TECHNICAL

Glossa

Angular: a JavaScript framework. Allows de-
velopers to use HTML as a template language
and to extend its syntax.

API: Application Programming Interface. Specifies
how an application’s components should interact.

Architecture: a set of structures fundamental
in software, their relations, and properties. Also
a discipline of planning and designing applications.

Bumping versions: a situation when an update
of a library/packet/dependency used in a project
happens and warrants an upgrade in the project
itself. This process can be messy.

Cloud: technology based on physical serv-
ers and virtualization. However, in the cloud,
we don’t have to worry about hardware. Often
linked with Docker.

Code review: a practice of ensuring code quality.
One developer reads another’s code and provides
advice/tips on how to create better software.

Deployment: the process of transferring and con-
figuring an application on the desired environment
(mainly servers).

DevOps: a practice of merging administrator/opera-
tions and developer skills. Such a person can develop
software and configure servers/cloud infrastructures.

Docker: software for creating containers (small
portions of virtual resources: they are different
from VMs).

DOM: a Document Object Model in a web browser.

DRY: acronym for Don’t Repeat Yourself. A principle
aimed at reducing the repetition of software pat-
terns.

E2E tests: end-to-end tests. They test
an application across all processes.

EcmaScript / ES / JavaScript: programming lan-
guage.

Framework: a type of software providing archi-
tecture solutions and helpers. Simplifies building
applications.

GraphQL: atechnology developed by Facebook for
building APIs.

Hermetic code: messily written code. It can quickly
become legacy code.

Integrations tests: tests showing differences be-
tween an app and the app’s scope.

JSON: JavaScript Object Notation. A file format
that uses text readable by humans to transmit data.


https://www.monterail.com/

KISS: acronym for Keep It Stupid Simple. Implies
that most systems work best when kept simple.

Legacy code: old code that is no longer supported
(or finding support experts is very hard and expensive).

Library: a portion of code, implementing a portion
of a feature.

Native: an application that works without transcom-
pilation (e.g. from JavaScript to Kotlin).

NodeJs: technology based on JavaScript and work-
ing on the client side.

ReactJS: a JavaScript library used to create SPAs.
The library was developed by Facebook and is open-
source.

Refactoring: rewriting/cleaning messy code.

Regression tests: tests that show new bugs,
or changes in behaviors.

REST: an acronym describing a technology based
on HTTP API: Representational state transfer. Pro-
vides standards for computer systems that make

it easier for them to communicate.

Ruby / Ruby On Rails: Ruby is a programming
language, and Ruby On Rails is a framework written
in Ruby.

Server: a computer dedicated to serving/running
applications.

Setup: a process of starting application develop-
ment (preparing an environment, repository, etc).

SOLID: a mnemonic acronym in object program-
ming that stands for five design principles: Single
responsibility, Open-closed, Liskov substitution,
Interface segregation, Dependency inversion.

SPA: single-page application. In a browser,

a single-page application fluidly shows new content
without the need for reloading (example: Facebook
or Gmail).

TypeScript: open-source programming lan-
guage developed by Microsoft. It transcompiles
to JavaScript.

Unit tests: granular tests, working on a very low
level in code (like functions).

Virtual DOM: a situation when a DOM is stored
in memory, increasing processing speed.

Virtualization: a term describing techniques lever-
aged to make a system fully virtual, without linking
it to hardware.

VM: a Virtual Machine. A system allocated in memory,
fully virtual, and separated from hardware.

Vue: a JavaScript framework. Used to build user
interfaces on the Web.

YAGNI: acronym for You Aren’t Gonna Need It.

A principle in extreme programming, which implies
that no feature should be added until it is absolutely
necessary.


https://www.monterail.com/
https://www.monterail.com/

