
The Definitive
Guide to Securing
Kubernetes
Liz Rice | TECHNOLOGY EVANGELIST | AQUA SECURITY

Brendan Burns | DISTINGUISHED ENGINEER AND KUBERNETES CO-CREATOR | MICROSOFT

As the adoption of Kubernetes (K8s)

continues to expand, one topic that often comes

up is security. Since K8s is used to run applications

on a large scale and controls who and what can

be done with these applications, security should

be well-understood and managed.

The goals of a secure K8s environment are first

and foremost to ensure that the applications it

runs are protected, that security issues can be

identified and addressed quickly, and that future

similar issues will be prevented—all without

affecting developer productivity or negating the

inherit benefits of K8s, such as resilience,

scalability, speed, and automation.

Introduction
We assume the reader is familiar with basic

K8s concepts. If you’re not, we recommend visiting

aka.ms/K8slearning for the basics or kubernetes.io

for tutorials.

This whitepaper provides an overview of

key aspects and best practices of K8s security,

including:

• Securing the cluster

• Managing authorization and authentication

• Implementing a trusted software supply chain

• Securing workloads in runtime

• Managing secrets

https://kubernetes.io/

The Definitive Guide to Securing Kubernetes Page 2

K8s is available in multiple distributions and

delivery models. In this paper, the best practices

we list apply to the open source K8s (often referred

to as “upstream K8s”), but occasionally we call out

specific features of a managed service like Azure

Kubernetes Service (AKS) and additional tools.

At the time of publishing this paper, K8s is at

Version 1.15. For most purposes, the recommend-

ations here apply to K8s 1.11 onwards. Where

K8s settings are noted, use them to search

kubernetes.io/docs/ for additional information.

Access via

Kubelet API

Control-plane

components

Master

node

etcd

Worker

node Kubelet

Container

Pod

Application

Cluster

Access to

machines/VMs

Access to

etcd API

Exploit

vulnerability in

application code

Access via

K8s API or

proxy

Intercept/modify/

inject application

traffic

Intercept/modify/

inject control-

plane traffic

Escape container

to host through

vulnerability or

volume mount

API

server

The Master Node controls the configuration

and operation of the entire cluster and is therefore

a key area to secure.

API SERVER

The API server offers REST API access to control

the cluster. From v1.10 onwards, the kubeadm

installer disables the API server’s insecure port

so that API access is restricted to encrypted TLS

connections made over a secured port by default,

but is not limited by default to authenticated users.

To further limit access to the API server, you can:

Securing the cluster

• Prevent unauthenticated users from accessing it,
by setting --anonymous-auth=false. This

means that all API server access, including

health checks and service discovery, must be

authenticated.

• Permit unauthenticated user access but limit it

using role-based access control (RBAC). By

default, the RBAC setting permits very limited

access to anonymous users, so that a client can

make health checks and service discovery can

be performed without providing certificates.

This is the default approach, but it does rely on

you maintaining sensible RBAC policies that

restrict what anonymous users can do.

• Further protect API server access with additional

measures, such as a traditional firewall or VPN.

• If you plan to install the Kubernetes Dashboard

and use it to connect to the API server, make

sure it too has restricted access and is not

exposed on the Internet.

ETCD

K8s stores cluster configuration and state

information in a distributed key-value store named

etcd. Unauthorized access to etcd may jeopardize

the entire cluster, which is why access to it should

be strictly limited.

• Set –-cert-file and –-key-file

to enable HTTPS connections to etcd.

• Set –-client-cert-auth=true to that

ensure only authenticated access to etcd is

allowed.

• Set –-trusted-ca-file to specify

the certificate authority and set –-auto-

tls=false to prevent the use of self-signed

certificates.

• Set –-peer-client-cert-auth=true to

force etcd nodes to communicate securely with

each other.

KUBELET

The kubelet is an agent that runs on each

worker node and interacts with the container

runtime to launch pods and report node and pod

status. Unauthorized access to a kubelet can allow

starting and stopping pods, as well as executing

unauthorized code.

https://kubernetes.io/docs/home/

The Definitive Guide to Securing Kubernetes Page 3

• Disable anonymous access with –-anonymous-

auth=false and have the API server identify

itself by setting the –-kubelet-client-

certificate and –-kubelet-client-key

flags.

VALIDATING CLUSTER CONFIGURATION

The Center for Internet Security (CIS) publishes

a benchmark document for K8s (as well as Docker,

which you might want to follow as well). The

benchmark lists more than 100 recommended

configurations and is currently only valid for the

open source K8s distribution. Using it on some

commercial distributions and managed offerings

might yield partial or inaccurate results.

It is recommended to check your cluster often

against these benchmarks. Doing so manually is

very time-consuming, but the open source kube-

bench can automate this task and provide pass/fail

results on all the benchmark’s tests.

since they can be accessed too easily and are

difficult to manage over time.

• X.509 Client Certificates use a 3rd party

certificate authority (CA) to verify the user

identity. Client certificate authentication is
enabled by passing the --client-ca-

file=SOMEFILE option to the API server.

The referenced file must contain one or more

certificates authorities to validate client

certificates presented to the API server. As of

K8s Version 1.14, you can include the user’s

group memberships by including multiple

organization fields in the certificate.

DID YOU KNOW? While the CIS benchmark recommends

configuration best practices, you can also perform

penetration testing on your cluster to test its resilience

against real-world attack vectors with the open source

kube-hunter.

Since K8s is a distributed and sometimes

sprawling environment, it’s important to use

authentication for multiple components (not

just the API server) to prevent unwanted users

or service accounts from accessing cluster com-

ponents and data (such as kubelets, kube proxies,

and secrets). Likewise, authorization controls

should be used to prevent authenticated users

from having blanket access to capabilities they

don’t need, enforcing the least privilege principle

of security.

Managing authorization and

authentication

DID YOU KNOW? With Azure Active Directory (AD)-

integrated AKS clusters, you can grant users or groups

access to K8s resources within a namespace or across the

cluster based on your existing AD configuration.

AUTHENTICATION MODELS
There are several ways to authenticate access.

We do not recommend using static password files,

DID YOU KNOW? In AKS, cluster security is provided by

Azure, including nightly patches. Since the cluster master

node is managed by Azure, users cannot access it

directly—making it very hard for potential intruders to

access, too.

• Token Files can be read by the API server when
given the --token-auth-file=SOMEFILE

option on the command line. Currently, tokens

last indefinitely—this is a limitation of this

approach—and the token list cannot be

changed without restarting the API server.

• Bootstrap Tokens offer an alternative

approach, but this feature is currently (v1.14)

in beta. They allow for dynamic management

of tokens, which are stored as secrets in etcd.

To use them, you must enable the Bootstrap
Token Authenticator with the --enable-

bootstrap-token-auth flag on the API

server. Then you must enable the TokenCleaner
controller using --controllers=*,token

cleaner on the Controller Manager.

• Service accounts use Service Account Tokens

to identify themselves. Service accounts are

associated with pods running in the cluster

through the ServiceAccount Admission

Controller. Bearer tokens are mounted into

pods at well-known locations and allow in-

cluster processes to talk to the API server.

• Finally, OpenID Connect Tokens can be a

convenient way of using OAuth2 providers,

including Azure Active Directory (AD). This token

is a JSON Web Token (JWT) with well-known

fields, like a user’s email, signed by the server.

https://www.cisecurity.org/
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-hunter

The Definitive Guide to Securing Kubernetes Page 4

You can use multiple authentication methods

within a single environment, and the API server will

accept the first approved authentication, with no

particular order specified. This is useful if you don’t

want to rely on a single service, or if you already

use diverse sources for identity management.

ROLE-BASED ACCESS CONTROL (RBAC)
The K8s RBAC model uses several objects to

govern resource authorization.

• Entity: A user, group or service account

• Resource: Something the entity will access,

like a pod, secret, or service

Role: Used to define rules specifying a set of

actions that are permitted on a set of resources

• RoleBinding: Attaches a role to an entity,

defining the actions the entity can perform

on resources

Roles and RoleBindings are namespaced

resources that apply only within the specific

namespace where they’re defined, and they have

cluster-wide equivalents called ClusterRoles and

ClusterRoleBindings.

The actions on a resource are described by

verbs as follows.

• Read-only actions: get, list, watch

• Read-write actions: create, update,

patch, delete, proxy, redirect,

deletecollection

While K8s has predefined roles for system

administration purposes, you should:

• Define your own roles in the context of your

application needs, team structure, and security

and compliance mandates. The principle of least

privilege should apply.

• Differentiate between namespace-wide and

cluster-wide roles and use the latter sparingly.

• Differentiate between service accounts and

human users, defining them as distinct entities.

The K8s RBAC model has built-in privilege

escalation barriers, whereby a user can only

create or update a role if they already have all the

permissions contained in that role. They cannot

create new roles with privileges they themselves

don’t have.

RBAC should be used to create segregation of

K8s is ultimately used to run software in the

form of containers. Where those containers came

from and what they contain has a direct impact on

the security of your K8s applications. This means

implementing controls across the pipeline to

ensure that what goes in is validated, and that

code integrity is maintained throughout.

Implementing a trusted

software supply chain

DID YOU KNOW? Aqua MicroScanner is a free Docker image

vulnerability scanning tool that you can embed into your

Dockerfile and your CI pipeline to automate scanning and

provide developers with immediate contextual feedback

on CVEs found.

SOURCE CONTROL

Ensure that container images are created

using an approved set of base images, and do not

allow developers to access unvetted open source

components and use them in images. This can be

achieved using traditional IP-blocking methods

(for example to Docker Hub, which holds hundreds

of thousands of images), as well as with image

scanning to detect base image packages.

IMAGE SCANNING

It is strongly recommended to regularly scan

images, both during CI/CD builds as well as in the

registry, to detect known vulnerabilities as well as

other issues such as embedded secrets and image

configuration issues.

Known vulnerabilities present a potentially

high risk that’s easy to detect and manage, and

eliminating or mitigating them (especially high

severity ones) should be step one of any security

program.

NOT USING ROOT USER

Unless required for a specific use case, you

should never configure your images to run as a

duties. This security principle prevents a single

user from having too much authority. For example,

it is a good idea to prevent cluster admins from

having read-write access to K8s audit logs and

audit policy files, so that they cannot overwrite or

delete log files or stop event auditing altogether.

https://github.com/aquasecurity/microscanner

root user. Running a container as root will make

it easier for an attacker to use a compromised
container to control the host. Include a USER

command in the Dockerfile to define a user

identity for the container. Even better would be to

set a different user ID for different images, which

would make auditing and forensics more accurate.

The Definitive Guide to Securing Kubernetes Page 5

IMAGE INTEGRITY CONTROLS

Images are constantly being updated and

pushed through the pipeline. It’s important to

ensure that the containers that end up running

in your cluster are instantiated from the correct

images, with no tampering or drift, especially in

applications that are mission-critical or that handle

sensitive data.

Several commercial platforms (including

Aqua CSP) provide lifecycle controls for images

as part of their workflow. Another approach is

using image signing to ensure the integrity of your

images from build to runtime. The open source TUF

project (theupdateframework.github.io/) and its

implementation Notary (docs.docker.com/notary/)

provide image signing capabilities.

ENFORCING THE USE OF TRUSTED IMAGES

Create a set of criteria and implement controls

that only allow K8s to deploy trusted images. It’s

possible to do this by only allowing approved

images from CI/CD to be deployed, while only

allowing K8s to pull images from your registry.

The Open Policy Agent (OPA)-based Gatekeeper

project provides an easy way to implement this.
You can also use the AlwaysPullImages

admission control to force nodes to pull images

on every instantiation and not use cached versions

(though this may cause delays in container

instantiation and is not recommended for very

ephemeral workloads).

SECURING THE REGISTRY

Registries hold images that could be used

to “poison the well” with malicious code before

they’re instantiated. It is highly recommended to

restrict registry access—especially write access—

with authentication. Since K8s will pull images from

a registry, configure its registry credentials to be

read-only. Managed registries such as Azure

Container Registry (ACR) require authentication

by default.

DID YOU KNOW? When using Azure Pipelines as your

CI/CD platform, you can define and apply Azure Policy to

surface security violation pre-deployment, and monitor

for compliance post-deployment, providing feedback to

Pipelines users.

DID YOU KNOW? Azure Container Registry (ACR) allows

you to quarantine new or updated images until they have

been scanned by 3rd party scanners, including Aqua, and

deemed safe to use. A quarantined image will be invisible

to developers until it’s released from quarantine.

In addition to the best practices discussed

so far, it is recommended to place boundaries

and controls that limit what an application can

do in runtime. This defense in depth can limit the

damage of an attack or prevent an intruder from

getting past their initial intrusion point.

K8s allows you to do that with several of its

native policies that, when properly configured,

can together create a very secure environment.

SECURITY CONTEXT

K8s security context defines privileges and

access control settings either at the pod or the

container level. The security context allows you to:

• Implement access control based on user ID or

group ID.

• Determine if a container runs as privileged or

unprivileged.

• Set Linux capabilities, which is useful when

capabilities associated with root privilege are

required but avoids granting blanket root

privilege.

• Apply a seccomp profile for a pod or container,

restrict their access to Linux system calls, or use

AppArmor or SELinux to restrict capabilities and

processes they can use on the system.

Securing workloads in runtime

DID YOU KNOW? Aqua runtime controls include the ability

to detect and prevent drift between running containers

and their originating images. This is used to prevent code

injection into running containers, enforcing the concept

of immutability.

POD SECURITY POLICY

While security context can be set individually
for pods and containers, PodSecurityPolicy

https://theupdateframework.github.io/
https://docs.docker.com/notary/
https://github.com/open-policy-agent/gatekeeper
https://azure.microsoft.com/en-us/services/devops/pipelines/
https://azure.microsoft.com/en-us/services/container-registry/

The Definitive Guide to Securing Kubernetes Page 6

allows you to set a cluster- or namespace-wide

security context. It allows setting parameters

such as access to files, volumes, host namespaces,

host ports, use of privileged containers, Linux

capabilities, SELinux context, and more. To enable
this, you must activate the PodSecurityPolicy

admission controller.
Using SecurityContext and PodSecurity

Policy in tandem is a great way of ensuring least

privilege security settings at the pod level. You can

limit certain types of pods to access the file system

as read-only or disable privileged containers from

running in certain pods.

In conjunction with other admission controllers,
such as DenyEscalatingExec (disallow a pod

from gaining privileges not already present) or
PodNodeSelector (restrict pods to run on

specific nodes by label), you can programmatically

protect the cluster from pods behaving unexpect-

edly, curb damage from developer errors, and

create barriers against both external intruders

and insider abuse.

Secrets, such as private keys or passwords,

are often needed for a container to access services

or data. The challenge is ensuring that the secret

is accessible only from the intended container

and isn’t exposed elsewhere. You probably don’t

want to expose production credentials to team

members, even if they have permissions to

manage pods (or other resources) in the cluster.

PRACTICES TO AVOID

We often see two types of “shortcuts” used

for reasons of convenience that we strongly

recommend avoiding completely.

• Hard-coding or embedding secrets in images.

Not only does this expose the secret to anyone

with access to the registry or CI/CD environ-

ment, it also breaks secret lifecycle controls,

such as rotation, update, and revocation.

• Using unencrypted environment variables. If

secrets are defined as environment variables in

pod specifications, they are exposed to anyone

with read access on the pod.

STORING SECRETS IN ETCD AND 3RD

PARTY VAULTS

It is possible to store secrets in etcd. However,

by default etcd is not encrypted, only base64

encoded, which can be read by anyone with a

base64 reader. This means that anyone with

access to etcd (or its data store) might access

secrets.

From Version 1.13 or later, you can avoid

this by encrypting your cluster on disk using the
--encryption-provider-config command.

Many organizations already use 3rd party vaults

to manage secrets used by non-K8s applications,

such as HashiCorp Vault or Azure Key Vault. Such

vaults are highly secure and have built-in lifecycle

controls to avoid unnecessary transfer or dup-

lication of secrets.

Managing secrets

DID YOU KNOW? Aqua offers image assurance policies

that allow setting risk threshold for images based on CVE

score or severity, hard-coded secrets, malware, image

configuration, and custom compliance checks. If an image

fails policy, it will not be allowed to run.

NETWORK POLICY

Since pods are the base networking unit in K8s

environments, placing guardrails on pod network

traffic is a great way to prevent unwanted “East-

West” traffic (between nodes on a cluster) as well

as “North-South” traffic (between the pod and

other layers or external resources).

Different distributions of K8s may use different

flavors of Container Network Interface (CNI) to

implement network policy. Popular ones include

Calico, Weave, Flannel, and Cilium.

You can prevent traffic, both ingress (inbound)

or egress (outbound), using Kubernetes Network

Policy. You can also limit traffic to specific

destination or origin to ensure that traffic only

flows according to the application requirements.

This type of whitelisting is also being implemented

through service meshes, which can be easier for

developers to use to define those requirements.

Note that K8s namespaces, while enabling

tenancies within a cluster, should not be considered

a substitute for network security controls. They

provide isolation for administration purposes but

are insufficient to prevent (or detect) network

traversal attempts.

The Definitive Guide to Securing Kubernetes Page 6

PASSING SECRETS TO CONTAINERS

K8s can pass secrets to containers using one of

two methods.

• Environment variables. It is possible to pass K8s

secrets using environment variables. However,

they will be visible to any user with permission
to run the kubectl describe or docker

inspect commands, so stricter RBAC should

be used to limit user access to pods. It’s also

common for applications to log their

environment in the event of a crash, which

exposes secrets held in environment variables

to anyone with access to the log output.

• Volume mount. This is the recommended

method, since the file is not readable using
kubectl describe and docker inspect.

The volume is only accessible in a specific

container, making it much harder to access even

to users with access to the namespace. Using a

temporary file system also means the secret

does not persist on disk.

Kubernetes is an evolving platform, but has

achieved a level of maturity of its security features

that makes it a viable choice for running critical

applications. It is still a complex system that

requires some understanding of key elements of its

security model. While the community is constantly

improving security controls and implementing

more fool-proof defaults, leveraging managed

services like Azure AD or Azure Policy that

integrate well with your existing security controls

can be a good strategy. Together with commercial

security platforms such as Aqua CSP, they provide

additional security layers as well as easier visibility

and management, reducing time to market and

making secure K8s applications more accessible.

Summary

DID YOU KNOW? Aqua CSP provides a solution for securely

injecting secrets into containers, using 3rd party vaults,

with both in-transit and at-rest encryption, using

temporary volume mounts, and allowing secrets

rotation/revocation with no container restart.

DID YOU KNOW? You can integrate Azure Key Vault into

your AKS cluster using FlexVolume, which mount multiple

secrets, keys, and certs stored in Key Vault into pods as a

volume. Once the Volume is attached, the data in it is

mounted into the container's file system.

Either way, you should limit access to the secrets

API using RBAC authorization policies, strictly
limiting use of the watch and list commands to

specific users.

© 2019 Microsoft Corporation and Aqua Security Software. All rights reserved. This document is for informational purposes only.

Microsoft and Aqua make no warranties, express or implied, with respect to the information presented here.

FOR MORE INFORMATION ABOUT AQUA

Go to our website at aquasec.com

FOR MORE INFORMATION ABOUT KUBERNETES ON AZURE

Visit aka.ms/aks/page to learn how AKS simplifies Kubernetes development

NEW TO KUBERNETES?

Visit aka.ms/k8slearning to learn more about Kubernetes

WANT TO GAIN HANDS-ON EXPERIENCE?

Check out devsecops.aksworkshop.io

https://azure.microsoft.com/en-us/services/key-vault/
http://www.aquasec.com/
https://aka.ms/aks/page
https://aka.ms/k8slearning
https://devsecops.aksworkshop.io/

