
275
D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

1

INTRODUCTION
Kubernetes has exploded onto the technology scene over the last

couple of years, with a large number of major cloud companies

and others adopting it as the default way to orchestrate and scale

container-based workloads. Of course, as with any new, rapidly

developing, and popular technology, there are questions around

how best to secure Kubernetes deployments and where teams

should focus their efforts to reduce the risk of their clusters being the

next target of an attack.

The Kubernetes ecosystem is both comprehensive and rapidly

evolving. As such, it can be difficult to know which of the many

possible areas should be made a priority. Also, as there are more

than 60 different products and projects that offer Kubernetes

deployment and installation, that makes it difficult to provide

coherent guidance on security, since they all have differing ideas of

"secure defaults."

Before getting started, it is worth reviewing relevant Refcardz like

Getting Started With Kubernetes and Getting Started With Docker

to ensure you're familiar with some of the terms and concepts

discussed here.

THREAT MODEL
As with most things in security, one of the first areas to consider is

what your threat model is, since thinking about who might attack

your system, and how they would do it, could help prioritize your

security efforts. For most Kubernetes deployments, there are three

major categories of threat vectors:

1.	 External attackers: You can face attacks from outside your

cluster when deployed either on premises or in the cloud.

Attackers in this class have no credentials for your system,

so will focus on exposed network services to attempt to gain

access and elevate privileges.

2.	 Compromised containers: Kubernetes clusters are (in general)

designed to run a wide variety of workloads. Attackers may be

able to compromise a container running within your cluster,

and at that point, it's important to contain the attack while

minimizing the risk of the initial compromise widening to

encompasses the whole cluster. Here, the attacker will have

access to the resources of a single container, so restricting

container privileges is critical.

BROUGHT TO YOU IN PARTNERSHIP WITH

WRITTEN BY RORY MCCUNE, PRINCIPAL CONSULTANT AT NCC GROUP

CONTENTS

öö INTRODUCTION

öö THREAT MODEL

öö SECURING EXPOSED NETWORK SERVICES

öö HOST FILESYSTEM ACCESS

öö ACCESS TO A SERVICE TOKEN

öö NODE KERNEL ACCESS

öö KUBERNETES USER SECURITY

öö TOOLS AND REFERENCES

öö CONCLUSION

Kubernetes
Security

Automated CIS Kubernetes
Benchmark Testing

Get aqua’s kube-bench ›

Open-source project!

https://melissa.com/dzone-fab4
https://dzone.com/refcardz/kubernetes-essentials?chapter=1
https://dzone.com/refcardz/getting-started-with-docker-1
https://hubs.ly/H0dQX1N0

Full Lifecycle Security
for Kubernetes Deployments

Gain full-stack visibility
into your K8s cluster
security posture
Aqua Open-Source Kube-Tools

Use kube-hunter to run penetration tests on your
clusters using dozens of known attack vectors

Find the security gaps
in your K8s clusters

Full visibility into K8s
cluster security posture

Trusted image deployment
at Kubernetes scale

Real-time protection
of K8s workloads

 Try kube-hunter › Try kube-bench ›

Use kube-bench to assess your K8s clusters
against 100+ CIS K8s benchmark tests

Ensure that your K8s clusters
comply with security best practices

Learn more ›

https://www.aquasec.com/solutions/kubernetes-container-security/?utm_campaign=CS%3A%20DZone%20Kubernetes%20RefCard&utm_source=DZone&utm_medium=RefCard&utm_term=Kubernetes&utm_content=webpage
https://github.com/aquasecurity/kube-hunter?utm_campaign=CS%3A%20DZone%20Kubernetes%20RefCard&utm_source=DZone&utm_medium=RefCard&utm_term=Kubernetes&utm_content=kube-hunter
https://github.com/aquasecurity/kube-bench?utm_campaign=CS%3A%20DZone%20Kubernetes%20RefCard&utm_source=DZone&utm_medium=RefCard&utm_term=Kubernetes&utm_content=kube-bench

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

3

KUBERNETES SECURITY

BROUGHT TO YOU IN PARTNERSHIP WITH

3.	 Malicious users: Kubernetes is a multi-user system by

design. The possibility of an attacker with access to a single

user's credentials attempting to gain increased access to the

system is likely to be relevant in a number of scenarios. Here,

restrictions on what users can do become more important.

Considering these threats, some possible lines of defense from a

security perspective would be as follows.

SECURING EXPOSED NETWORK SERVICES
Kubernetes has several services that make up the control plane. It's

important to address the security of these services at the cluster

level and not rely on external security protections like network

firewalls, as an attacker may be able to access these services via

vulnerabilities in the applications running on your cluster (e.g. via

a server-side request forgery attack) in a way that would bypass

traditional network firewall protection.

KUBERNETES API
This is the main entry point for management of a Kubernetes

cluster and runs on the control plane node(s). It will typically run on

6443/TCP, although it may also be running on 443/TCP or 8443/

TCP depending on the cluster configuration. Additionally, on some

clusters, the unsecure API port may be enabled. This is a legacy

option but is still seen on some clusters. Typically, this service will be

be available on port 8080/TCP.

There have been a number of cases of unauthorized access to the

Kubernetes API and, in particular, the dashboard area leading to

system compromise, showing how important it is that this is secured.

Checking for the configuration of the API server to ensure that it

has been configured securely is achieved by reviewing the start-up

flags used when launching it. The precise location of these flags

will depend on the installation method used. When using kubeadm,

these options can be found in /etc/kubernetes/manifests/

kube-apiserver.yaml. The key parameters to check are:

•	 --anonymous-auth: This should be set to "false"

explicitly, as the default is to allow some anonymous access

to the API server.

•	 --insecure-bind-address: This should not be set,

even to the localhost address.

•	 --insecure-port: This should be set to 0 to ensure that it

is not configured.

KUBELET
In addition to the main Kubernetes API, a key network service (and

one which is often poorly protected) is the Kubelet which runs

on some or all nodes of cluster, depending on the deployment

mechanism used. This service is responsible for managing the

container runtime on each cluster node (e.g., Docker or CRI-O) and

as such has a wide range of privileges to the server it's running on.

Unauthenticated Kubelet access is a common problem with older

Kubernetes versions, as only recent versions require authentication

by default, and as with the Kubernetes API, there have been a

number of attacks that exploited this service due to it being left

exposed to the Internet without appropriate protection.

The Kubelet will typically be running on two ports on each node. Port

10250/TCP is the read/write service and port 10255/TCP is the read-

only port, which is used to expose information for cluster monitoring

services. Unless required, remove the read-only port entirely

from your configuration, as it doesn't have the option to require

authentication. All access to the read/write port should require

authentication. The Kubelet configuration is managed similarly to

that of the Kubernetes API server via start-up parameters. The main

ones to look for are:

•	 --anonymous-auth: This should be set to false.

•	 --read-only-port: This should be set to 0.

ETCD
At least one etcd key/value store is provisioned with almost

every Kubernetes cluster to provide persistent storage of cluster

configuration information. Unauthorized access to the etcd database

can have serious consequences for the cluster's security, as it

contains sensitive information such as cluster secrets.

As with the other key Kubernetes features, there has been evidence

of services being left exposed on the Internet without appropriate

security measures, so this is an important area to check.

The etcd database will typically listen on port 2379/TCP for client

access and 2380/TCP for peer access. All access to it should require

authentication by setting the following configuration parameters:

•	 --client-cert-auth: This should be set to true.

•	 --peer-client-cert-auth: This should also be set

to true.

It's also worth reviewing your clusters for other instances of the etcd

service, as some network plugins make use of separate instances for

their own purposes and these may have different security settings

than those set on the main database.

SECURING THE CONTAINER ENVIRONMENT
Once you've secured the management interfaces from

unauthenticated access from outside the cluster, your next step

in securing Kubernetes should be to analyze how attackers might

compromise a pod and what might be possible for them to do. In

https://www.owasp.org/index.php/Server_Side_Request_Forgery
https://www.wired.com/story/cryptojacking-tesla-amazon-cloud/
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/
https://medium.com/handy-tech/analysis-of-a-kubernetes-hack-backdooring-through-kubelet-823be5c3d67c
https://elweb.co/the-security-footgun-in-etcd/
https://elweb.co/the-security-footgun-in-etcd/

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

4

KUBERNETES SECURITY

BROUGHT TO YOU IN PARTNERSHIP WITH

addition to the access available to external attackers, access to a single

container may provide a number of additional avenues of attack.

•	 Host filesystem access

•	 Container network access

•	 Access to a service token

•	 Node Kernel access

Each of these attack paths can be addressed by Kubernetes

security mechanisms.

SECURING CONTAINERS
The first step when considering the individual containers in an

environment is trying to stop an attacker from compromising them

in the first place. An attack could happen via unpatched application

software, configuration issues, or errors in custom code that has

been deployed into the containers.

As most container images will come from a common distribution

base such as Debian or Alpine, reviewing them for missing patches

is handled similarly to the process for any other Linux-based system.

Custom tooling may be required, as some patch management

systems are not container-aware and, as such, won't effectively scan

inside the images.

There are a number of options for this. Aqua Security provides

MicroScanner, which scans images based on public and proprietary

sources for vulnerabilities and malware, and can be used in

conjunction with Aqua’s runtime protection to assess image security

and block any container suspicious activity based on container

runtime profiles. There are also some standalone container

vulnerability-scanning tools that could be useful where convenient

cloud access isn't available. Both Clair and Dagda can be used offline.

It's worth noting how these tools tend to work in reviewing container

images for vulnerabilities. Where they're looking at issues in system

software (e.g. a web server), they usually base their analysis on the

package manager used by the image (e.g. apt in Debian or Ubuntu

or yum in Fedora Core). This is important, since when images that

aren't based on a common distribution are used, some vulnerability-

scanning tools may not be able to detect weaknesses, as there is no

central vulnerability database and package metadata to query.

HOST FILESYSTEM ACCESS
An attacker who can compromise one of your containers might

access any external mounts that have been made into that container.

Since many containers run as the 'root' user, this could potentially

allow an attacker the ability to change key operating system files if

these have been exposed to a compromised container.

The obvious way to mitigate this risk is to ensure that critical host

files are not mounted into exposed containers. This can be mandated

by the cluster administrator using the Kubernetes PodSecurityPolicy

feature. This is an admission controller that can prevent new pods

from having specific privileges --- in this case, from mounting files

from the underlying node operating system.

Enabling PodSecurityPolicy is carried out by adding it to the list of

plugins passed to the API server using the --enable-admission-

plugins start-up flag. However, before this change to the API server

start-up process is made, an appropriate PodSecurityPolicy should

be created — as if it is enabled without any policies in place, no pods

can be created on the cluster.

To ensure that this kind of attack isn't possible, the Pod Security

Policies used by the cluster should specify the types of volumes

allowed, and this whitelist should not include the hostPath

volume type.

CONTAINER NETWORK ACCESS
By default, Kubernetes clusters provide a flat open network for all

containers running on them. It's a fundamental point of Kubernetes

networking that pods should be able to contact each other at a

network level.

However, as clusters grow, it's necessary to consider limiting access

provided to individual applications running in the cluster so that the

impact of a single compromised container can be limited.

Kubernetes provides a feature called Network Policy to enable cluster

operators to limit access to and from sets of pods within the cluster.

Network policies work similarly to the access control lists used on

firewalls in that they can limit access to specific IP address and port

combinations; however, they are aware of the cluster configuration,

which means that they understand concepts like Kubernetes labels,

allowing for more flexibility in how they are applied. However this is

done at the pod level and not at the container level. Inbound/outbound

network rules should be defined at the container level as well.

The best approach to network policies, from a security standpoint, is

to apply a default deny policy to ingress and egress for all pods and

containers running on the cluster, and then to allow specific access

as needed — the so-called "least privilege" approach. Of course, this

needs to be balanced against the practicality of maintaining these

policies on the cluster.

While limiting inbound traffic should be practical to achieve, some

environments may find it difficult to specify what specific egress

access should be allowed. In such cases, consideration should be

given to limiting access to the control plane services running on the

cluster nodes. Blocking access to the ports mentioned earlier can

help to prevent attackers with some level of access to the cluster

from gaining further privileges.

https://github.com/aquasecurity/microscanner
https://github.com/coreos/clair
https://github.com/eliasgranderubio/dagda
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/
https://kubernetes.io/docs/concepts/services-networking/network-policies/

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

5

KUBERNETES SECURITY

BROUGHT TO YOU IN PARTNERSHIP WITH

One additional consideration regarding container network access

is the use of host network access. Where a container has this access,

it essentially has the same IP addresses as the underlying node

operating system, including the same localhost interface. This can

allow for attacks in which a service is bound to localhost with the

expectation that this provides some level of isolation from attack.

Host networking should be avoided wherever possible, from a

security perspective. Access to the host network can be restricted

using PodSecurityPolicies. Ensure that one of the in-use

PodSecurityPolicies sets hostNetwork to false to prevent

containers in the cluster from using host networking.

ACCESS TO A SERVICE TOKEN
One of the more unexpected features of Kubernetes, for those more

used to other systems, is the use of service account tokens. These are

credentials that are mounted, by default, into every pod created on

the cluster. This means that every pod has some level of access to the

API server to execute commands based on the rights provided to this

token. From the perspective of a "compromised container" attack,

this means that our attacker would have access to execute arbitrary

commands against the Kubernetes API server.

Earlier versions of Kubernetes, before RBAC was widely deployed,

suffered from quite a severe weakness in this scenario, as the default

was to provide each pod with a token that effectively had cluster

administrator level access, making it trivial for an attacker who had

compromised one container to control the entire cluster.

With recent Kubernetes versions, the rights provided to the service

token should be restricted based on the RBAC role assigned to it.

As such, ensuring that a least-privilege approach is used for these

tokens is key in maintaining the security of the cluster.

By default, service accounts should only be provided the rights of

the system:authenticated and system:serviceaccounts

groups. In most standard configurations, these should be fairly

limited, but it's important to review them regularly to ensure that no

inappropriate access has been provided. Details on how to audit the

rights provided to a user or group are included in the review tools

section below.

NODE KERNEL ACCESS
The final thing that access to a single container provides an attacker

is the ability to attack the kernel of the underlying host operating

system for the cluster node. Standard Linux containers make use of a

shared kernel, so a vulnerability in that kernel can allow an attacker

to break out to the underlying node.

There are a couple of strategies that should be considered to reduce

this risk. The first basic one is to ensure that the kernels used on the

nodes in your clusters are regularly upgraded as security patches

are applied.

Secondly, restricting the privileges of containers can help to reduce

the risk of a breakout via exploiting a vunerable kernel version.

Many container images run as the root user, which provides more

opportunities for breakout, so avoiding this will help to reduce

the risk of an attack on the kernel. As with the filesystem access

area mentioned above, PodSecurityPolicies can be put in place

to prevent containers from running as the root user. There is a

PodSecurityPolicy setting called MustRunAsNonRoot that will

ensure that no containers which run as root can operate in the cluster.

KUBERNETES USER SECURITY
The third threat model to consider is where an attacker gets

authenticated access to a cluster and can attempt to elevate

privileges to get cluster administrator level access. The controls

against this form of attack focus on how users are authenticated to

the cluster and what authorization controls are available to limit the

access that individual users have.

AUTHENTICATION
Authentication in Kubernetes is somewhat unusual for

administrators who are used to "traditional" multi-user network

services in that for most clusters, Kubernetes won't store details

of user credentials locally but instead will rely on external data

to provide that information. This can complicate the setup and

management of user accounts in a cluster, so it's an important point

to consider.

Kubernetes does provide two methods of authentication where

credentials are managed on the master nodes of the cluster, but

these are generally not considered suitable for production use

as they store credentials in cleartext on the API server nodes and

require a restart of the API server to update. It's possible to verify

whether these are enabled by looking at the start-up flags on the

Kubernetes API server. For HTTP basic authentication, the --basic-

auth-file must be present and pointing at a file on-disk that stores

user credentials. For token authentication, the --token-auth-file

would be set.

The next (and most commonly used) authentication method is

X.509 client certificates. In this scenario, the API server will look for

a certificate signed by a trusted authority and take the username

and group information from specific fields in the certificate (CN for

username and O for groups).

From a security standpoint, this mechanism does have some

drawbacks that make it less than ideal. Kubernetes currently has no

facility for certificate revocation. This means that if a certificate is lost

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#x509-client-certs

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

6

KUBERNETES SECURITY

BROUGHT TO YOU IN PARTNERSHIP WITH

or stolen, the only effective mitigation is to recreate the certificate

authority and re-issue all certificates. Additionally, the standard

configuration of Kubernetes expects the private key of the certificate

authority to be available online to allow for periodic rotation of

certificates. As such, any unauthorized access to this file can lead to

a persistent compromise of the cluster's security for the duration of

that key (which will typically be measured in years).

The general recommendation for user authentication is, therefore,

for it to make use of external authentication providers. There are

multiple options available to Kubernetes users in this scenario:

•	 OIDC: Kubernetes can be configured to use an OpenID

Connect (OIDC) compatible system. This can be used alongside

providers like GitHub and Google. Additionally, tools like Dex

and Keycloak can be used to integrate other identity services

(e.g. Active Directory) with Kubernetes via OIDC.

•	 Webhook authentication: Kubernetes can be configured to

delegate authentication to any compatible webhook service.

•	 Proxy authentication: Sitting the API server behind a proxy

server is also an option, although this is likely to be more

complex to implement in many cluster architectures.

AUTHORIZATION
Similarly to the scenario around user authentication, Kubernetes

provides a number of mechanisms for authorization of user

requests to the API server. The primary option that is currently

recommended for use is Role Based Access Control (RBAC).

This provides for rights to be assigned at both the Kubernetes

namespace level and cluster-wide.

To effectively implement Kubernetes authorization, it's important to

understand the objects involved in providing rights to users.

The role and clusterrole objects describe the access to the API

to be provided. Role objects grant access to resources in a single

namespace, while clusterrole objects provide access to cluster-

wide resources.

To go with these two objects, we have rolebindings and

clusterrolebindings. These associate a subject with a role,

essentially saying who has access to that role. There are a couple

of important points to note, though: While a rolebinding ties a

subject in a single namespace to a specific role, it can tie to any role

or clusterrole object, so you can grant rights to a single user in a

namespace across the whole cluster.

The second important point to note in relation to RBAC are the types

of subjects that can be associated with different roles. There are

three options:

1.	 User: This is a single user account as identified on the cluster.

Each of the authentication methods described earlier in this

Refcard will extract a username from the credentials presented

and this is used by the RBAC system to assign rights.

2.	 Group: Groups can also be subjects for role bindings

and cluster role bindings. What's notable here is that the

membership of groups is not recorded anywhere inside the

Kubernetes cluster, so there is no effective way of auditing

group membership with only access to a cluster and you also

need access to all the approved authentication mechanisms

defined on the cluster to gather this information.

3.	 Service account: Service accounts can also be provided as

the subjects for role bindings. Unlike users and groups, service

accounts are stored within Kubernetes itself and so their usage

can be tracked and audited with only access to the cluster.

An additional thing to note is that Kubernetes provides a number of

built-in roles and some of them, like cluster-admin, provide a wide

range of access to the environment and should be used sparingly.

Reviewing existing RBAC configurations can be somewhat laborious,

as there's no easy way to see what rights a given subject has via

the kubectl command. As with any Kubernetes API objects, it

is possible to extract the information in JSON or YAML format by

passing the appropriate flags to a get command. For example,

the following two commands will export the clusterrole and

clusterrolebinding objects from a cluster in JSON format:

•	 kubectl get clusterroles -o json

•	 kubectl get clusterrolebindings -o json

Alternatively, there are tools that can help to review Kubernetes

RBAC information. For example, RBAC Lookup from ReactiveOps can

be used to review the roles assigned to specific users. This script also

shows and example of how information can be presented from the

Kubernetes RBAC objects to allow for permissions to be reviewed.

TOOLS AND REFERENCES
There's a range of resources that you can use to help secure your

Kubernetes clusters. The first one to mention is the main Kubernetes

documentation pages. They have a good range of information about

setting up, configuring, and securing clusters and are a good first port

of call when looking for information about these topics.

STANDARDS AND GUIDES
The CIS Benchmark for Kubernetes is the main standard currently

available. Currently, in version 1.3 (which covers Kubernetes 1.11),

it provides guidance on secure configuration of your clusters. One

thing to note, however, is this is security standard rather than

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#openid-connect-tokens
https://github.com/dexidp/dex
https://www.keycloak.org/index.html
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#webhook-token-authentication
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#authenticating-proxy
https://github.com/reactiveops/rbac-lookup
https://github.com/raesene/TestingScripts/blob/master/k8s_rbac_auditor.rb
https://kubernetes.io/docs/home/?path=browse
https://kubernetes.io/docs/home/?path=browse

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

7

KUBERNETES SECURITY

BROUGHT TO YOU IN PARTNERSHIP WITH

DZone, Inc.

150 Preston Executive Dr. Cary, NC 27513

888.678.0399 919.678.0300

Copyright © 2018 DZone, Inc. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

DZone communities deliver over 6 million pages each

month to more than 3.3 million software developers,

architects and decision makers. DZone offers something for

everyone, including news, tutorials, cheat sheets, research

guides, feature articles, source code and more. "DZone is a

developer’s dream," says PC Magazine.

Written by Rory McCone, Principal Consultant at NCC Group

Rory has worked in the Information and IT Security arena for the last 18 years in a variety of roles — from financial

services to running a small security testing company to working for large companies as a consultant. These days,

he spends most of his work time on application, cloud, and container security. He’s an active contributor to the

container security world, helping with the CIS Docker and Kubernetes guides and working on a Kubernetes Security

Scanner. He has presented on application, container, and general IT Security topics at a wide range of conferences

from OWASP AppsecEU to a variety of BSides conferences and KubeconEU. When he’s not working, he can generally

be found out and about enjoying the scenery in the highlands of Scotland if the midges aren’t biting!

a configuration guide. Simply dogmatically applying all of the

recommendations is unlikely to provide a good outcome. Instead, this

is best used as starting point of available security options.

SECURITY ASSESSMENT TOOLS
There are a number of tools available that can help to assess the

security of your clusters and make recommendations for hardening.

Kube-Bench from Aqua Security checks an existing cluster against

the CIS Benchmark tests. Similarly, kube-auto-analyzer carries out

similar tasks, although this tool is more targeted at security reviewers

with some of its checks.

Another tool focused on penetration testing is Aqua's Kube-Hunter,

which probes running clusters for common security weaknesses

and has capabilities to actually exploit some issues to more easily

demonstrate their impact.

CONCLUSION
It's fair to say that Kubernetes is a relatively complex tool, and

as with any new technology, there are security challenges to be

addressed. Modern Kubernetes clusters provide many mechanisms

for security to be effectively implemented. Probably the most

important point to consider is ensuring that secure defaults are in

place before you start using Kubernetes for production workloads.

Having a strong level of base security will help provide a good basis

for ongoing development and can also minimize the risk of major

changes being applied to your security posture after you've gone live.

http://www.dzone.com
https://github.com/aquasecurity/kube-bench
https://github.com/nccgroup/kube-auto-analyzer
https://www.amazon.com/Executing-Data-Quality-Projects-Information/dp/0123743699

