler and go back in time.

If you have a monitoring tool like Performance Advisor, you would have that historical information at

your fingertips.

In addition to the charts and graphs on the dashboard, you have the ability to use built-in alerts for

conditions such as High Disk Waits, High VLF Counts, High CPU, Low Page Life Expectancy, and many

more. You also have the ability to create your own custom conditions, and you can learn from the

examples on the SQL Sentry site or through the Condition Exchange (Aaron Bertrand has blogged about

this). I touched on the alerting side of this in my last article on SQL Server Agent Alerts.

On the Disk Space tab of Performance Advisor, it is very easy to see things like autogrowth settings and

high VLF counts. You should know, but in case you don’t, autogrowth by 1MB or 10% is not the best

setting. If you see these values (Performance Advisor highlights them for you), you can quickly make

note and schedule the time to make the proper adjustments. I love how it displays Total VLFs as well;

too many VLFs can be very problematic. You should read Kimberly’s post “Transaction Log VLFs – too

many or too few?” if you haven't already.

http://sqlperformance.com/2012/12/io-subsystem/trimming-t-log-fat?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.sqlsentry.com/products/custom-conditions/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.sqlsentry.com/products/custom-conditions/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://blogs.sqlsentry.com/aaronbertrand/condition-exchange/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://blogs.sqlsentry.com/aaronbertrand/condition-exchange/?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2015/02/sql-alert/sql-server-agent-alerts?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.sqlskills.com/blogs/kimberly/transaction-log-vlfs-too-many-or-too-few/
http://www.sqlskills.com/blogs/kimberly/transaction-log-vlfs-too-many-or-too-few/

Partial grid on Performance Advisor's Disk Space tab

Another way that Performance Advisor can help is through its patented Disk Activity module. Here you

can see that tempdb on F: is experiencing substantial write latency; you can tell this by the thick red

lines underneath the disk graphics. You might also notice that F: is the only drive letter whose disk is

represented in red; this is a visual cue that the drive has a misaligned partition, which can contribute to

I/O problems.

Performance Advisor Disk Activity module

And you can correlate this information in the grids below – problems are highlighted in the grids there,

too, and take a look at the ms/Write column:

http://support.microsoft.com/kb/929491
http://support.microsoft.com/kb/929491
http://cdn.sqlperformance.com/wp-content/uploads/2015/03/tr_lat_1.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/03/pa-da_1.png

Partial grid of Performance Advisor Disk Activity data

You can also look at this information retroactively; if someone complains about a perceived disk

bottleneck yesterday afternoon or last Tuesday, you can simply go back using the date pickers in the

toolbar and see the average throughput and latency for any range. For more information on the Disk

Activity module, see the User Guide.

Performance Advisor also has a lot of built-in reports under the categories Performance, Blocking, Top

SQL, Disk/File Space, and Deadlocks. The image below shows you how to get to the Disk/File Space

reports. Having the reports just a few mouse clicks away is very valuable to be able to immediately dig in

and view what is (or was) happening on your server.

Performance Advisor reports

Summary

The important takeaway from this post is to know your performance metrics. A common statement

among data professionals is that disk is our #1 bottleneck. Knowing the file stats of your server will go a

long way in helping to understand the pain points on your server. In conjunction with file stats, your

wait stats are a great place to look as well. Many people, including myself, start there. Having a tool like

SQL Sentry Performance Advisor can drastically help you troubleshoot and find performance issues

before they become too problematic; however, if you don’t have such a tool, getting familiar with

sys.dm_os_wait_stats and sys.dm_io_virtual_file_stats will serve you well to start tuning your server.

http://downloads.sqlsentry.com/downloads/docs/SQL_Sentry_User_Guide.pdf?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2015/03/pa-da-2.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/03/tr_lat_2.png

Sequential Throughput Speeds and Feeds
By Glenn Berry

I have been talking about the importance of sequential throughput performance for SQL Server for quite

some time. Sequential throughput is critically important for many common operations in SQL Server,

including:

1. Full database backups and restores

2. Index creation and maintenance work

3. Initializing replication snapshots and subscriptions

4. Initializing AlwaysOn AG replicas

5. Initializing database mirrors

6. Initializing log-shipping secondary's

7. Relational data warehouse query workloads

8. Relational data warehouse ETL operations

Despite the importance of sequential throughput for SQL Server, I still see many people who focus only

on random I/O performance and latency, while largely ignoring sequential throughput performance. As

you are thinking about sequential throughput performance, you need to consider the complete path of

the data, from it being at rest on your storage media, to it being consumed by your processor cores.

Depending on what type of storage technology you are using, it may be connected to your host server

by an Ethernet network interface card (NIC) or InfiniBand host channel adapter (HCA) card. This type of

connection is most common for iSCSI SANs and for remote server message block (SMB) 3.0 file shares.

Microsoft TechNet has a good reference about this subject, called Improve Performance of a File Server

with SMB Direct.

The theoretical sequential throughput of a single NIC/HCA device (per port) is shown in Figure 1:

Figure 1: Theoretical NIC/HCA Throughput

Just in case you are wondering what InfiniBand (QDR) or Infiniband (FDR) refer to, the InfiniBand Trade

Association maintains an InfiniBand Roadmap that shows the history and planned advances in InfiniBand

http://sqlperformance.com/2014/12/io-subsystem/sequential-throughput-speeds-and-feeds?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://technet.microsoft.com/en-us/library/jj134210.aspx
http://technet.microsoft.com/en-us/library/jj134210.aspx
http://www.infinibandta.org/index.php
http://www.infinibandta.org/index.php
http://www.infinibandta.org/content/pages.php?pg=technology_overview
http://cdn.sqlperformance.com/wp-content/uploads/2014/12/NICThroughput.png

bandwidth over the next several years. Infiniband has a list of acronyms that describe the relative

performance of an InfiniBand link as shown below:

 SDR – Single Data Rate

 DDR – Double Data Rate

 QDR – Quad Data Rate

 FDR – Fourteen Data Rate

 EDR – Enhanced Data Rate

 HDR – High Data Rate

 NDR – Next Data Rate

Traditional fiber channel (FC) SANs typically use one or more host bus adapters (HBA) that have one or

more ports for optical cables that connect to a FC switch or directly to the FC SAN itself. It is still

relatively rare to see 16Gb FC HBAs in widespread use, so most host servers still have either 4Gb or 8Gb

FC HBAs.

The theoretical sequential throughput of a single HBA device (per port) is shown in Figure 2:

Figure 2: Theoretical HBA Throughput

Regardless of what type of interface device or technology you are using, you need to be concerned

about what kind of expansion bus slot it is plugged into on your host server. Depending on the age of

your server and the type of processor it is using, this can have a huge impact on the total bandwidth that

the bus slot can support. Peripheral Component Interconnect Express (PCIe) Gen 3 slots have twice the

bandwidth per lane as an older PCIe Gen 2 slot. You can determine how many and what type of

expansion slots you have in your host server by looking at the specifications and documentation for your

brand and model of server. So far, only Intel Xeon E3 v2, Xeon E3 v3, Xeon E5, Xeon E5 v2, Xeon E5 v3,

and Xeon E7 v2 family processors support PCIe Gen 3 slots. Anything older than this will have PCIe Gen 2

slots, or maybe even PCIe Gen 1 slots if it is extremely old (in computer terms).

The theoretical sequential throughput of a single PCIe slot is shown in Figure 3:

http://www.infinibandta.org/content/pages.php?pg=technology_white_papers
https://www.pcisig.com/specifications/pciexpress/
http://ark.intel.com/products/family/78580/Intel-Xeon-Processor-E3-v2-Family#@Server
http://ark.intel.com/products/family/78581/Intel-Xeon-Processor-E3-v3-Family#@Server
http://ark.intel.com/products/family/59138/Intel-Xeon-Processor-E5-Family#@Server
http://ark.intel.com/products/family/78582/Intel-Xeon-Processor-E5-v2-Family#@Server
http://ark.intel.com/products/family/78583/Intel-Xeon-Processor-E5-v3-Family#@Server
http://ark.intel.com/products/family/78584/Intel-Xeon-Processor-E7-v2-Family#@Server
http://cdn.sqlperformance.com/wp-content/uploads/2014/12/HBAThroughput.png

Figure 3: Theoretical Expansion Slot Throughput

Since the introduction of the Intel Nehalem microarchitecture back in 2008, all 2P and larger Intel server

processors have supported Intel QuickPath Interconnect (QPI) for connections between the processors

and the memory in a server, giving these newer processors support for Non-Uniform Memory Access

(NUMA), which replaced the the older front-side bus (FSB). NUMA improves scalability pretty

significantly as the number of physical processors in a system increases, especially when you have four

or more physical processors in a host system.

Modern Intel processors have integrated memory controllers that support Intel QPI. When you look at

the specifications for a particular Intel processor in the online ARK database, you will be able to see its

rated QPI performance in GigaTransfers per second (GT/sec). A GigaTransfer per second is simply one

billion operations that transfer data per second.

For example, a modern, high-end Intel Xeon E5-2667 v3 processor (Haswell-EP) has an Intel QPI Speed of

9.6 GT/sec, while an older, low-end Intel Xeon E5503 processor (Nehalem-EP) has an Intel QPI Speed of

only 4.8 GT/sec. Even among processors from the same generation microarchitecture, you will see

variations in the rated Intel QPI Speed. For example, in the 22nm Haswell-EP family, the low-end Intel

Xeon E5-2603 v3 processor is rated at 6.4 GT/sec, while the higher-end Intel Xeon E5-2660 v3 processor

is rated at 9.6 GT/sec. Intel Xeon E5, E5 v2 and E5 v3 processors have two QPI links per processor, while

Intel E7 and E7 v2 family processors have three QPI links per processor.

The theoretical sequential throughput of a single Intel QPI link is shown in Figure 4:

Figure 4: Theoretical Intel QPI Throughput

http://en.wikipedia.org/wiki/Nehalem_(microarchitecture)
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://technet.microsoft.com/en-us/library/ms178144(v=SQL.105).aspx
http://ark.intel.com/products/83361/Intel-Xeon-Processor-E5-2667-v3-20M-Cache-3_20-GHz
http://ark.intel.com/products/37094/Intel-Xeon-Processor-E5503-4M-Cache-2_00-GHz-4_80-GTs-Intel-QPI
http://ark.intel.com/products/83349/Intel-Xeon-Processor-E5-2603-v3-15M-Cache-1_60-GHz
http://ark.intel.com/products/83349/Intel-Xeon-Processor-E5-2603-v3-15M-Cache-1_60-GHz
http://ark.intel.com/products/81706/Intel-Xeon-Processor-E5-2660-v3-25M-Cache-2_60-GHz
http://cdn.sqlperformance.com/wp-content/uploads/2014/12/BusThroughput.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/12/IntelQPIThroughput.png

Depending on the age of your host server, the exact processor it is using, and the type, speed and

amount of memory that is installed, you will have different amounts of theoretical sequential

throughput available from each memory module. All modern Intel processors have integrated memory

controllers that control the amount and frequency of the memory that the processor will support. Most

recent vintage host servers will use DDR3 memory, while the latest generation Haswell-EP (Intel Xeon E5

v3 family) processors support DDR4 memory. DDR4 memory supports higher speeds, higher throughput,

higher memory density, lower power consumption, and improved reliability compared to DDR3

memory.

The theoretical sequential throughput of a single memory module is shown in Figure 5:

Figure 5: Theoretical Memory Module Throughput

As you look at the individual components in an existing or planned new system, you should be on the

lookout for mismatched components that can introduce artificial sequential performance bottlenecks

into the system. For example, you might have a brand-new server with high-end processors that is

crippled by the fact that it is using a 4Gb FC HBA to access a SAN. Another example could be a very fast

PCIe flash storage card or RAID controller that was installed in a low bandwidth PCIe 2.0 x4 slot, which

artificially limited the total sequential throughput of the device.

I know that this has been a lot of technical information to digest, especially for people who are not

hardware enthusiasts. I think the main idea you should take away from this article is that sequential

throughput performance is quite important for many common SQL Server tasks and workloads. The low-

level details about processors, memory types, expansion slots, and expansion devices actually make a lot

of difference in the sequential throughput performance that you will get from a server and its storage

subsystem. Having good sequential throughput makes your life so much easier as a database

professional, allowing you to support your organization at a much higher level.

http://en.community.dell.com/techcenter/b/techcenter/archive/2014/12/17/advantages-of-the-ddr4-memory-technology-in-13th-generation-poweredge-servers
http://cdn.sqlperformance.com/wp-content/uploads/2014/12/MemoryThroughput.png

More online operations available now-or soon
By Aaron Bertrand

I was running some tests in SQL Database and discovered at least one new operation that supports

ONLINE = ON. This is on a very recent version, by the way – SELECT @@VERSION; continues to yield an

old build number, but the proof is in the build date:

Microsoft SQL Azure (RTM) – 12.0.2000.8

 Feb 12 2015 00:53:13

 Copyright (c) Microsoft Corporation

This version of Azure SQL Database supports the ONLINE = ON option for ALTER TABLE ... ALTER

COLUMN.

Let's say you have a table with a nullable column:

CREATE TABLE dbo.a(id INT PRIMARY KEY, x VARCHAR(255));

INSERT dbo.a(id, x) SELECT TOP (1) [object_id], name FROM sys.all_objects;

And now you decide to make that column not nullable, you can do this (assuming there are no NULLs):

ALTER TABLE dbo.a

 ALTER COLUMN x VARCHAR(255) NOT NULL

 WITH (ONLINE = ON);

You can also do things like change the collation, the data type or the size of the column:

ALTER TABLE dbo.a

ALTER COLUMN x NVARCHAR(510) -- changed data type and length

 COLLATE Albanian_BIN NOT NULL -- changed collation and nullability

 WITH (ONLINE = ON);

In current versions of SQL Server (and previous versions of Azure SQL Database), the ONLINE = ON hint

was not supported for ALTER TABLE, and without the option, this was a blocking and size-of-data

operation. To be fair, the first time I ran the code, I could only prove that the version with ONLINE = ON

ran successfully, not that it worked as advertised.

I ran this code with ONLINE = ON and without:

CREATE TABLE dbo.a(id INT PRIMARY KEY, x VARCHAR(255));

INSERT dbo.a(id, x) SELECT TOP (1) [object_id], name FROM sys.all_objects;

-- placeholder;

http://sqlperformance.com/2015/02/sql-performance/more-online-operations?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

ALTER TABLE dbo.a

 ALTER COLUMN x NVARCHAR(510)

 COLLATE Albanian_BIN NOT NULL

 -- WITH (ONLINE = ON);

-- placeholder;

DROP TABLE dbo.a;

In the --placeholder spot, I tried a few things to determine any difference in behavior (this was our

production SQL Database, so I didn't want to use enough data or create enough activity that the

difference would be obvious). I wanted to check in both scenarios whether the page had changed

(indicating a true online operation) or if the values were updated in place on the existing pages (a not-

so-online operation). I could have also expanded the test to see how many new pages were created if

the pages were full and/or all 255 characters were used, but I thought that just seeing whether the

pages changed would be enough.

I tried DBCC IND():

DBCC IND(N'dbname', N'dbo.a', 1, 1);

The results here were not surprising:

Msg 40518, Level 16, State 1

DBCC command 'IND' is not supported in this version of SQL Server.

And sys.dm_db_database_page_allocations (the replacement for DBCC IND):

SELECT allocated_page_page_id

 FROM sys.dm_db_database_page_allocations(DB_ID(),OBJECT_ID(N'dbo.a'),1,1,N'LIMITED')

 WHERE is_iam_page = 0;

This yielded an empty result set – I believe it is by design that this dynamic management function does

not expose any physical information in Azure SQL Database.

Next, I tried a trick with fn_PhysLocCracker, which folks like Michelle Ufford (@sqlfool) have blogged

about before:

SELECT l.page_id FROM dbo.a

 OUTER APPLY sys.fn_PhysLocCracker(%%PhysLoc%%) AS l;

Success! This returned values for the pages used in the scan against dbo.a, and it is clear that in the

ONLINE = ON version, the data is moved to new pages (presumably leaving the old ones available

throughout the operation), and without the hint, the data and metadata is updated in place:

http://twitter.com/sqlfool
http://sqlfool.com/2009/09/undocumented-function-in-sql-2008/
http://sqlfool.com/2009/09/undocumented-function-in-sql-2008/

Comparing pages under standard ALTER COLUMN behavior (left) with ONLINE = ON (right)

Another thing I wanted to compare was the execution plans. I might not see much in Management

Studio, but in SQL Sentry Plan Explorer Pro, I can see the full call stack, including what goes on behind

the scenes of some DDL commands. Our tool didn't disappoint – while it didn't present an actual plan for

the in-place update variation, it too demonstrates that there is a significant behavior difference when

using ONLINE = ON:

Comparing plans under standard ALTER COLUMN behavior (left) with ONLINE = ON (right)

Of course, you will only see this difference if you meet all of the other conditions required for online

operations (many are similar to the requirements for online index rebuild) in the recently-updated

documentation.

http://www.sqlsentry.com/products/plan-explorer/sql-server-query-view?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
https://msdn.microsoft.com/library/ms190273.aspx
https://msdn.microsoft.com/library/ms190273.aspx
http://cdn.sqlperformance.com/wp-content/uploads/2015/02/atac_pages.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/02/atac_plans.png

Now, if you're not using SQL Database, how does that help you? After all, this syntax does not parse

correctly even in SQL Server 2014 Cumulative Update #6 (12.0.2480). Well, Microsoft has not exactly

been guarding the fact that the development pattern has become "cloud first, then box".

Knee-Jerk Performance Tuning: Just Add an SSD
By Paul Randal

In this continuation of my ‘knee-jerk performance tuning’ series, I’d like to discuss Solid State Disks

(SSDs) and some of the problems I see with their use in a SQL Server environment. For an in-depth

description of SSDs, check out this Wikipedia article.

What Do SSDs do For SQL Server Performance?

SSDs don’t have any moving parts so when a read or write occurs, there’s almost no I/O latency. The

latency in a spinning drive comes from two things:

 Moving the disk head to the right track on the disk surface (known as the seek time)

 Waiting for the disk to spin to the right point on the track (known as the rotational latency)

This means that SSDs provide a big performance boost when there’s an I/O bottleneck.

It’s that simple.

There’s a bit of complication that’s worth mentioning but beyond the scope of this article to go into in

depth: SSD performance can start to degrade as the drive gets really full (investigated and explained in

detail in this article from AnandTech). There may also be some system memory required for the SSD

driver to help with wear leveling (prolonging the life of the NAND cells in the SSD), and that’s going to

vary by vendor. Enough of that – back to the SQL Server stuff.

Avoid Bad Internet Advice

There are two bits of very poor advice I see on the Internet around SQL Server and SSDs.

The first is around what to put on the SSD, where the advice is to always put tempdb and your

transaction logs on SSDs. At first glance that sounds like good advice, as transaction logs and tempdb are

commonly bottlenecks in the system.

But what if they’re not?

Your workload may be read-mostly, in which case the transaction log likely won’t be a workload

bottleneck and so putting it on an SSD may be a waste of an expensive SSD.

Your tempdb may not be used very much by your workload, so putting it on an SSD may be a waste of

an expensive SSD.

When you’re considering which portion of the SQL Server environment to move to the SSD, you want to

investigate where the I/O bottlenecks are. This can be done very easily using the code I posted last week

that uses the sys.dm_io_virtual_file_stats DMV to provide a snapshot of the I/O latencies for all files in

all databases on the instance. To make sense of your latency numbers, and compare them against

good/bad values, read through this long post I did specifically around tempdb and transaction log I/O

latencies.

And then even if you do have high latencies, don’t knee-jerk and think that the only solution is to move

the poorly-performing file(s) to an SSD:

 For data file read latencies, investigate why there are so many reads occurring. I cover that here.

http://sqlperformance.com/2014/11/io-subsystem/knee-jerk-performance-tuning-just-add-ssd?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://en.wikipedia.org/wiki/Solid-state_drive
http://www.anandtech.com/show/6489/playing-with-op
http://www.sqlskills.com/blogs/paul/capturing-io-latencies-period-time/
http://www.sqlskills.com/blogs/paul/are-io-latencies-killing-your-performance/
http://sqlperformance.com/2014/06/io-subsystem/knee-jerk-waits-pageiolatch-sh?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

 For log file write latencies, consider all the ways to tune the performance of the log and what’s

being logged. I cover that here, here, and here.

The worst possible case is where you’re given a bunch of SSDs, follow the Internet advice to move

tempdb and your log files to them, and then there’s no workload performance gain. That’s not going to

encourage your management to provide you with more expensive SSDs.

The second piece of poor advice is around index fragmentation, where the advice is that because SSDs

are so fast, you don’t need to worry about index fragmentation when using SSDs.

What nonsense!

There are three ways I refute that bad advice:

1. SSDs in no way stop the cause of index fragmentation: page splits from pages needing free space

for a random insert or row size increase. A page split generates the same amount of transaction

log, resource usage, and potential thread waits regardless of where the data/log files are stored.

2. Index fragmentation includes having many data/index pages with low page density (i.e. lots of

empty, free space). Do you really want your expensive SSDs storing lots of empty space? SSDs

don’t help here at all.

3. My colleague Jonathan Kehayias did an in-depth investigation, using Extended Events, of I/O

patterns around index fragmentation specifically to address this bad advice and found that there

is still a performance hit from having index fragmentation when using SSDs. You can read his

long post here.

The only thing that SSDs do around index fragmentation is make the reads go faster, so there’s less of a

performance penalty for index range scans when index fragmentation exists, but point 3 above shows

that there’s still a penalty.

SSDs do not change how you deal with and/or prevent index fragmentation in your SQL Server

environment.

Make Sure to Protect Your Data

One of the cardinal sins I see people committing around using SSDs is only using one of them. With only

one drive, what RAID level are you using? Zero. RAID-0 provides no redundancy at all.

If you’re going to use an SSD, then you need to use at least two, in a RAID-1 (mirroring) configuration.

There’s no point having a performance boost if you’re sacrificing the availability of the system as the

trade-off.

One push back I sometimes get to using at least two SSDs is that the SSD card provides two drives to

Windows, and so surely creating a Windows mirrored volume over the two drives is the same as RAID-1

across two physically separate SSDs?

No, it’s not. It’s still one physical SSD, with no redundancy. Have you ever seen half of an SSD card fail?

No, neither have I. Do it right and use two of them and get real redundancy for your data.

http://sqlperformance.com/2012/12/io-subsystem/trimming-t-log-fat?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2013/01/io-subsystem/trimming-more-transaction-log-fat?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2013/02/system-configuration/transaction-log-configuration?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
https://www.sqlskills.com/blogs/jonathan/does-index-fragmentation-matter-with-ssds/

The other push back I get is that they’re SSDs, not spinning drives, so aren’t going to fail. That’s wrong.

SSDs can and do fail just like spinning drives. I’ve personally seen two enterprise-grade SSDs fail during

testing in our lab environment. According to this article on StorageReview.com, consumer-grade SSDs

have an MTBF of 2 million hours vs. 1.5 million hours for consumer-grade spinning drives, and I’d expect

similar results for enterprise-grade drives, but SSDs do fail.

Summary

Don’t fall into the trap of thinking that whatever you put on the SSD means that you’ll get a boost in

performance – you have to pick and choose carefully. And don’t believe the nonsense out there about

ignoring index fragmentation when using SSDs either.

SSDs are a very useful way to increase performance, but for their cost, you want to make sure you’re

maximizing the return on your company’s investment by using them correctly and only where

appropriate.

http://www.storagereview.com/ssd_vs_hdd

Bad Habits: Focusing only on disk space when choosing keys
By Aaron Bertrand

While Jeff Atwood and Joe Celko seem to think that the cost of GUIDs is no big deal (see Jeff's blog post,

"Primary Keys: IDs versus GUIDs," and this newsgroup thread, entitled "Identity Vs. Uniqueidentifier"),

other experts – more specifically index and architecture experts focusing on the SQL Server space – tend

to disagree. For example, Kimberly Tripp goes over some details in her post, "Disk Space is Cheap –

THAT'S NOT THE POINT!", where she explains that the impact isn't just on disk space and fragmentation,

but more importantly on index size and memory footprint.

What Kimberly says is really true – I come across the "disk space is cheap" justification for GUIDs all the

time (example from just last week). There are other justifications for GUIDs, including the need to

generate unique identifiers outside the database (and sometimes before the row is actually created),

and the need for unique identifiers across separate distributed systems (and where identity ranges are

not practical). But I really want to dispel the myth that GUIDs don't cost all that much, because they do,

and you need to weigh these costs into your decision.

I set out on this mission to test the performance of different key sizes, given the same data across the

same number of rows, with the same indexes, and roughly the same workload (replaying the *exact*

same workload can be quite challenging). Not only did I want to measure the basic things like index size

and index fragmentation, but also the effects these have down the line, such as:

 impact on buffer pool usage

 frequency of "bad" page splits

 overall impact on realistic workload duration

 impact on average runtimes of individual queries

 impact on runtime duration of after triggers

 impact on tempdb usage

I will use a variety of techniques to investigate this data, including Extended Events, the default trace,

tempdb-related DMVs, and SQL Sentry Performance Advisor.

Setup

First, I created a million customers to put into a seed table using some built-in SQL Server metadata; this

would ensure that the "random" customers would consist of the same natural data throughout each

test.

CREATE TABLE dbo.CustomerSeeds

(

 rn INT PRIMARY KEY CLUSTERED,

 FirstName NVARCHAR(64),

 LastName NVARCHAR(64),

 EMail NVARCHAR(320) NOT NULL UNIQUE,

 Active BIT

http://sqlperformance.com/2015/01/sql-indexes/bad-habits-disk-space?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://blog.codinghorror.com/primary-keys-ids-versus-guids/
https://groups.google.com/forum/?hl=en#!msg/microsoft.public.sqlserver.programming/qtCRhLLM9Kk/tg9vDfjbYW0J
http://www.sqlskills.com/blogs/kimberly/disk-space-is-cheap/
http://www.sqlskills.com/blogs/kimberly/disk-space-is-cheap/
http://dba.stackexchange.com/a/86931/1186
http://www.sqlsentry.com/products/performance-advisor/sql-server-performance?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook

);

INSERT dbo.CustomerSeeds WITH (TABLOCKX) (rn, FirstName, LastName, EMail, [Active])

SELECT rn = ROW_NUMBER() OVER (ORDER BY n), fn, ln, em, a

FROM

(

 SELECT TOP (1000000) fn, ln, em, a = MAX(a), n = MAX(NEWID())

 FROM

 (

 SELECT fn, ln, em, a, r = ROW_NUMBER() OVER (PARTITION BY em ORDER BY em)

 FROM

 (

 SELECT TOP (2000000)

 fn = LEFT(o.name, 64),

 ln = LEFT(c.name, 64),

 em = LEFT(o.name, LEN(c.name)%5+1) + '.'

 + LEFT(c.name, LEN(o.name)%5+2) + '@'

 + RIGHT(c.name, LEN(o.name+c.name)%12 + 1)

 + LEFT(RTRIM(CHECKSUM(NEWID())),3) + '.com',

 a = CASE WHEN c.name LIKE '%y%' THEN 0 ELSE 1 END

 FROM sys.all_objects AS o CROSS JOIN sys.all_columns AS c

 ORDER BY NEWID()

) AS x

) AS y WHERE r = 1

 GROUP BY fn, ln, em

 ORDER BY n

) AS z

ORDER BY rn;

GO

SELECT TOP (10) * FROM dbo.CustomerSeeds ORDER BY rn;

GO

Your mileage may vary, but on my system, this population took 86 seconds. Ten representative rows:

Sample Customers

http://cdn.sqlperformance.com/wp-content/uploads/2014/12/ds-1.png

Next, I needed tables to house the seed data for each use case, with a few extra indexes to simulate

some sort of reality, and I came up with short suffixes to make all kinds of diagnostics easier later:

data type default compression use case suffix

INT IDENTITY none I

INT IDENTITY page + row Ic

BIGINT IDENTITY none B

BIGINT IDENTITY page + row Bc

UNIQUEIDENTIFIER NEWID() none G

UNIQUEIDENTIFIER NEWID() page + row Gc

UNIQUEIDENTIFIER NEWSEQUENTIALID() none S

UNIQUEIDENTIFIER NEWSEQUENTIALID() page + row Sc

Table 1: Use cases, data types, and suffixes

Eight tables all told, all borne from the same template (I would just change the comments around to

match the use case, and replace use_case with the appropriate suffix from the table above):

CREATE TABLE dbo.Customers_use_case -- I,Ic,B,Bc,G,Gc,S,Sc

(

 CustomerID INT NOT NULL IDENTITY(1,1),

 --CustomerID BIGINT NOT NULL IDENTITY(1,1),

 --CustomerID UNIQUEIDENTIFIER NOT NULL DEFAULT NEWID(),

 --CustomerID UNIQUEIDENTIFIER NOT NULL DEFAULT NEWSEQUENTIALID(),

 FirstName NVARCHAR(64) NOT NULL,

 LastName NVARCHAR(64) NOT NULL,

 EMail NVARCHAR(320) NOT NULL,

 Active BIT NOT NULL DEFAULT 1,

 Created DATETIME NOT NULL DEFAULT SYSDATETIME(),

 Updated DATETIME NULL,

 CONSTRAINT C_PK_Customers_use_case PRIMARY KEY (CustomerID)

) --WITH (DATA_COMPRESSION = PAGE)

GO

;

CREATE UNIQUE INDEX C_Email_Customers_use_case ON dbo.Customers_use_case(EMail)

 --WITH (DATA_COMPRESSION = PAGE)

;

GO

CREATE INDEX C_Active_Customers_use_case ON dbo.Customers_use_case(FirstName, LastName,

EMail)

 WHERE Active = 1

 --WITH (DATA_COMPRESSION = PAGE)

;

GO

CREATE INDEX C_Name_Customers_use_case ON dbo.Customers_use_case(LastName, FirstName)

 INCLUDE (EMail)

 --WITH (DATA_COMPRESSION = PAGE)

;

GO

Once the tables were created, I proceeded to populate the tables and measure many of the metrics I

alluded to above. I restarted the SQL Server service in between each test to be sure they were all

starting from the same baseline, that DMVs would be reset, etc.

Uncontested Inserts

My eventual goal was to fill the table with 1,000,000 rows, but first I wanted to see the impact of the

data type and compression on raw inserts with no contention. I generated the following query – which

would populate the table with the first 200,000 contacts, 2000 rows at a time – and ran it against each

table:

DECLARE @i INT = 1;

WHILE @i <= 100

BEGIN

 INSERT dbo.Customers_use_case(FirstName, LastName, Email, Active)

 SELECT FirstName, LastName, Email, Active

 FROM dbo.CustomerSeeds AS c

 ORDER BY rn

 OFFSET 2000 * (@i-1) ROWS

 FETCH NEXT 2000 ROWS ONLY;

 SET @i += 1;

END

Results:

Each case took about 12 seconds (without compression) and 16 seconds (with compression), with no

clear winner in either storage mode. The effect of compression (mainly on CPU overhead) is pretty

consistent, but since this is running on a fast SSD, the I/O impact of the different data types is negligible.

In fact the compression against BIGINT seemed to have the biggest impact (and this makes sense, since

every single value less than 2 billion would be compressed).

More Contentious Workload

Next I wanted to see how a mixed workload would compete for resources and generally perform against

each data type. So I created these procedures (replacing use_case and $data_type$ appropriately for

each test):

-- random singleton updates to data in more than one index

CREATE PROCEDURE [dbo].[Customers_use_case_RandomUpdate]

 @Customers_use_case $data_type$

AS

BEGIN

 SET NOCOUNT ON;

 UPDATE dbo.Customers_use_case

 SET LastName = COALESCE(STUFF(LastName, 4, 1, 'x'),'x')

 WHERE CustomerID = @Customers_use_case;

END

GO

-- reads ("pagination") - supporting multiple sorts

-- use dynamic SQL to track query stats separately

CREATE PROCEDURE [dbo].[Customers_use_case_Page]

 @PageNumber INT = 1,

 @PageSize INT = 100,

 @sort SYSNAME

http://cdn.sqlperformance.com/wp-content/uploads/2015/01/guid_200K.png

AS

BEGIN

 SET NOCOUNT ON;

 DECLARE @sql NVARCHAR(MAX) = N'SELECT CustomerID,

 FirstName, LastName, Email, Active, Created, Updated

 FROM dbo.Customers_use_case

 ORDER BY ' + @sort + N' OFFSET ((@pn-1)*@ps)

 ROWS FETCH NEXT @ps ROWS ONLY;';

 EXEC sys.sp_executesql @sql, N'@pn INT, @ps INT',

 @PageNumber, @PageSize;

END

GO

Then I created jobs that would call those procedures repeatedly, with slight delays, and also –

simultaneously – finish populating the remaining 800,000 contacts. This script creates all 32 jobs, and

also prints output that can be used later to call all of the jobs for a specific test asynchronously:

USE msdb;

GO

DECLARE @typ TABLE(use_case VARCHAR(2), data_type SYSNAME);

INSERT @typ(use_case, data_type) VALUES

('I', N'INT'), ('Ic',N'INT'),

('B', N'BIGINT'), ('Bc', N'BIGINT'),

('G', N'UNIQUEIDENTIFIER'), ('Gc', N'UNIQUEIDENTIFIER'),

('S', N'UNIQUEIDENTIFIER'), ('Sc', N'UNIQUEIDENTIFIER');

DECLARE @jobs TABLE(name SYSNAME, cmd NVARCHAR(MAX));

INSERT @jobs(name, cmd) VALUES

(N'Random update workload',

 N'DECLARE @CustomerID $data_type$, @i INT = 1;

 WHILE @i <= 500

 BEGIN

 SELECT TOP (1) @CustomerID = CustomerID FROM dbo.Customers_use_case ORDER BY NEWID();

 EXEC dbo.Customers_use_case_RandomUpdate @Customers_use_case = @CustomerID;

 WAITFOR DELAY ''00:00:01'';

 SET @i += 1;

 END'),

(N'Populate customers',

 N'SET QUOTED_IDENTIFIER ON;

 DECLARE @i INT = 101;

 WHILE @i <= 500

 BEGIN

 INSERT dbo.Customers_use_case(FirstName, LastName, Email, Active)

 SELECT FirstName, LastName, Email, Active

 FROM dbo.CustomerSeeds AS c

 ORDER BY rn

 OFFSET 2000 * (@i-1) ROWS

 FETCH NEXT 2000 ROWS ONLY;

 WAITFOR DELAY ''00:00:01'';

 SET @i += 1;

 END'),

(N'Paging workload 1',

 N'DECLARE @i INT = 1, @sql NVARCHAR(MAX);

 WHILE @i <= 1001

 BEGIN -- sort by CustomerID

 SET @sql = N''EXEC dbo.Customers_use_case_Page @PageNumber = @i, @sort =

N''''CustomerID'''';'';

 EXEC sys.sp_executesql @sql, N''@i INT'', @i;

 WAITFOR DELAY ''00:00:01'';

 SET @i += 2;

 END'),

(N'Paging workload 2',

 N'DECLARE @i INT = 1, @sql NVARCHAR(MAX);

 WHILE @i <= 1001

 BEGIN -- sort by LastName, FirstName

 SET @sql = N''EXEC dbo.Customers_use_case_Page @PageNumber = @i, @sort =

N''''LastName, FirstName'''';'';

 EXEC sys.sp_executesql @sql, N''@i INT'', @i;

 WAITFOR DELAY ''00:00:01'';

 SET @i += 2;

 END');

DECLARE @n SYSNAME, @c NVARCHAR(MAX);

DECLARE c CURSOR LOCAL FAST_FORWARD FOR

SELECT name = t.use_case + N' ' + j.name,

 cmd = REPLACE(REPLACE(j.cmd, N'use_case', t.use_case),

 N'$data_type$', t.data_type)

 FROM @typ AS t CROSS JOIN @jobs AS j;

OPEN c; FETCH c INTO @n, @c;

WHILE @@FETCH_STATUS <> -1

BEGIN

 IF EXISTS (SELECT 1 FROM msdb.dbo.sysjobs WHERE name = @n)

 BEGIN

 EXEC msdb.dbo.sp_delete_job @job_name = @n;

 END

 EXEC msdb.dbo.sp_add_job

 @job_name = @n,

 @enabled = 0,

 @notify_level_eventlog = 0,

 @category_id = 0,

 @owner_login_name = N'sa';

 EXEC msdb.dbo.sp_add_jobstep

 @job_name = @n,

 @step_name = @n,

 @command = @c,

 @database_name = N'IDs';

 EXEC msdb.dbo.sp_add_jobserver

 @job_name = @n,

 @server_name = N'(local)';

 PRINT 'EXEC msdb.dbo.sp_start_job @job_name = N''' + @n + ''';';

 FETCH c INTO @n, @c;

END

Measuring the job timings in each case was trivial – I could check start/end dates in

msdb.dbo.sysjobhistory or pull them from SQL Sentry Event Manager. Here are the results:

And if you wanted to have a little less to digest, just look at the average and maximum runtimes across

the four jobs:

http://www.sqlsentry.com/products/event-manager/sql-server-job-schedule-alert-management?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://cdn.sqlperformance.com/wp-content/uploads/2015/01/guid_jobavgmax.png

But even in this second graph there is not really enough variance to make a compelling case for or

against any of the approaches.

Query Runtimes

I took some metrics from sys.dm_exec_query_stats and sys.dm_exec_trigger_stats to determine how

long individual queries were taking on average.

Population

The first 200,000 customers were loaded quite quickly – under 20 seconds – due to no competing

workloads. Once the four jobs were running simultaneously, however, there was a significant impact on

write durations due to concurrency. The remaining 800,000 rows required at least an order of

magnitude more time to complete, on average. Here are the results of averaging out each 2,000

customer insert:

http://cdn.sqlperformance.com/wp-content/uploads/2015/01/guid_jobavg.png

We see here that compressing an INT was the only real outlier – I have some theories on that, but

nothing conclusive yet.

Paging Workloads

The average runtimes of the paging queries also seem to have been significantly affected by

concurrency compared to my test runs in isolation. Here are the results:

(Paging 1 = order by CustomerID, Paging 2 = order by LastName, FirstName.)

We see that for both Paging 1 (order by CustomerID) and Paging 2 (order by names), there is a

significant impact on run time due to compression (up to ~700%). Both GUIDs seem to be the slowest

horses in this race, with NEWID() performing the worst.

http://cdn.sqlperformance.com/wp-content/uploads/2015/01/guid_query_pop.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/01/guid_query_page.png

Update Workloads

The singleton updates were quite fast even under heavy concurrency, but there were still some

noticeable differences due to compression, and even some surprising differences across data types:

Most notably, the updates to the rows containing GUID values were actually faster than the updates

containing INT/BIGINT, when compression was in use. With native storage, the differences were less

noteworthy (but INT was still a loser there).

Trigger Statistics

Here are the average and maximum runtimes for the simple trigger in each case:

http://cdn.sqlperformance.com/wp-content/uploads/2015/01/guid_query_update.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/01/tempdb_trigger.png

Compression seems to have a much larger impact here than data type choice (though this would likely

be more pronounced if some of my update workload had updated many rows instead of consisting

solely of single-row seeks). The maximum for sequential GUID is clearly an outlier of some sort that I did

not investigate (you can tell it is insignificant based on the average still being in line across the board).

What were these queries waiting on?

After each workload, I also took a look at the top waits on the system, throwing away obvious

queue/timer waits (as described by Paul Randal), and irrelevant activity from monitoring software (like

TRACEWRITE). Here were the top 3 waits in each case:

In most cases, the waits were CXPACKET, then LATCH_EX, then SOS_SCHEDULER_YIELD. In the use case

involving integers and compression, though, SOS_SCHEDULER_YIELD took over, which implies to me

some inefficiency in the algorithm for compressing integers (which may be completely unrelated to the

algorithm used to squeeze BIGINTs into INTs). I did not investigate this further, nor did I find justification

for tracking waits per individual query.

Disk Space / Fragmentation

While I tend to agree that it's not about the disk space, it's still a metric worth presenting. Even in this

very simplistic case where there is only one table and the key is not present in all of the other related

tables (which would surely exist in a real application), the difference is significant. First let's just look at

the reserved column from sp_spaceused:

http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/
http://cdn.sqlperformance.com/wp-content/uploads/2015/01/guid_waits.png

Here, BIGINT only took a little more space than INT, and GUID (as expected) had a bigger jump.

Sequential GUID had a less significant increase in space used, and compressed a lot better than

traditional GUID, too. Again, no surprises here – a GUID is bigger than a number, full stop. Now, GUID

proponents might argue that the price you pay in terms of disk space is not that much (18% over BIGINT

without compression, around 50% with compression). But remember that this is a single table of 1

million rows. Imagine how that will extrapolate when you have 10 million customers and many of them

have 10, 30, or 500 orders – those keys could be repeated in a dozen other tables, and take up the same

extra space in each row.

When I looked at fragmentation after each workload (remember, no index maintenance is being

performed) using this query:

SELECT index_id,

 FROM sys.dm_db_index_physical_stats

 (DB_ID(), OBJECT_ID('dbo.Customers_use_case'), -1, 0, 'DETAILED');

The results made for much less interesting visuals; all non-clustered indexes were fragmented over 99%.

The clustered indexes, however, were either very highly fragmented, or not fragmented at all:

http://cdn.sqlperformance.com/wp-content/uploads/2015/01/guid_spaceused.png

Fragmentation is another metric that often means much less when we're talking about SSDs, but it is

important to note all the same, since not all systems can afford to be blissfully unaware of the impact

fragmentation can have on I/O patterns. I believe that using non-sequential GUIDs, on a more I/O-bound

system, the impact of this fragmentation alone would be drastically amplified on most of the other

metrics in this test.

Buffer Pool Usage

This is where being judicious about the amount of disk space used by your tables really pays off – the

bigger your tables are, the more space they take up in the buffer pool. Moving data in and out of the

buffer pool is expensive, and again, this is a very simplistic case where the tests were run in isolation and

there weren't other applications and databases on the instance competing for precious memory.

This is a simple measure of the following query at the end of each workload:

SELECT total_kb

 FROM sys.dm_os_memory_broker_clerks

 WHERE clerk_name = N'Buffer Pool';

Results:

http://cdn.sqlperformance.com/wp-content/uploads/2015/01/guid_fragmentation.png

While most of this graph is not surprising at all – GUID takes more space than BIGINT, BIGINT more than

INT – I did find it interesting that a Sequential GUID took up less space than a BIGINT, even without

compression. I've made a note to perform some page-level forensics to determine what kind of

efficiencies are taking place here under the covers.

tempdb Usage

I'm not sure what I was expecting here, but after each workload, I gathered the contents of the three

tempdb-related space usage DMVs, sys.dm_db_file|session|task_space_usage. The only one that

seemed to show any volatility based on data type was sys.dm_db_file_space_usage's

extent_allocation_page_count. This shows that – at least in my configuration and this specific workload

– GUIDs will put tempdb through a slightly more thorough workout:

http://cdn.sqlperformance.com/wp-content/uploads/2015/01/guid_bpool.png

"Bad" Page Splits

One of the things I wanted to measure was the impact on page splits – not normal page splits (when you

add a new page) but when you actually have to move data between pages to make room for more rows.

Jonathan Kehayias talks about this in more depth in his blog post, "Tracking Problematic Pages Splits in

SQL Server 2012 Extended Events – No Really This Time!," which also provides the basis for the

Extended Events session I used to capture the data:

CREATE EVENT SESSION [BadPageSplits] ON SERVER

 ADD EVENT sqlserver.transaction_log

 (WHERE operation = 11 AND database_id = 10)

 ADD TARGET package0.histogram

 (

 SET filtering_event_name = 'sqlserver.transaction_log',

 source_type = 0,

 source = 'alloc_unit_id'

);

GO

ALTER EVENT SESSION [BadPageSplits] ON SERVER STATE = START;

GO

And the query I used to plot it:

SELECT t.name, SUM(tab.split_count)

FROM

(

 SELECT

 n.value('(value)[1]', 'bigint') AS alloc_unit_id,

 n.value('(@count)[1]', 'bigint') AS split_count

https://www.sqlskills.com/blogs/jonathan/tracking-problematic-pages-splits-in-sql-server-2012-extended-events-no-really-this-time/
https://www.sqlskills.com/blogs/jonathan/tracking-problematic-pages-splits-in-sql-server-2012-extended-events-no-really-this-time/
http://cdn.sqlperformance.com/wp-content/uploads/2015/01/guid_tempdb.png

 FROM

 (

 SELECT CAST(target_data as XML) target_data

 FROM sys.dm_xe_sessions AS s

 INNER JOIN sys.dm_xe_session_targets AS t

 ON s.address = t.event_session_address

 WHERE s.name = 'BadPageSplits'

 AND t.target_name = 'histogram'

) AS x

 CROSS APPLY target_data.nodes('HistogramTarget/Slot') as q(n)

) AS tab

INNER JOIN sys.allocation_units AS au

 ON tab.alloc_unit_id = au.allocation_unit_id

INNER JOIN sys.partitions AS p

 ON au.container_id = p.partition_id

INNER JOIN sys.tables AS t

 ON p.object_id = t.[object_id]

GROUP BY t.name;

And here are the results:

Although I've already noted that in my scenario (where I'm running on fast SSDs) the indisputable

difference in I/O activity does not directly impact overall run time, this is still a metric you'll want to

consider – particularly if you don't have SSDs or if your workload is already I/O-bound.

Conclusion

While these tests have opened my eyes a little wider about how long-running perceptions I've had have

been altered by more modern hardware, I'm still quite staunchly against wasting space on disk or in

http://cdn.sqlperformance.com/wp-content/uploads/2014/12/guid_page_splits.png

memory. While I tried to demonstrate some balance and let GUIDs shine, there is very little here from a

performance perspective to support switching from INT/BIGINT to either form of UNIQUEIDENTIFIER –

unless you need it for other less tangible reasons (such as creating the key in the application or

maintaining unique key values across disparate systems). A quick summary, showing that NEWID() is the

worst choice across many of the metrics where there was a substantial difference (and in most of those

cases, NEWSEQUENTIALID() was a close second)):

Metric Clear Loser(s)?

Uncontested Inserts – draw –

Concurrent Workload – draw –

Individual queries – Population INT (compressed)

Individual queries – Paging NEWID() / NEWSEQUENTIALID()

Individual queries – Update INT (native) / BIGINT (compressed)

Individual queries – AFTER trigger – draw –

Disk Space NEWID()

Clustered Index Fragmentation NEWID()

Buffer Pool Usage NEWID()

tempdb Usage NEWID()

"Bad" Page Splits NEWID()

Table 2: Biggest Losers

Feel free to test these things out for yourself; I can assemble my full set of scripts if you'd like to run

them in your own environment. The short-winded purpose of this entire post is quite simple: there are

many important metrics to consider aside from the predictable impact on disk space, so it shouldn't be

used alone as an argument in either direction.

Now, I don't want this line of thinking to be restricted to keys, per se. It really should be thought about

whenever any data type choice is being made. I see datetime being chosen often, for example, when

only a date or smalldatetime is needed. On transactional tables, this too can yield to a lot of wasted disk

space, and this trickles down to some of these other resources as well.

In a future test I'd like to compare results for a much larger table (> 2 billion rows). I can simulate this

with INT by setting the identity seed to -2 billion, allowing for ~4 billion rows. And I'd like the workload

and disk space/memory footprint comparisons to involve more than a single table, since one of the

advantages to a skinny key is when that key is represented in dozens of related tables. I was monitoring

for autogrow events, but there were none, since the database was pre-sized large enough to

accommodate the growth, and I didn't think to measure actual log usage inside the existing log file, so

I'd like to test again with the defaults for log size and autogrowth, and this time measuring DBCC

SQLPERF(LOGSPACE);. Would also be interesting to time rebuilds and measure log usage as a result of

those operations, too. Finally, I'd like to make I/O a more relevant factor by finding a server with

mechanical hard disks – I know there are plenty out there, but in some shops they're pretty scarce.

Azure and Virtualization
Comparing Windows Azure Virtual Machine Performance, Part 1
By Glenn Berry

Unless you have been making a concerted effort to ignore it, you may have heard that Microsoft

would really like for you to move much of your SQL Server database infrastructure into a Microsoft data

center, whether you go to an Azure SQL Database (which I recently discussed here), or whether you host

it on a Windows Azure Virtual Machine. Microsoft calls these persistent virtual machines “compute

instances”, and they have two main tiers to choose from, which include the Basic Compute Tier and the

Standard Compute Tier. They describe these two tiers as:

Basic Compute Tier: This new tier of compute instances is similar in configuration to the Standard tier

with lower prices. These instances do not include load balancer and auto-scaling. They are well-suited

for single instance production applications, development workloads, test servers and batch processing

applications that might not require these features. The basic compute tier is currently available only for

the General Purpose Instances. These instances range from Basic A0 to Basic A4.

Standard Compute Tier: This tier of compute instances provides an optimal set of compute, memory

and IO resources for running a wide array of applications. These instances include both auto-scaling and

load balancing capabilities at no additional cost. The standard compute tier is available across General

Purpose, Memory Intensive and Compute Intensive instances. These instances range from Standard A0

to Standard A7.

There are several important advantages to hosting your SQL Server infrastructure on a Windows Azure

Virtual Machine. First, you have no capital costs for storage or hardware, along with no ongoing

maintenance of the storage or hardware. Second, you have no OS or SQL Server license costs (when you

use a SQL image from the standard Azure VM gallery). Third, you can create a new Azure VM that

already has SQL Server installed in a few minutes (even though it may take a little longer to completely

configure the OS and the SQL Server instance to your exact requirements). Going forward, it will still be

up to you to install Windows and SQL Server updates, but you won’t have to worry about things like

firmware, BIOS, or driver updates.

If you want to use Windows Azure Virtual Machines to host all or part of your SQL Server infrastructure,

you should be aware of the current pricing details that are available for the specific Azure data center

that you want to host your virtual machines, since pricing can vary across different Microsoft data

centers. Microsoft currently has 13 different Windows Azure virtual machine sizes, as detailed in

their Virtual Machine and Cloud Service Sizes for Azure page. Microsoft reduced the hourly pricing for

the memory intensive instances (Standard A5, Standard A6, and Standard A7) by 18% in most of their

data centers on May 1, 2014, and the pricing shown in Table 1 reflects those new, lower prices.

The Single-Core Score and the Multi-Core Score in the two right-hand columns of Table 1 are the

average scores that I observed using the 32-bit version of the Geekbench 3.05 processor and memory

benchmark on a sample Windows Server 2012 R2 Datacenter VM in the East U.S. Data Center. These

scores may or may not be representative of what you will see.

http://sqlperformance.com/2014/05/io-subsystem/comparing-azure-vm-performance?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.sqlskills.com/blogs/glenn/new-azure-sql-database-service-tiers/
http://msdn.microsoft.com/en-us/library/azure/jj156003.aspx
http://azure.microsoft.com/en-us/pricing/details/virtual-machines/
http://msdn.microsoft.com/library/azure/dn197896.aspx
http://www.primatelabs.com/geekbench/

VM

Size

CPU

Cores

Memory

(GB)

Hourly

Cost

Monthly

Cost

Single-Core

Score

Multi-Core

Score

Basic A0 1 (shared) 0.75 $0.018 ~$14 507 498

Basic A1 1 1.75 $0.074 ~$56 679 670

Basic A2 2 3.50 $0.148 ~$111 709 1,358

Basic A3 4 7.00 $0.296 ~$221 717 2,472

Basic A4 8 14.00 $0.592 ~$441 724 4,042

Standard

A0
1 (shared) 0.75 $0.020 ~$15 492 502

Standard

A1
1 1.75 $0.090 ~$67 1,068 1,083

Standard

A2
2 3.50 $0.180 ~$134 1,069 2,002

Standard

A3
4 7.00 $0.360 ~$268 1,070 3,593

Standard

A4
8 14.00 $0.720 ~$536 1,094 6,446

Standard

A5
2 14.00 $0.330 ~$246 1,080 2,026

Standard

A6
4 28.00 $0.660 ~$492 1,080 3,686

Standard

A7
8 56.00 $1.320 ~$983 1,056 6,185

Table 1: Selected Virtual Machine Specifications for Windows Azure in the East U.S. Data Center

Currently, Microsoft has nine data centers that can host new persistent virtual machines, which include

East U.S., West U.S., Brazil South (Preview), North Europe, West Europe, East Asia, Southeast Asia, Japan

West, and Japan East. According to Microsoft, “A1 is the smallest size recommended for production

workloads”, and you should select “a virtual machine with 4 or 8 CPU cores when using SQL Server

Enterprise Edition”. One useful, if somewhat dated reference for running SQL Server on a Windows

Azure Virtual Machine is the Performance Guidance for SQL Server in Windows Azure Virtual

Machines that was published in June, 2013.

Windows Azure Virtual Machine Characteristics

When you look at the CPU properties on the Performance tab in Windows Server 2012 R2 Task Manager

(in Figure 1 and Figure 2), you will notice that it reports that it is using a relatively old, 45nm AMD

Opteron 4171 HE processor, running at a speed of 2.1GHz. This particular six-core processor was

http://msdn.microsoft.com/en-us/library/dn248436.aspx
http://msdn.microsoft.com/en-us/library/dn248436.aspx
http://cdn.sqlperformance.com/wp-content/uploads/2014/05/gVM-0.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/05/gVM-1.png
http://www.cpu-world.com/CPUs/K10/AMD-Opteron%204171%20HE%20OS4171FNU6DGO.html
http://www.cpu-world.com/CPUs/K10/AMD-Opteron%204171%20HE%20OS4171FNU6DGO.html

introduced in June of 2010, as part of the two-socket Lisbon family. The HE suffix means that it is a “low-

powered” energy efficient model which is not a good choice for SQL Server usage, since it gives up a

significant amount of performance for a relatively small amount of reduced energy usage. After doing

some digging, I have been told that this processor is a special OEM processor for Microsoft data centers.

Figure 1: Basic A0 Virtual Machine in East U.S. Data Center

Figure 2: Standard A7 Virtual Machine in East U.S. Data Center

The other big issue with this processor besides its age and relatively poor single-threaded performance

is the fact that it only has six physical cores. This is a problem with the Basic A4, Standard A4, and

Standard A7 VM sizes, which have two NUMA nodes and eight total physical cores. This would mean

that a VM of that size would cross a NUMA node on the underlying physical host, which is not a good

idea for memory performance. I have a hard time believing that Microsoft would do this on purpose. I

also have a hard time believing that every single Azure VM in every single data center that I have tried so

far is using the exact same elderly AMD processor. It is fairly common knowledge that Microsoft has at

least three different generations of hardware (Gen 1, Gen 2, and Gen 3) that they have used so far in

their Azure data centers. After some more inquiries, I have discovered that this AMD Opteron 4171 HE

processor is an Azure Gen 2 processor.

You can browse the Geekbench 3 online database of uploaded benchmark results, looking for systems

using the AMD Opteron 4171 HE processor here. You may notice that every single result for this

processor seems to be for a Microsoft Virtual Machine, which is also quite curious. Windows Server

2012 R2 Task Manager is reporting the L1 cache as “N/A” and not even listing the L2 and L3 cache sizes

on these Azure VMs. Another curious piece of evidence is the fact that the Standard Instances have

about 50% higher Geekbench 3 scores than the equivalent Basic Instances when they have the exact

same total processor core counts and memory sizes, for both the Single-Core score and Multi-Core

score. This much of a variance does not make any sense if the underlying host machine is actually using

the same processor.

Summary

All of this evidence initially led me to the conclusion that Microsoft was probably obscuring the actual

processor in the host machine. I thought they might be doing this to try to prevent people from

purposely provisioning multiple VMs until they happen to get a VM is running on newer, faster, host

hardware. It turns out that Microsoft is not quite that clever. I have been assured that Microsoft does

not alter the identity of the CPU in an Azure VM. There are newer Azure Gen 3 processors that you may

get in an Azure VM, as you provision new VMs in the future. Another possible reason for my results was

that they are likely using some sort of governance to limit VM performance to a reliable, uniform level,

regardless of the underlying host hardware, so that they can host more VMs on less hardware over time.

This would be a smart course of action for an IaaS hoster.

The relatively low Geekbench 3.05 scores (see Figure 3) for even the largest Azure VMs means that you

are giving up a significant amount of processor and memory performance compared to an equivalent

physical two-socket server with the same number of processor cores and memory.

http://browser.primatelabs.com/geekbench3/search?q=Opteron+4171+HE
http://browser.primatelabs.com/geekbench3/search?q=Opteron+4171+HE
http://cdn.sqlperformance.com/wp-content/uploads/2014/05/gVM-2.png

Comparing Windows Azure Virtual Machine Performance, Part 2
By Glenn Berry

Earlier this year, I wrote about Comparing Windows Azure VM Performance, using Geekbench 3.1.5 in

32-bit tryout mode to measure the processor and memory performance of a number of different sized

Windows Azure VMs. These ranged from a Basic A0 VM all the way up to a Standard A7 VM, which was

the largest available VM at that time. These machines were all in the US East Azure data center, and

they all happened to be using the older Azure Gen 2 host hardware, which features the old and

relatively slow AMD Opteron 4171 HE processor.

Consequently, the Geekbench results for these machines were quite low, both for the single-core and

multi-core scores, as you can see in Table 1.

VM Size CPU Cores Memory Monthly Cost Single-Core Score Multi-Core Score

Basic A0 1 (shared) 768 MB $14 507 498

Basic A1 1 1.75 GB $56 679 670

Basic A2 2 3.5 GB $111 709 1,358

Basic A3 4 7 GB $221 717 2,472

Basic A4 8 14 GB $441 724 4,042

Standard A0 1 (shared) 768 MB $15 492 502

Standard A1 1 1.75 GB $67 1,068 1,083

Standard A2 2 3.5 GB $134 1,069 2,002

Standard A3 4 7 GB $268 1,070 3,593

Standard A4 8 14 GB $536 1,094 6,446

Standard A5 2 14 GB $246 1,080 2,026

Standard A6 4 28 GB $492 1,080 3,686

Standard A7 8 56 GB $983 1,056 6,185

Table 1: Selected Virtual Machine Specifications for Windows Azure in the East U.S. Data Center

Even the largest Standard A7 VM compared quite poorly with an average modern laptop, for both

single-core and multi-core performance. In Geekbench, the single-core score measures the single-

threaded performance of the processor, which is basically the raw speed of the processor. Single-

threaded performance is very important for OLTP workloads, where most queries run on a single

processor core. The multi-core score measures the overall processor capacity of the system, which

equates to how much concurrent workload you can support. While many smaller SQL Server workloads

might run perfectly well with this level of VM performance and capacity, as a DBA, I would not be very

happy about using older Azure Gen 2 hardware for my SQL Server VMs.

http://sqlperformance.com/2014/08/io-subsystem/comparing-azure-vm-performance-2?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://sqlperformance.com/2014/05/io-subsystem/comparing-azure-vm-performance?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://www.primatelabs.com/geekbench/

More recently, Microsoft has made available larger and much faster Standard A8 and A9 Azure Compute

Intensive virtual machines. These VMs feature much newer and faster 32nm Intel Xeon E5-2670 Sandy

Bridge-EP processors, which were initially released in Q1 of 2012. This particular processor has eight

physical cores (plus hyper-threading); with a base clock speed of 2.6GHz, and a Turbo Boost clock speed

of 3.3GHz. This processor was two steps down from the "top of the line" eight-core Xeon E5-2690

processor, but it is actually a pretty decent processor. Another very important feature that comes with

these new VM sizes is 40 Gbit/s InfiniBand networking, which gives you the potential of much better I/O

performance.

VM Size CPU Cores Memory Monthly Cost Single-Core Score Multi-Core Score

Standard A8 8 56 GB $1,823 2,484 15,376

Standard A9 16 112 GB $3,646 2,477 28,523

Table 2: Selected Virtual Machine Specifications for Windows Azure in the East U.S. Data Center

As you can see in Table 2, these new Compute Intensive Azure VMs have much better single-core and

multi-core scores in Geekbench. They also have significantly higher monthly costs. Looking at these

monthly costs from a straight hardware perspective, you could buy a brand new Dell PowerEdge R720

server with two newer 22nm, eight-core Intel Xeon E5-2667 v2 Ivy Bridge-EP processors and 192GB of

RAM for roughly $10,000.00, which is about three months of Standard A9 time. With an on-premises,

physical server, you would also have power and cooling costs, along with ongoing maintenance and

administrative costs. You would also have a longer lead time to order and receive a physical server, and

then get it racked, cabled, and configured. This process typically takes about three to four weeks at most

companies, but can be much longer. Where the economic story changes is when you include your SQL

Server 2012/2014 Enterprise Edition license costs, which would be about $110,000.00 for 16 processor

core licenses, which would amount to roughly 30 months of Standard A9 time at current prices. If you

use an Azure VM image from Microsoft’s standard gallery of VM images, then you do not have to pay for

your OS or SQL Server licenses.

While I was doing this testing, I noticed a few other interesting differences between an Azure VM and a

similar physical server. The first one was the fact that the Azure Standard A8 and A9 VMs appear to be

using some sort of power management at the host or hypervisor level so that Intel Turbo Boost is not

being used. When I run Geekbench on the system, and watch CPU-Z during the test run, the processor

core speed stays at the rated base clock speed during the entire test run. If power management is

properly configured at all levels, and if Turbo Boost is enabled in the host BIOS, then you should see the

processor core speed jump up to the full 3.3GHz Turbo Boost clock speed periodically during the test

run. This does not happen with the A8 and A9 Azure VMs, which hurts the single-core Geekbench 3.1.6

score by about 10%. The differences in processor core speeds are shown in Figures 1 and 2.

http://msdn.microsoft.com/en-us/library/azure/dn689095.aspx
http://msdn.microsoft.com/en-us/library/azure/dn689095.aspx
http://ark.intel.com/products/64595/Intel-Xeon-Processor-E5-2670-(20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI)
http://en.wikipedia.org/wiki/Hyper-threading

Figure 1: CPU-Z for Standard A9 Azure VM during Geekbench test run

Figure 2: CPU-Z for Dell PowerEdge R720 during Geekbench test run

So what are the main lessons learned from these experiments? First, it seems evident that you can get

nearly equivalent VM performance from a Standard A9 Azure VM as you can from a similarly sized two-

socket physical server (using the same processor), such as a Dell PowerEdge R720 or an HP ProLiant

DL380 G8. You will be using a slightly older, middle-range Sandy Bridge-EP processor, without the

benefit of Intel Turbo Boost being enabled, so you will be losing a total of about 40% of your single-

http://cdn.sqlperformance.com/wp-content/uploads/2014/08/image.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/image1.png

threaded processor performance compared to a current vintage Intel Xeon E5-2667 v2 in a new physical,

on-premises server.

Another potential issue is the memory limit of 112GB for the Standard A9 Azure VM, compared to

384GB in a physical, on-premises server (with 16GB DIMMs). If your database workload can run well

with a roughly 95GB SQL Server buffer pool, then this should not be an issue. Otherwise, you might not

be too happy with your performance. You would also want to do some I/O testing and benchmarking to

determine how well the A9 Azure VM performs, and whether it can handle your workload.

Finally, you have to consider the economics of using a standard Azure gallery VM image, where the SQL

Server 2014 license costs are included as part of your monthly Azure cost. Depending on how long you

think your instance will be in service, using an Azure VM might be a very good deal or not such a good

deal. One factor that might influence this calculation is the likelihood that Azure VM prices will go down

over time.

Running SQL Server 2014 on an Azure Virtual Machine
By Glenn Berry

Microsoft is making it increasingly easy to run SQL Server 2014 on an Azure virtual machine in one of

Microsoft's seventeen Azure data centers. You can run a preconfigured virtual machine with a

preconfigured SQL Server 2014 instance from the Azure gallery on your choice of any size Azure virtual

machine. One of the choices from the gallery is "SQL Server 2014 Enterprise Optimized for Transactional

Workloads" running on Windows Server 2012 R2. One nice thing about using a preconfigured gallery

image is that you do not have to pay for any SQL Server 2014 licenses. You simply pay the hourly cost for

the edition of SQL Server and virtual machine size that you choose.

SQL Server 2014 Configuration Options

Microsoft explains that "This Enterprise Edition image is optimized for OLTP workloads and is intended

for VM sizes including A4, A7, A8 and A9. Once deployed, the VM comes with Windows Storage Spaces

pre-configured." Microsoft also does some instance-level configuration work on SQL Server 2014,

although they do not go far enough with what I would consider to be standard best practices.

They create eight tempdb data files that are all 25600MB in size, with an autogrow increment of

1024MB, which is a good default choice. They also enable TF1117 and TF1118 as start-up trace flags,

which are also good choices for SQL Server. Finally, Microsoft also enables instant file initialization and

lock pages in memory in the operating system, which I also agree with.

I would prefer that Microsoft also made some changes to these instance-level configuration options:

1. backup compression default

2. cost threshold for parallelism

3. max degree of parallelism

4. max server memory (MB)

5. optimize for ad hoc workloads

Backup compression should be enabled by default in most cases. Cost threshold for parallelism often

should be raised to a higher value than the default of 5, depending on your workload. Max degree of

parallelism usually should be changed to a non-default value based on the number of cores in a NUMA

node. This setting also depends on your workload. Max server memory should be set to a non-default

value based on the amount of RAM in the virtual machine and what you are running (besides the SQL

Server database engine) on the VM. Finally, I think optimize for ad hoc workloads should be enabled,

pretty much in all cases.

In Microsoft's defense, it would be difficult to make a satisfactory configuration choice for some of these

items without knowing (in advance) the details of your VM size and expected database server workload.

That leaves the task up to you, just like with an on-premises SQL Server instance.

Azure Virtual Machine Sizing

http://sqlperformance.com/2014/12/io-subsystem/sql-2014-on-azure?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
http://blogs.technet.com/b/dataplatforminsider/archive/2014/09/12/new-vm-images-optimized-for-transactional-and-dw-workloads-in-azure-vm-gallery.aspx
http://blogs.technet.com/b/dataplatforminsider/archive/2014/09/12/new-vm-images-optimized-for-transactional-and-dw-workloads-in-azure-vm-gallery.aspx
http://sqlblog.com/blogs/damian_widera/archive/2014/08/12/trace-flags-tf-1117.aspx
http://www.sqlskills.com/blogs/paul/misconceptions-around-tf-1118/

Even though you can choose anything from an A0 Basic to an A9 Standard machine, Microsoft

recommends that you choose either an A4 Standard, A7 Standard, A8 Standard, or A9 Standard size

virtual machine for production usage. Pricing details for SQL Server virtual machines are listed here.

Looking at the comparative specifications for these recommendations in Table 1, it is hard to understand

why you would want to choose an A4 Standard machine, since it costs the same amount per hour as the

larger A7 or A8 Standard machines. Looking at the online documentation, it is not initially very clear

what the actual difference is between an A7 and an A8 Standard machine. Digging a little deeper, the A8

Standard machine is considered a Compute Intensive instance, which is supposed to use a faster 2.6GHz

Intel Xeon E5-2670 processor, along with two network adapters (one 10Gbps and one 32Gbps RDMA

capable).

The A7 Standard virtual machine uses a somewhat slower 2.2GHz Intel Xeon E5-2660 processor, while

the network connectivity appears to be standard 1Gbps Ethernet. While this sounds like a significant

difference in processor and network performance, it is not really the main issue with the A-series virtual

machines for SQL Server usage.

VM Size SQL Standard Rate SQL Enterprise Rate Core Count RAM Amount

A4 Standard $0.80/hr $3.00/hr 8 14GB

A7 Standard $0.80/hr $3.00/hr 8 56GB

A8 Standard $0.80/hr $3.00/hr 8 56GB

A9 Standard $1.60/hr $6.00/hr 16 112GB

Table 1: A-Series SQL Server Virtual Machine Information

The main problem with all of the A-series virtual machines is the pretty miserable I/O subsystem

performance, even though Microsoft has pre-configured the disk subsystem with Windows Storage

Spaces to get best performance possible given the inherent performance limitations of the A-series

virtual machines and hosts. Figure 1 shows the CrystalDiskMark results for the E: drive from an A4

Standard machine from the East US Azure data center, which is meant for transaction log files.

Figure 1: A4 Standard CrystalDiskMark Results

http://azure.microsoft.com/en-us/pricing/details/virtual-machines/#Sql
http://msdn.microsoft.com/library/azure/dn197896.aspx
http://msdn.microsoft.com/library/azure/dn689095.aspx
http://blogs.technet.com/b/windowshpc/archive/2014/01/30/new-high-performance-capabilities-for-windows-azure.aspx
http://ark.intel.com/products/64595/Intel-Xeon-Processor-E5-2670-(20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI)
http://ark.intel.com/products/64584/Intel-Xeon-Processor-E5-2660-(20M-Cache-2_20-GHz-8_00-GTs-Intel-QPI)
http://cdn.sqlperformance.com/wp-content/uploads/2014/12/image.png

A much better alternative for SQL Server are the D-series virtual machines. These virtual machines cost

the same per hour as the comparably sized A-series virtual machines, and they have local SSD storage

that should only be used for tempdb and/or for buffer pool extensions (BPE) files, since they are not

persistent. Some relevant specifications for D-series virtual machines are shown in Table 2.

VM Size SQL Standard Rate SQL Enterprise Rate Core Count RAM Amount

D4 Standard $0.80/hr $3.00/hr 8 28GB

D13 Standard $0.80/hr $3.00/hr 8 56GB

D14 Standard $1.60/hr $6.00/hr 16 112GB

Table 2: D-Series SQL Server Virtual Machine Information

The D4 Standard machine costs the same as an A4 Standard machine, but it has twice the RAM and

some local SSD storage. The D13 Standard machine costs the same as an A7 or A8 Standard machine,

but with the benefit of local SDD storage. The D14 Standard machine costs the same as an A9 Standard

machine, but also has the benefit of local SSD storage. Given this information, it makes little sense to

use a A-series virtual machine for SQL Server.

Unfortunately, the permanent drives for your SQL Server data and log files also have pretty substandard

I/O performance in CrystalDiskMark, as shown in Figures 2 and 3.

Figure 2: D14 Standard CrystalDiskMark Results

Figure 3: D14 Standard CrystalDiskMark Results

The local SSD performance is related to the size of the Azure virtual machine, with larger sizes getting

better local SSD performance. The CrystalDiskMark performance results for a D14 Standard machine in

the East US Azure data center are shown in Figure 4.

http://azure.microsoft.com/blog/2014/09/22/new-d-series-virtual-machine-sizes/
http://cdn.sqlperformance.com/wp-content/uploads/2014/12/image1.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/12/image2.png

Figure 4: D14 Standard CrystalDiskMark Results for Local SSD Storage

The F: drive (for SQL Server data files) has slightly better results than the E: drive, but both drives have a

very low level of performance for SQL Server.

Conclusion

It seems pretty clear that the D-series machines are better for SQL Server usage than the A-series

machines. It also makes sense to pay close attention to the sizing and pricing of the virtual machine you

decide to provision for SQL Server, since you can get more RAM at the same hourly cost. The two best

choices from a performance perspective are the D13 or D14 Standard virtual machines.

The preconfigured SQL Server 2014 instances from the Azure gallery can save you a lot of money in SQL

Server licensing costs, and they have much of the necessary configuration work already complete in the

base image. You should still go in and make a few final configuration changes based on your preference

and workload. Finally, you should take the time to run some performance benchmarks on your virtual

machine so that you understand the level of performance that it can deliver.

http://azure.microsoft.com/blog/2014/10/06/d-series-performance-expectations/
http://cdn.sqlperformance.com/wp-content/uploads/2014/12/image3.png

Risk When Using Dynamic Memory within Hyper-V
By Tim Radney

Virtualization is very popular for organizations: it allows them to better utilize hardware by combining

multiple servers onto a single host, provides HA capabilities, and gives a reduction in various costs like

heating/cooling, SQL Server licenses, and hardware. I’ve been involved in numerous projects with

organizations to help them migrate from physical to virtual environments and have helped them

experience these benefits.

What I want to share with you in this article is a peculiar issue I came across while working with Hyper-V

on Windows Server 2012 R2 using Dynamic Memory. I must admit that most of my knowledge of

virtualization has been with VMware, however that’s changing now.

When working with SQL Server on VMware I always recommend to set reservations for memory so

when I encountered this Dynamic Memory feature with Hyper-V I had to do some research. I found an

article (Hyper-V Dynamic Memory Configuration Guide) that explains many of the benefits and system

requirements for using Dynamic Memory. This feature is pretty cool in how you can provide a virtual

machine with more or less memory without it having to be powered off.

Playing around with Hyper-V I’ve found provisioning virtual machines to be straightforward and easy to

learn. With little effort I was able to build a lab environment to simulate the experience my customer

was having. Credit goes to my boss for providing me with awesome hardware to work with. I am running

a Dell M6800 with an i7 processor, 32GB of RAM and two 1TB SSDs. This beast is better than a lot of

servers I have worked on.

Using VMware Workstation 11 on my laptop, I created a Windows Server 2012 R2 guest with 4 vCPUs,

24GB of RAM and 100GB of storage. Once the guest was created and patched I added the Hyper-V role

and provisioned a guest under Hyper-V. The new guest was built with Windows Server 2012 R2 with 2

vCPUs, 22GB of RAM and 60GB of storage running SQL Server 2014 RTM.

I ran three sets of tests, each using dynamic memory. For each test I used Red Gate's SQL Data

Generator against the AdventureWorks2014 database to fill up the buffer pool. For the first test I

started with 512MB for the Startup RAM value since that is the minimum amount of memory to start

Windows Server 2012 R2 and the buffer pool stopped increasing at around 8GB.

For each test I would truncate my test table, shut down the guest, modify the memory settings and start

the guest back up. For the second test I increased the Startup RAM to 768MB and the buffer pool only

increased to just over 12GB in size.

http://sqlperformance.com/2015/05/sql-performance/risk-dynamic-memory-hyper-v?utm_source=ebook&utm_medium=pdf&utm_term=Michael&utm_content=4&utm_campaign=ebook
https://technet.microsoft.com/en-us/library/ff817651(WS.10).aspx
http://www.red-gate.com/products/sql-development/sql-data-generator/
http://www.red-gate.com/products/sql-development/sql-data-generator/
http://cdn.sqlperformance.com/wp-content/uploads/2015/04/tr512.png

For the third and final test increased the Startup RAM to 1024MB, ran the data generator and the buffer

pool was able to increase to just under 16GB.

Doing a little math on these values shows that the buffer pool can’t grow more than 16 times the

Startup RAM. This can be very problematic for SQL Server if the Startup RAM is less than 1/16 the size of

the maximum memory. Let’s think about a Hyper-V guest with 64GB of RAM running SQL Server with a

Startup RAM value of 1GB. We’ve observed that the buffer pool would not be able to use more than

16GB with this configuration, but if we set the Startup RAM value to 4096MB then the buffer pool would

be able to increase 16 times allowing us to use all 64GB.

The only references I could find about why the buffer pool is limited to 16 times the Startup RAM value

were on pages 8 and 16 in the whitepaper, Best Practices for Running SQL Server with HVDM. This

document explains that since the buffer cache value is computed at startup time, it is a static value and

doesn’t grow. However if SQL Server detects that Hot Add Memory is supported then it increases the

size reserved for the virtual address space for the buffer pool by 16 times the startup memory. This

document also states that this behavior affects SQL Server 2008 R2 and earlier, however my test were

conducted on Windows Server 2012 R2 with SQL Server 2014 so I will be contacting Microsoft to get the

best practices document updated.

Since most production DBAs do not provision virtual machines or work heavily in that space, and

virtualization engineers are not studying the latest and greatest SQL Server technology, I can understand

how this important information about how the buffer pool handles Dynamic Memory is unknown to a

lot of people.

Even following the articles can be misleading. In the article Hyper-V Dynamic Memory Configuration

Guide, the description for Startup RAM reads:

https://msdn.microsoft.com/en-us/library/hh372970.aspx
https://technet.microsoft.com/en-us/library/ff817651(WS.10).aspx
https://technet.microsoft.com/en-us/library/ff817651(WS.10).aspx
http://cdn.sqlperformance.com/wp-content/uploads/2015/04/tr768.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/04/tr1024.png

Specifies the amount of memory required to start the virtual machine. The value needs to be high

enough to allow the guest operating system to start, but should be as low as possible to allow for

optimal memory utilization and potentially high consolidation ratios.

Optimal memory utilization for whom, the host or the guest? If a virtualization admin was reading this,

they would likely determine that it means the minimum memory allowed to start the operating system.

Being responsible for SQL Server means we need to know about other technologies that can influence

our environment. With the introduction of SANs and virtualization we need to fully understand how

things in those environments can negatively impact SQL Server and, more importantly, how to

effectively communicate concerns to the people responsible for those systems. A DBA doesn’t

necessarily need to know how to provision storage in a SAN or how to provision or be able to administer

a VMWare or Hyper-V environment, but they should know the basics of how things work.

By knowing basics about how a SAN works with storage arrays, storage networks, multi-pathing and so

on, as well as how the hypervisor works with the scheduling of CPUs and storage allocation within

virtualization, a DBA can better communicate and troubleshoot when issues arise. Over the years I have

successfully worked with a number of SAN and virtualization admins to build standards for SQL Server.

These standards are unique to SQL Server and don’t necessarily apply to web or application servers.

DBAs can’t really rely on SAN and virtualization admins to fully understand best practices for SQL Server,

regardless of how nice that would be, so we need to educate ourselves the best we can on how their

areas of expertise can impact us.

During my testing I used a query from Paul Randal's blog post, Performance issues from wasted buffer

pool memory, to determine how much buffer pool the AdventureWorks2014 database was using. I have

included the code below:

SELECT

 (CASE WHEN ([database_id] = 32767)

 THEN N'Resource Database'

 ELSE DB_NAME ([database_id]) END) AS [DatabaseName],

 COUNT (*) * 8 / 1024 AS [MBUsed],

 SUM (CAST ([free_space_in_bytes] AS BIGINT)) / (1024 * 1024) AS [MBEmpty]

FROM sys.dm_os_buffer_descriptors

GROUP BY [database_id];

This code is also great for troubleshooting which of your databases is consuming the majority of your

buffer pool so you can know which database you should focus on tuning the high-cost queries. If you are

a Hyper-V shop, check with your admin to see if Dynamic Memory could be configured in such a way

that it is negatively impacting your server.

http://www.sqlskills.com/blogs/paul/performance-issues-from-wasted-buffer-pool-memory/
http://www.sqlskills.com/blogs/paul/performance-issues-from-wasted-buffer-pool-memory/

Index
Berry, Glenn

Using Geekbench 3.2 to Test Large Database Servers

Sequential Throughput Speeds and Feeds

Comparing Windows Azure Virtual Machine Performance, Part 1

Comparing Windows Azure Virtual Machine Performance, Part 2

Running SQL Server 2014 on an Azure Virtual Machine

Bertrand, Aaron

T-SQL Tuesday #64: One Trigger or Many?

T-SQL Tuesday #65: Teach Something New

Tuning: A Good Place to Start

By Tim Radney

I regularly get asked the question, "Where do I start when it comes to trying to tune a SQL Server

instance?" My first response is to ask them about the configuration of their instance. If certain things are

not configured properly then starting to look at long-running or high-cost queries right away could be

wasted effort.

I have blogged about common things administrators miss where I share many of the settings that

administrators should change from a default installation of SQL Server. For performance-related items, I

tell them they should check the following:

 Memory settings

 Updating statistics

 Index maintenance

 MAXDOP and cost threshold for parallelism

 tempdb best practices

 Optimize for ad hoc workloads

Once I get past the configuration items, I ask if they have looked at file and wait statistics as well as high-

cost queries. Most of the time the response is "no" - with an explanation that they aren't sure how find

that information.

Typically the common compliant when someone's stating they need to tune a SQL Server is that it's

running slow. What does slow mean? Is it a certain report, a specific application, or everything? Did it

just start happening, or has it been getting worse over time? I start by asking the usual triage questions

of what the memory, CPU, and disk utilization is compared to when things are normal, did the problem

just start happening, and what recently changed. Unless the client is capturing a baseline, they don't

have metrics to compare against to know if current stats are abnormal.

Nearly every SQL Server that I work on hosts more than one user database. When a client reports that

the SQL Server is running slow, most of the time they are concerned about a specific application that is

causing issues for their customers. A knee-jerk reaction is to immediately focus on that particular

database, however often times another process could be consuming valuable resources and the

application's database is being impacted. For example, if you have a large reporting database and

someone kicked off a massive report that saturates the disk, spikes CPU, and flushes the plan cache, you

can bet that the other user databases would slow down while that report is being generated.

I always like to start by looking at the file stats. For SQL Server 2005 and up, you can query the

sys.dm_io_virtual_file_stats DMV to get I/O statistics for each data and log file. This DMV replaced the

fn_virtualfilestats function. To capture the file stats, I like to use a script that Paul Randal put together:

capturing IO latencies for a period of time. This script will capture a baseline and, 30 minutes later

(unless you change the duration in the WAITFOR DELAY section), capture the stats and calculate the

deltas between them. Paul's script also does a bit of math to determine the read and write latencies,

which makes it much easier for us to read and understand.

On my laptop I restored a copy of the AdventureWorks2014 database onto a USB drive so that I would

have slower disk speeds; I then kicked off a process to generate a load against it. You can see the results

below where my write latency for my data file is 240ms and write latency for my log file is 46ms.

Latencies this high are troublesome.

Anything over 20ms should be considered bad, as I shared in a previous post: monitoring read/write

latency. My read latency is decent, but the AdventureWorks2014 database is suffering from slow writes.

In this case I would investigate what is generating the writes as well as investigating my I/O subsystem

performance. If this had been excessively high read latencies I would start investigating query

performance (why is it doing so many reads, for instance from missing indexes), as well as overall I/O

subsystem performance.

It is important to know the overall performance of your I/O subsystem, and the best way to know what

it's capable of is by benchmarking it. Glenn Berry talks about this in his article analyzing I/O performance

http://sqlperformance.com/wp-content/uploads/2015/06/tr_filestats.png

for SQL Server. Glenn explains latency, IOPS, and throughput and shows off CrystalDiskMark which is a

free tool that you can use to baseline your storage.

After finding out how the file stats are performing, I like to look at wait stats by using the DMV

sys.dm_os_wait_stats, which returns information about all the waits that occurred. For this I turn to

another script that Paul Randal provides in his capturing wait statistics for a period of time blog post.

Paul's script does a little math for us again but, more importantly, it excludes a lot of the benign waits

that we typically don't care about. This script also has a WAITFOR DELAY and is set to 30 minutes.

Reading wait stats can be a bit more tricky: You can have waits that appear to be high based on

percentage, but the average wait is so low that it isn't anything to worry about.

I kicked off the same load process and captured my wait stats, which I have shown below. For

explanations for many of these wait types you can read another one of Paul's blog posts, wait statistics,

or please tell me where it hurts, plus some of his posts on this blog.

In this contrived output, the PAGEIOLATCH waits could be indicating a bottleneck with my I/O

subsystem, but could also be a memory issue, table scans instead seeks, or a host of other issues. In my

case, we know it is a disk issue, since I am storing the database on a USB stick. The LCK_M_S wait time is

very high, however there is only one instance of the wait. My WRITELOG is also higher than I would like

to see, but is understandable knowing the latency issues with the USB stick. This also shows CXPACKET

waits, and it would be easy to have a knee-jerk reaction and think you have a parallelism/MAXDOP

issue, however the AvgWait_S counter very low. Be careful when using waits for troubleshooting. Let it

be a guide to tell you things that aren't the problem as well as giving you a direction of where to go look

for issues. Proper troubleshooting is correlating behaviors from multiple areas to narrow down the

problem.

After looking at the file and wait statistics I then start digging into the high cost queries based on the

issues I found. For this I turn to Glenn Berry's Diagnostic Information Queries. These sets of queries are

the go-to scripts that many consultants use. Glenn and the community are constantly providing updates

to make them as informational and robust as possible. One of my favorite queries is the top cached

queries by execution count. I love finding queries or stored procedures that have high execution_count

coupled with high total_logical_reads. If those queries have tuning opportunities then you can quickly

make a big difference to the server. Also included in the scripts are top cached SPs by total logical reads

and top cached SPs by total physical reads. Both of these are good for looking for high reads with high

execution counts so you can reduce the number of I/Os.

In addition to Glenn's scripts, I like to use Adam Machanic's sp_whoisactive to see what is currently

running.

http://sqlperformance.com/wp-content/uploads/2015/06/tr_waitstats.png

There is a lot more to performance tuning than just looking at file and wait stats and high-cost queries,

however that's where I like to start. It is a way to quickly triage an environment to start determining

what's causing the issue. There is no completely fool proof way to tune: what every production DBA

needs is a checklist of things to run through to eliminate and a really good collection of scripts to run

through to analyze the health of the system. Having a baseline is key to quickly ruling out normal vs.

abnormal behavior. My good friend Erin Stellato has an entire course on Pluralsight called SQL Server:

Benchmarking and Baselining if you need help with setting up and capturing your baseline.

Better yet, get a state-of-the-art tool like SQL Sentry Performance Advisor that will not only collect and

store historical information for profiling and trending, and give easy access to all of the details

mentioned above and more, but it also gives the ability to compare activity to built-in or user-defined

baselines, efficiently maintain indexes without lifting a finger, and alert or automate responses based on

a very robust custom conditions architecture. The following screen shot depicts the historical view of

the Performance Advisor dashboard, with disk waits in orange, database I/O at the bottom right, and

baselines comparing the current and previous period on every graph:

Quality monitoring tools are not free, but they provide a ton of functionality and support that allow you
to focus on the performance issues on your servers, instead of focusing on queries, jobs, and alerts that
may allow you to focus on your performance issues - but only once you get them right. There is often
great value in not re-inventing the wheel.

http://www.sqlsentry.com/images/performance-advisor/performance-advisor-baseline-lg.png

Grouped Concatenation in SQL Server

Grouped Concatenation: Ordering and Removing Duplicates

Stop making SQL Server do your dirty work

Multiple Plans for an “Identical” Query

Different Plans for “Identical” Servers

Bad Habits: Counting rows the hard way

Pagination with OFFSET/FETCH: A Better Way

T-SQL Tuesday #64: One Trigger or Many?

By Aaron Bertrand

It's that Tuesday of the month – you know, the one when the blogger block party known as T-SQL

Tuesday happens. This month it is hosted by Russ Thomas (@SQLJudo), and the topic is, "Calling All

Tuners and Gear Heads." I'm going to treat a performance-related problem here, though I do apologize

that it might not be fully in line with the guidelines Russ set out in his invitation (I'm not going to use

hints, trace flags or plan guides).

At SQLBits last week, I gave a presentation on triggers, and my good friend and fellow MVP Erland

Sommarskog happened to attend. At one point I suggested that before creating a new trigger on a table,

you should check to see if any triggers already exist, and consider combining the logic instead of adding

an additional trigger. My reasons were primarily for code maintainability, but also for performance.

Erland asked if I had ever tested to see if there was any additional overhead in having multiple triggers

fire for the same action, and I had to admit that, no, I hadn't done anything extensive. So I'm going to do

that now.

In AdventureWorks2014, I created a simple set of tables that basically represent sys.all_objects (~2,700

rows) and sys.all_columns (~9,500 rows). I wanted to measure the effect on the workload of various

approaches to updating both tables – essentially you have users updating the columns table, and you

use a trigger to update a different column in the same table, and a few columns in the objects table.

 T1: Baseline: Assume that you can control all data access through a stored procedure; in this

case, the updates against both tables can be performed directly, with no need for triggers. (This

isn't practical in the real world, because you can't reliably prohibit direct access to the tables.)

 T2: Single trigger against other table: Assume that you can control the update statement

against the affected table and add other columns, but the updates to the secondary table need

to be implemented with a trigger. We'll update all three columns with one statement.

 T3: Single trigger against both tables: In this case, we have a trigger with two statements, one

that updates the other column in the affected table, and one that updates all three columns in

the secondary table.

 T4: Single trigger against both tables: Like T3, but this time, we have a trigger with four

statements, one that updates the other column in the affected table, and a statement for each

column updated in the secondary table. This might be the way it's handled if the requirements

are added over time and a separate statement is deemed safer in terms of regression testing.

 T5: Two triggers: One trigger updates just the affected table; the other uses a single statement

to update the three columns in the secondary table. This might be the way it's done if the other

triggers aren't noticed or if modifying them is prohibited.

 T6: Four triggers: One trigger updates just the affected table; the other three update each

column in the secondary table. Again, this might be the way it's done if you don't know the

other triggers exist, or if you're afraid to touch the other triggers due to regression concerns.

Here is the source data we're dealing with:

-- sys.all_objects:

SELECT * INTO dbo.src FROM sys.all_objects;

CREATE UNIQUE CLUSTERED INDEX x ON dbo.src([object_id]);

GO

-- sys.all_columns:

SELECT * INTO dbo.tr1 FROM sys.all_columns;

CREATE UNIQUE CLUSTERED INDEX x ON dbo.tr1([object_id], column_id);

-- repeat 5 times: tr2, tr3, tr4, tr5, tr6

Now, for each of the 6 tests, we're going to run our updates 1,000 times, and measure the length of

time

T1: Baseline

This is the scenario where we're lucky enough to avoid triggers (again, not very realistic). In this case,

we'll be measuring the reads and duration of this batch. I put /*real*/ into the query text so that I can

easily pull the stats for just these statements, and not any statements from within the triggers, since

ultimately the metrics roll up to the statements that invoke the triggers. Also note that the actual

updates I'm making do not really make any sense, so ignore that I'm setting the collation to the

server/instance name and the object's principal_id to the current session's session_id.

UPDATE /*real*/ dbo.tr1 SET name += N'',

 collation_name = @@SERVERNAME

 WHERE name LIKE '%s%';

UPDATE /*real*/ s SET modify_date = GETDATE(), is_ms_shipped = 0, principal_id = @@SPID

 FROM dbo.src AS s

 INNER JOIN dbo.tr1 AS t

 ON s.[object_id] = t.[object_id]

 WHERE t.name LIKE '%s%';

GO 1000

T2: Single Trigger

For this we need the following simple trigger, which only updates dbo.src:

CREATE TRIGGER dbo.tr_tr2

ON dbo.tr2

AFTER UPDATE

AS

BEGIN

 SET NOCOUNT ON;

 UPDATE s SET modify_date = GETDATE(), is_ms_shipped = 0, principal_id = SUSER_ID()

 FROM dbo.src AS s

 INNER JOIN inserted AS i

 ON s.[object_id] = i.[object_id];

END

GO

Then our batch only needs to update the two columns in the primary table:

UPDATE /*real*/ dbo.tr2 SET name += N'', collation_name = @@SERVERNAME

 WHERE name LIKE '%s%';

GO 1000

T3: Single trigger against both tables

For this test, our trigger looks like this:

CREATE TRIGGER dbo.tr_tr3

ON dbo.tr3

AFTER UPDATE

AS

BEGIN

 SET NOCOUNT ON;

 UPDATE t SET collation_name = @@SERVERNAME

 FROM dbo.tr3 AS t

 INNER JOIN inserted AS i

 ON t.[object_id] = i.[object_id];

 UPDATE s SET modify_date = GETDATE(), is_ms_shipped = 0, principal_id = @@SPID

 FROM dbo.src AS s

 INNER JOIN inserted AS i

 ON s.[object_id] = i.[object_id];

END

GO

And now the batch we're testing merely has to update the original column in the primary table; the

other one is handled by the trigger:

UPDATE /*real*/ dbo.tr3 SET name += N''

 WHERE name LIKE '%s%';

GO 1000

T4: Single trigger against both tables

This is just like T3, but now the trigger has four statements:

CREATE TRIGGER dbo.tr_tr4

ON dbo.tr4

AFTER UPDATE

AS

BEGIN

 SET NOCOUNT ON;

 UPDATE t SET collation_name = @@SERVERNAME

 FROM dbo.tr4 AS t

 INNER JOIN inserted AS i

 ON t.[object_id] = i.[object_id];

 UPDATE s SET modify_date = GETDATE()

 FROM dbo.src AS s

 INNER JOIN inserted AS i

 ON s.[object_id] = i.[object_id];

 UPDATE s SET is_ms_shipped = 0

 FROM dbo.src AS s

 INNER JOIN inserted AS i

 ON s.[object_id] = i.[object_id];

 UPDATE s SET principal_id = @@SPID

 FROM dbo.src AS s

 INNER JOIN inserted AS i

 ON s.[object_id] = i.[object_id];

END

GO

The test batch is unchanged:

UPDATE /*real*/ dbo.tr4 SET name += N''

 WHERE name LIKE '%s%';

GO 1000

T5: Two triggers

Here we have one trigger to update the primary table, and one trigger to update the secondary table:

CREATE TRIGGER dbo.tr_tr5_1

ON dbo.tr5

AFTER UPDATE

AS

BEGIN

 SET NOCOUNT ON;

 UPDATE t SET collation_name = @@SERVERNAME

 FROM dbo.tr5 AS t

 INNER JOIN inserted AS i

 ON t.[object_id] = i.[object_id];

END

GO

CREATE TRIGGER dbo.tr_tr5_2

ON dbo.tr5

AFTER UPDATE

AS

BEGIN

 SET NOCOUNT ON;

 UPDATE s SET modify_date = GETDATE(), is_ms_shipped = 0, principal_id = @@SPID

 FROM dbo.src AS s

 INNER JOIN inserted AS i

 ON s.[object_id] = i.[object_id];

END

GO

The test batch is again very basic:

UPDATE /*real*/ dbo.tr5 SET name += N''

 WHERE name LIKE '%s%';

GO 1000

T6: Four triggers

This time we have a trigger for each column that is affected; one in the primary table, and three in the

secondary tables.

CREATE TRIGGER dbo.tr_tr6_1

ON dbo.tr6

AFTER UPDATE

AS

BEGIN

 SET NOCOUNT ON;

 UPDATE t SET collation_name = @@SERVERNAME

 FROM dbo.tr6 AS t

 INNER JOIN inserted AS i

 ON t.[object_id] = i.[object_id];

END

GO

CREATE TRIGGER dbo.tr_tr6_2

ON dbo.tr6

AFTER UPDATE

AS

BEGIN

 SET NOCOUNT ON;

 UPDATE s SET modify_date = GETDATE()

 FROM dbo.src AS s

 INNER JOIN inserted AS i

 ON s.[object_id] = i.[object_id];

END

GO

CREATE TRIGGER dbo.tr_tr6_3

ON dbo.tr6

AFTER UPDATE

AS

BEGIN

 SET NOCOUNT ON;

 UPDATE s SET is_ms_shipped = 0

 FROM dbo.src AS s

 INNER JOIN inserted AS i

 ON s.[object_id] = i.[object_id];

END

GO

CREATE TRIGGER dbo.tr_tr6_4

ON dbo.tr6

AFTER UPDATE

AS

BEGIN

 SET NOCOUNT ON;

 UPDATE s SET principal_id = @@SPID

 FROM dbo.src AS s

 INNER JOIN inserted AS i

 ON s.[object_id] = i.[object_id];

END

GO

And the test batch:

UPDATE /*real*/ dbo.tr6 SET name += N''

 WHERE name LIKE '%s%';

GO 1000

Measuring workload impact

Finally, I wrote a simple query against sys.dm_exec_query_stats to measure reads and duration for each

test:

SELECT

 [cmd] = SUBSTRING(t.text, CHARINDEX(N'U', t.text), 23),

 avg_elapsed_time = total_elapsed_time / execution_count * 1.0,

 total_logical_reads

FROM sys.dm_exec_query_stats AS s

CROSS APPLY sys.dm_exec_sql_text(s.sql_handle) AS t

WHERE t.text LIKE N'%UPDATE /*real*/%'

ORDER BY cmd;

Results

I ran the tests 10 times, collected the results, and averaged everything. Here is how it broke down:

Test/Batch Average Duration

(microseconds)

Total Reads

(8K pages)

T1: UPDATE /*real*/ dbo.tr1 … 22,608 205,134

T2: UPDATE /*real*/ dbo.tr2 … 32,749 11,331,628

T3: UPDATE /*real*/ dbo.tr3 … 72,899 22,838,308

T4: UPDATE /*real*/ dbo.tr4 … 78,372 44,463,275

T5: UPDATE /*real*/ dbo.tr5 … 88,563 41,514,778

T6: UPDATE /*real*/ dbo.tr6 … 127,079 100,330,753

And here is a graphical representation of the duration:

Conclusion

It is clear that, in this case, there is some substantial overhead for each trigger that gets invoked – all of

these batches ultimately affected the same number of rows, but in some cases the same rows were

touched multiple times. I will probably perform further follow-on testing to measure the difference

when the same row is never touched more than once – a more complicated schema, perhaps, where 5

or 10 other tables have to be touched every time, and these different statements could be in a single

trigger or in multiple. My guess is that the overhead differences will be driven more by things like

concurrency and the number of rows affected than by the overhead of the trigger itself – but we shall

see.

Want to try the demo yourself? Download the script here.

http://cdn.sqlperformance.com/wp-content/uploads/2015/03/tr_1.png

T-SQL Tuesday #65: Teach Something New
By Aaron Bertrand

This month's T-SQL Tuesday is being hosted by Mike Donnelly (@SQLMD), and he sums up the topic as

follows:

The topic this month is straight forward, but very open ended. You must learn something new and then

write a blog post explaining it.

Well, from the moment Mike announced the topic, I didn't really set out to learn anything new, and as

the weekend approached and I knew Monday was going to assault me with jury duty, I thought I was

going to have to sit this month out.

Then, Martin Smith taught me something I either never knew, or knew long ago but have forgotten

(sometimes you don't know what you don't know, and sometimes you can't remember what you never

knew and what you can't remember). My recollection was that changing a column from NOT NULL to

NULL should be a metadata-only operation, with writes to any page being deferred until that page is

updated for other reasons, since the NULL bitmap wouldn't really need to exist until at least one row

could become NULL.

On that same post, @ypercube also reminded me of this pertinent quote from Books Online (typo and

all):

Altering a column from NOT NULL to NULL is not supported as an online operation when the altered

column is references by nonclustered indexes.

"Not an online operation" can be interpreted as "not a metadata-only operation" – meaning it will

actually be a size-of-data operation (the larger your index, the longer it will take).

I set out to prove this with a pretty simple (but lengthy) experiment against a specific target column to

convert from NOT NULL to NULL. I would create 3 tables, all with a clustered primary key, but each one

with a different non-clustered index. One would have the target column as a key column, the second as

an INCLUDE column, and the third wouldn't reference the target column at all.

Here are my tables and how I populated them:

CREATE TABLE dbo.test1

(

 a INT NOT NULL, b INT NOT NULL, c BIGINT NOT NULL,

 CONSTRAINT pk_t1 PRIMARY KEY (a,b)

);

GO

CREATE NONCLUSTERED INDEX ix1 ON dbo.test1(b,c);

GO

CREATE TABLE dbo.test2

(

 a INT NOT NULL, b INT NOT NULL, c BIGINT NOT NULL,

 CONSTRAINT pk_t2 PRIMARY KEY (a,b)

);

GO

CREATE NONCLUSTERED INDEX ix2 ON dbo.test2(b) INCLUDE(c);

GO

CREATE TABLE dbo.test3

(

 a INT NOT NULL, b INT NOT NULL, c BIGINT NOT NULL,

 CONSTRAINT pk_t3 PRIMARY KEY (a,b)

);

GO

CREATE NONCLUSTERED INDEX ix3 ON dbo.test3(b);

GO

INSERT dbo.test1(a,b,c) -- repeat for test2 / test3

 SELECT n1, n2, ABS(n2)-ABS(n1)

 FROM

 (

 SELECT TOP (100000) s1.[object_id], s2.[object_id]

 FROM master.sys.all_objects AS s1

 CROSS JOIN master.sys.all_objects AS s2

 GROUP BY s1.[object_id], s2.[object_id]

) AS n(n1, n2);

Each table had 100,000 rows, the clustered indexes had 310 pages, and the non-clustered indexes had

either 272 pages (test1 and test2) or 174 pages (test3). (These values are easy to obtain from

sys.dm_db_index_physical_stats.)

Next, I needed a simple way to capture operations that were logged at the page level – I chose

sys.fn_dblog(), though I could have dug deeper and looked at pages directly. I didn't bother messing

with LSN values to pass to the function, since I wasn't running this in production and didn't care much

about performance, so after the tests I just dumped the results of the function, excluding any data that

was logged prior to the ALTER TABLE operations.

-- establish an exclusion set

SELECT * INTO #x FROM sys.fn_dblog(NULL, NULL);

Now I could run my tests, which were a lot simpler than the setup.

ALTER TABLE dbo.test1 ALTER COLUMN c BIGINT NULL;

ALTER TABLE dbo.test2 ALTER COLUMN c BIGINT NULL;

ALTER TABLE dbo.test3 ALTER COLUMN c BIGINT NULL;

Now I could examine the operations that were logged in each case:

SELECT AllocUnitName, [Operation], Context, c = COUNT(*)

 FROM

 (

 SELECT * FROM sys.fn_dblog(NULL, NULL)

 WHERE [Operation] = N'LOP_FORMAT_PAGE'

 AND AllocUnitName LIKE N'dbo.test%'

 EXCEPT

 SELECT * FROM #x

) AS x

 GROUP BY AllocUnitName, [Operation], Context

 ORDER BY AllocUnitName, [Operation], Context;

The results seem to suggest that every leaf page of the non-clustered index is touched for the cases

where the target column was mentioned in the index in any way, but no such operations occur for the

case where the target column is not mentioned in any non-clustered index:

In fact, in the first two cases, new pages are allocated (you can validate that with DBCC IND, as Spörri did

in his answer), so the operation can occur online, but that doesn't mean it's fast (since it still has to write

out a copy of all that data, and make the NULL bitmap change as part of writing out each new page, and

log all of that activity).

I think most people would suspect that changing a column from NOT NULL to NULL would be metadata-

only in all scenarios, but I have shown here that this is not true if the column is referenced by a non-

clustered index (and similar things happen whether it is a key or INCLUDE column). Perhaps this

operation can also be forced to be ONLINE in Azure SQL Database today, or it will be possible in the next

major version? This won't necessarily make the actual physical operations happen any faster, but it will

prevent blocking as a result.

I didn't test that scenario (and analysis of whether it is really online is tougher in Azure anyway), nor did

I test it on a heap. Something I can revisit in a future post. In the meantime, be careful about any

assumptions you might make about metadata-only operations.

http://cdn.sqlperformance.com/wp-content/uploads/2015/04/tst65a.png

Considerations Around Column Order in Indexes and Sorts
By Erin Stellato

When users request data from a system, they usually like to see it in a specific order… even when

they're returning thousands of rows. As many DBAs and developers know, ORDER BY can introduce

havoc into a query plan, because it requires the data to be sorted. This can sometimes require a SORT

operator as part of query execution, which can be a costly operation, particularly if estimates are off and

it spills to disk. In an ideal world, the data is already sorted thanks to an index (indexes and sorts are

very complementary). We often talk about creating a covering index to satisfy a query – so that the

optimizer doesn't have to go back to the base table or clustered index to get additional columns. And

you might have heard people say that the order of the columns in the index matters. Have you ever

considered how it affects your SORT operations?

Examining ORDER BY and Sorts

We'll start with a fresh copy of the AdventureWorks2014 database on a SQL Server 2014 instance

(version 12.0.2000). If we run a simple SELECT query against Sales.SalesOrderHeader with no ORDER BY,

we see a plain old Clustered Index Scan (using SQL Sentry Plan Explorer):

SELECT [CustomerID], [SalesOrderID], [OrderDate], [SubTotal]

FROM [Sales].[SalesOrderHeader];

Query with no ORDER BY, clustered index scan

Now let's add an ORDER BY to see how the plan changes:

SELECT [CustomerID], [SalesOrderID], [OrderDate], [SubTotal]

FROM [Sales].[SalesOrderHeader]

ORDER BY [CustomerID];

Query with an ORDER BY, clustered index scan and a sort

In addition to the Clustered Index Scan, we now have a Sort introduced by the optimizer, and its

estimated cost is significantly higher than that of the scan. Now, estimated cost is just estimated, and

http://cdn.sqlperformance.com/wp-content/uploads/2014/08/1_scan_no_orderby.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/2_scan_with_sort.png

we cannot say with absolutely certainty here that the Sort took 79.6% of the cost of the query. To really

understand how expensive the Sort is, we would need to look at IO STATISTICS as well, which is beyond

today's goal.

Now if this was a query that was executed frequently in your environment, you would probably consider

adding an index to support it. In this case, there is no WHERE clause, we're just retrieving four columns,

and ordering by one of them. A logical first attempt at an index would be:

CREATE NONCLUSTERED INDEX [IX_SalesOrderHeader_CustomerID_OrderDate_SubTotal]

ON [Sales].[SalesOrderHeader](

[CustomerID] ASC)

INCLUDE (

[OrderDate], [SubTotal]);

We'll re-run our query after adding the index which has all the columns we want, and remember that

the index has done the work to sort the data. We now see an Index Scan against our new nonclustered

index:

Query with an ORDER BY, the new, nonclustered index is scanned

This is good news. But what happens if someone alters that query – either because users can specify

what columns they want to order by, or because a change was requested of a developer? For example,

maybe users want to see the CustomerIDs and SalesOrderIDs in descending order:

SELECT [CustomerID], [SalesOrderID], [OrderDate], [SubTotal]

FROM [Sales].[SalesOrderHeader]

ORDER BY [CustomerID] DESC, [SalesOrderID] DESC;

Query with two columns in the ORDER BY, the new, nonclustered index is scanned

We have the same plan; no Sort operator was added. If we look at the index using Kimberly Tripp's

sp_helpindex (some columns collapsed to save space), we can see why the plan didn't change:

http://cdn.sqlperformance.com/wp-content/uploads/2014/08/3_scan_new_NCI.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/4_scan_two_col_sort.png

Output of sp_helpindex

The key column for the index is CustomerID, but since SalesOrderID is the key column for the clustered

index, it is part of the index key as well, thus the data is sorted by CustomerID, then SalesOrderID. The

query requested the data sorted by those two columns, in descending order. The index was created with

both columns ascending, but because it's a doubly-linked list, the index can be read backward. You can

see this in the Properties pane in Management Studio for the nonclustered index scan operator:

Properties pane of the nonclustered index scan, showing it was backwards

Great, no issues with that query…but what about this one:

SELECT [CustomerID], [SalesOrderID], [OrderDate], [SubTotal]

FROM [Sales].[SalesOrderHeader]

ORDER BY [CustomerID] DESC, [SalesOrderID] ASC;

Query with two column in the ORDER BY, and a sort is added

Our SORT operator reappears, because the data coming from the index is not sorted in the order

requested. We'll see the same behavior if we sort on one of the included columns:

SELECT [CustomerID], [SalesOrderID], [OrderDate], [SubTotal]

FROM [Sales].[SalesOrderHeader]

ORDER BY [CustomerID] ASC, [OrderDate] ASC;

http://cdn.sqlperformance.com/wp-content/uploads/2014/08/5_sphelpoutput.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/6_properties.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/7_scan_sort.png

Query with two column in the ORDER BY, and a sort is added

What happens if we (finally) add a predicate, and change our ORDER BY slightly?

SELECT [CustomerID], [SalesOrderID], [OrderDate], [SubTotal]

FROM [Sales].[SalesOrderHeader]

WHERE [CustomerID] = 13464

ORDER BY [SalesOrderID];

Query with a single predicate and an ORDER BY

This query is ok because again, the SalesOrderID is part of the index key. For this one CustomerID, the

data is already ordered by SalesOrderID. What if we query for a range of CustomerIDs, sorted by

SalesOrderIDs?

SELECT [CustomerID], [SalesOrderID], [OrderDate], [SubTotal]

FROM [Sales].[SalesOrderHeader]

WHERE [CustomerID] BETWEEN 13464 AND 13466

ORDER BY [SalesOrderID];

Query with a range of values in the predicate and an ORDER BY

Rats, our SORT is back. The fact that the data is ordered by CustomerID only helps in seeking the index

to find that range of values; for the ORDER BY SalesOrderID, the optimizer has to interject the Sort to

put the data in the requested order.

http://cdn.sqlperformance.com/wp-content/uploads/2014/08/8_scan_sort_2.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/9_with_predicate.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/10_with_pred_sort.png

Now at this point, you might be wondering why I'm fixated on the Sort operator appearing in query

plans. It's because it's expensive. It can be expensive in terms of resources (memory, IO) and/or

duration.

Query duration can be affected by a Sort because it is a stop-and-go operation. The entire set of data

has to be sorted before the next operation in the plan can occur. If only a few rows of data have to be

ordered, that's not such a big deal. If it's thousands or millions of rows? Now we're waiting.

In addition to overall query duration, we also have to think about resource use. Let's take the 31,465

rows we've been working with and push them into a table variable, then run that initial query with the

ORDER BY on CustomerID:

DECLARE @t TABLE (CustomerID INT, SalesOrderID INT, OrderDate DATETIME, SubTotal MONEY);

INSERT @t SELECT [CustomerID], [SalesOrderID], [OrderDate], [SubTotal]

FROM [Sales].[SalesOrderHeader];

SELECT [CustomerID], [SalesOrderID], [OrderDate], [SubTotal]

FROM @t

ORDER BY [CustomerID];

Query against the table variable, with the sort

Our SORT is back, and this time it has a warning (note the yellow triangle with the exclamation mark).

Warnings are not good. If we look at the Properties of the sort, we can see warning, "Operator used

tempdb to spill data during execution with spill level 1":

http://cdn.sqlperformance.com/wp-content/uploads/2014/08/11_table-variable-sort.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/08/12_sort-warning.png

Sort warning

This isn't something I want to see in a plan. The optimizer made an estimate of how much space it would

need in memory to sort the data, and it requested that memory. But when it actually had all the data

and went to sort it, the engine realized there wasn't enough memory (the optimizer asked for too

little!), so the Sort operation spilled. In some cases, this can spill to disk, which means reads and writes –

which are slow. Not only are we waiting just to get the data in order, it's even slower because we can't

do it all in memory. Why didn't the optimizer ask for enough memory? It had a bad estimate about the

data it needed to sort:

Estimate of 1 row versus actual of 31,465 rows

In this case I forced a bad estimate by using a table variable. There are known issues with statistics

estimates and table variables (Aaron Bertrand has a great post on options for trying to address this), and

here, the optimizer believed only 1 row was going to be returned from the table scan, not 31,465.

Options

So what can you, as a DBA or developer, do to avoid SORTs in your query plans? The quick answer is,

"Don't order your data." But that's not always realistic. In some cases, you can offload that sorting to the

client, or to an application layer – but users still have to wait to sort the data at that layer. In the

situations where you cannot alter how the application works, you can start by looking at your indexes.

If you support an application that allows users to run ad-hoc queries, or change the sort order so they

can see the data ordered how they want…you're going to have the hardest time (but it isn't a lost cause

so don't stop reading yet!). You cannot index for every option. It's inefficient and you will create more

problems than you solve. Your best bet here is to talk to the users (I know, sometimes it's scary to leave

http://cdn.sqlperformance.com/wp-content/uploads/2014/08/13_estimate_actual.png

your corner of the woods, but give it a try). For the queries the users run most often, find out how they

typically like to see the data. Yes, you can get this from the plan cache too – you can retrieve queries

and plans until your heart's content to see what they're doing. But it's faster to talk to the users. The

added benefit is that you can explain why you're asking, and why that idea to "sort on all the columns

because I can" isn't such a good one. Knowing is half the battle. If you can spend some time educating

your power users, and the users that train new folks, you might be able to do some good.

If you support an application with limited ORDER BY options, then you can do some real analysis. Review

what ORDER BY variations exist, determine which combinations are executed most often, and index to

support those queries. You probably won't hit every one, but you can still make an impact. You can take

it one step further by talking to your developers and educating them on the problem, and how to

address it.

Finally, when you're looking at query plans with SORT operations, don't just focus on removing the Sort.

Look at where the Sort occurs in the plan. If it happens way on the left of the plan, and is typically a few

rows, there may be other areas with a bigger improvement factor on which to focus. The Sort on the left

is the pattern we focused on today, but a Sort doesn't always occur because of an ORDER BY. If you see

a Sort on the far right of the plan, and there are a lot of rows moving through that part of the plan, you

know you've found a good place to start tuning.

Allocation Order Scans
By Paul White

When an execution plan includes a scan of a b-tree index structure, the storage engine may be able to

choose between two physical access strategies when the plan is executed:

3. Follow the index b-tree structure; or,

4. locate pages using internal page allocation information.

Where a choice is available, the storage engine makes the runtime decision on each execution. A plan

recompilation is not required for it to change its mind.

The b-tree strategy starts at the root of the tree, descends to an extreme edge of the leaf level

(depending on whether the scan is forward or backward), then follows leaf-level page links until the

other end of the index is reached. The allocation strategy uses Index Allocation Map (IAM) structures to

locate database pages allocated to the index. Each IAM page maps allocations to a 4GB interval in a

single physical database file, so scanning the IAM chains associated with an index tends to access index

pages in physical file order (at least as far as SQL Server can tell).

The main differences between the two strategies are:

3. A b-tree scan can deliver rows to the query processor in index key order; an IAM-driven scan

cannot;

4. a b-tree scan may not be able to issue large read-ahead I/O requests if logically contiguous index

pages are not also physically contiguous (e.g. as a result of page splitting in the index).

A b-tree scan is always available for an index. The conditions often cited for allocation order scans to be

available are:

4. The query plan must allow an unordered scan of the index;

5. the index must be at least 64 pages in size; and,

6. either a TABLOCK or NOLOCK hint must be specified.

The first condition simply means that the query optimizer must have marked the scan with the

Ordered:False property. Marking the scan Ordered:False means that correct results from the execution

plan do not require the scan to return rows in index key order (though it may do so if it is convenient or

otherwise necessary).

The second condition (size) applies only to SQL Server 2005 and later. It reflects the fact that there is a

certain start-up cost to performing an IAM-driven scan, so there needs to be a minimum number of

pages for the potential savings to repay the initial investment. The “64 pages” refers to the value of

data_pages for the IN_ROW_DATA allocation unit only, as reported in sys.allocation_units.

Of course, there can only be a payoff from an allocation order scan if the possibly-larger read-ahead

considerations actually come into play, but SQL Server does not currently consider this factor. In

particular, it does not account for how much of the index is currently in memory, nor does it care how

fragmented the index is.

The third condition is probably the least complete description in the list. Hints are not in fact required,

though they can be used to meet the real requirements: The data must be guaranteed not to change

during the scan, or (more controversially) we must indicate that we do not care about potentially

inaccurate results, by performing the scan at the read uncommitted isolation level.

Even with these clarifications, the list of conditions for an allocation-ordered scan is still not complete.

There are a number of important caveats and exceptions, which we will come to shortly.

Demo

The following query uses the AdventureWorks sample database:

CHECKPOINT;

DBCC DROPCLEANBUFFERS;

GO

SELECT

 P.BusinessEntityID,

 P.PersonType

FROM Person.Person AS P;

Note that the Person table contains 3,869 pages. The post-execution (actual) plan is as follows (shown in

SQL Sentry Plan Explorer):

In terms of the allocation-order scanning requirements we have so far:

 The plan has the required Ordered:False property; and,

 the table has more than 64 pages; but,

 we have done nothing to ensure the data cannot change during the scan. Assuming our session

is using the default read committed isolation level, the scan is not being performed at the read

uncommitted isolation level either.

As a consequence, we would expect this scan to be performed by scanning the b-tree rather than being

IAM-driven. The query results indicate that this is likely true:

The rows are returned in Clustered Index key order (by BusinessEntityID). I should state clearly that this

result ordering is absolutely not guaranteed, and should not be relied on. Ordered results are only

guaranteed by an appropriate top-level ORDER BY clause.

Nevertheless, the observed output order is circumstantial evidence that the scan was performed this

time by following the clustered index b-tree structure. If more evidence is needed, we can attach a

debugger and look at the code path SQL Server is executing during the scan:

The call stack clearly shows the scan following the b-tree.

Adding a table lock hint

We now modify the query to include a table-lock hint:

CHECKPOINT;

DBCC DROPCLEANBUFFERS;

SELECT

 P.BusinessEntityID,

 P.PersonType

FROM Person.Person AS P

 WITH (TABLOCK);

At the default locking read committed isolation level, the shared table-level lock prevents any possible

concurrent modifications to the data. With all three preconditions for IAM-driven scans met, we would

now expect SQL Server to use an allocation-order scan. The execution plan is the same as before, so I

won’t repeat it, but the query results certainly look different:

The results are still apparently ordered by BusinessEntityID, but the starting point (10866) is different.

Indeed, if we scroll down the results, we soon encounter sections that are more obviously out of key

order:

The partial ordering is due to the allocation-order scan processing a whole index page at a time. The

results within a page happen to be returned ordered by the index key, but the order of the scanned

pages is now different. Again, I should stress that the results may look different for you: there is no

guarantee of output order, even within a page, without a top-level ORDER BY on the original query.

For comparison with the call stack shown earlier, this is a stack trace obtained while SQL Server was

processing the query with the TABLOCK hint:

Stepping on a little further through the execution:

Clearly, SQL Server is performing an allocation-ordered scan when the table lock is specified. It is a

shame there is no indication in a post-execution plan of which type of scan was used at runtime. As a

reminder, the type of scan is chosen by the storage engine, and can change between executions without

a plan recompilation.

Other ways to meet the third condition

I said before that to get an IAM-driven scan, we need to ensure the data cannot change underneath the

scan while it is in progress, or we need to run the query at the read uncommitted isolation level. We

have seen that a table lock hint at locking read committed isolation is sufficient to meet the first of

those requirements, and it is easy to show that using a NOLOCK/READUNCOMMITTED hint also enables

an allocation-order scan with the demo query.

In fact there are many ways to meet the third condition, including:

 Altering the index to only allow table locks;

 making the database read-only (so data is guaranteed not to change); or,

 changing the session isolation level to READ UNCOMMITTED.

There are, however, much more interesting variations on this theme that mean we need to amend the

three conditions stated previously…

Row-versioning isolation levels

Enable read committed snapshot isolation (RCSI) on the AdventureWorks database, and run the test

with the TABLOCK hint again (at read committed isolation):

ALTER DATABASE AdventureWorks2012

SET READ_COMMITTED_SNAPSHOT ON

 WITH ROLLBACK IMMEDIATE;

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

GO

CHECKPOINT;

DBCC DROPCLEANBUFFERS;

GO

SELECT

 P.BusinessEntityID,

 P.PersonType

FROM Person.Person AS P

 WITH (TABLOCK);

GO

ALTER DATABASE AdventureWorks2012

SET READ_COMMITTED_SNAPSHOT OFF

 WITH ROLLBACK IMMEDIATE;

With RCSI active, an index-ordered scan is used with TABLOCK, not the allocation-order scan we saw just

before. The reason is the TABLOCK hint specifies a table-level shared lock, but with RCSI enabled, no

shared locks are taken. Without the shared table lock, we have not met the requirement to prevent

concurrent modifications to the data while the scan is in progress, so an allocation-ordered scan cannot

be used.

Achieving an allocation-ordered scan when RCSI is enabled is possible, however. One way is to use a

TABLOCKX hint (for a table-level exclusive lock) instead of TABLOCK. We could also retain the TABLOCK

hint and add another one like READCOMMITTEDLOCK, or REPEATABLE READ or SERIALIZABLE … and so

on. All these work by preventing the possibility of concurrent modifications by taking a shared table

lock, at the cost of losing the benefits of RCSI. We can also still achieve an allocation-order scan using a

NOLOCK or READUNCOMMITTED hint, of course.

The situation under snapshot isolation (SI) is very similar to RCSI, and not explored in detail for space

reasons.

TABLESAMPLE always* performs an allocation-order scan

The TABLESAMPLE clause is an interesting exception to many of the things we have discussed so far.

Specifying a TABLESAMPLE clause always* results in an allocation-order scan, even under RCSI or SI, and

even without hints. To be clear about it, the allocation-order scan that results from using TABLESAMPLE

retains RCSI/SI semantics – the scan uses row versions and reading does not block writing (and vice

versa).

A second surprise is that TABLESAMPLE always* performs an IAM-driven scan even if the table has

fewer than 64 pages. This makes some sense because the documentation at least hints that the SYSTEM

sampling method uses the IAM structure (so there is no choice but to do an allocation-order scan):

SYSTEM Is an implementation-dependent sampling method specified by ISO standards. In SQL Server,

this is the only sampling method available and is applied by default. SYSTEM applies a page-based

sampling method in which a random set of pages from the table is chosen for the sample, and all the

rows on those pages are returned as the sample subset.

* An exception occurs if the ROWS or PERCENT specification in the TABLESAMPLE clause works out to

mean 100% of the table. Specifying more ROWS than the metadata indicates are currently in the table

will not work either. Using TABLESAMPLE SYSTEM (100 PERCENT) or equivalent will not force an

allocation-order scan.

CHECKPOINT;

DBCC DROPCLEANBUFFERS;

GO

SELECT

 P.BusinessEntityID,

 P.PersonType

FROM Person.Person AS P

 TABLESAMPLE SYSTEM (50 ROWS)

 REPEATABLE (12345678)

 --WITH (TABLOCK);

Results:

The effect of TOP and SET ROWCOUNT

In short, neither of these has any effect on the decision to use an allocation-order scan or not. This may

seem surprising in cases where it is "obvious" that fewer than 64 pages will be scanned.

For example, the following queries both use an IAM-driven scan to return 5 rows from a scan:

SELECT TOP (5)

 P.BusinessEntityID,

 P.PersonType

FROM Person.Person AS P WITH (TABLOCK)

SET ROWCOUNT 5;

SELECT

 P.BusinessEntityID,

 P.PersonType

FROM Person.Person AS P WITH (TABLOCK)

SET ROWCOUNT 0;

The results are the same for both:

This means that TOP and SET ROWCOUNT queries might incur the overhead of setting up an allocation-

order scan, even if fewer than 64 pages are scanned. In mitigation, more complex TOP queries with

selective predicates pushed into the scan could still benefit from an allocation-order scan. If the scan

must process 10,000 pages to find the first 5 rows that match, an allocation-order scan could still be a

win.

Preventing all* allocation-order scans instance-wide

This is not something you would ever likely do intentionally, but there is a server setting that will

prevent allocation-order scans for all* user queries in all databases.

Unlikely as it may seem, the setting in question is the cursor threshold server configuration option,

which has the following description in Books Online:

The cursor threshold option specifies the number of rows in the cursor set at which cursor keysets are

generated asynchronously. When cursors generate a keyset for a result set, the query optimizer

estimates the number of rows that will be returned for that result set. If the query optimizer estimates

that the number of returned rows is greater than this threshold, the cursor is generated asynchronously,

allowing the user to fetch rows from the cursor while the cursor continues to be populated. Otherwise,

the cursor is generated synchronously, and the query waits until all rows are returned.

If the cursor threshold option is set to anything other than –1 (the default), no allocation-order scans

will occur for user queries in any database on the SQL Server instance.

In other words, if asynchronous cursor population is enabled, no IAM-driven scans for you.

* The exception is (non-100%) TABLESAMPLE queries. The internal queries generated by the system for

statistics creation and statistics updates also continue to use allocation-ordered scans.

CHECKPOINT;

DBCC DROPCLEANBUFFERS;

GO

-- WARNING! Disables allocation-order scans instance-wide

EXECUTE sys.sp_configure

 @configname = 'cursor threshold',

 @configvalue = 5000;

RECONFIGURE WITH OVERRIDE;

GO

-- Would normally result in an allocation-order scan

SELECT

 P.BusinessEntityID,

 P.PersonType

FROM Person.Person AS P

 WITH (READUNCOMMITTED);

GO

-- Reset to default allocation-order scans

EXECUTE sys.sp_configure

 @configname = 'cursor threshold',

 @configvalue = -1;

RECONFIGURE WITH OVERRIDE;

Results (no allocation-order scan):

One can only guess that asynchronous cursor population does not work well with allocation-order scans

for some reason. It is entirely unexpected that this restriction would affect all non-cursor user queries

as well though. Perhaps it is too hard for SQL Server to detect if a query is running as part of an

externally-issued API cursor? Who knows.

It would be nice if this side-effect were officially documented somewhere, though it is hard to know

exactly where it should go in Books Online. I wonder how many production systems out there are not

using allocation-order scans because of this? Maybe not many, but you never know.

To wrap things up, here is a summary. An allocation-ordered scan is available if:

5. The server option cursor threshold is set to –1 (the default); and,

6. the query plan scan operator has the Ordered:False property; and,

7. the total data_pages of the IN_ROW_DATA allocation units is at least 64; and,

8. either:

a. SQL Server has an acceptable guarantee that concurrent modifications are impossible;

or,

b. the scan is running at the read uncommitted isolation level.

Regardless of all the above, a scan with a TABLESAMPLE clause always uses allocation-ordered scans

(with the one technical exception noted in the main text).

Unexpected Clustered Index Fragmentation
By Paul Randal

In a departure from my ‘knee-jerk performance tuning’ series, I’d like to discuss how index

fragmentation can creep up on you under some circumstances.

What is Index Fragmentation?

Most people think of ‘index fragmentation’ as meaning the problem where the index leaf pages are out

of order – the index leaf page with the next key value is not the one that’s physically contiguous in the

data file to the index leaf page currently being examined. This is called logical fragmentation (and some

people refer to it as external fragmentation – a confusing term that I don’t like).

Logical fragmentation happens when an index leaf page is full and space is required on it, either for an

insert or to make an existing record longer (from updating a variable-length column). In that case, the

Storage Engine creates a new, empty page and moves 50 % of the rows (usually, but not always) from

the full page to the new page. This operation creates space in both pages, allowing the insert or update

to proceed, and is called a page split. There are interesting pathological cases involving repeated page

splits from a single operation and page splits that cascade up the index levels, but they’re beyond the

scope of this post.

When a page split occurs, it usually causes logical fragmentation because the new page that’s allocated

is highly unlikely to be physically contiguous to the one that’s being split. When an index has lots of

logical fragmentation, index scans are slowed down because the physical reads of the necessary pages

cannot be done as efficiently (using multi-page ‘readahead’ reads) when the leaf pages are not stored in

order in the data file.

That’s the basic definition of index fragmentation, but there’s a second kind of index fragmentation that

most people don’t consider: low page density (sometimes call internal fragmentation, again, a confusing

term I don’t like).

Page density is a measure of how much data is stored on an index leaf page. When a page split occurs

with the usual 50/50 case, each leaf page (the splitting one and the new one) are left with a page

density of only 50%. The lower the page density, the more empty space there is in the index and so the

more disk space and buffer pool memory you can think of as being wasted. I blogged about this problem

a few years back and you can read about it here.

Now that I’ve given a basic definition of the two kinds of index fragmentation, I’m going to refer to them

collectively as simply ‘fragmentation.’

For the remainder of this post I’d like to discuss three cases where clustered indexes can become

fragmented even if you’re avoiding operations that would obviously cause fragmentation (i.e. random

inserts and updating records to be longer).

Fragmentation from Deletes

“How can a delete from a clustered index leaf page cause a page split?” you might be asking. It won’t,

under normal circumstances (and I sat thinking about it for a few minutes to make sure there wasn’t

some weird pathological case! But see the section below…) However, deletes can cause page density to

get progressively lower.

Imagine the case where the clustered index has a bigint identity key value, so inserts will always go to

the right-hand side of the index and will never, ever be inserted into an earlier portion of the index

(barring someone reseeding the identity value – potentially very problematic!). Now imagine that the

workload deletes records from the table that are no longer required, after which the background ghost

cleanup task will reclaim the space on the page and it will become free space.

In the absence of any random inserts (impossible in our scenario unless someone reseeds the identity or

specifies a key value to use after enabling SET IDENTITY INSERT for the table), no new records will ever

use the space that was freed from the deleted records. This means that the average page density of the

earlier portions of the clustered index will steadily decrease, leading to increasing amount of wasted

disk space and buffer pool memory as I described earlier.

Deletes can cause fragmentation, as long as you consider page density as part of ‘fragmentation.’

Fragmentation from Snapshot Isolation

SQL Server 2005 introduced two new isolation levels: snapshot isolation and read-committed snapshot

isolation. These two have slightly different semantics, but basically allow queries to see a point-in-time

view of a database, and for lock-collision-free selects. That’s a vast simplification, but it’s enough for my

purposes.

To facilitate these isolation levels, the development team at Microsoft that I led implemented a

mechanism called versioning. The way that versioning works is that whenever a record changes, the pre-

change version of the record is copied into the version store in tempdb, and the changed recorded gets

a 14-byte versioning tag added on the end of it. The tag contains a pointer to the previous version of the

record, plus a timestamp that can be used to determine what is the correct version of a record for a

particular query to read. Again, hugely simplified, but it’s only the addition of the 14-bytes that we’re

interested in.

So whenever a record changes when either of these isolation levels is in effect, it may expand by 14

bytes if there isn’t already a versioning tag for the record. What if there isn’t enough space for the extra

14 bytes on the index leaf page? That’s right, a page split will occur, causing fragmentation.

Big deal, you might think, as the record is changing anyway so if it was changing size anyway then a page

split would probably have occurred. No – that logic only holds if the record change was to increase the

size of a variable-length column. A versioning tag will be added even if a fixed-length column is updated!

That’s right – when versioning is in play, updates to fixed-length columns can cause a record to expand,

potentially causing a page split and fragmentation. What's even more interesting is that a delete will

also add the 14-byte tag, so a delete in a clustered index could cause a page split when versioning is in

use!

The bottom line here is that enabling either form of snapshot isolation can lead to fragmentation

suddenly starting to occur in clustered indexes where previously there was no possibility of

fragmentation.

Fragmentation from Readable Secondaries

The last case I want to discuss is using readable secondaries, part of the availability group feature that

was added in SQL Server 2012.

When you enable a readable secondary, all queries you do against the secondary replica are converted

to using snapshot isolation under the covers. This prevents the queries from blocking the constant

replaying of log records from the primary replica, as the recovery code acquires locks as it goes along.

To do this, there needs to be 14-byte versioning tags on records on the secondary replica. There’s a

problem, because all replicas need to be identical, so that the log replay works. Well, not quite. The

versioning tag contents aren’t relevant as they’re only used on the instance that created them. But the

secondary replica can’t add versioning tags, making records longer, as that would change the physical

layout of records on a page and break the log replaying. If the versioning tags were already there

though, it could use the space without breaking anything.

So that’s exactly what happens. The Storage Engine makes sure that any needed versioning tags for the

secondary replica are already there, by adding them on the primary replica!

As soon as a readable secondary replica of a database is created, any update to a record in the primary

replica causes the record to have an empty 14-byte tag added, so that the 14-bytes is properly

accounted for in all the log records. The tag isn’t used for anything (unless snapshot isolation is enabled

on the primary replica itself), but the fact that it’s created causes the record to expand, and if the page is

already full then…

Yes, enabling a readable secondary causes the same effect on the primary replica as if you enabled

snapshot isolation on it – fragmentation.

Summary

Don’t think that because you’re avoiding using GUIDs as cluster keys and avoiding updating variable-

length columns in your tables then your clustered indexes will be immune to fragmentation. As I’ve

described above, there are other workload and environmental factors that can cause fragmentation

problems in your clustered indexes that you need to be aware of.

Now don’t knee-jerk and think that you shouldn’t delete records, shouldn’t use snapshot isolation, and

shouldn’t use readable secondaries. You just have to be aware that they can all cause fragmentation and

know how to detect, remove, and mitigate it.

SQL Sentry has a cool tool, Fragmentation Manager, which you can use as an add-on to Performance

Advisor to help figure out where fragmentation problems are and then address them. You may be

surprised at the fragmentation you find when you check! As a quick example, here I can visually see –

down to the individual partition level – how much fragmentation exists, how quickly it got that way, any

patterns that exist, and the actual impact it has on wasted memory in the system:

SQL Sentry Fragmentation Manager data

http://cdn.sqlperformance.com/wp-content/uploads/2015/03/frag-ss-a.png

Mitigating Index Fragmentation
By Paul Randal

Last month I wrote about unexpected clustered index fragmentation so, this time, I'd like to discuss

some of the things you can do to avoid index fragmentation happening. I'll assume you've read the

previous post and are familiar with the terms I defined there, and throughout the rest of this article,

when I say 'fragmentation' I'm referring to both the logical fragmentation and low page density

problems.

Choose a Good Cluster Key

The most expensive data structure to operate on to remove fragmentation is the clustered index of a

table, because it's the biggest structure as it contains all the table data. From a fragmentation

perspective, it makes sense to choose a cluster key that matches the table insert pattern, so there's no

possibility of an insert happening on a page where there's no space and hence causing a page split and

introducing fragmentation.

What constitutes the best cluster key for any given table is a matter of much debate, but in general you

won't go wrong if your cluster key has the following simple properties:

 Narrow (i.e. as few columns as possible)

 Static (i.e. you don't ever update it)

 Unique

 Ever-increasing

It's the ever-increasing property which is the most important for fragmentation prevention, as it avoids

random inserts that can cause page splits on already-full pages. Examples of such a key choice are int

identity and bigint identity columns, or even a sequential GUID from the NEWSEQUENTIALID() function.

With these types of keys, new rows will have a key value guaranteed to be higher than all others in the

table, and so the new row's insertion point will be at the end of the right-most page in the clustered

index structure. Eventually the new rows will fill that page up and another page will be added to the

right-hand side of the index, but with no damaging page split occurring.

Now, if you have a clustered index key that's not ever-increasing, it may be a very complex and

unpalatable procedure to change it to an ever-increasing one, so don't worry – instead you can use a fill

factor like I discuss below.

By the way, for a much deeper insight into choosing a cluster key and all the ramifications of it, check

out Kimberly's Clustering Key blog category (read from the bottom up).

Don't Update Index Key Columns

Whenever a key column is updated, it's not just a simple in-place update, although many places online

and in books say that it is (they're wrong). A key column cannot be updated in place as the new key

value would then mean that the row is in the wrong key order for the index. Instead a key column

update is translated into a full row delete plus a full row insert with the new key value. If the page where

the new row will be inserted does not have enough space on it, a page split will happen, causing

fragmentation.

Avoiding key column updates should be easy to do for the clustered index, as it's a poor design that calls

for updating the cluster key of a table row. For nonclustered indexes though, it's unavoidable if updates

to the table happen to involve columns on which there is a nonclustered index. For those cases, you'll

need to use a fill factor.

Don't Update Variable-Length Columns

This one's easier said than done. If you have to use variable-length columns and it's possible that they

get updated, then it's possible that they may grow and so require more space for the updated row,

leading to a page split if the page is already full.

There are a few things you could do to avoid fragmentation in this case:

 Use a fill factor

 Use a fixed-length column instead, if the overhead of all the extra padding bytes is less of a

problem than fragmentation or using a fill factor

 Use a placeholder value to 'reserve' space for the column – this is a trick you can use if the

application enters a new row and then comes back to fill in some of the details, causing variable-

length column expansion

 Perform a delete plus insert instead of an update

Use a Fill Factor

As you can see, many of the ways to avoid fragmentation are unpalatable as they involve application or

schema changes, and so using a fill factor is an easy way to mitigate fragmentation.

An index fill factor is a setting for the index that specifies how much empty space to leave on each leaf-

level page when the index is created, rebuilt, or reorganized. The idea is that there's enough free space

on the page to allow random inserts or row growths (from a versioning tag being added or updated

variable-length columns) without the page filling up and requiring a page split. However, eventually the

page will fill up, and so periodically the free space needs to be refreshed by rebuilding or reorganizing

the index (generally called performing index maintenance). The trick is in finding the right fill factor to

use, along with the right periodicity of index maintenance.

You can read more about setting a fill factor in MSDN here. Don't fall into the trap of setting the fill

factor for the entire instance (using sp_configure) as that means that all indexes will be rebuilt or

reorganized using that fill factor value, even those indexes that don't have any fragmentation problems.

You don't want your large clustered indexes, with nice ever-increasing keys, to all have 30% of their leaf-

level space wasted preparing for random inserts that will never happen. It's much better to figure out

which indexes are actually affected by fragmentation and only set a fill factor for those.

There's no right answer or magic formula I can give you for this. The generally-accepted practice is to

put a fill factor of 70 (meaning leave 30% free space) in place for those indexes where fragmentation is a

problem, monitor how quickly fragmentation occurs, and then modify either the fill factor or the index

maintenance frequency (or both).

Yes, this means you're deliberately wasting space in the indexes to avoid fragmentation, but that's a

good trade-off to make given how expensive page splits are and how detrimental fragmentation can be

for performance. And yes, in spite of what some might say, this is still important even if you're using

SSDs.

Summary

There are some simple things you can do to avoid fragmentation happening, but as soon as you get into

nonclustered indexes, or use snapshot isolation or readable secondaries, fragmentation rears its ugly

head and you need to try to prevent it.

Now don't knee-jerk and think that you should set a fill factor of 70 on all your instances – you need to

choose and set them carefully, as I described above.

And don't forget about SQL Sentry Fragmentation Manager, which you can use (as an add-on to

Performance Advisor) to help figure out where fragmentation problems are and then address them. For

example, on the Indexes tab, you can easily sort your indexes by highest fragmentation first (and, if you

like, apply a filter to the row count column, to ignore your smaller tables):

And then see if those indexes are using the default fill factor (0%), or perhaps a non-default fill factor,

which might not be a good match for your data and DML patterns. I'll let you guess which ones in the

above screen shot I would be most interested in investigating. Implementing more appropriate index fill

factors is the simplest way to address any problems you spot.

http://cdn.sqlperformance.com/wp-content/uploads/2015/04/frag_1.png

Bad Habits: Focusing only on disk space when choosing keys

Nevarez, Benjamin

The SQL Server Query Store

Radney, Tim

Tuning: A Good Place to Start

SQL Server Agent Alerts

Dealing with high severity errors in SQL Servers

Monitoring Read/Write Latency

Using Geekbench 3.2 to Test Large Database Servers

By Glenn Berry

One of my favorite tools for quickly evaluating and comparing processor and memory performance on a

database server is Geekbench 3.2 from Primate Labs. I like to use Geekbench to put a significant

workload on a new server for a few minutes during the provisioning and configuration process, both to

measure the processor and memory performance and to confirm that power management is set up

correctly and Intel Turbo Boost is being used. If power management is set correctly in Windows and at

the hardware BIOS level, you should see your individual processor core speeds going above the base

clock speed during a Geekbench test run, which shows that Turbo Boost is enabled. With virtual

machines, power management need to be set correctly at the hypervisor level.

Geekbench 3 is a cross-platform, processor and memory benchmark that quickly measures both integer

and floating-point processor performance along with your memory performance on a computer in just a

few minutes, without requiring (or allowing) any configuration whatsoever. You just install Geekbench 3,

unlock your license, and run the program, and you will see the results in roughly two-three minutes. You

can then decide whether you want to upload your results to the Geekbench online database, either

anonymously or using a Geekbench account. By design, Geekbench does not measure I/O performance.

Geekbench 3 has an overall Single-Core Score and an overall Multi-Core Score, along with individual

scores for each one of the twenty-seven tests in the benchmark. The single-core score is very useful for

evaluating single-threaded processor and memory performance, which is very important for SQL Server

OLTP workloads (since most OLTP queries end up only running on a single processor core). The multi-

core score is useful for evaluating the multi-threaded processor and memory performance of the entire

machine, which helps you measure the processor capacity of the machine for concurrent queries.

With SQL Server 2014 core-based licensing, you want to make sure you are getting the best single-

threaded performance possible from each physical processor core that you have to buy a relatively

expensive SQL Server 2014 Enterprise Edition core license for. The Geekbench 3 Single-Core score is one

quick and easy way to measure both single-threaded processor and memory performance.

One issue I have recently seen with high core count servers (above 32 logical cores) is that Geekbench 3

will only use 32 cores when using the 32-bit benchmarks or when using the 64-bit benchmarks from the

Geekbench graphical user interface (at least with older builds of Geekbench 3). If you have a server with

more than 32 logical cores, you will have to use the command line tool to run the 64-bit version of

Geekbench to get it to use all of the cores in your system so that you will get an accurate Multi-Core

score in the benchmark.

It is pretty easy to install the command line tool and run the 64-bit version of Geekbench from the

command line. You simply go to the Tools menu, and select “Install Command Prompt Tool”, and then

click on the Install button as shown in Figure 1:

Figure 1: Installing the Geekbench Command Prompt Tool

Figure 2: Confirmation Dialog After Installing Command Line Tool

After you are done installing the Command Prompt Tool, you will need to actually run the 64-bit version

of Geekbench from a command prompt with the appropriate switches to get the results that you want,

as shown in Figure 3. An example would be geekbench_x86_64 –-verbose –-upload, which turns on

verbose output and automatically uploads the results to the online Geekbench database.

http://cdn.sqlperformance.com/wp-content/uploads/2014/09/image20.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/09/image21.png

Figure 3: Geekbench Command Prompt Example

Figures 4 and 5 show the comparative results for a fast desktop system with a single 22nm, quad-core

Intel Core i7-3770K Ivy Bridge processor and 32GB of RAM, and a fast two-socket system with two 22nm

ten-core Intel Xeon E5-2690 v2 Ivy Bridge-EP processors and 384GB of RAM. Both of these systems are

using Ivy Bridge microarchitecture processors, but the lower core count desktop system is running at a

higher clock speed (both from the stock base clock speed and from some minor overclocking). This

shows up in a significantly higher Single-Core score (3914 vs. 2877), which measures single-threaded

processor and memory performance.

The Multi-Core score (which measures total capacity) is significantly higher for the 40 logical core, two-

socket server compared to the eight logical core desktop system (40883 vs. 15578), but the Multi-Core

score for the server is not five times higher than the desktop system as you might expect. Why is this?

There are several factors in play here. First, the desktop system has fewer cores that are each running

faster than the cores in the server system. All of the desktop cores are on a single physical processor and

NUMA node, which also helps performance. Finally, the desktop memory is running at a higher speed

than the server system, since the two-socket server system has every memory slot populated with 16GB

memory sticks.

http://cdn.sqlperformance.com/wp-content/uploads/2014/09/image22.png

Figure 4: Geekbench 3.2 Results From a Core i7-3770K Ivy Bridge Desktop System

http://cdn.sqlperformance.com/wp-content/uploads/2014/09/image23.png

Figure 5: Geekbench 3.2 Results From a two-socket Intel Xeon E5-2690 v2 System

http://cdn.sqlperformance.com/wp-content/uploads/2014/09/image24.png

Figure 6: Task Manager During a Geekbench Test Run Using All 40 Logical Cores

http://cdn.sqlperformance.com/wp-content/uploads/2014/09/image25.png

Figure 7: CPU-Z During a Geekbench Test Run, Showing Intel Turbo Boost In Effect

Running Geekbench 3 only takes about two-three minutes, and it gives you a wealth of useful

information about your processor and memory performance. Even if you are unable or unwilling to run

Geekbench 3 on your database servers (during a maintenance window or before they are deployed to

production), you can still take advantage of the online Geekbench database of scores to find a similar

system to what you want to evaluate.

When you run Geekbench 3, you should make sure to run the fully licensed 64-bit Pro Version, and you

should be watching Windows Task Manager during the test run to make sure all of your logical cores are

being used during the benchmark test. If necessary, you may need to use the command line version of

the tool to ensure that all of your cores are being used during the test.

http://cdn.sqlperformance.com/wp-content/uploads/2014/09/image26.png

Proactive SQL Server Health Checks, Part 1: Disk Space
By Erin Stellato

As 2014 winds down, I’m kicking off a series of posts on proactive SQL Server health checks, based on

one I wrote back at the beginning of this year – Performance Issues: The First Encounter. In that post, I

discussed what I look for first when troubleshooting a performance issue in an unfamiliar environment.

In this series of posts, I want to talk about what I look for when I check in with my long-term customers.

We provide a Remote DBA service, and one of our regular tasks is a monthly “mini” health audit of their

environment. We have monitoring in place and, typically, I’m working on projects, so I’m in the

environment regularly. But as an additional step to make sure we’re not missing anything, once a month

we go through the same data we collect in our standard health audit and look for anything out of the

ordinary. That could be many things, right? Yes! So, let’s start with space.

Whoa, space? Yes, space. Don’t worry, I’ll get to other topics.

What to check

Why would I start with space? Because it’s something I often see neglected, and if you run out of disk

space for your database files, you become extremely limited in what you can do in your database. Need

to add data but can’t grow the file because the disk is full? Sorry, now users can’t add data. Not taking

log backups for some reason, so the transaction log fills up the drive? Sorry, now you can’t modify any

data. Space is critical. We have jobs that monitor free space on disk and in the files, but I still verify the

following for every audit, and compare the values to those from the previous month:

 Size of each log file

 Size of each data file

 Free space in each data file

 Free space on each drive with database files

 Free space on each drive with backup files

Log File Growth

The majority of issues I see related to disk space are because of log file growth. The growth typically

occurs for one of two reasons:

 The database is in FULL recovery and transaction log backups aren’t being taken for some

reason

 Someone runs a single, very large transaction which consumes all existing log space, forcing the

file to grow

I’ve also seen the log file grow as part of index maintenance. For rebuilds, every allocation is logged and

for large indexes, that can generate a significant amount of log. Even with regular transaction log

backups, the log can still grow faster than the backups can occur. To manage the log you need to adjust

backup frequency, or modify your index maintenance methodology.

You need to determine why the log file grew, which can be tricky unless you’re tracking it. I have a job

that runs every hour to snapshot log file size and usage:

USE [Baselines];

GO

IF (NOT EXISTS (SELECT *

 FROM INFORMATION_SCHEMA.TABLES

 WHERE TABLE_SCHEMA = 'dbo'

 AND TABLE_NAME = 'SQLskills_TrackLogSpace'))

BEGIN

 CREATE TABLE [dbo].[SQLskills_TrackLogSpace](

 [DatabaseName] [VARCHAR](250) NULL,

 [LogSizeMB] [DECIMAL](38, 0) NULL,

 [LogSpaceUsed] [DECIMAL](38, 0) NULL,

 [LogStatus] [TINYINT] NULL,

 [CaptureDate] [DATETIME2](7) NULL

) ON [PRIMARY];

 ALTER TABLE [dbo].[SQLskills_TrackLogSpace] ADD DEFAULT (SYSDATETIME()) FOR

[CaptureDate];

END

CREATE TABLE #LogSpace_Temp (

 DatabaseName VARCHAR(100),

 LogSizeMB DECIMAL(10,2),

 LogSpaceUsed DECIMAL(10,2),

 LogStatus VARCHAR(1)

);

INSERT INTO #LogSpace_Temp EXEC('dbcc sqlperf(logspace)');

INSERT INTO Baselines.dbo.SQLskills_TrackLogSpace

 (DatabaseName, LogSizeMB, LogSpaceUsed, LogStatus)

 SELECT DatabaseName, LogSizeMB, LogSpaceUsed, LogStatus

 FROM #LogSpace_Temp;

DROP TABLE #LogSpace_Temp;

I use this information to determine when the log file started to grow, and I start looking through the logs

and job history to see what additional information I can find. Log growth should be static – the log

should be appropriately sized and managed through backups (if running in FULL recovery), and if the file

needs to be larger, I need to understand why, and re-size it accordingly.

If you’re dealing with this issue, and you weren’t already proactively tracking file growth events, you

may still be able to figure out what happened. Auto-growth events are captured by SQL Server; SQL

Sentry's Aaron Bertrand blogged about this back in 2007, where he shows how to discover when these

events happened (as long as they were recent enough to still exist in the default trace).

Size and Free Space in Data Files

You have probably already heard that your data files should be pre-sized so they do not have to grow

automatically. If you follow this guidance, you probably haven’t experienced the event where the data

file grows unexpectedly. But if you’re not managing your data files, then you probably have growth

occurring regularly – whether you realize it or not (especially with the default growth settings of 10%

and 1 MB).

There’s a trick to pre-sizing data files – you don’t want to size a database too large, because remember,

if you to restore to, say, a dev or QA environment, the files are sized the same, even if they’re not full of

data. But you still want to manually manage growth. I find that DBAs have the hardest time with new

databases. The business users have no idea about growth rates and how much data is being added, and

that database is a bit of a loose cannon in your environment. You need to pay close attention to these

files until you have a handle on size and expected growth. I use a query that gives information about the

size and free space:

SELECT

 [file_id] AS [File ID],

 [type] AS [File Type],

 substring([physical_name],1,1) AS [Drive],

 [name] AS [Logical Name],

 [physical_name] AS [Physical Name],

 CAST([size] as DECIMAL(38,0))/128. AS [File Size MB],

 CAST(FILEPROPERTY([name],'SpaceUsed') AS DECIMAL(38,0))/128. AS [Space Used MB],

 (CAST([size] AS DECIMAL(38,0))/128) - (CAST(FILEPROPERTY([name],'SpaceUsed') AS

DECIMAL(38,0))/128.) AS [Free Space],

 [max_size] AS [Max Size],

 [is_percent_growth] AS [Percent Growth Enabled],

 [growth] AS [Growth Rate],

 SYSDATETIME() AS [Current Date]

FROM sys.database_files;

Every month, I check the size of the data files and the space used, then decide whether the size needs to

be increased. I also monitor the default trace for growth events, as this tells me exactly when growth

occurs. With the exception of new databases, I can always stay ahead of automatic file growth and

handle it manually. Ok, almost always. Right before the holidays last year, I was notified by a customer’s

IT department about low free space on a drive (hold that thought for the next section). Now, the

notification is based on a threshold of less than 20% free. This drive was over 1TB, so there was about

150GB free when I checked the drive. It wasn’t an emergency, yet, but I needed to understand where

the space had gone.

In checking the database files for one database, I could see that they were full – and the previous month

each file had over 50GB free. I then dug into table sizes, and found that in one table, over 270 million

rows had been added in the past 16 days – totaling over 100GB of data. Turns out there had been a code

modification and the new code was logging more information than intended. We quickly set up a job to

purge the rows and recover the free space in the files (and they fixed the code). However, I couldn’t

recover disk space – I would have to shrink the files, and that wasn’t an option. I then had to determine

how much space was left on disk and decide if it was an amount I was comfortable with or not. My

comfort level is dependent upon knowing how much data is being added per month – the typical growth

rate. And I only know how much data is being added because I monitor file use and can estimate how

much space will be needed for this month, for this year, and for the next two years.

Drive Space

I mentioned earlier that we have jobs to monitor free space on disk. This is based on a percentage, not a

fixed amount. My general rule of thumb has been to send notifications when less than 10% of the disk is

free, but for some drives, you may need to set that higher. For example, with a 1 TB drive, I get notified

when there is less than 100GB free. With a 100GB drive, I get notified when there is less than 10GB free.

With a 20GB drive… well, you see where I’m going with this. That threshold needs to alert you before

there’s a problem. If I only have 10GB free on a drive that hosts a log file, I might not have enough time

to react before it shows up as a problem for the users – depending on how often I’m checking the free

size space and what the problem is.

It’s very easy to use xp_fixeddrives to check free space, but I wouldn’t recommend this as it is

undocumented and the use of extended stored procedures in general has been deprecated. It also

doesn’t report the total size of each drive, and may not report on all drive types that your databases

may be using. As long as you’re running SQL Server 2008R2 SP1 or higher, you can use the much more

convenient sys.dm_os_volume_stats to get the information you need, at least about the drives where

database files exist:

SELECT DISTINCT

 vs.volume_mount_point AS [Drive],

 vs.logical_volume_name AS [Drive Name],

 vs.total_bytes/1024/1024 AS [Drive Size MB],

 vs.available_bytes/1024/1024 AS [Drive Free Space MB]

FROM sys.master_files AS f

CROSS APPLY sys.dm_os_volume_stats(f.database_id, f.file_id) AS vs

ORDER BY vs.volume_mount_point;

I often see a problem with drive space on volumes that host tempdb. I’ve lost count of the times I’ve had

clients with unexplained tempdb growth. Sometimes it’s just a few GB; most recently it was 200GB.

Tempdb is a tricky beast – there’s no formula to follow when sizing it, and too often it’s placed on a

drive with little free space that can’t handle the crazy event caused by the rookie developer or DBA.

Sizing the tempdb data files requires you to run your workload for a “normal” business cycle to

determine how much it uses tempdb, and then size it accordingly.

I recently heard a suggestion for a way to avoid running out of space on a drive: create a database with

no data, and size the files so they consume however much space you want to “set aside.” Then, if you

run into an issue, just drop the database and viola, you have free space again. Personally, I think this

creates all kind of other issues and wouldn’t recommend it. But if you have storage administrators who

don’t like seeing hundreds of unused GBs on a drive, this would be one way to make a drive “look” full.

It reminds me of something I’ve heard a good friend of mine say: “If I can’t work with you, I’ll work

around you.”

Backups

One of the primary tasks of a DBA is to protect the data. Backups are one method used to protect it, and

as such, the drives that hold those backups are an integral part of a DBA’s life. Presumably you’re

keeping one or more backups online, to restore immediately if needed. Your SLA and DR run book help

dictate how many backups you keep online, and you must ensure you have that space available. I

advocate that you also don’t delete old backups until the current backup has completed successfully. It’s

way too easy to fall into the trap of deleting old backups, then running the current backup. But what

happens if the current backup fails? And, what happens if you’re using compression? Wait a second…

compressed backups are smaller right? They are smaller, in the end. But did you know the .bak file size

usually starts out larger than the end size? You can use trace flag 3042 to change this behavior, but you

should be thinking that with backups, you need plenty of space. If your backup is 100GB, and you’re

keeping 3 days’ worth online, you need 300GB for the 3 days of backups, and then probably a healthy

amount (2X current database size) free for the next backup. Yes, this means that at any given time you

will have plenty more than 100GB free on this drive. That’s ok. It’s better than having the delete job

succeed, and the backup job fail, and find out three days later you have no backups at all (I had that

happen to a customer at my previous job).

Most databases just get larger over time, which means that backups get larger as well. Don’t forget to

regularly check the size of the backup files and allocate additional space as needed – having a “200GB

free” policy for a database that has grown to 350GB will not be very helpful. If the space requirements

change, be sure to change any associated alerts, too.

Using Performance Advisor

There are several queries included in this post that you can use for monitoring space, if you need to roll

your own process. But if you happen to have SQL Sentry Performance Advisor in your environment, this

gets a lot easier with Custom Conditions. There are several stock conditions included by default, but you

can also create your own.

Within the SQL Sentry client, open the Navigator, right-click Shared Groups (Global), and select Add

Custom Condition → SQL Sentry. Provide a name and description for the condition, then add a numeric

comparison, and change the type to Repository Query. Enter the query:

SELECT MIN(FreeSpace*100.0/Size)

 FROM SQLSentry.dbo.PerformanceAnalysisDeviceLogicalDisk;

Change Equals to Is less than, and set an Explicit Value of 10. Finally, change the Default Evaluation

Frequency to something less frequent than every 10 seconds. Once a day or once every 12 hours is

probably a good value – you should not need to check free space more often than once a day, but you

can check it as often as you like. The screen shot below shows the final configuration:

Once you click save for the condition, you will be asked if you want to assign actions for the custom

condition. The option to Send to Alerting Channels is selected by default, but you may want to perform

other tasks, such as Execute a Job – say, to copy old backups off to another location (if that’s the drive

with low space).

As I mentioned previously, a default of 10% free space for all drives probably isn’t appropriate for every

drive in your environment. You can customize the query for different instances and drives, for example:

SELECT Alert = MAX(CASE

 WHEN Name = N'C:' AND [FreeSpace%] < 10 THEN 1

 WHEN Name = N'S:' AND [FreeSpace%] < 25 THEN 1

 WHEN Name = N'T:' AND [FreeSpace%] < 20 THEN 1

 ELSE 0 END)

FROM

(

 SELECT

 d.Name,

 d.FreeSpace * 100.0/d.Size AS [FreeSpace%]

 FROM SQLSentry.dbo.PerformanceAnalysisDeviceLogicalDisk AS d

 INNER JOIN SQLSentry.dbo.EventSourceConnection AS c

 ON d.DeviceID = c.DeviceID

 WHERE c.ObjectName = N'HANK\SQL2012' -- replace with your server/instance

) AS s;

You can alter and expand this query as necessary for your environment, and then change the

comparison in the condition accordingly (basically evaluating to true if the outcome is ever 1):

http://cdn.sqlperformance.com/wp-content/uploads/2014/12/es_cc1.png

If you want to see Performance Advisor in action, feel free to download a trial.

Note that for both of these conditions, you will only be alerted once, even if multiple drives fall below

your threshold. In complex environments you may want to lean toward a larger number of more specific

conditions to provide more flexible and customized alerting, rather than fewer “catch-all” conditions.

Summary

There are many critical components in a SQL Server environment, and disk space is one that needs to be

proactively monitored and maintained. With just a little bit of planning, this is simple to do, and it

alleviates many unknowns and reactive problem solving. Whether you use your own scripts or a third-

party tool, making sure there is plenty of free space for database files and backups is a problem that’s

easily solvable, and well worth the effort.

http://cdn.sqlperformance.com/wp-content/uploads/2014/12/es_cc2.png

Proactive SQL Server Health Checks, Part 2: Maintenance
By Erin Stellato

In my last post, I started a series to cover proactive health checks that are vital for your SQL Server. We

started with disk space, and in this post we’ll discuss maintenance tasks. One of the fundamental

responsibilities of a DBA is to ensure that the following maintenance tasks run regularly:

 Backups

 Integrity checks

 Index maintenance

 Statistics updates

My bet is that you already have jobs in place to manage these tasks. And I would also bet that you have

notifications configured to email you and your team if a job fails. If both are true, then you’re already

being proactive about maintenance. And if you’re not doing both, that’s something to fix right now – as

in, stop reading this, download Ola Hallengren’s scripts, schedule them, and make sure you set up

notifications. (Another alternative specific to index maintenance, which we also recommend to

customers, is SQL Sentry Fragmentation Manager.)

If you don’t know if your jobs are set to email you if they fail, use this query:

SELECT [Name], [Description]
 FROM [dbo].[sysjobs]
 WHERE [enabled] = 1
 AND [notify_level_email] NOT IN (2,3)
 ORDER BY [Name];

However, being proactive about maintenance goes one step further. Beyond just making sure your jobs

run, you need to know how long they take. You can use the system tables in msdb to monitor this:

SELECT

 [j].[name] AS [JobName],

 [h].[step_id] AS [StepID],

 [h].[step_name] AS [StepName],

 CONVERT(CHAR(10), CAST(STR([h].[run_date],8, 0) AS DATETIME), 121) AS [RunDate],

 STUFF(STUFF(RIGHT('000000' + CAST ([h].[run_time] AS VARCHAR(6)) ,6),5,0,':'),3,0,':')

 AS [RunTime],

 (([run_duration]/10000*3600 + ([run_duration]/100)%100*60 + [run_duration]%100 + 31) / 60)

 AS [RunDuration_Minutes],

 CASE [h].[run_status]

 WHEN 0 THEN 'Failed'

 WHEN 1 THEN 'Succeeded'

 WHEN 2 THEN 'Retry'

 WHEN 3 THEN 'Cancelled'

 WHEN 4 THEN 'In Progress'

 END AS [ExecutionStatus],

 [h].[message] AS [MessageGenerated]

FROM [msdb].[dbo].[sysjobhistory] [h]

INNER JOIN [msdb].[dbo].[sysjobs] [j]

ON [h].[job_id] = [j].[job_id]

WHERE [j].[name] = 'DatabaseBackup - SYSTEM_DATABASES – FULL'

AND [step_id] = 0

ORDER BY [RunDate];

Or, if you’re using Ola’s scripts and logging information, you can query his CommandLog table:

SELECT [DatabaseName], [CommandType], [StartTime], [EndTime],

 DATEDIFF(MINUTE, [StartTime], [EndTime]) AS [Duration_Minutes]

FROM [master].[dbo].[CommandLog]

WHERE [DatabaseName] = 'AdventureWorks2014'

AND [Command] LIKE 'BACKUP DATABASE%'

ORDER BY [StartTime];

The above script lists backup duration for each full backup for the AdventureWorks2014 database. You

can expect that maintenance task durations will slowly increase over time, as databases grow larger. As

such, you’re looking for large increases, or unexpected decreases, in duration. For example, I had a

client with an average backup duration of less than 30 minutes. All of a sudden, backups starting taking

greater than an hour. The database hadn’t changed significantly in size, no settings had changed for the

instance or database, nothing had changed with hardware or disk configuration. A few weeks later,

backup duration dropped back down to less than half an hour. A month after that, they went up again.

We eventually correlated the change in backup duration to failovers between cluster nodes. On one

node, the backups took less than half an hour. On the other, they took over an hour. A little

investigation into the configuration of the NICs and SAN fabric and we were able to pinpoint the

problem.

Understanding the average time of execution for CHECKDB operations is also important. This is

something that Paul talks about in our High Availability and Disaster recovery Immersion Event: you

must know how long CHECKDB normally takes to run, so that if you find corruption and you run a check

on the entire database, you know how long it should take for CHECKDB to complete. When your boss

asks, “How much longer until we know the extent of the problem?” you’ll be able to provide a

quantitative answer of the minimum amount of time you’ll need to wait. If CHECKDB takes longer than

usual, then you know it’s found something (which may not necessarily be corruption; you must always

let the check finish).

Now, if you’re managing hundreds of databases, you don’t want to run the above query for every

database, or every job. Instead, you might just want to find jobs that fall outside the average duration by

a certain percentage, which you can get using this query:

SELECT

 [j].[name] AS [JobName],

 [h].[step_id] AS [StepID],

 [h].[step_name] AS [StepName],

 CONVERT(CHAR(10), CAST(STR([h].[run_date],8, 0) AS DATETIME), 121) AS [RunDate],

 STUFF(STUFF(RIGHT('000000' + CAST ([h].[run_time] AS VARCHAR(6)) ,6),5,0,':'),3,0,':')

 AS [RunTime],

 (([run_duration]/10000*3600 + ([run_duration]/100)%100*60 + [run_duration]%100 + 31) / 60)

 AS [RunDuration_Minutes],

 [avdur].[Avg_RunDuration_Minutes]

FROM [dbo].[sysjobhistory] [h]

INNER JOIN [dbo].[sysjobs] [j]

ON [h].[job_id] = [j].[job_id]

INNER JOIN

(

 SELECT

 [j].[name] AS [JobName],

 AVG((([run_duration]/10000*3600 + ([run_duration]/100)%100*60 + [run_duration]%100 + 31)

/ 60))

 AS [Avg_RunDuration_Minutes]

 FROM [dbo].[sysjobhistory] [h]

 INNER JOIN [dbo].[sysjobs] [j]

 ON [h].[job_id] = [j].[job_id]

 WHERE [step_id] = 0

 AND CONVERT(DATE, RTRIM(h.run_date)) >= DATEADD(DAY, -60, GETDATE())

 GROUP BY [j].[name]

) AS [avdur]

ON [avdur].[JobName] = [j].[name]

WHERE [step_id] = 0

AND (([run_duration]/10000*3600 + ([run_duration]/100)%100*60 + [run_duration]%100 + 31) /

60)

 > ([avdur].[Avg_RunDuration_Minutes] + ([avdur].[Avg_RunDuration_Minutes] * .25))

ORDER BY [j].[name], [RunDate];

This query lists jobs that took 25% longer than the average. The query will require some tweaking to

provide the specific information you want – some jobs with a small duration (e.g. less than 5 minutes)

will show up if they just take a few extra minutes – that might not be a concern. Nevertheless, this query

is a good start, and realize there are many ways to find deviations – you could also compare each

execution to the previous one and look for jobs that took a certain percentage longer than the previous.

Obviously, job duration is the most logical identifier to use for potential problems – whether it’s a

backup job, an integrity check, or the job that removes fragmentation and updates statistics. I have

found that the largest variation in duration is typically in the tasks to remove fragmentation and update

statistics. Depending on your thresholds for reorg versus rebuild, and the volatility of your data, you may

go days with mostly reorgs, then suddenly have a couple index rebuilds kick in for large tables, where

those rebuilds completely alter the average duration. You may want to change your thresholds for some

indexes, or adjust the fill factor, so that rebuilds occur more often, or less often – depending on the

index and the level of fragmentation. To make these adjustments, you need to look at how often each

index is rebuilt or reorganized, which you can only do if you’re using Ola’s scripts and logging to the

CommandLog table, or if you’ve rolled your own solution and are logging each reorg or rebuild. To look

at this using the CommandLog table, you can start by checking to see which indexes are altered most

often:

SELECT [DatabaseName], [ObjectName], [IndexName], COUNT(*)

 FROM [master].[dbo].[CommandLog] [c]

 WHERE [DatabaseName] = 'AdventureWorks2014'

 AND [Command] LIKE 'ALTER INDEX%'

 GROUP BY [DatabaseName], [ObjectName], [IndexName]

 ORDER BY COUNT(*) DESC;

From this output, you can start to see which tables (and therefore indexes) have the most volatility, and

then determine whether the threshold for reorg versus rebuild needs to be adjusted, or the fill factor

modified.

Making Life Easier

Now, there is an easier solution than writing your own queries, as long as you’re using SQL Sentry Event

Manager (EM). The tool monitors all Agent jobs set up on an instance, and using the calendar view, you

can quickly see which jobs failed, were canceled, or ran longer than usual:

SQL Sentry Event Manager calendar view (with labels added in Photoshop)

You can also drill into individual executions to see how much longer it took a job to run, and there are

also handy runtime graphs allowing you to quickly visualize any patterns in duration anomalies or failure

conditions. In this case, I can see that around every 15 minutes, the runtime duration for this specific job

jumped by almost 400%:

http://cdn.sqlperformance.com/wp-content/uploads/2014/12/es-em-1.png

SQL Sentry Event Manager runtime graph

This gives me a clue that I should look into other scheduled jobs that may be causing some concurrency

issues here. I could zoom out on the calendar again to see what other jobs are running around the same

time, or I might not even need to look to recognize that this is some reporting or backup job that runs

against this database.

Summary

I would bet that most of you already have the necessary maintenance jobs in place, and that you also

have notifications set up for job failures. If you’re not familiar with average durations for your jobs, then

that’s your next step in being proactive. Note: you may also need to check to see how long you’re

retaining job history. When looking for deviations in job duration, I prefer to look at a few months’

worth of data, rather than a few weeks. You don’t need to have those run times memorized, but once

you’ve verified you’re keeping enough data to have the history to use for research, then start looking for

variations on a regular basis. In an ideal scenario, the increased run time can alert you to a potential

issue, allowing you to address it before a problem occurs in your production environment.

http://cdn.sqlperformance.com/wp-content/uploads/2014/12/es-em-2.png

Proactive SQL Server Health Checks, Part 3: Instance and Database Settings
By Erin Stellato

Our discussion of proactive tasks that keep your database healthy continues in this post as we tackle

server and database options. You might already be thinking this will be a quick post – who changes

server or database options that often? You would be surprised, especially if you have many people who

have access to the SQL Server. Server and database options should change infrequently – for the most

part these are set at installation and left alone. But every so often there is good reason to make a

change – be it performance-related, due to a change in application code, or perhaps because something

was set incorrectly the first time around. Test these changes first, and capture appropriate metrics

before and after the change. It seems pretty straightforward and obvious, right? You might think so, but

if you don’t have a change management process in place that is strictly followed, it’s not.

In a majority of environments, more than one person has access to SQL Server, and more than one

person has the privileges necessary to change server or database options. If the wrong setting is

changed, the performance impact can be significant. (Have you ever inadvertently set the max memory

setting to a value in GB instead of MB? In case you’re wondering, 128MB is not enough memory needed

for a SQL Server instance to start. Check out Ted Krueger’s post on how to fix this, should you ever make

that mistake.) Other changes can create smaller problems that are still troublesome and sometimes

hard to track down (disabling Auto Create Statistics is a good example). You may think that these

changes would be well-communicated (sometimes you’re so busy putting out fires you forget) or easy to

notice (not always). To avoid this, we track the settings and then, when running our regular checks (or

when troubleshooting an issue), we verify that nothing has changed.

Capturing the Data

Unlike the previous post on maintenance tasks, where we relied on msdb to hold on to the data we

cared about, we have to set up data capture for instance and database settings. We’ll snapshot

sys.configurations and sys.database_info daily to tables in our Baselines database, then use queries to

see if anything changed, and when.

USE [Baselines];

GO

IF OBJECT_ID(N'dbo.SQLskills_ConfigData', N'U') IS NULL

BEGIN

 CREATE TABLE [dbo].[SQLskills_ConfigData]

 (

 [ConfigurationID] [int] NOT NULL ,

 [Name] [nvarchar](35) NOT NULL ,

 [Value] [sql_variant] NULL ,

 [ValueInUse] [sql_variant] NULL ,

 [CaptureDate] [datetime] NOT NULL DEFAULT SYSDATETIME()

) ON [PRIMARY];

GO

CREATE CLUSTERED INDEX [CI_SQLskills_ConfigData]

 ON [dbo].[SQLskills_ConfigData] ([CaptureDate],[ConfigurationID]);

GO

IF OBJECT_ID(N'dbo.SQLskills_DBData', N'U') IS NULL

BEGIN

 CREATE TABLE [dbo].[SQLskills_DBData]

 (

 [name] [sysname] NOT NULL,

 [database_id] [int] NOT NULL,

 [source_database_id] [int] NULL,

 [owner_sid] [varbinary](85) NULL,

 [create_date] [datetime] NOT NULL,

 [compatibility_level] [tinyint] NOT NULL,

 [collation_name] [sysname] NULL,

 [user_access] [tinyint] NULL,

 [user_access_desc] [nvarchar](60) NULL,

 [is_read_only] [bit] NULL,

 [is_auto_close_on] [bit] NOT NULL,

 [is_auto_shrink_on] [bit] NULL,

 [state] [tinyint] NULL,

 [state_desc] [nvarchar](60) NULL,

 [is_in_standby] [bit] NULL,

 [is_cleanly_shutdown] [bit] NULL,

 [is_supplemental_logging_enabled] [bit] NULL,

 [snapshot_isolation_state] [tinyint] NULL,

 [snapshot_isolation_state_desc] [nvarchar](60) NULL,

 [is_read_committed_snapshot_on] [bit] NULL,

 [recovery_model] [tinyint] NULL,

 [recovery_model_desc] [nvarchar](60) NULL,

 [page_verify_option] [tinyint] NULL,

 [page_verify_option_desc] [nvarchar](60) NULL,

 [is_auto_create_stats_on] [bit] NULL,

 [is_auto_update_stats_on] [bit] NULL,

 [is_auto_update_stats_async_on] [bit] NULL,

 [is_ansi_null_default_on] [bit] NULL,

 [is_ansi_nulls_on] [bit] NULL,

 [is_ansi_padding_on] [bit] NULL,

 [is_ansi_warnings_on] [bit] NULL,

 [is_arithabort_on] [bit] NULL,

 [is_concat_null_yields_null_on] [bit] NULL,

 [is_numeric_roundabort_on] [bit] NULL,

 [is_quoted_identifier_on] [bit] NULL,

 [is_recursive_triggers_on] [bit] NULL,

 [is_cursor_close_on_commit_on] [bit] NULL,

 [is_local_cursor_default] [bit] NULL,

 [is_fulltext_enabled] [bit] NULL,

 [is_trustworthy_on] [bit] NULL,

 [is_db_chaining_on] [bit] NULL,

 [is_parameterization_forced] [bit] NULL,

 [is_master_key_encrypted_by_server] [bit] NOT NULL,

 [is_published] [bit] NOT NULL,

 [is_subscribed] [bit] NOT NULL,

 [is_merge_published] [bit] NOT NULL,

 [is_distributor] [bit] NOT NULL,

 [is_sync_with_backup] [bit] NOT NULL,

 [service_broker_guid] [uniqueidentifier] NOT NULL,

 [is_broker_enabled] [bit] NOT NULL,

 [log_reuse_wait] [tinyint] NULL,

 [log_reuse_wait_desc] [nvarchar](60) NULL,

 [is_date_correlation_on] [bit] NOT NULL,

 [is_cdc_enabled] [bit] NOT NULL,

 [is_encrypted] [bit] NULL,

 [is_honor_broker_priority_on] [bit] NULL,

 [replica_id] [uniqueidentifier] NULL,

 [group_database_id] [uniqueidentifier] NULL,

 [default_language_lcid] [smallint] NULL,

 [default_language_name] [nvarchar](128) NULL,

 [default_fulltext_language_lcid] [int] NULL,

 [default_fulltext_language_name] [nvarchar](128) NULL,

 [is_nested_triggers_on] [bit] NULL,

 [is_transform_noise_words_on] [bit] NULL,

 [two_digit_year_cutoff] [smallint] NULL,

 [containment] [tinyint] NULL,

 [containment_desc] [nvarchar](60) NULL,

 [target_recovery_time_in_seconds] [int] NULL,

 [CaptureDate] [datetime] NOT NULL DEFAULT SYSDATETIME()

) ON [PRIMARY];

GO

CREATE CLUSTERED INDEX [CI_SQLskills_DBData]

 ON [dbo].[SQLskills_DBData] ([CaptureDate],[database_id]);

GO

The script to create the SQLskills_DBData table is compatible with SQL Server 2014. For earlier versions,

you may need to modify base table and snapshot query (see next set of code).

Once you have the tables created, create a job that will execute the following two queries daily. Again,

we wouldn’t expect that these options would change more than once a day, and while we hope no one

would change a setting, then change it back (therefore it wouldn’t show up in a capture), that’s always a

possibility. If you find that this data capture does not suite your needs, because settings change

frequently or temporarily, you may want to implement a trigger or use auditing.

To edit server options via (sp_configure), a login needs the ALTER SETTINGS server-level permission,

which is included if you are a member of the sysadmin or serveradmin roles. To edit most database

settings (ALTER DATABASE SET), you need the ALTER permission in the database, though some options

require additional rights, such as CONTROL SERVER or the server-level option ALTER ANY DATABASE.

/* Statements to use in scheduled job */

INSERT INTO [dbo].[SQLskills_ConfigData]

(

 [ConfigurationID] ,

 [Name] ,

 [Value] ,

 [ValueInUse]

)

SELECT

 [configuration_id] ,

 [name] ,

 [value] ,

 [value_in_use]

FROM [sys].[configurations];

GO

INSERT INTO [dbo].[SQLskills_DBData]

(

 [name],

 [database_id],

 [source_database_id],

 [owner_sid],

 [create_date],

 [compatibility_level],

 [collation_name],

 [user_access],

 [user_access_desc],

 [is_read_only],

 [is_auto_close_on],

 [is_auto_shrink_on],

 [state],

 [state_desc],

 [is_in_standby],

 [is_cleanly_shutdown],

 [is_supplemental_logging_enabled],

 [snapshot_isolation_state],

 [snapshot_isolation_state_desc],

 [is_read_committed_snapshot_on],

 [recovery_model],

 [recovery_model_desc],

 [page_verify_option],

 [page_verify_option_desc],

 [is_auto_create_stats_on],

 [is_auto_update_stats_on],

 [is_auto_update_stats_async_on],

 [is_ansi_null_default_on],

 [is_ansi_nulls_on],

 [is_ansi_padding_on],

 [is_ansi_warnings_on],

 [is_arithabort_on],

 [is_concat_null_yields_null_on],

 [is_numeric_roundabort_on],

 [is_quoted_identifier_on],

 [is_recursive_triggers_on],

 [is_cursor_close_on_commit_on],

 [is_local_cursor_default],

 [is_fulltext_enabled],

 [is_trustworthy_on],

 [is_db_chaining_on],

 [is_parameterization_forced],

 [is_master_key_encrypted_by_server],

 [is_published],

 [is_subscribed],

 [is_merge_published],

 [is_distributor],

 [is_sync_with_backup],

 [service_broker_guid],

 [is_broker_enabled],

 [log_reuse_wait],

 [log_reuse_wait_desc],

 [is_date_correlation_on],

 [is_cdc_enabled],

 [is_encrypted],

 [is_honor_broker_priority_on],

 [replica_id],

 [group_database_id],

 [default_language_lcid],

 [default_language_name],

 [default_fulltext_language_lcid],

 [default_fulltext_language_name],

 [is_nested_triggers_on],

 [is_transform_noise_words_on],

 [two_digit_year_cutoff],

 [containment],

 [containment_desc],

 [target_recovery_time_in_seconds]

)

SELECT

 [name],

 [database_id],

 [source_database_id],

 [owner_sid],

 [create_date],

 [compatibility_level],

 [collation_name],

 [user_access],

 [user_access_desc],

 [is_read_only],

 [is_auto_close_on],

 [is_auto_shrink_on],

 [state],

 [state_desc],

 [is_in_standby],

 [is_cleanly_shutdown],

 [is_supplemental_logging_enabled],

 [snapshot_isolation_state],

 [snapshot_isolation_state_desc],

 [is_read_committed_snapshot_on],

 [recovery_model],

 [recovery_model_desc],

 [page_verify_option],

 [page_verify_option_desc],

 [is_auto_create_stats_on],

 [is_auto_update_stats_on],

 [is_auto_update_stats_async_on],

 [is_ansi_null_default_on],

 [is_ansi_nulls_on],

 [is_ansi_padding_on],

 [is_ansi_warnings_on],

 [is_arithabort_on],

 [is_concat_null_yields_null_on],

 [is_numeric_roundabort_on],

 [is_quoted_identifier_on],

 [is_recursive_triggers_on],

 [is_cursor_close_on_commit_on],

 [is_local_cursor_default],

 [is_fulltext_enabled],

 [is_trustworthy_on],

 [is_db_chaining_on],

 [is_parameterization_forced],

 [is_master_key_encrypted_by_server],

 [is_published],

 [is_subscribed],

 [is_merge_published],

 [is_distributor],

 [is_sync_with_backup],

 [service_broker_guid],

 [is_broker_enabled],

 [log_reuse_wait],

 [log_reuse_wait_desc],

 [is_date_correlation_on],

 [is_cdc_enabled],

 [is_encrypted],

 [is_honor_broker_priority_on],

 [replica_id],

 [group_database_id],

 [default_language_lcid],

 [default_language_name],

 [default_fulltext_language_lcid],

 [default_fulltext_language_name],

 [is_nested_triggers_on],

 [is_transform_noise_words_on],

 [two_digit_year_cutoff],

 [containment],

 [containment_desc],

 [target_recovery_time_in_seconds]

FROM [sys].[databases];

GO

Checking for Changes

Now that we’re capturing this information, how do we find changes? Knowing that there could be

multiple settings changed, and on different dates, we need a method that looks at each row. This isn’t

hard to do, but it doesn’t generate the prettiest code. For server options, it’s not too bad:

;WITH [f] AS

(

 SELECT

 ROW_NUMBER() OVER (PARTITION BY [ConfigurationID] ORDER BY [CaptureDate] ASC) AS

[RowNumber],

 [ConfigurationID] AS [ConfigurationID],

 [Name] AS [Name],

 [Value] AS [Value],

 [ValueInUse] AS [ValueInUse],

 [CaptureDate] AS [CaptureDate]

 FROM [Baselines].[dbo].[ConfigData]

)

SELECT

 [f].[Name] AS [Setting],

 [f].[CaptureDate] AS [Date],

 [f].[Value] AS [Previous Value],

 [f].[ValueInUse] AS [Previous Value In Use],

 [n].[CaptureDate] AS [Date Changed],

 [n].[Value] AS [New Value],

 [n].[ValueInUse] AS [New Value In Use]

FROM [f]

LEFT OUTER JOIN [f] AS [n]

ON [f].[ConfigurationID] = [n].[ConfigurationID]

AND [f].[RowNumber] + 1 = [n].[RowNumber]

WHERE ([f].[Value] <> [n].[Value] OR [f].[ValueInUse] <> [n].[ValueInUse]);

GO

Changed Instance Settings

For database options, the query is in a stored procedure (because it was so unwieldy), which you can

download here. To run the stored procedure:

http://cdn.sqlperformance.com/wp-content/uploads/2015/02/instance-changes.jpg

EXEC dbo.usp_FindDBSettingChanges

The output will list the database and the setting that changed, as well as the date:

Changed Database Settings

You can run these queries when performance issues come up, to quickly check if any settings have

changed, or you could be a bit more proactive and run them regularly in a scheduled job that notifies

you if anything has changed. I didn’t include the T-SQL code to send an email using database mail if

there’s a change, but that won’t be hard to do based on the code provided here.

Using Performance Advisor

SQL Sentry Performance Advisor does not track this information by default, but you can still capture the

information in a database, then have PA check to see if any settings have changed, and notify you if they

have. To set this up, create the SQLskills_ConfigData and SQLskillsDBData tables and set up the

scheduled job to insert into those tables on a regular basis. Within the SQL Sentry client, set up a

Custom Condition, as we did in an earlier post in this series, Proactive SQL Server Health Checks, Part 1:

Disk Space post.

Within the Custom Condition, you have two options. First, you could just execute the code provided

which checks historical data to see if anything has changed (and then send a notification if so). Checking

historical data for change is something that you would run daily, as you would with an Agent Job.

Alternatively, you could be more proactive and compare current, running values against the most recent

data on a more frequent basis, e.g. once an hour, to look for changes. Example code to check the

current settings for the instance against the most recent capture:

;WITH [lc] AS

(

 SELECT

 ROW_NUMBER() OVER (PARTITION BY [ConfigurationID] ORDER BY [CaptureDate] ASC) AS

[RowNumber],

 [ConfigurationID] AS [ConfigurationID],

 [Name] AS [Name],

 [Value] AS [Value],

 [ValueInUse] AS [ValueInUse],

 [CaptureDate] AS [CaptureDate]

 FROM [Baselines].[ConfigData]

 WHERE [CaptureDate] = (SELECT MAX([CaptureDate]) FROM [Baselines].[ConfigData])

)

SELECT

 [lc].[Name] AS [Setting],

 [lc].[CaptureDate] AS [Date],

 [lc].[Value] AS [Last Captured Value],

 [lc].[ValueInUse] AS [Last Captured Value In Use],

http://cdn.sqlperformance.com/wp-content/uploads/2015/02/database-changes.jpg

 CURRENT_TIMESTAMP AS [Current Time],

 [c].[Value] AS [Current Value],

 [c].[value_in_use] AS [Current Value In Use]

FROM [sys].[configurations] AS [c]

LEFT OUTER JOIN [lc]

ON [lc].[ConfigurationID] = [c].[configuration_id]

WHERE ([lc].[Value] <> [c].[Value] OR [lc].[ValueInUse] <> [c].[value_in_use]);

GO

Summary

Checking instance and database options is straightforward and obvious, and in some situations this

historical information can save you significant time when troubleshooting. If you’re not capturing this

information anywhere, I encourage you to start; it’s always better to proactively look for issues than to

react when you’re fire-fighting and potentially stressed, unsure of what’s causing a problem in your

production environment.

Monitoring Read/Write Latency
By Tim Radney

Being responsible for the performance of SQL Server can be a daunting task. There are many areas that

we to have to monitor and understand. We are also expected to be able to stay on top of all those

metrics and know what is happening on our servers at all times. I like to ask DBAs what the first thing

that they think about when they hear the phrase “tuning SQL Server;” the overwhelming response I get

is “query tuning.” I agree that tuning queries is very important and is a never-ending task that we face

because workloads are continuously changing.

However there are many other aspects to consider when thinking about SQL Server performance. There

are a lot of instance-, OS- and database-level settings that need to be tweaked from the defaults. Being

a consultant allows me to work in many different lines of business and get exposure to all sorts of

performance issues. When working with a new client I try to always perform a health audit of the server

to know what I am dealing with. While performing these audits, one of the things that I’ve found

repeatedly has been excessive read and write latencies on the disks where SQL Server data and log files

reside.

Read/Write Latency

To view your disk latencies in SQL Server you can quickly and easily query the DMV

sys.dm_io_virtual_file_stats. This DMV accepts two parameters: database_id and file_id. What is

awesome is that you can pass NULL as both values and return the latencies for all files for all databases.

The output columns include:

 database_id

 file_id

 sample_ms

 num_of_reads

 num_of_bytes_read

 io_stall_read_ms

 num_of_writes

 num_of_bytes_written

 io_stall_write_ms

 io_stall

 size_on_disk_bytes

 file_handle

As you can see from the column list, there is really useful information that this DMV retrieves, however

just running SELECT * FROM sys.dm_io_virtual_file_stats(NULL, NULL); doesn’t help much unless you

have memorized your database_ids and can do some math in your head.

When I query the file stats, I use a query from Paul Randal’s blog post, “How to examine IO subsystem

latencies from within SQL Server.” This script makes the column names easier to read, includes the drive

the file is on, the database name, and the path to the file.

By querying this DMV you can easily tell where the I/O hot spots are for your files. You can see where

the highest write and read latencies are and which databases are the culprits. Knowing this will allow

you to start looking at the tuning opportunities for those specific databases. This could include index

tuning, checking to see if the buffer pool is under memory pressure, possibly moving the database to a

faster portion of the I/O subsystem, or possibly partitioning the database and spreading the filegroups

across other LUNs.

So you run the query and it returns lots of values in ms for latency – which values are okay, and which

are bad?

What values are good or bad?

If you ask SQLskills, we will tell you something along the lines of:

 Excellent: < 1ms

 Very good: < 5ms

 Good: 5 – 10ms

 Poor: 10 – 20ms

 Bad: 20 – 100ms

 Really bad: 100 – 500ms

 OMG!: > 500ms

If you do a Bing search, you will find articles from Microsoft making the recommendations similar to:

 Good: < 10ms

 Okay: 10 – 20ms

 Bad: 20 – 50ms

 Seriously bad: > 50ms

As you can see, there are some slight variations in the numbers, but the consensus is that anything over

20ms can be considered troublesome. With that being said, your average write latency may be 20ms

and that is 100% acceptable for your organization and that is okay. You need to know general I/O

latencies for your system so that, when things do get bad, you know what normal is.

My Read/Write Latencies Are Bad, What Do I Do?

If you are finding that read and write latencies are bad on your server, there are several places you can

start looking for issues. This is not a comprehensive list but some guidance of where to start.

 Analyze your workload. Is your indexing strategy correct? Not having the proper indexes will

lead to much more data being read from disk. Scans instead of seeks.

 Are your statistics up to date? Bad statistics can make for poor choices for execution plans.

 Do you have parameter sniffing issues that are causing poor execution plans?

 Is the buffer pool under memory pressure, for instance from a bloated plan cache?

 Any network issues? Is your SAN fabric performing correctly? Have your storage engineer

validate pathing and network.

 Move the hot spots to different storage arrays. In some cases it may be a single database or just

a few databases that are causing all the problems. Isolating them to a different set of disk, or

faster high end disk such as SSD’s may be the best logical solution.

 Can you partition the database to move troublesome tables to different disk to spread the load?

Wait Statistics

Just like monitoring your file stats, monitoring your wait stats can tell you a great deal about bottlenecks

in your environment. We are lucky to have another awesome DMV (sys.dm_os_wait_stats) that we can

query that will pull all available wait information collected since the last restart or since the last time the

waits were reset; there are waits related to disk performance too. This DMV will return important

information including:

 wait_type

 waiting_task_count

 wait_time_ms

 max_wait_time_ms

 signal_wait_time_ms

Querying this DMV on my SQL Server 2014 machine returned 771 wait types. SQL Server is always

waiting on something, but there are a lot of waits that we shouldn’t worry ourselves with. For this

reason, I utilize another query from Paul Randal; his blog post, “Wait Statistics, or please tell me where it

hurts,” has an excellent script that excludes a bunch of the waits we don’t really care about. Paul also

lists out many of the common problematic waits as well as offering guidance for the common waits.

Why are wait stats important?

Monitoring for high wait times for certain events will tell you when there are issues going on. You need a

baseline to know what is normal and when things exceed a threshold or pain level. If you have really

high PAGEIOLATCH_XX then you know SQL Server is having to wait for a data page to be read from disk.

This could be disk, memory, workload change or a number of other issues.

A recent client I was working with was seeing some very unusual behavior. When I connected to the

database server and was able to observe the server under a work load, I immediately started checking

file stats, wait stats, memory utilization, tempdb usage, etc. One thing that immediately stood out was

WRITELOG being the most prevalent wait. I know this wait has to do with a log flush to disk and

reminded me of Paul’s series on Trimming the Transaction Log Fat. High WRITELOG waits can usually be

identified by high-write latencies for the transaction log file. So I then used my file stats script to review

the read and write latencies on the disk. I was then able to see high write latency on the data file but not

my log file. In looking at the WRITELOG it was a high wait but the time waiting in ms was extremely low.

However something in the second post of Paul’s series was still in my head. I should look at the auto

growth settings for the database just to rule out “Death by a thousand cuts”. In looking at the database

properties of the database I saw that the data file was set to auto grow by 1MB and the transaction log

set to auto grow by 10%. Both files had nearly 0 unused space. I shared with the client what I found and

how this was killing their performance. We quickly made the appropriate change and testing went

forward, much better by the way. Sadly this is not the only time I have encountered this exact issue.

Another other time a database was 66GB in size, it got there by 1MB growths.

Capturing your data

Many data professionals have created processes to capture file and wait stats on a regular basis for

analysis. Since the wait stats are cumulative, you would want to capture them and compare the deltas

between different times of day or before and after certain processes run. This isn’t too complicated and

there are numerous blog posts available where people share how they accomplished this. The important

part is to be measuring this data so that you can monitor it. How do you know today that things are

better or worse on your database server unless you know the data from yesterday?

How can SQL Sentry help?

I'm glad you asked! SQL Sentry Performance Advisor brings latency and waits front and center on the

dashboard. Any anomalies are easy to spot; you can switch to historical mode and see the previous

trend and compare that to previous periods as well. This can prove to be priceless when analyzing those

“what happened?” moments. Everyone has gotten that call, “Yesterday around 3:00PM the system just

seemed to freeze, can you tell us what happened?” Um, sure, let me pull up Profiler and go back in time.

If you have a monitoring tool like Performance Advisor, you would have that historical information at

your fingertips.

In addition to the charts and graphs on the dashboard, you have the ability to use built-in alerts for

conditions such as High Disk Waits, High VLF Counts, High CPU, Low Page Life Expectancy, and many

more. You also have the ability to create your own custom conditions, and you can learn from the

examples on the SQL Sentry site or through the Condition Exchange (Aaron Bertrand has blogged about

this). I touched on the alerting side of this in my last article on SQL Server Agent Alerts.

On the Disk Space tab of Performance Advisor, it is very easy to see things like autogrowth settings and

high VLF counts. You should know, but in case you don’t, autogrowth by 1MB or 10% is not the best

setting. If you see these values (Performance Advisor highlights them for you), you can quickly make

note and schedule the time to make the proper adjustments. I love how it displays Total VLFs as well;

too many VLFs can be very problematic. You should read Kimberly’s post “Transaction Log VLFs – too

many or too few?” if you haven't already.

Partial grid on Performance Advisor's Disk Space tab

Another way that Performance Advisor can help is through its patented Disk Activity module. Here you

can see that tempdb on F: is experiencing substantial write latency; you can tell this by the thick red

lines underneath the disk graphics. You might also notice that F: is the only drive letter whose disk is

represented in red; this is a visual cue that the drive has a misaligned partition, which can contribute to

I/O problems.

Performance Advisor Disk Activity module

And you can correlate this information in the grids below – problems are highlighted in the grids there,

too, and take a look at the ms/Write column:

http://cdn.sqlperformance.com/wp-content/uploads/2015/03/tr_lat_1.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/03/pa-da_1.png

Partial grid of Performance Advisor Disk Activity data

You can also look at this information retroactively; if someone complains about a perceived disk

bottleneck yesterday afternoon or last Tuesday, you can simply go back using the date pickers in the

toolbar and see the average throughput and latency for any range. For more information on the Disk

Activity module, see the User Guide.

Performance Advisor also has a lot of built-in reports under the categories Performance, Blocking, Top

SQL, Disk/File Space, and Deadlocks. The image below shows you how to get to the Disk/File Space

reports. Having the reports just a few mouse clicks away is very valuable to be able to immediately dig in

and view what is (or was) happening on your server.

Performance Advisor reports

Summary

The important takeaway from this post is to know your performance metrics. A common statement

among data professionals is that disk is our #1 bottleneck. Knowing the file stats of your server will go a

long way in helping to understand the pain points on your server. In conjunction with file stats, your

wait stats are a great place to look as well. Many people, including myself, start there. Having a tool like

SQL Sentry Performance Advisor can drastically help you troubleshoot and find performance issues

before they become too problematic; however, if you don’t have such a tool, getting familiar with

sys.dm_os_wait_stats and sys.dm_io_virtual_file_stats will serve you well to start tuning your server.

http://cdn.sqlperformance.com/wp-content/uploads/2015/03/pa-da-2.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/03/tr_lat_2.png

Randal, Paul

Unexpected Clustered Index Fragmentation

Mitigating Index Fragmentation

Knee-Jerk Performance Tuning: Just Add an SSD

Stellato, Erin

Should new index columns be in the key, or included?

Considerations Around Column Order in Indexes and Sorts

Another Way to View Automatic Updates to Statistics

Another Reason to Avoid sp_updatestats

Incremental Statistics are NOT used by the Query Optimizer

Improving Partition Maintenance with Incremental Statistics

Running SQL Server 2014 on an Azure Virtual Machine

By Glenn Berry

Microsoft is making it increasingly easy to run SQL Server 2014 on an Azure virtual machine in one of

Microsoft's seventeen Azure data centers. You can run a preconfigured virtual machine with a

preconfigured SQL Server 2014 instance from the Azure gallery on your choice of any size Azure virtual

machine. One of the choices from the gallery is "SQL Server 2014 Enterprise Optimized for Transactional

Workloads" running on Windows Server 2012 R2. One nice thing about using a preconfigured gallery

image is that you do not have to pay for any SQL Server 2014 licenses. You simply pay the hourly cost for

the edition of SQL Server and virtual machine size that you choose.

SQL Server 2014 Configuration Options

Microsoft explains that "This Enterprise Edition image is optimized for OLTP workloads and is intended

for VM sizes including A4, A7, A8 and A9. Once deployed, the VM comes with Windows Storage Spaces

pre-configured." Microsoft also does some instance-level configuration work on SQL Server 2014,

although they do not go far enough with what I would consider to be standard best practices.

They create eight tempdb data files that are all 25600MB in size, with an autogrow increment of

1024MB, which is a good default choice. They also enable TF1117 and TF1118 as start-up trace flags,

which are also good choices for SQL Server. Finally, Microsoft also enables instant file initialization and

lock pages in memory in the operating system, which I also agree with.

I would prefer that Microsoft also made some changes to these instance-level configuration options:

6. backup compression default

7. cost threshold for parallelism

8. max degree of parallelism

9. max server memory (MB)

10. optimize for ad hoc workloads

Backup compression should be enabled by default in most cases. Cost threshold for parallelism often

should be raised to a higher value than the default of 5, depending on your workload. Max degree of

parallelism usually should be changed to a non-default value based on the number of cores in a NUMA

node. This setting also depends on your workload. Max server memory should be set to a non-default

value based on the amount of RAM in the virtual machine and what you are running (besides the SQL

Server database engine) on the VM. Finally, I think optimize for ad hoc workloads should be enabled,

pretty much in all cases.

In Microsoft's defense, it would be difficult to make a satisfactory configuration choice for some of these

items without knowing (in advance) the details of your VM size and expected database server workload.

That leaves the task up to you, just like with an on-premises SQL Server instance.

Azure Virtual Machine Sizing

Even though you can choose anything from an A0 Basic to an A9 Standard machine, Microsoft

recommends that you choose either an A4 Standard, A7 Standard, A8 Standard, or A9 Standard size

virtual machine for production usage. Pricing details for SQL Server virtual machines are listed here.

Looking at the comparative specifications for these recommendations in Table 1, it is hard to understand

why you would want to choose an A4 Standard machine, since it costs the same amount per hour as the

larger A7 or A8 Standard machines. Looking at the online documentation, it is not initially very clear

what the actual difference is between an A7 and an A8 Standard machine. Digging a little deeper, the A8

Standard machine is considered a Compute Intensive instance, which is supposed to use a faster 2.6GHz

Intel Xeon E5-2670 processor, along with two network adapters (one 10Gbps and one 32Gbps RDMA

capable).

The A7 Standard virtual machine uses a somewhat slower 2.2GHz Intel Xeon E5-2660 processor, while

the network connectivity appears to be standard 1Gbps Ethernet. While this sounds like a significant

difference in processor and network performance, it is not really the main issue with the A-series virtual

machines for SQL Server usage.

VM Size SQL Standard Rate SQL Enterprise Rate Core Count RAM Amount

A4 Standard $0.80/hr $3.00/hr 8 14GB

A7 Standard $0.80/hr $3.00/hr 8 56GB

A8 Standard $0.80/hr $3.00/hr 8 56GB

A9 Standard $1.60/hr $6.00/hr 16 112GB

Table 1: A-Series SQL Server Virtual Machine Information

The main problem with all of the A-series virtual machines is the pretty miserable I/O subsystem

performance, even though Microsoft has pre-configured the disk subsystem with Windows Storage

Spaces to get best performance possible given the inherent performance limitations of the A-series

virtual machines and hosts. Figure 1 shows the CrystalDiskMark results for the E: drive from an A4

Standard machine from the East US Azure data center, which is meant for transaction log files.

Figure 1: A4 Standard CrystalDiskMark Results

A much better alternative for SQL Server are the D-series virtual machines. These virtual machines cost

the same per hour as the comparably sized A-series virtual machines, and they have local SSD storage

that should only be used for tempdb and/or for buffer pool extensions (BPE) files, since they are not

persistent. Some relevant specifications for D-series virtual machines are shown in Table 2.

VM Size SQL Standard Rate SQL Enterprise Rate Core Count RAM Amount

D4 Standard $0.80/hr $3.00/hr 8 28GB

D13 Standard $0.80/hr $3.00/hr 8 56GB

D14 Standard $1.60/hr $6.00/hr 16 112GB

Table 2: D-Series SQL Server Virtual Machine Information

The D4 Standard machine costs the same as an A4 Standard machine, but it has twice the RAM and

some local SSD storage. The D13 Standard machine costs the same as an A7 or A8 Standard machine,

but with the benefit of local SDD storage. The D14 Standard machine costs the same as an A9 Standard

machine, but also has the benefit of local SSD storage. Given this information, it makes little sense to

use a A-series virtual machine for SQL Server.

Unfortunately, the permanent drives for your SQL Server data and log files also have pretty substandard

I/O performance in CrystalDiskMark, as shown in Figures 2 and 3.

http://cdn.sqlperformance.com/wp-content/uploads/2014/12/image.png

Figure 2: D14 Standard CrystalDiskMark Results

Figure 3: D14 Standard CrystalDiskMark Results

The local SSD performance is related to the size of the Azure virtual machine, with larger sizes getting

better local SSD performance. The CrystalDiskMark performance results for a D14 Standard machine in

the East US Azure data center are shown in Figure 4.

Figure 4: D14 Standard CrystalDiskMark Results for Local SSD Storage

The F: drive (for SQL Server data files) has slightly better results than the E: drive, but both drives have a

very low level of performance for SQL Server.

Conclusion

It seems pretty clear that the D-series machines are better for SQL Server usage than the A-series

machines. It also makes sense to pay close attention to the sizing and pricing of the virtual machine you

decide to provision for SQL Server, since you can get more RAM at the same hourly cost. The two best

choices from a performance perspective are the D13 or D14 Standard virtual machines.

The preconfigured SQL Server 2014 instances from the Azure gallery can save you a lot of money in SQL

Server licensing costs, and they have much of the necessary configuration work already complete in the

base image. You should still go in and make a few final configuration changes based on your preference

http://cdn.sqlperformance.com/wp-content/uploads/2014/12/image1.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/12/image2.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/12/image3.png

and workload. Finally, you should take the time to run some performance benchmarks on your virtual

machine so that you understand the level of performance that it can deliver.

Proactive SQL Server Health Checks, Part 2: Maintenance

Proactive SQL Server Health Checks, Part 3: Instance and Database Settings

White, Paul

Allocation Order Scans

Avoiding Sorts with Merge Join Concatenation

Dealing with high severity errors in SQL Servers

By Tim Radney

In my previous article on SQL Server Agent Alerts, I provided step-by-step instructions on how to set up

and configure SQL Agent alerts for high severity errors 19-25 as well as error 825. In this article, I’m

going to discuss these errors in detail, and share what you should do if they happen in your

environment.

Errors with a severity level of 19 or higher stop the current batch from completing. Errors with a severity

of 20 and higher are fatal errors and terminate the current client connection. These errors may also

impact all of the processes in the database. Fatal errors are exactly what the name implies: the process

that is running is terminated and the client connection is closed.

Severity 19 Errors

A severity 19 error is an error due to lack of a resource. This means that an internal limit (that you can’t

configure) has been exceeded and caused the current batch to end. These errors rarely occur and there

is little that you can do to correct the issue. If a severity 19 error occurs you should contact your primary

support provider; typically, that would be Microsoft.

In all my years of working with SQL Server, I cannot recall any incident where a severity 19 error was

generated. Even searching Bing, I’ve had trouble finding occurrences of the error; the few references I

found were related to an early version of SQL Server, and referenced a bug within SQL Server itself.

Severity 20 Errors

A severity 20 error is a fatal error in the current process. This indicates that a statement encountered a

problem and was terminated. As this only impacts the current process it is very unlikely that the

database itself has been damaged. These errors are tied to an individual statement so you will need to

gather the entire error message and reach out to the person or team responsible for that bit of code.

This could be in-house or possibly the vendor of the application. An example error is:

Error: 18056, Severity 20, State: 29

The client was unable to reuse a session with SPID 123, which had been reset for connection pooling.

For this error I would reach out to the application developer or vendor, since the error is related to a

pooled connection encountering an error when trying to reset. I would also review the SQL Server logs

which may have a more detailed error message regarding what is actually happening to cause the error.

Severity 21 Errors

A severity 21 error is a fatal error in the database that affects all processes using that database.

I have seen this error occur when trying to restore a database using Enterprise features to a Standard

Edition instance, as well as when a database is corrupt and the user tries to access a corrupt page. An

example error message of this type is:

Error: 605, Severity: 21, State 1

Attempt to fetch logical page (1:8574233) in database 'DB_NAME' belongs to object '0', not to object

'Table01'.

When attempting to restore a database that is using Enterprise features to a Standard Edition instance,

you will have to first remove the Enterprise features. For example, if you are using data compression or

change data capture, you will first have to stop using and remove those features from the database,

back up the database, and then restore it to the Standard Edition instance. You can use the DMV

sys.dm_db_persisted_sku_features to check whether you have any Enterprise-only features in use.

For the corruption errors you will need to run DBCC CHECKDB to determine the extent of the corruption

and go from there. If you are fortunate, the error will be in a nonclustered index that you can rebuild

and resolve the issue. If the corruption is more severe, you could be looking at a restore operation. To

better understand corruption and how to resolve various aspects of corruption, I encourage you to

review the various blog post by Paul Randal. Paul has an entire category on corruption that you can view

here:

 http://www.sqlskills.com/blogs/paul/category/corruption/

Running DBCC CHECKDB as part of a regularly-scheduled job against your databases is highly

recommended to detect corruption as early as possible. If you are not regularly checking for corruption,

then you are at a huge risk of not being able to recover the corrupt data.

Severity 22 Errors

A severity 22 error is a fatal error due to table integrity being suspect, basically indicating that the table

or index specified in the message is damaged. Corruption happens and happens often. Our experience is

that the majority of corruption occurs due to an I/O subsystem-related issue. If you run into a severity

22 error, you will need to run DBCC CHECKDB to determine the extent of the damage. An example error

is:

Error: 5180, Severity: 22, State: 1

Could not open XYZ for invalid file ID ## in database. Table or database may be corrupted.

If the error is in a nonclustered index, then you could just rebuild the index and fix the corruption. If the

corruption is in a heap or clustered index, then you will need to restore the database to a consistent

state.

I have seen reports where the corruption was in memory but not on disk. In that case a restart of the

instance or setting the database offline and then online should clear up the error.

Severity 23 Errors

A severity 23 error is another fatal error reporting that the database itself has an integrity issue. The

resolution is much like that of a severity 22 error, where you need to immediately run DBCC CHECKDB to

find the full extent of the damage to the database.

This level of corruption is detected as effecting the entire database. This could be corruption within the

data file itself or corruption within the log file. The details of the error will direct you toward the root

problem. For instance, the following error points out that we would need to restore our database or

attempt to rebuild the log. For consistency, I would restore from my most recent backup and all

available transaction log backups.

Error: 9004, Severity: 23 State: 6

An error occurred while processing the log for database 'db_name'. If possible, restore from backup. If a

backup is not available, it might be necessary to rebuild the log.

Severity 24 Errors

A severity 24 error is a fatal error related to a hardware. This message would occur due to some type of

media failure. The most common of these types of errors I have seen are related to issues with memory

and I/O errors. For example:

Error: 832, Severity: 24, State: 1

A page that should have been constant has changed (expected checksum: <expected value>, actual

checksum: <actual value>, database <db_id>, file <filename>, page <page#>). This usually indicates a

memory failure or other hardware or OS corruption.

When errors like this occur you should contact your system support team to run memory test on your

server and give the server a good health check. This error could be bad memory or a memory scribbler

(a kernel process or something that is changing SQL Server’s memory).

Another example:

Error: 824, Severity: 24, State: 2

SQL Server detected a logical consistency-based I/O error: incorrect pageid (expected 1:123; actual 0:0).

It occurred during a reads of page (1:123) in database ID <id>. Additional messages in the SQL Server

error log or system event log may provide more detail.

This error indicates a consistency error in the primary data file of the database. You would need to

immediately run DBCC CHECKDB to determine the extent of the corruption and take the appropriate

action to repair or restore the database.

Severity 25 Errors

A severity 25 error is a fatal system error. I have heard that severity 25 is more or less a catch-all for

miscellaneous fatal errors. I have only seen this error when related to failed upgrades: something

prevents one of the upgrade scripts from running, and a severity 25 error is thrown. You would get an

error similar to:

Script level upgrade for database 'master' failed because upgrade step 'sqlagent90_sysdbupg.sql'

encountered error 598, state 1, severity 25. This is a serious error condition which might interfere with

regular operation and the database will be taken offline. If the error happened during upgrade of the

'master' database, it will prevent the entire SQL Server instance from starting. Examine the previous

errorlog entries for errors, take the appropriate corrective actions and re-start the database so that the

script upgrade steps run to completion.

In this case, errors prior to this message indicated an incorrect path for the default data location for SQL

Server. Once that was corrected the upgrade ran successfully.

Error 825

Error 825 is often referred to as the read-retry warning, however the condition is for both read and

write operations. This error lets you know that a retry of the operation was needed and how many times

SQL Server had to retry the attempt before it was successful. SQL Server will retry the operations up to

four times, after four retry attempts it will raise an 823 or 824 error. Error 825 messages will be similar

to the following:

A read of the file 'path to file name\db_name.mdf' at offset 0x00000002000 succeeded after failing 2

time(s) with error: incorrect checksum (expected: XYZ; actual ABC). Additional messages in the SQL

Server error log and system event log may provide more detail. This error condition threatens database

integrity and must be corrected. Complete a full database consistency check (DBCC CHECKDB). This error

can be caused by many factors; for more information, see SQL Server Books Online.

These messages are important as they are indicative that you have a larger problem with your disk

subsystem. Troubleshooting methods would be to run DBCC CHECKDB to ensure the database is

consistent, as the error recommends, as well as review the Windows event logs for errors from the

operating system or storage devices. You should get your storage and hardware support team to review

the underlying I/O subsystem for errors as well.

Summary

Having SQL Agent alerts configured is free and easy. Being proactive and responsive to these alerts is

important to help minimize downtime for you and your customers. As you have now learned, many

things can affect SQL Server and the consistency of your databases, and the best defense for being able

to recover from these errors is having good backups and knowing the various repair options for DBCC

CHECKDB. It’s always recommended to run DBCC CHECKDB regularly against your databases to detect

corruption as early as possible, as the quicker you find corruption, the more likely you are to have the

data backed up so that you can restore with no data loss.

An Indexed View Bug with Scalar Aggregates

Internals of the Seven SQL Server Sorts-Part 1

Internals of the Seven SQL Server Sorts-Part 2

Indexed View Maintenance in Execution Plans

By Paul White

Though they come with many restrictions and some important implementation caveats, indexed views

are still a very powerful SQL Server feature when correctly employed in the right circumstances. One

common use is to provide a pre-aggregated view of underlying data, giving users the ability to query

results directly without incurring the costs of processing the underlying joins, filters, and aggregates

every time a query is executed.

Although new Enterprise Edition features like columnar storage and batch mode processing have

transformed the performance characteristics of many large queries of this type, there is still no faster

way to obtain a result than to avoid all the underlying processing completely, no matter how efficient

that processing might have become.

Before indexed views (and their more limited cousins, computed columns) were added to the product,

database professionals would sometimes write complex multi-trigger code to present the results of an

important query in a real table. This sort of arrangement is notoriously difficult to get right in all

circumstances, particularly where concurrent changes to the underlying data are frequent.

The indexed views feature makes all this much easier, where it is sensibly and correctly applied. The

database engine takes care of everything needed to ensure data read from an indexed view matches the

underlying query and table data at all times.

Incremental Maintenance

SQL Server keeps indexed view data synchronized with the underlying query by automatically updating

the view indexes appropriately whenever data changes in the base tables. The cost of this maintenance

activity is borne by the process changing the base data. The extra operations needed to maintain the

view indexes are silently added to the execution plan for the original insert, update, delete, or merge

operation. In the background, SQL Server also takes care of more subtle issues concerning transaction

isolation, for example ensuring correct handling for transactions running under snapshot or read

committed snapshot isolation.

Constructing the extra execution plan operations needed to maintain the view indexes correctly is not a

trivial matter, as anyone who has attempted a "summary table maintained by trigger code"

implementation will know. The complexity of the task is one of the reasons that indexed views have so

many restrictions. Limiting the supported surface area to inner joins, projections, selections (filters), and

the SUM and COUNT_BIG aggregates reduces the implementation complexity considerably.

Indexed views are maintained incrementally. This means the query processor determines the net effect

of the base table changes on the view, and applies only those changes necessary to bring the view up to

date. In simple cases, it can calculate the necessary deltas from just the base table changes and the data

currently stored in the view. Where the view definition contains joins, the indexed view maintenance

portion of the execution plan will need to access the joined tables as well, but this can usually be

performed efficiently, given appropriate base table indexes.

To simplify the implementation further, SQL Server always uses the same basic plan shape (as a starting

point) to implement indexed view maintenance operations. The normal facilities provided by the query

optimizer are employed to simplify and optimize the standard maintenance shape as appropriate. We

will now turn to an example to help bring these concepts together.

Example 1 – Single Row Insert

Suppose we have the following simple table and indexed view:

CREATE TABLE dbo.T1

(

 GroupID integer NOT NULL,

 Value integer NOT NULL

);

GO

INSERT dbo.T1

 (GroupID, Value)

VALUES

 (1, 1),

 (1, 2),

 (2, 3),

 (2, 4),

 (2, 5);

GO

CREATE VIEW dbo.IV

WITH SCHEMABINDING

AS

SELECT

 T1.GroupID,

 SumValue = SUM(T1.Value),

 NumRows = COUNT_BIG(*)

FROM dbo.T1 AS T1

WHERE

 T1.GroupID BETWEEN 1 AND 5

GROUP BY

 T1.GroupID;

GO

CREATE UNIQUE CLUSTERED INDEX cuq

ON dbo.IV (GroupID);

After that script is run, the data in the sample table looks like this:

And the Indexed view contains:

The simplest example of an indexed view maintenance plan for this setup occurs when we add a single

row to the base table:

INSERT dbo.T1

 (GroupID, Value)

VALUES

 (3, 6);

The execution plan for this insert is shown below:

Following the numbers in the diagram, the operation of this execution plan proceeds as follows:

11. The Table Insert operator adds the new row to the base table. This is the only plan operator

associated with the base table insert; all remaining operators are concerned with the

maintenance of the indexed view.

12. The Eager Table Spool saves the inserted row data to temporary storage.

13. The Sequence operator ensures the top branch of the plan runs to completion before the next

branch in the Sequence is activated. In this special case (inserting a single row), it would be valid

http://cdn.sqlperformance.com/wp-content/uploads/2015/03/image2.png

to remove the Sequence (and the spools at positions 2 and 4), directly connecting the Stream

Aggregate input to the output of the Table Insert. This possible optimization is not implemented,

so the Sequence and Spools remain.

14. This Eager Table Spool is associated with the spool at position 2 (it has a Primary Node ID

property that provides this link explicitly). The spool replays rows (one row in the present case)

from the same temporary storage written to by the primary spool. As mentioned above, the

spools and positions 2 and 4 are unnecessary, and feature simply because they exist in the

generic template for indexed view maintenance.

15. The Stream Aggregate computes the sum of Value column data in the inserted set, and counts

the number of rows present per view-key group. The output is the incremental data needed to

keep the view synchronized with the base data. Note, the Stream Aggregate does not have a

Group By element because the query optimizer knows only a single value is being processed.

However, the optimizer does not apply similar logic to replace the aggregates with projections

(the sum of a single value is just the value itself, and the count will always be one for a single

row insert). Computing the sum and count aggregates for a single row of data is not an

expensive operation, so this missed optimization is not much to be concerned about.

16. The join relates each calculated incremental change to an existing key in the indexed view. The

join is an outer join because the newly-inserted data might not correspond to any existing data

in the view.

17. This operator locates the row to be modified in the view.

18. The Compute Scalar has two important responsibilities. First, it determines whether each

incremental change will affect an existing row in the view, or whether a new row will have to be

created. It does this by checking to see if the outer join produced a null from the view side of the

join. Our sample insert is for group 3, which does not currently exist in the view, so a new row

will be created. The second function of the Compute Scalar is to calculate new values for the

view columns. If a new row is to be added to the view, this is simply the result of the

incremental sum from the Stream Aggregate. If an existing row in the view is to be updated, the

new value is the existing value in the view row plus the incremental sum from the Stream

Aggregate.

19. This Eager Table Spool is for Halloween Protection. It is required for correctness when an insert

operation affects a table that is also referenced on the data access side of the query. It is

technically not required if the single-row maintenance operation results in an update to an

existing view row, but it remains in the plan anyway.

20. The final operator in the plan is labelled as an Update operator, but it will perform either an

Insert or an Update for each row it receives depending on the value of the "action code" column

added by the Compute Scalar at node 8. More generally, this update operator is capable of

inserts, updates, and deletes.

There is quite a bit of detail there, so to summarize:

 The aggregate groups data changes by the unique clustered key of the view. It computes the net

effect of the base table changes on each column per key.

 The outer join connects the per-key incremental changes to existing rows in the view.

 The compute scalar calculates whether a new row should be added to the view, or an existing

row updated. It computes the final column values for the view insert or update operation.

 The view update operator inserts a new row or updates an existing one as directed by the action

code.

Example 2 – Multi-row Insert

Believe it or not, the single-row base table insert execution plan discussed above was subject to a

number of simplifications. Although some possible further optimizations were missed (as noted), the

query optimizer still managed to remove some operations from the general indexed view maintenance

template, and reduce the complexity of others.

Several of these optimizations were allowed because we were inserting just a single row, but others

were enabled because the optimizer was able to see the literal values being added to the base table. For

example, the optimizer could see that the group value inserted would pass the predicate in the WHERE

clause of the view.

If we now insert two rows, with the values "hidden" in local variables, we get a slightly more complex

plan:

DECLARE

 @Group1 integer = 4,

 @Value1 integer = 7,

 @Group2 integer = 5,

 @Value2 integer = 8;

INSERT dbo.T1

 (GroupID, Value)

VALUES

 (@Group1, @Value1),

 (@Group2, @Value2);

The new or changed operators are annotated as before:

http://cdn.sqlperformance.com/wp-content/uploads/2015/03/image3.png

7. The Constant Scan provides the values to insert. Previously, an optimization for single-row

inserts allowed this operator to be omitted.

8. A explicit Filter operator is now required to check that the groups inserted to the base table

match the WHERE clause in the view. As it happens, both new rows will pass the test, but the

optimizer cannot see the values in the variables to know this in advance. Additionally, it would

not be safe to cache a plan that skipped this filter because a future reuse of the plan could have

different values in the variables.

9. A Sort is now required to ensure the rows arrive at the Stream Aggregate in group order. The

sort was previously removed because it is pointless to sort one row.

10. The Stream Aggregate now has a "group by" property, matching the unique clustered key of the

view.

11. This Sort is required to present rows in view-key, action code order, which is required for correct

operation of the Collapse operator. Sort is a fully blocking operator so there is no longer any

need for an Eager Table Spool for Halloween Protection.

12. The new Collapse operator combines an adjacent insert and delete on the same key value into a

single update operation. This operator is not actually required in this case, because no deletion

action codes can be generated (only inserts and updates). This appears to be an oversight, or

perhaps something left in for safety reasons. The automatically-generated parts of an update

query plan can become extremely complex, so it is hard know for sure.

The properties of the Filter (derived from the view's WHERE clause) are:

The Stream Aggregate groups by the view key, and computes the sum and count aggregates per group:

The Compute Scalar identifies the action to take per row (insert or update in this case), and computes

the value to insert or update in the view:

The action code is given an expression label of [Act1xxx]. Valid values are 1 for an update, 3 for a delete,

and 4 for an insert. This action expression results in an insert (code 4) if no matching row was found in

the view (i.e. the outer join returned a null for the NumRows column). If a matching row was found, the

action code is 1 (update).

Note that NumRows is the name given to the required COUNT_BIG(*) column in the view. In a plan that

could result in deletions from the view, the Compute Scalar would detect when this value would become

zero (no rows for the current group) and generate a delete action code (3).

The remaining expressions maintain the sum and count aggregates in the view. Notice though that the

expression labels [Expr1009] and [Expr1010] are not new; they refer to the labels created by the Stream

Aggregate. The logic is straightforward: if a matching row was not found, the new value to insert is just

the value computed at the aggregate. If a matching row in the view was found, the updated value is the

current value in the row plus the increment computed by the aggregate.

Finally, the view update operator (shown as a Clustered Index Update in SSMS) shows the action column

reference ([Act1013] defined by the Compute Scalar):

Example 3 – Multi-row Update

So far we have only looked at inserts to the base table. The execution plans for a deletion are very

similar, with just a few minor differences in the detailed calculations. This next example therefore moves

on to look at the maintenance plan for a base table update:

DECLARE

 @Group1 integer = 1,

 @Group2 integer = 2,

 @Value integer = 1;

http://cdn.sqlperformance.com/wp-content/uploads/2015/03/image6.png
http://cdn.sqlperformance.com/wp-content/uploads/2015/03/image7.png

UPDATE dbo.T1

SET Value = Value + @Value

WHERE GroupID IN (@Group1, @Group2);

As before, this query uses variables to hide literal values from the optimizer, preventing some

simplifications from being applied. It is also careful to update two separate groups, preventing

optimizations that can be applied when the optimizer knows only a single group (a single row of the

indexed view) will be affected. The annotated execution plan for the update query is below:

The changes and point of interest are:

5. The new Split operator turns each base table row update into a separate delete and insert

operation. Each update row is split into two separate rows, doubling the number of rows after

this point in the plan. Split is part of the split-sort-collapse pattern needed to protect against

incorrect transient unique key violation errors.

6. The Stream Aggregate is modified to account for incoming rows that can specify either a delete

or an insert (due to the Split, and determined by an action code column in the row). An insert

row contributes the original value in sum aggregates; the sign is reversed for delete action rows.

Similarly, the row count aggregate here counts insert rows as +1 and delete rows as –1.

7. The Compute Scalar logic is also modified to reflect that the net effect of the changes per group

might require an eventual insert, update, or delete action against the materialized view. It is not

actually possible for this particular update query to result in a row being inserted or deleted

against this view, but the logic required to deduce that is beyond the optimizer's current

reasoning abilities. A slightly different update query or view definition could indeed result in a

mixture of insert, delete, and update view actions.

8. The Collapse operator is highlighted purely for its role in the split-sort-collapse pattern

mentioned above. Note that it only collapses deletes and inserts on the same key; unmatched

deletes and inserts after the Collapse are perfectly possible (and quite usual).

As before, the key operator properties to look at to understand the indexed view maintenance work are

the Filter, Stream Aggregate, Outer Join, and Compute Scalar.

Example 4 – Multi-row Update with Joins

http://cdn.sqlperformance.com/wp-content/uploads/2015/03/image8.png

To complete the overview of indexed view maintenance execution plans, we will need a new example

view that joins several tables together, and includes a projection in the select list:

CREATE TABLE dbo.E1 (g integer NULL, a integer NULL);

CREATE TABLE dbo.E2 (g integer NULL, a integer NULL);

CREATE TABLE dbo.E3 (g integer NULL, a integer NULL);

GO

INSERT dbo.E1 (g, a) VALUES (1, 1);

INSERT dbo.E2 (g, a) VALUES (1, 1);

INSERT dbo.E3 (g, a) VALUES (1, 1);

GO

CREATE VIEW dbo.V1

WITH SCHEMABINDING

AS

SELECT

 g = E1.g,

 sa1 = SUM(ISNULL(E1.a, 0)),

 sa2 = SUM(ISNULL(E2.a, 0)),

 sa3 = SUM(ISNULL(E3.a, 0)),

 cbs = COUNT_BIG(*)

FROM dbo.E1 AS E1

JOIN dbo.E2 AS E2

 ON E2.g = E1.g

JOIN dbo.E3 AS E3

 ON E3.g = E2.g

WHERE

 E1.g BETWEEN 1 AND 5

GROUP BY

 E1.g;

GO

CREATE UNIQUE CLUSTERED INDEX cuq

ON dbo.V1 (g);

To ensure correctness, one of the indexed view requirements is that a sum aggregate cannot operate on

an expression that might evaluate to null. The view definition above uses ISNULL to meet that

requirement. A sample update query that produces a pretty comprehensive index maintenance plan

component is shown below, together with the execution plan it produces:

UPDATE dbo.E1

SET g = g + 1,

 a = a + 1;

The plan looks quite large and complicated now, but most of the elements are exactly as we have

already seen. The key differences are:

4. The top branch of the plan includes a number of extra Compute Scalar operators. These could

be more compactly arranged, but essentially they are present to capture the pre-update values

of the non-grouping columns. The Compute Scalar to the left of the Table Update captures the

post-update value of column "a", with the ISNULL projection applied.

5. The new Compute Scalars in this area of the plan compute the value produced by the ISNULL

expression on each source table. In general, projections on the joined tables in the view will be

represented by Compute Scalars here. The sorts in this area of the plan are present purely

because the optimizer chose a merge join strategy for cost reasons (remember, merge requires

join-key sorted input).

6. The two join operators are new, and simply implement the joins in the view definition. These

joins always appear before the Stream Aggregate that computes the incremental effect of the

changes on the view. Note that a change to a base table can result in a row that used to meet

the join criteria no longer joining, and vice versa. All these potential complexities are handled

correctly (given the indexed view restrictions) by the Stream Aggregate producing a summary of

the changes per view key after the joins have been performed.

Final Thoughts

That last plan represents pretty much the full template for maintaining an indexed view, though the

addition of nonclustered indexes to the view would add additional operators spooled off the output of

the view update operator as well. Aside from an extra Split (and a Sort and Collapse combination if the

view's nonclustered index is unique), there is nothing very special about this possibility. Adding an

output clause to the base table query can also produce some interesting extra operators, but again,

these are not particular to indexed view maintenance per se.

To summarise the complete overall strategy:

 Base table changes are applied as normal; pre-update values may be captured.

 A split operator may be used to transform updates into delete/insert pairs.

 An eager spool saves base table change information to temporary storage.

 All tables in the view are accessed, except the updated base table (which is read from the

spool).

http://cdn.sqlperformance.com/wp-content/uploads/2015/03/image9.png

 Projections in the view are represented by Compute Scalars.

 Filters in the view are applied. Filters may be pushed into scans or seeks as residuals.

 Joins specified in the view are performed.

 An aggregate computes net incremental changes grouped by clustered view key.

 The incremental change set is outer joined to the view.

 A Compute Scalar calculates an action code (insert/update/delete against the view) for each

change, and computes the actual values to be inserted or updated. The computational logic is

based on the output of the aggregate and the result of the outer join to the view.

 Changes are sorted into view key and action code order, and collapsed to updates as

appropriate.

 Finally, the incremental changes are applied to the view itself.

As we have seen, the normal set of tools available to the query optimizer are still applied to the

automatically-generated parts of the plan, meaning that one or more of the steps above may be

simplified, transformed, or removed entirely. However, the basic shape and operation of the plan

remains intact.

If you have been following along with the code examples, you can use the following script to clean up:

DROP VIEW dbo.V1;

DROP TABLE dbo.E3, dbo.E2, dbo.E1;

DROP VIEW dbo.IV;

DROP TABLE dbo.T1;

An Indexed View Bug with Scalar Aggregates
By Paul White

The general strategy the SQL Server database engine uses to keep an indexed view synchronized with its

base tables – which I described in more detail in my last post – is to perform incremental maintenance of

the view whenever a data-changing operation occurs against one of the tables referenced in the view. In

broad terms, the idea is to:

7. Collect information about the base table changes

8. Apply the projections, filters, and joins defined in the view

9. Aggregate the changes per indexed view clustered key

10. Decide whether each change should result in an insert, update, or delete against the view

11. Compute the values to change, add, or remove in the view

12. Apply the view changes

Or, even more succinctly (albeit at the risk of gross simplification):

 Compute the incremental view effects of the original data modifications;

 Apply those changes to the view

This is usually a much more efficient strategy than rebuilding the whole view after every underlying data

change (the safe but slow option), but it does rely on the incremental update logic being correct for

every conceivable data change, against every possible indexed view definition.

As the title suggests, this article is concerned with an interesting case where the incremental-update

logic breaks down, resulting in a corrupt indexed view that no longer matches the underlying data.

Before we get to the bug itself, we need to quickly review scalar and vector aggregates.

Scalar and Vector Aggregates

In case you are not familiar with the term, there are two types of aggregate. An aggregate that is

associated with a GROUP BY clause (even if the group by list is empty) is known as a vector aggregate.

An aggregate without a GROUP BY clause is known as a scalar aggregate.

Whereas a vector aggregate is guaranteed to produce a single output row for each group present in the

data set, scalar aggregates are a bit different. Scalar aggregates always produce a single output row,

even if the input set is empty.

Vector aggregate example

The following AdventureWorks example computes two vector aggregates (a sum and a count) on an

empty input set:

-- There are no TransactionHistory records for ProductID 848

-- Vector aggregate produces no output rows

SELECT COUNT_BIG(*)

FROM Production.TransactionHistory AS TH

WHERE TH.ProductID = 848

GROUP BY TH.ProductID;

SELECT SUM(TH.Quantity)

FROM Production.TransactionHistory AS TH

WHERE TH.ProductID = 848

GROUP BY TH.ProductID;

These queries produce the following output (no rows):

The result is the same, if we replace the GROUP BY clause with an empty set (requires SQL Server 2008

or later):

-- Equivalent vector aggregate queries with

-- an empty GROUP BY column list

-- (SQL Server 2008 and later required)

-- Still no output rows

SELECT COUNT_BIG(*)

FROM Production.TransactionHistory AS TH

WHERE TH.ProductID = 848

GROUP BY ();

SELECT SUM(TH.Quantity)

FROM Production.TransactionHistory AS TH

WHERE TH.ProductID = 848

GROUP BY ();

The execution plans are identical in both cases as well. This is the execution plan for the count query:

Zero rows input to the Stream Aggregate, and zero rows out. The sum execution plan looks like this:

Again, zero rows into the aggregate, and zero rows out. All good simple stuff so far.

Scalar aggregates

Now look what happens if we remove the GROUP BY clause from the queries completely:

-- Scalar aggregate (no GROUP BY clause)

-- Returns a single output row from an empty input

SELECT COUNT_BIG(*)

FROM Production.TransactionHistory AS TH

WHERE TH.ProductID = 848;

SELECT SUM(TH.Quantity)

FROM Production.TransactionHistory AS TH

WHERE TH.ProductID = 848;

Instead of an empty result, the COUNT aggregate produces a zero, and the SUM returns a NULL:

The count execution plan confirms that zero input rows produce a single row of output from the Stream

Aggregate:

The sum execution plan is even more interesting:

The Stream Aggregate properties show a count aggregate being computed in addition to the sum we

asked for:

The new Compute Scalar operator is used to return NULL if the count of rows received by the Stream

Aggregate is zero, otherwise it returns the sum of the data encountered:

This might all seem a bit strange, but this is how it works:

 A vector aggregate of zero rows returns zero rows;

 A Scalar aggregate always produces exactly one row of output, even for an empty input;

 The scalar count of zero rows is zero; and

 The scalar sum of zero rows is NULL (not zero).

The important point for our present purposes is that scalar aggregates always produce a single row of

output, even if it means creating one out of nothing. Also, the scalar sum of zero rows is NULL, not zero.

These behaviours are all "correct" by the way. Things are the way they are because the SQL Standard

originally did not define the behaviour of scalar aggregates, leaving it up to the implementation. SQL

Server preserves its original implementation for backward compatibility reasons. Vector aggregates have

always had well-defined behaviours.

Indexed Views and Vector Aggregation

Now consider a simple indexed view incorporating a couple of (vector) aggregates:

CREATE TABLE dbo.T1

(

 GroupID integer NOT NULL,

 Value integer NOT NULL

);

GO

INSERT dbo.T1

 (GroupID, Value)

VALUES

 (1, 1),

 (1, 2),

 (2, 3),

 (2, 4),

 (2, 5),

 (3, 6);

GO

CREATE VIEW dbo.IV

WITH SCHEMABINDING

AS

SELECT

 T1.GroupID,

 GroupSum = SUM(T1.Value),

 RowsInGroup = COUNT_BIG(*)

FROM dbo.T1 AS T1

GROUP BY

 T1.GroupID;

GO

CREATE UNIQUE CLUSTERED INDEX cuq

ON dbo.IV (GroupID);

The following queries show the content of the base table, the result of querying the indexed view, and

the result of running the view query on the table underlying the view:

-- Sample data

SELECT * FROM dbo.T1 AS T1;

-- Indexed view contents

SELECT * FROM dbo.IV AS IV WITH (NOEXPAND);

-- Underlying view query results

SELECT * FROM dbo.IV AS IV OPTION (EXPAND VIEWS);

The results are:

As expected, the indexed view and underlying query return exactly the same results. The results will

continue to remain synchronized after any and all possible changes to the base table T1. To remind

ourselves how this all works, consider the simple case of adding a single new row to the base table:

INSERT dbo.T1

 (GroupID, Value)

VALUES

 (4, 100);

The execution plan for this insert contains all the logic needed to keep the indexed view synchronized:

http://cdn.sqlperformance.com/wp-content/uploads/2015/03/image19.png

The major activities in the plan are:

5. The Stream Aggregate computes the changes per indexed view key

6. The Outer Join to the view links the change summary to the target view row, if any

7. The Compute Scalar decides whether each change will require an insert, update, or deletion

against the view, and computes the necessary values.

8. The view update operator physically performs each change to the view clustered index.

There are some plan differences for different change operations against the base table (e.g. updates and

deletions), but the broad idea behind keeping the view synchronized remains the same: aggregate the

changes per view key, find the view row if it exists, then perform a combination of insert, update, and

delete operations on the view index as necessary.

No matter what changes you make to the base table in this example, the indexed view will remain

correctly synchronized – the NOEXPAND and EXPAND VIEWS queries above will always return the same

result set. This is how things should always work.

Indexed Views and Scalar Aggregation

Now try this example, where the indexed view uses scalar aggregation (no GROUP BY clause in the

view):

DROP VIEW dbo.IV;

DROP TABLE dbo.T1;

GO

CREATE TABLE dbo.T1

(

 GroupID integer NOT NULL,

 Value integer NOT NULL

);

GO

INSERT dbo.T1

 (GroupID, Value)

VALUES

 (1, 1),

 (1, 2),

 (2, 3),

 (2, 4),

 (2, 5),

 (3, 6);

GO

CREATE VIEW dbo.IV

WITH SCHEMABINDING

AS

SELECT

 TotalSum = SUM(T1.Value),

 NumRows = COUNT_BIG(*)

FROM dbo.T1 AS T1;

GO

CREATE UNIQUE CLUSTERED INDEX cuq

ON dbo.IV (NumRows);

This is a perfectly legal indexed view; no errors are encountered when creating it. There is one clue that

we might be doing something a little strange, though: when it comes time to materialize the view by

creating the required unique clustered index, there isn't an obvious column to choose as the key.

Normally, we would choose the grouping columns from the view's GROUP BY clause, of course.

The script above arbitrarily chooses the NumRows column. That choice isn't important. Feel free to

create the unique clustered index how ever you choose. The view will always contain exactly one row

because of the scalar aggregates, so there is no chance of a unique key violation. In that sense, the

choice of view index key is redundant, but nevertheless required.

Reusing the test queries from the previous example, we can see that the indexed view works correctly:

SELECT * FROM dbo.T1 AS T1;

SELECT * FROM dbo.IV AS IV OPTION (EXPAND VIEWS);

SELECT * FROM dbo.IV AS IV WITH (NOEXPAND);

Inserting a new row to the base table (as we did with the vector aggregate indexed view) continues to

work correctly as well:

INSERT dbo.T1

 (GroupID, Value)

VALUES

 (4, 100);

The execution plan is similar, but not quite identical:

The main differences are:

4. This new Compute Scalar is there for the same reasons as when we compared vector and scalar

aggregation results earlier: it ensures a NULL sum is returned (instead of zero) if the aggregate

operates on an empty set. This is the required behaviour for a scalar sum of no rows.

5. The Outer Join seen previously has been replaced by an Inner Join. There will always be exactly

one row in the indexed view (due to the scalar aggregation) so there is no question of needing

an outer join to test if a view row matches or not. The one row present in the view always

represents the entire set of data. This Inner Join has no predicate, so it is technically a cross join

(to a table with a guaranteed single row).

6. The Sort and Collapse operators are present for technical reasons covered in my previous article

on indexed view maintenance. They do not affect the correct operation of the indexed view

maintenance here.

In fact, many different types of data-changing operations can be performed successfully against the base

table T1 in this example; the effects will be correctly reflected in the indexed view. The following change

operations against the base table can all be performed while keeping the indexed view correct:

 Delete existing rows

 Update existing rows

 Insert new rows

This might seem like a comprehensive list, but it isn't.

The Bug Revealed

The issue is rather subtle, and relates (as you should be expecting) to the different behaviours of vector

and scalar aggregates. The key points are that a scalar aggregate will always produce an output row,

even if it receives no rows on its input, and the scalar sum of an empty set is NULL, not zero.

To cause a problem, all we need do is insert or delete no rows in the base table.

That statement is not as crazy as it might at first sound.

The point is that an insert or delete query that affects no base table rows will still update the view,

because the scalar Stream Aggregate in the indexed view maintenance portion of the query plan will

produce an output row even when it is presented with no input. The Compute Scalar that follows the

Stream Aggregate will also generate a NULL sum when the count of rows is zero.

The following script demonstrates the bug in action:

-- So we can undo

BEGIN TRANSACTION;

-- Show the starting state

SELECT * FROM dbo.T1 AS T1;

SELECT * FROM dbo.IV AS IV OPTION (EXPAND VIEWS);

SELECT * FROM dbo.IV AS IV WITH (NOEXPAND);

-- A table variable intended to hold new base table rows

DECLARE @NewRows AS table (GroupID integer NOT NULL, Value integer NOT NULL);

-- Insert to the base table (no rows in the table variable!)

INSERT dbo.T1

SELECT NR.GroupID,NR.Value

FROM @NewRows AS NR;

-- Show the final state

SELECT * FROM dbo.T1 AS T1;

SELECT * FROM dbo.IV AS IV OPTION (EXPAND VIEWS);

SELECT * FROM dbo.IV AS IV WITH (NOEXPAND);

-- Undo the damage

ROLLBACK TRANSACTION;

The output of that script is shown below:

The final state of the indexed view's Total Sum column does not match the underlying view query or the

base table data. The NULL sum has corrupted the view, which can be confirmed by running DBCC

CHECKTABLE (on the indexed view).

The execution plan responsible for the corruption is shown below:

Zooming in shows the zero-rows input to the Stream Aggregate and the one-row output:

If you want to try the corruption script above with a delete instead of an insert, here is an example:

-- No rows match this predicate

DELETE dbo.T1

WHERE Value BETWEEN 10 AND 50;

The delete affects no base table rows, but still changes the indexed view's sum column to NULL.

Generalizing the Bug

You can probably come up with any number of insert, and delete base table queries that affect no rows,

and cause this indexed view corruption. However, the same basic issue applies to a broader class of

problem than just inserts and deletes that affect no base table rows.

It is possible, for example, to produce the same corruption using an insert that does add rows to the

base table. The essential ingredient is that no added rows should qualify for the view. This will result in

an empty input to the Stream Aggregate, and the corruption-causing NULL row output from the

following Compute Scalar.

One way to achieve this is to include a WHERE clause in the view that rejects some of the base table

rows:

ALTER VIEW dbo.IV

WITH SCHEMABINDING

AS

SELECT

 TotalSum = SUM(T1.Value),

 NumRows = COUNT_BIG(*)

FROM dbo.T1 AS T1

WHERE

 -- New!

 T1.GroupID BETWEEN 1 AND 3;

GO

CREATE UNIQUE CLUSTERED INDEX cuq

ON dbo.IV (NumRows);

Given the new restriction on group IDs included in the view, the following insert will add rows to the

base table, but still corrupt the indexed view will a NULL sum:

-- So we can undo

BEGIN TRANSACTION;

-- Show the starting state

SELECT * FROM dbo.IV AS IV OPTION (EXPAND VIEWS);

SELECT * FROM dbo.IV AS IV WITH (NOEXPAND);

-- The added row does not qualify for the view

INSERT dbo.T1

 (GroupID, Value)

VALUES

 (4, 100);

-- Show the final state

SELECT * FROM dbo.IV AS IV OPTION (EXPAND VIEWS);

SELECT * FROM dbo.IV AS IV WITH (NOEXPAND);

-- Undo the damage

ROLLBACK TRANSACTION;

The output shows the now-familiar index corruption:

A similar effect can be produced using a view that contains one or more inner joins. As long as rows

added to the base table are rejected (for example by failing to join), the Stream Aggregate will receive

no rows, the Compute Scalar will generate a NULL sum, and the indexed view will be likely become

corrupted.

Final Thoughts

This problem happens not to occur for update queries (at least as far as I can tell) but this appears to be

more by accident than design – the problematic Stream Aggregate is still present in potentially-

vulnerable update plans, but the Compute Scalar that generates the NULL sum is not added (or perhaps

optimized away). Please let me know if you manage to reproduce the bug using an update query.

Until this bug is corrected (or, perhaps, scalar aggregates become disallowed in indexed views) be very

careful about using aggregates in an indexed view without a GROUP BY clause.

This article was prompted by a Connect item submitted by Vladimir Moldovanenko, who was kind

enough to leave a comment on an old blog post of mine (which concerns a different indexed view

corruption caused by the MERGE statement). Vladimir was using scalar aggregates in an indexed view

for sound reasons, so don't be too quick to judge this bug as an edge case that you will never encounter

in a production environment! My thanks to Vladimir for alerting me to his Connect item.

Internals of the Seven SQL Server Sorts-Part 1
By Paul White

As far as graphical execution plans are concerned, there is just one icon for a physical sort in SQL Server:

This same icon is used for the three logical sort operators: Sort, Top N Sort, and Distinct Sort:

Going a level deeper, there are four different implementations of Sort in the execution engine (not

counting batch sorting for optimized loop joins, which is not a full sort, and not visible in plans anyway).

If you are using SQL Server 2014, the number of execution engine Sort implementations increases to

seven:

8. CQScanSortNew

9. CQScanTopSortNew

10. CQScanIndexSortNew

11. CQScanPartitionSortNew (SQL Server 2014 only)

12. CQScanInMemSortNew

13. In-Memory OLTP (Hekaton) natively compiled procedure Top N Sort (SQL Server 2014 only)

14. In-Memory OLTP (Hekaton) natively compiled procedure General Sort (SQL Server 2014 only)

This article looks at these sort implementations and when each is used in SQL Server. Part one covers

the first four items on the list.

1. CQScanSortNew

This is the most general sort class, used when none of the other available options is applicable. General

sort uses a workspace memory grant reserved just before query execution begins. This grant is

proportional to cardinality estimates and average row size expectations, and cannot be increased after

query execution begins.

The current implementation appears to use a variety of internal merge sort (perhaps binary merge sort),

transitioning to external merge sort (with multiple passes if necessary) if the reserved memory turns out

to be insufficient. External merge sort uses physical tempdb space for sort runs that do not fit in memory

(commonly known as a sort spill). General sort may also be configured to apply distinctness during the

sorting operation.

The following partial stack trace shows an example of the CQScanSortNew class sorting strings using an

internal merge sort:

In execution plans, Sort provides information about the fraction of the overall query workspace memory

grant that is available to the Sort when reading records (the input phase), and the fraction available

when sorted output is being consumed by parent plan operators (the output phase).

The memory grant fraction is a number between 0 and 1 (where 1 = 100% of the granted memory) and

is visible in SSMS by highlighting the Sort and looking in the Properties window. The example below was

taken from a query with only a single Sort operator, so it has the full query workspace memory grant

available during both input and output phases:

The memory fractions reflect the fact that during its input phase, Sort has to share the overall query

memory grant with concurrently-executing memory-consuming operators below it in the execution

plan. Similarly, during the output phase, Sort has to share granted memory with concurrently-executing

memory-consuming operators above it in the execution plan.

The query processor is smart enough to know that some operators are blocking (stop-and-go),

effectively marking boundaries where the memory grant can be recycled and reused. In parallel plans,

the memory grant fraction available to a general Sort is split evenly between threads, and cannot be

rebalanced at runtime in case of skew (a common cause of spilling in parallel sort plans).

SQL Server 2012 and later includes additional information about the minimum workspace memory grant

required to initialize memory-consuming plan operators, and the desired memory grant (the "ideal"

amount of memory estimated to be needed to complete the whole operation in memory). In a post-

execution ("actual") execution plan, there is also new information about any delays in acquiring the

memory grant, the maximum amount of memory actually used, and how the memory reservation was

distributed across NUMA nodes.

The following AdventureWorks examples all use a CQScanSortNew general sort:

-- An Ordinary Sort (CQScanSortNew)

SELECT

 P.FirstName,

 P.MiddleName,

 P.LastName

FROM Person.Person AS P

ORDER BY

 P.FirstName,

 P.MiddleName,

 P.LastName;

-- Distinct Sort (also CQScanSortNew)

SELECT DISTINCT

 P.FirstName,

 P.MiddleName,

 P.LastName

FROM Person.Person AS P

ORDER BY

 P.FirstName,

 P.MiddleName,

 P.LastName;

-- Same query expressed using GROUP BY

-- Same Distinct Sort (CQScanSortNew) execution plan

SELECT

 P.FirstName,

 P.MiddleName,

 P.LastName

FROM Person.Person AS P

GROUP BY

 P.FirstName,

 P.MiddleName,

 P.LastName

ORDER BY

 P.FirstName,

 P.MiddleName,

 P.LastName;

The first query (a non-distinct sort) produces the following execution plan:

The second and third (equivalent) queries produce this plan:

CQScanSortNew can be used for both logical general Sort and logical Distinct Sort.

2. CQScanTopSortNew

CQScanTopSortNew is a subclass of CQScanSortNew used to implement a Top N Sort (as the name

suggests). CQScanTopSortNew delegates much of the core work to CQScanSortNew, but modifies the

detailed behaviour in different ways, depending on the value of N.

For N > 100, CQScanTopSortNew is essentially just a regular CQScanSortNew sort that automatically

stops producing sorted rows after N rows. For N <= 100, CQScanTopSortNew retains only the current

Top N results during the sort operation, and keeps track of the lowest key value that currently qualifies.

For example, during an optimized Top N Sort (where N <= 100) the call stack features RowsetTopN

whereas with the general sort in section 1 we saw RowsetSorted:

For a Top N Sort where N > 100, the call stack at the same stage of execution is the same as the general

sort seen earlier:

Notice that the CQScanTopSortNew class name does not appear in either of those stack traces. This is

simply due to the way sub-classing works. At other points during the execution of these queries,

CQScanTopSortNew methods (e.g. Open, GetRow, and CreateTopNTable) do appear explicitly on the call

stack. As an example, the following was taken at a later point in query execution and does show the

CQScanTopSortNew class name:

Top N Sort and the Query Optimizer

The query optimizer knows nothing about Top N Sort, which is an execution engine operator only. When

the optimizer produces an output tree with a physical Top operator immediately above a (non-distinct)

physical Sort, a post-optimization rewrite can collapse the two physical operations into a single Top N

Sort operator. Even in the N > 100 case, this represents a saving over passing rows iteratively between a

Sort output and a Top input.

The following query uses a couple of undocumented trace flags to show the optimizer output and the

post-optimization rewrite in action:

SELECT TOP (10)

 P.FirstName,

 P.MiddleName,

 P.LastName

FROM Person.Person AS P

ORDER BY

 P.FirstName,

 P.MiddleName,

 P.LastName

OPTION (QUERYTRACEON 3604, QUERYTRACEON 8607, QUERYTRACEON 7352);

The optimizer's output tree shows separate physical Top and Sort operators:

After the post-optimization rewrite, the Top and Sort have been collapsed into a single Top N Sort:

The graphical execution plan for the T-SQL query above shows the single Top N Sort operator:

Breaking the Top N Sort rewrite

The Top N Sort post-optimization rewrite can only collapse an adjacent Top and non-distinct Sort into a

Top N Sort. Adding DISTINCT (or the equivalent GROUP BY clause) to the query above will prevent the

Top N Sort rewrite:

SELECT DISTINCT TOP (10)

 P.FirstName,

 P.MiddleName,

 P.LastName

FROM Person.Person AS P

ORDER BY

 P.FirstName,

 P.MiddleName,

 P.LastName;

The final execution plan for this query features separate Top and Sort (Distinct Sort) operators:

The Sort there is the general CQScanSortNew class running in distinct mode as seen in section 1 earlier.

A second way to prevent the rewrite to a Top N Sort is to introduce one or more additional operators

between the Top and the Sort. For example:

SELECT TOP (10)

 P.FirstName,

 P.MiddleName,

 P.LastName,

 rn = RANK() OVER (ORDER BY P.FirstName)

FROM Person.Person AS P

ORDER BY

 P.FirstName,

 P.MiddleName,

 P.LastName;

The query optimizer's output now happens to have an operation between the Top and the Sort, so a Top

N Sort is not generated during the post-optimization rewrite phase:

The execution plan is:

The compute sequence (implemented as two Segments and a Sequence Project) between the Top and

Sort prevents the collapse of the Top and Sort to a single Top N Sort operator. Correct results will still be

obtained from this plan of course, but execution may be a little less efficient than it could have been

with the combined Top N Sort operator.

3. CQScanIndexSortNew

CQScanIndexSortNew is used only for sorting in DDL index building plans. It reuses some of the general

sort facilities we have already seen, but adds specific optimizations for index insertions. It is also the

only sort class that can dynamically request more memory after execution has begun.

Cardinality estimation is often accurate for an index building plan because the total number of rows in

the table is usually a known quantity. That is not to say that memory grants for index building plan sorts

will always be accurate; it just makes it a little less easy to demo. So, the following example uses an

undocumented, but reasonably well-known, extension to the UPDATE STATISTICS command to fool the

optimizer into thinking the table we are building an index on only has one row:

-- Test table

CREATE TABLE dbo.People

(

 FirstName dbo.Name NOT NULL,

 LastName dbo.Name NOT NULL

);

GO

-- Copy rows from Person.Person

INSERT dbo.People WITH (TABLOCKX)

(

 FirstName,

 LastName

)

SELECT

 P.FirstName,

 P.LastName

FROM Person.Person AS P;

GO

-- Pretend the table only has 1 row and 1 page

UPDATE STATISTICS dbo.People

WITH ROWCOUNT = 1, PAGECOUNT = 1;

GO

-- Index building plan

CREATE CLUSTERED INDEX cx

ON dbo.People (LastName, FirstName);

GO

-- Tidy up

DROP TABLE dbo.People;

The post-execution ("actual") execution plan for the index build does not show a warning for a spilled

sort (when run on SQL Server 2012 or later) despite the 1-row estimate and the 19,972 rows actually

sorted:

Confirmation that the initial memory grant was dynamically expanded comes from looking at the root

iterator's properties. The query was initially granted 1024KB of memory, but ultimately consumed

1576KB:

The dynamic increase in granted memory can also be tracked using the Debug channel Extended Event

sort_memory_grant_adjustment. This event is generated each time the memory allocation is

dynamically increased. If this event is being monitored, we can capture a stack trace when it is

published, either via Extended Events (with some awkward configuration and a trace flag) or from an

attached debugger, as below:

Dynamic memory grant expansion can also help with parallel index build plans where the distribution of

rows across threads is uneven. The amount of memory that can be consumed this way is not unlimited,

however. SQL Server checks each time an expansion is needed to see if the request is reasonable given

the resources available at that time.

Some insight to this process can be obtained by enabling undocumented trace flag 1504, together with

3604 (for message output to the console) or 3605 (output to the SQL Server error log). If the index build

plan is parallel, only 3605 is effective because parallel workers cannot send trace messages cross-thread

to the console.

The following section of trace output was captured while building a moderately large index on a SQL

Server 2014 instance with limited memory:

Memory expansion for the sort proceeded until the request was considered infeasible, at which point it

was determined that enough memory was already held for a single-pass sort spill to complete.

4. CQScanPartitionSortNew

This class name might suggest that this type of sort is used for partitioned table data, or when building

indexes on partitioned tables, but neither of those is actually the case. Sorting partitioned data uses

CQScanSortNew or CQScanTopSortNew as normal; sorting rows for insertion to a partitioned index

generally uses CQScanIndexSortNew as seen in section 3.

The CQScanPartitionSortNew sort class is only present in SQL Server 2014. It is only used when sorting

rows by partition id, prior to insertion into a partitioned clustered columnstore index. Note that it is only

used for partitioned clustered columnstore; regular (non-partitioned) clustered columnstore insert plans

do not benefit from a sort.

Inserts into a partitioned clustered columnstore index will not always feature a sort. It is a cost-based

decision that depends on the estimated number of rows to be inserted. If the optimizer estimates that it

is worth sorting the inserts by partition to optimize I/O, the columnstore insert operator will have the

DMLRequestSort property set to true, and a CQScanPartitionSortNew sort may appear in the execution

plan.

The demo in this section uses a permanent table of sequential numbers. If you do not have one of those,

the following script can be used to create one:

-- Itzik Ben-Gan's row generator

WITH

 L0 AS (SELECT 1 AS c UNION ALL SELECT 1),

 L1 AS (SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B),

 L2 AS (SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B),

 L3 AS (SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B),

 L4 AS (SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B),

 L5 AS (SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B),

 Nums AS (SELECT ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS n FROM L5)

SELECT

 -- Destination column type integer NOT NULL

 ISNULL(CONVERT(integer, N.n), 0) AS n

INTO dbo.Numbers

FROM Nums AS N

WHERE N.n >= 1

AND N.n <= 1000000

OPTION (MAXDOP 1);

GO

ALTER TABLE dbo.Numbers

ADD CONSTRAINT PK_Numbers_n

PRIMARY KEY CLUSTERED (n)

WITH (SORT_IN_TEMPDB = ON, MAXDOP = 1, FILLFACTOR = 100);

The demo itself involves creating a partitioned clustered columnstore indexed table, and inserting

enough rows (from the Numbers table above) to convince the optimizer to use a pre-insert partition

sort:

CREATE PARTITION FUNCTION PF (integer)

AS RANGE RIGHT

FOR VALUES (1000, 2000, 3000);

GO

CREATE PARTITION SCHEME PS

AS PARTITION PF

ALL TO ([PRIMARY]);

GO

-- A partitioned heap

CREATE TABLE dbo.Partitioned

(

 col1 integer NOT NULL,

 col2 integer NOT NULL DEFAULT ABS(CHECKSUM(NEWID())),

 col3 integer NOT NULL DEFAULT ABS(CHECKSUM(NEWID()))

)

ON PS (col1);

GO

-- Convert heap to partitioned clustered columnstore

CREATE CLUSTERED COLUMNSTORE INDEX ccsi

ON dbo.Partitioned

ON PS (col1);

GO

-- Add rows to the partitioned clustered columnstore table

INSERT dbo.Partitioned (col1)

SELECT N.n

FROM dbo.Numbers AS N

WHERE N.n BETWEEN 1 AND 4000;

The execution plan for the insert shows the sort used to ensure rows arrive at the clustered columnstore

insert iterator in partition id order:

A call stack captured while the CQScanPartitionSortNew sort was in progress is shown below:

There is something else interesting about this sort class. Sorts normally consume their entire input in

their Open method call. After sorting, they return control to their parent operator. Later, the sort starts

to produce sorted output rows one at a time in the usual way via GetRow calls. CQScanPartitionSortNew

is different, as you can see in the call stack above: It does not consume its input during its Open method

– it waits until GetRow is called by its parent for the first time.

Not every sort on partition id that appears in an execution plan inserting rows into a partitioned

clustered columnstore index will be a CQScanPartitionSortNew sort. If the sort appears immediately to

the right of the columnstore index insert operator, the chances are very good that it is a

CQScanPartitionSortNew sort.

Finally, CQScanPartitionSortNew is one of only two sort classes that sets the Soft Sort property exposed

when Sort operator execution plan properties are generated with undocumented trace flag 8666

enabled:

The meaning of "soft sort" in this context is unclear. It is tracked as a property in the query optimizer's

framework, and seems likely to be related to optimized partitioned data inserts, but determining exactly

what it means requires further research. In the meantime, this property can be used to infer that a Sort

is implemented with CQScanPartitionSortNew without attaching a debugger. The meaning of the

InMemory property flag shown above will be covered in part 2. It does not indicate whether a regular

sort was performed in memory or not.

Summary of Part One

 CQScanSortNew is the general sort class used when no other option is applicable. It appears

uses a variety of internal merge sort in memory, transitioning to external merge sort using

tempdb if granted memory workspace turns out to be insufficient. This class can be used for

General Sort and Distinct Sort.

 CQScanTopSortNew implements Top N Sort. Where N <= 100, an in-memory internal merge sort

is performed, and never spills to tempdb. Only the current top n items are retained in memory

during the sort. For N > 100 CQScanTopSortNew is equivalent to a CQScanSortNew sort that

automatically stops after N rows have been output. An N > 100 sort can spill to tempdb if

necessary.

 The Top N Sort seen in execution plans is a post-query-optimization rewrite. If the query

optimizer produces an output tree with an adjacent Top and non-distinct Sort, this rewrite can

collapse the two physical operators into a single Top N Sort operator.

 CQScanIndexSortNew is used only in index building DDL plans. It is the only standard sort class

that can dynamically acquire more memory during execution. Index building sorts can still spill

to disk in some circumstances, including when SQL Server decides a requested memory increase

is not compatible with the current workload.

 CQScanPartitionSortNew is only present in SQL Server 2014 and is used only to optimize inserts

to a partitioned clustered columnstore index. It delivers a "soft sort".

Internals of the Seven SQL Server Sorts-Part 2

By Paul White

The seven SQL Server sort implementation classes are:
CQScanSortNew

CQScanTopSortNew

CQScanIndexSortNew

CQScanPartitionSortNew (SQL Server 2014 only)

CQScanInMemSortNew

In-Memory OLTP (Hekaton) natively compiled procedure Top N Sort (SQL Server 2014 only)

8. In-Memory OLTP (Hekaton) natively compiled procedure General Sort (SQL Server 2014 only)

9. The first four types were covered in part one of this article.

10. 5. CQScanInMemSortNew

11. This sort class has a number of interesting features, some of them unique:

12. As the name suggests, it always sorts entirely in memory; it will never spill to tempdb

13. Sorting is always performed using quicksort qsort_s in the standard C run-time library

MSVCR100

14. It can perform all three logical sort types: General, Top N, and Distinct Sort

It can be used for clustered columnstore per-partition soft sorts (see section 4 in part 1)

The memory it uses may be cached with the plan rather than being reserved just before execution

It can be identified as an in-memory sort in execution plans

A maximum of 500 values can be sorted

 It is never used for index-building sorts (see section 3 in part 1)

 CQScanInMemSortNew is a sort class you will not encounter often. Since it always sorts in

memory using a standard library quicksort algorithm, it would not be a good choice for general

database sorting tasks. In fact, this sort class is only used when all its inputs are runtime

constants (including @variable references). From an execution plan perspective, that means the

input to the Sort operator must be a Constant Scan operator, as the examples below

demonstrate:

 -- Regular Sort on system scalar functions

 SELECT X.i

 FROM

 (

 SELECT @@TIMETICKS UNION ALL

 SELECT @@TOTAL_ERRORS UNION ALL

 SELECT @@TOTAL_READ UNION ALL

 SELECT @@TOTAL_WRITE

) AS X (i)

 ORDER BY X.i;

 -- Distinct Sort on constant literals

 WITH X (i) AS

 (

 SELECT 3 UNION ALL

 SELECT 1 UNION ALL

 SELECT 1 UNION ALL

 SELECT 2

)

 SELECT DISTINCT X.i

 FROM X

 ORDER BY X.i;

 -- Top N Sort on variables, constants, and functions

 DECLARE

 @x integer = 1,

 @y integer = 2;

 SELECT TOP (1)

 X.i

FROM

(

 VALUES

 (@x), (@y), (123),

 (@@CONNECTIONS)

) AS X (i)

ORDER BY X.i;

The execution plans are:

A typical call stack during sorting is shown below. Notice the call to qsort_s in the MSVCR100 library:

All three execution plans shown above are in-memory sorts using CQScanInMemSortNew with inputs

small enough for the sort memory to be cached. This information is not exposed by default in execution

plans, but it can be revealed using undocumented trace flag 8666. When that flag is active, additional

properties appear for the Sort operator:

The cache buffer is limited to 62 rows in this example as demonstrated below:
-- Cache buffer limited to 62 rows

SELECT X.i

FROM

(

 VALUES

 (001),(002),(003),(004),(005),(006),(007),(008),(009),(010),

 (011),(012),(013),(014),(015),(016),(017),(018),(019),(020),

 (021),(022),(023),(024),(025),(026),(027),(028),(029),(030),

 (031),(032),(033),(034),(035),(036),(037),(038),(039),(040),

 (041),(042),(043),(044),(045),(046),(047),(048),(049),(050),

 (051),(052),(053),(054),(055),(056),(057),(058),(059),(060),

 (061),(062)--, (063)

) AS X (i)

ORDER BY X.i;

Uncomment the final item in that script to see the Sort cache buffer property change from 1 to 0:

When the buffer is not cached, the in-memory sort must allocate memory as it initializes and as
required as it reads rows from its input. When a cached buffer can be used, this memory allocation work
is avoided.

The following script can be used to demonstrate that the maximum number of items for a
CQScanInMemSortNew in-memory quicksort is 500:
SELECT X.i

FROM

(

 VALUES

 (001),(002),(003),(004),(005),(006),(007),(008),(009),(010),

 (011),(012),(013),(014),(015),(016),(017),(018),(019),(020),

 (021),(022),(023),(024),(025),(026),(027),(028),(029),(030),

 (031),(032),(033),(034),(035),(036),(037),(038),(039),(040),

 (041),(042),(043),(044),(045),(046),(047),(048),(049),(050),

 (051),(052),(053),(054),(055),(056),(057),(058),(059),(060),

 (061),(062),(063),(064),(065),(066),(067),(068),(069),(070),

 (071),(072),(073),(074),(075),(076),(077),(078),(079),(080),

 (081),(082),(083),(084),(085),(086),(087),(088),(089),(090),

 (091),(092),(093),(094),(095),(096),(097),(098),(099),(100),

 (101),(102),(103),(104),(105),(106),(107),(108),(109),(110),

 (111),(112),(113),(114),(115),(116),(117),(118),(119),(120),

 (121),(122),(123),(124),(125),(126),(127),(128),(129),(130),

 (131),(132),(133),(134),(135),(136),(137),(138),(139),(140),

 (141),(142),(143),(144),(145),(146),(147),(148),(149),(150),

 (151),(152),(153),(154),(155),(156),(157),(158),(159),(160),

 (161),(162),(163),(164),(165),(166),(167),(168),(169),(170),

 (171),(172),(173),(174),(175),(176),(177),(178),(179),(180),

 (181),(182),(183),(184),(185),(186),(187),(188),(189),(190),

 (191),(192),(193),(194),(195),(196),(197),(198),(199),(200),

 (201),(202),(203),(204),(205),(206),(207),(208),(209),(210),

 (211),(212),(213),(214),(215),(216),(217),(218),(219),(220),

 (221),(222),(223),(224),(225),(226),(227),(228),(229),(230),

 (231),(232),(233),(234),(235),(236),(237),(238),(239),(240),

 (241),(242),(243),(244),(245),(246),(247),(248),(249),(250),

 (251),(252),(253),(254),(255),(256),(257),(258),(259),(260),

 (261),(262),(263),(264),(265),(266),(267),(268),(269),(270),

 (271),(272),(273),(274),(275),(276),(277),(278),(279),(280),

 (281),(282),(283),(284),(285),(286),(287),(288),(289),(290),

 (291),(292),(293),(294),(295),(296),(297),(298),(299),(300),

 (301),(302),(303),(304),(305),(306),(307),(308),(309),(310),

 (311),(312),(313),(314),(315),(316),(317),(318),(319),(320),

 (321),(322),(323),(324),(325),(326),(327),(328),(329),(330),

 (331),(332),(333),(334),(335),(336),(337),(338),(339),(340),

 (341),(342),(343),(344),(345),(346),(347),(348),(349),(350),

 (351),(352),(353),(354),(355),(356),(357),(358),(359),(360),

 (361),(362),(363),(364),(365),(366),(367),(368),(369),(370),

 (371),(372),(373),(374),(375),(376),(377),(378),(379),(380),

 (381),(382),(383),(384),(385),(386),(387),(388),(389),(390),

 (391),(392),(393),(394),(395),(396),(397),(398),(399),(400),

 (401),(402),(403),(404),(405),(406),(407),(408),(409),(410),

 (411),(412),(413),(414),(415),(416),(417),(418),(419),(420),

 (421),(422),(423),(424),(425),(426),(427),(428),(429),(430),

 (431),(432),(433),(434),(435),(436),(437),(438),(439),(440),

 (441),(442),(443),(444),(445),(446),(447),(448),(449),(450),

 (451),(452),(453),(454),(455),(456),(457),(458),(459),(460),

 (461),(462),(463),(464),(465),(466),(467),(468),(469),(470),

 (471),(472),(473),(474),(475),(476),(477),(478),(479),(480),

 (481),(482),(483),(484),(485),(486),(487),(488),(489),(490),

 (491),(492),(493),(494),(495),(496),(497),(498),(499),(500)

--, (501)

) AS X (i)

ORDER BY X.i;

Again, uncomment the last item to see the InMemory Sort property change from 1 to 0. When this
happens, CQScanInMemSortNew is replaced by either CQScanSortNew (see section 1) or
CQScanTopSortNew (section 2). A non-CQScanInMemSortNew sort may still be performed in memory, of
course, it just uses a different algorithm, and is allowed to spill to tempdb if necessary.
6. In-Memory OLTP natively compiled stored procedure Top N Sort

The current implementation of In-Memory OLTP (previously code-named Hekaton) natively-compiled

stored procedures uses a priority queue followed by qsort_s for Top N Sorts, when the following
conditions are met:
The query contains TOP (N) with an ORDER BY clause

The value of N is a constant literal (not a variable)
N has a maximum value of 8192; although

The presence of joins or aggregations may reduce the 8192 value as documented here

The following code creates a Hekaton table containing 4000 rows:

CREATE DATABASE InMemoryOLTP;

GO

-- Add memory optimized filegroup

ALTER DATABASE InMemoryOLTP

ADD FILEGROUP InMemoryOLTPFileGroup

CONTAINS MEMORY_OPTIMIZED_DATA;

GO

-- Add file (adjust path if necessary)

ALTER DATABASE InMemoryOLTP

ADD FILE

(

 NAME = N'IMOLTP',

 FILENAME = N'C:\Program Files\Microsoft SQL

Server\MSSQL12.SQL2014\MSSQL\DATA\IMOLTP.hkf'

)

TO FILEGROUP InMemoryOLTPFileGroup;

GO

USE InMemoryOLTP;

GO

CREATE TABLE dbo.Test

(

 col1 integer NOT NULL,

 col2 integer NOT NULL,

 col3 integer NOT NULL,

 CONSTRAINT PK_dbo_Test

 PRIMARY KEY NONCLUSTERED HASH (col1)

 WITH (BUCKET_COUNT = 8192)

)

WITH

(

 MEMORY_OPTIMIZED = ON,

 DURABILITY = SCHEMA_ONLY

);

GO

-- Add numbers from 1-4000 using

-- Itzik Ben-Gan's number generator

WITH

 L0 AS (SELECT 1 AS c UNION ALL SELECT 1),

 L1 AS (SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B),

 L2 AS (SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B),

 L3 AS (SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B),

 L4 AS (SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B),

 L5 AS (SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B),

 Nums AS (SELECT ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS n FROM L5)

INSERT dbo.Test

 (col1, col2, col3)

SELECT

 N.n,

 ABS(CHECKSUM(NEWID())),

 ABS(CHECKSUM(NEWID()))

FROM Nums AS N

WHERE N.n BETWEEN 1 AND 4000;

The next script creates a suitable Top N Sort in a natively-compiled stored procedure:
-- Natively-compiled Top N Sort stored procedure

CREATE PROCEDURE dbo.TestP

WITH EXECUTE AS OWNER, SCHEMABINDING, NATIVE_COMPILATION

AS

BEGIN ATOMIC

WITH

(

 TRANSACTION ISOLATION LEVEL = SNAPSHOT,

 LANGUAGE = N'us_english'

)

 SELECT TOP (2) T.col2

 FROM dbo.Test AS T

 ORDER BY T.col2

END;

GO

EXECUTE dbo.TestP;

The estimated execution plan is:

A call stack captured during execution shows the insert to the priority queue in progress:

After the priority queue build is complete, the next call stack shows a final pass through the standard
library quicksort:

The xtp_p_* library shown in those call stacks is the natively-compiled dll for the stored

procedure, with source code saved on the local SQL Server instance. The source code is automatically-
generated from the stored procedure definition. For example, the C file for this native stored procedure
contains the following fragment:

This is as close as we can get to having access to SQL Server source code.

7. In-Memory OLTP natively compiled stored procedure Sort
Natively-compiled procedures do not currently support Distinct Sort, but non-distinct general

sorting is supported, without any restrictions on the size of the set. To demonstrate, we will first
add 6,000 rows to the test table, giving a total of 10,000 rows:
WITH

 L0 AS (SELECT 1 AS c UNION ALL SELECT 1),

 L1 AS (SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B),

 L2 AS (SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B),

 L3 AS (SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B),

 L4 AS (SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B),

 L5 AS (SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B),

 Nums AS (SELECT ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS n FROM L5)

INSERT dbo.Test

 (col1, col2, col3)

SELECT

 N.n,

 ABS(CHECKSUM(NEWID())),

 ABS(CHECKSUM(NEWID()))

FROM Nums AS N

WHERE N.n BETWEEN 4001 AND 10000;

Now we can drop the previous test procedure (natively-compiled procedures cannot currently be

altered) and create a new one that performs an ordinary (not top-n) sort of the 10,000 rows:
DROP PROCEDURE dbo.TestP;

GO

CREATE PROCEDURE dbo.TestP

WITH EXECUTE AS OWNER, SCHEMABINDING, NATIVE_COMPILATION

AS

BEGIN ATOMIC

WITH

(

 TRANSACTION ISOLATION LEVEL = SNAPSHOT,

 LANGUAGE = N'us_english'

)

 SELECT T.col2

 FROM dbo.Test AS T

 ORDER BY T.col2

END;

GO

EXECUTE dbo.TestP;

The estimated execution plan is:

Tracing the execution of this sort shows that it starts by generating multiple small sorted runs using
standard library quicksort again:

Once that process is complete, the sorted runs are merged, using a priority queue scheme:

Again, the C source code for the procedure shows some of the details:

Summary of Part 2

CQScanInMemSortNew is always an in-memory quicksort. It is limited to 500 rows from a Constant

Scan, and may cache its sort memory for small inputs. A sort can be identified as a
CQScanInMemSortNew sort using execution plan properties exposed by trace flag 8666.
Hekaton native compiled Top N Sort requires a constant literal value for N <= 8192 and sorts

using a priority queue followed by a standard quicksort
Hekaton native compiled General Sort can sort any number of rows, using standard library

quicksort to generate sort runs, and a priority queue merge sort to combine runs. It does not
support Distinct Sort.

http://cdn.sqlperformance.com/wp-content/uploads/2015/04/image191.png

Performance Tuning the Whole Query Plan

Rewriting Queries to Improve Performance

The Read Uncommitted Isolation Level

Another Way to View Automatic Updates to Statistics

By Erin Stellato

Back in April I wrote about some native methods within SQL Server that can be used to track automatic

updates to statistics. The three options I provided were SQL Trace, Extended Events, and snapshots of

sys.dm_db_stats_properties. While these three options remain viable (even in SQL Server 2014, though

my top recommendation is still XE), an additional option I noticed when running some tests recently is

SQL Sentry Plan Explorer.

Many of you use Plan Explorer simply for reading executing plans, which is great. It has numerous

benefits over Management Studio when it comes to reviewing plans – from the little things, like being

able to sort on top operators and easily see cardinality estimate issues, to bigger benefits, like handling

complex and large plans and being able to select one statement within a batch for easier plan review.

But behind the visuals that make it easier to dissect plans, Plan Explorer also offers the ability to execute

a query and view the actual plan (rather than running it in Management Studio and saving it off). And on

top of that, when you run the plan from PE, there is additional information captured that can be useful.

Let's start with the demo that I used in my recent post, How Automatic Updates to Statistics Can Affect

Query Performance. I started with the AdventureWorks2012 database, and I created a copy of the

SalesOrderHeader table with over 200 million rows. The table has a clustered index on SalesOrderID,

and a nonclustered index on CustomerID, OrderDate, SubTotal. [Again: if you are going to do repeated

tests, take a backup of this database at this point to save yourself some time.] I first verified the current

number of rows in the table, and the number of rows that would need to change to invoke an automatic

update:

SELECT

OBJECT_NAME([p].[object_id]) [TableName],

[si].[name] [IndexName],

[au].[type_desc] [Type],

[p].[rows] [RowCount],

([p].[rows]*.20) + 500 [UpdateThreshold],

[au].total_pages [PageCount],

(([au].[total_pages]*8)/1024)/1024 [TotalGB]

FROM [sys].[partitions] [p]

JOIN [sys].[allocation_units] [au] ON [p].[partition_id] = [au].[container_id]

JOIN [sys].[indexes] [si] on [p].[object_id] = [si].object_id and [p].[index_id] =

[si].[index_id]

WHERE [p].[object_id] = OBJECT_ID(N'Sales.Big_SalesOrderHeader');

http://cdn.sqlperformance.com/wp-content/uploads/2014/07/1_tableatstart2.png"

Big_SalesOrderHeader CIX and NCI Information

I also verified the current statistics header for the index:

DBCC SHOW_STATISTICS

('Sales.Big_SalesOrderHeader',[IX_Big_SalesOrderHeader_CustomerID_OrderDate_SubTotal]);

NCI Statistics: At Start

The stored procedure that I use for testing was already created, but for completeness the code is listed

below:

CREATE PROCEDURE Sales.usp_GetCustomerStats

@CustomerID INT,

@StartDate DATETIME,

@EndDate DATETIME

AS

BEGIN

 SET NOCOUNT ON;

 SELECT CustomerID, DATEPART(YEAR, OrderDate), DATEPART(MONTH, OrderDate),

COUNT([SalesOrderID]) as Computed

 FROM [Sales].[Big_SalesOrderHeader]

 WHERE CustomerID = @CustomerID

 AND OrderDate BETWEEN @StartDate and @EndDate

 GROUP BY CustomerID, DATEPART(YEAR, OrderDate), DATEPART(MONTH, OrderDate)

 ORDER BY DATEPART(YEAR, OrderDate), DATEPART(MONTH, OrderDate);

END

Previously, I either started a Trace or Extended Events session, or set up my method to snapshot

sys.dm_db_stats_properties to a table. For this example, I just ran the above stored procedure a few

times:

EXEC Sales.usp_GetCustomerStats 11331, '2012-08-01 00:00:00.000', '2012-08-31 23:59:59.997'

GO

EXEC Sales.usp_GetCustomerStats 11330, '2013-01-01 00:00:00.000', '2013-01-31 23:59:59.997'

GO

EXEC Sales.usp_GetCustomerStats 11506, '2012-11-01 00:00:00.000', '2012-11-30 23:59:59.997'

GO

EXEC Sales.usp_GetCustomerStats 17061, '2013-01-01 00:00:00.000', '2013-01-31 23:59:59.997'

GO

EXEC Sales.usp_GetCustomerStats 11711, '2013-03-01 00:00:00.000', '2013-03-31 23:59:59.997'

GO

EXEC Sales.usp_GetCustomerStats 15131, '2013-02-01 00:00:00.000', '2013-02-28 23:59:59.997'

GO

EXEC Sales.usp_GetCustomerStats 29837, '2012-10-01 00:00:00.000', '2012-10-31 23:59:59.997'

http://cdn.sqlperformance.com/wp-content/uploads/2014/07/2_stats-at-start.png

GO

EXEC Sales.usp_GetCustomerStats 15750, '2013-03-01 00:00:00.000', '2013-03-31 23:59:59.997'

GO

I then checked the procedure cache to verify the execution count, and also verified the plan that was

cached:

SELECT

OBJECT_NAME([st].[objectid]),

[st].[text],

[qs].[execution_count],

[qs].[creation_time],

[qs].[last_execution_time],

[qs].[min_worker_time],

[qs].[max_worker_time],

[qs].[min_logical_reads],

[qs].[max_logical_reads],

[qs].[min_elapsed_time],

[qs].[max_elapsed_time],

[qp].[query_plan]

FROM [sys].[dm_exec_query_stats] [qs]

CROSS APPLY [sys].[dm_exec_sql_text]([qs].plan_handle) [st]

CROSS APPLY [sys].[dm_exec_query_plan]([qs].plan_handle) [qp]

WHERE [st].[text] LIKE '%usp_GetCustomerStats%'

AND OBJECT_NAME([st].[objectid]) IS NOT NULL;

Plan Cache Info for the SP: At Start

Query Plan for Stored Procedure, using SQL Sentry Plan Explorer

The plan was created at 2014-09-29 23:23.01.

Next I added 61 million rows to the table to invalidate the current statistics, and once the insert

completed, I checked the row counts:

Big_SalesOrderHeader CIX and NCI Information: After insert of 61 million rows

http://cdn.sqlperformance.com/wp-content/uploads/2014/07/3_query_stats.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/04/original_plan.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/07/4_table-after-insert.png

Before running the stored procedure again, I verified that the execution count had not changed, that the

creation_time was still 2014-09-29 23:23.01 for the plan, and that statistics hadn't updated:

Plan Cache Info for the SP: Immediately After Insert

NCI Statistics: After Insert

Now, in the previous blog post, I ran the statement in Management Studio, but this time, I ran the query

directly from Plan Explorer, and captured the Actual Plan via PE (option circled in red in the image

below).

Execute Stored Procedure from Plan Explorer

When you execute a statement from PE, you have to enter the instance and database to which you want

to connect, and then you are notified that the query will run and the actual plan will be returned, but

results will not be returned. Note that this is different than Management Studio, where you do see the

results.

After I ran the stored procedure, in the output I not only get the plan, but I see what statements were

executed:

http://cdn.sqlperformance.com/wp-content/uploads/2014/07/3_query_stats.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/07/5_stats-after-insert.png
http://cdn.sqlperformance.com/wp-content/uploads/2014/07/query-in-PE.png

Plan Explorer output after execution SP (after insert)

This is pretty cool…in addition to seeing the statement executed in the stored procedure, I also see the

updates to statistics, just as I did when I captured updates using Extended Events or SQL Trace. Along

with the statement execution, we can also see CPU, duration, and IO information. Now – the caveat

here is that I can see this information if I run the statement that invokes the statistics update from Plan

Explorer. That probably won't happen often in your production environment, but you may see this when

you're doing testing (because hopefully your testing doesn't just involve running SELECT queries, but

also involves INSERT/UPDATE/DELETE queries just like you would see in a normal workload). However, if

you're monitoring your environment with a tool like SQL Sentry Performance Advisor, you might see

these updates in Top SQL as long as they exceed the Top SQL collection threshold. Performance Advisor

has default thresholds that queries must exceed before they are captured as Top SQL (e.g. duration

must exceed five (5) seconds), but you can change those and add other thresholds such as reads. In this

example, for testing purposes only, I changed my Top SQL minimum duration threshold to 10

milliseconds and my read threshold to 500, and Performance Advisor was able to capture some of the

statistics updates:

http://cdn.sqlperformance.com/wp-content/uploads/2014/07/PE_1a.png

Statistics updates captured by Performance Advisor

That said, whether monitoring can capture these events will ultimately depend on system resources and

the amount of data that has to be read to update the statistic. Your statistics updates may not exceed

these thresholds, so you may have to do more proactive digging to find them.

Summary

I always encourage DBAs to proactively manage statistics – which means that a job is in place to update

statistics on a regular basis. However, even if that job runs every night (which I'm not necessarily

recommending), it's still quite possible that updates to statistics occur automatically throughout the day,

because some tables are more volatile than others and have a high number of modifications. This is not

abnormal, and depending on the size of the table and the amount of modifications, the automatic

updates may not interfere significantly with user queries. But the only way to know is to monitor those

updates – whether you're using native tools or third-party tools – so that you can stay ahead of potential

issues and address them before they escalate.

http://cdn.sqlperformance.com/wp-content/uploads/2014/07/PA_1a.png

A Subquery Cardinal Estimation Bug

