
2020

Cloud
Report
Authors

Paul Bardea, Charlotte Dillon,

Nathan VanBenschoten, & Andy Woods

Table of contents

Background

Reproduction Steps

Machine Types

CPU Experiments

Network Experiment

Storage I/O Experiment

TPC-C Performance

Conclusion

3

4

5

9

12

17

32

35

The research and writing in this PDF are copyright Cockroach Labs, 2019, under the Creative Commons License (CC BY 4.0).

3

Last fall, Cockroach Labs introduced its inaugural cloud report focused on benchmarking Amazon Web Services

(AWS) and the Google Cloud Platform (GCP). The 2018 Cloud Report was a story of serendipity--we set out on a

journey to better understand CockroachDB’s performance and ended up discovering a material difference in cloud

performance between AWS and GCP. The report generated a large amount of interest from the community and

sparked follow-up conversations with all three major cloud providers: AWS, Microsoft Azure (Azure), and GCP.

This year, we’ve taken our learnings from last year’s cloud report to create the 2020 Cloud Report. This report

compares the performance of AWS, Azure, and GCP on a series of microbenchmarks and customer-like workloads

to help our customers understand the performance tradeoffs present within each cloud and their machine types.

We think this report is broadly representative of database performance outside of CockroachDB but should not be

understood to provide commentary for all workloads and use cases. For example, machine learning focused users

would likely want to use a different set of benchmarks in comparing cloud performance.

You might be wondering, why the jump from 2018 to 2020? Did we take a year off? We’ve rebranded the report to

focus on the upcoming year. So, like the fashion or automobile industries, we will be reporting our findings as of

Fall 2019 for 2020 in the 2020 Cloud Report.

Background

In 2020, we see that GCP has made noticeable

improvements in the TPC-C benchmark such that all

three clouds fall within the same relative zone for top-end

performance.

We will discuss these results below but note that this is

three-node TPC-C performance.

Max tpmC (Throughput)

C
lo

ud

0 30,000

AWS c5d.4xlarge

Azure Standard_DS14_v2

GCP c2-standard-16

Maximum tpmC Throughput per Cloud

[FIG 1]

• Adding Microsoft Azure machines

• Expanding the machine types
 tested from AWS and GCP

• Open-sourcing a
 microbenchmarking tool that
 makes it trivial to reproduce
 all microbenchmarks

• Completing more than 1,000
 benchmark test runs across 26
 machine types including CPU,
 Network Throughput, Network
 Latency, Storage Read
 Performance, Storage Write
 Performance, and TPC-C

In the 2020 Cloud Report,
we’ve expanded the report by

All reproduction steps can be found in this public

repository. These results will always be free and easy

to access and we encourage you to review the specific

steps used to generate the data in this blog post and

report. Note, if you wish to provision nodes exactly

the same as we do you can use this link to access

the source code for Roachprod, our open-source

provisioning system.

Reproduction
Steps

https://github.com/cockroachlabs/cloud-report-2020
https://github.com/cockroachlabs/cloud-report-2020
https://github.com/cockroachlabs/cloud-report-2020
https://github.com/cockroachdb/cockroach/tree/master/pkg/cmd/roachprod

We tested the newest and previously top performing

machine types available from AWS, Azure, and GCP on

three axes: CPU, Network, and Storage I/O. After reviewing

the resource-specific microbenchmarks, we took the

newest top performing machine types from each cloud

and benchmarked them on the industry standard TPC-C

benchmark. Note that all TPC-C results are unofficial, and

all SSD results were obtained using nobarrier. Please review

the chart on the following page for all machine types.

Machine Type

6

AWS

AWS

AWS

AWS

AWS

AWS

AWS

AWS

AWS

AWS

AWS

AWS

Intel Skylake

Intel Skylake

Intel Skylake

Intel Broadwell

Intel Skylake

Intel Skylake

AMD EPYC 7000

AMD EPYC 7000

Intel Skylake

Intel Skylake

AMD EPYC 7000

AMD EPYC 7000

3.00

3.00

3.00

2.30

2.50

2.50

2.10

2.10

2.50

2.50

2.10

2.10

16

16

16

16

24*

16

16

16

16

16

16

16

42

32

32

122

192

128

128

128

64

64

64

64

EBS

EBS

SSD

SSD

SSD

SSD

EBS

SSD

EBS

SSD

EBS

SSD

c5n.4xlarge

c5.4xlarge

c5d.4xlarge

i3.4xlarge

i3en.6xlarge

r5d.4xlarge

r5a.4xlarge

r5ad.4xlarge

m5.4xlarge

m5d.4xlarge

m5a.4xlarge

m5ad.4xlarge

Azure

Azure

Azure

Azure

Azure

Azure

Azure

Intel Broadwell***

Intel Broadwell***

Intel Skylake

Intel Broadwell***

Intel Broadwell***

Intel Broadwell***

Intel Haswell

2.30

2.30

2.70

2.30

2.30

2.30

2.00

16

16

16

16

16

16

16

56

112

32

112

128

64

224

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

Standard_DS5_v2

Standard_DS14_v2

Standard_F16s_v2

Standard_DS14

Standard_E16s_v3

Standard_D16s_v3

Standard_GS4

GCP

GCP

GCP

GCP

GCP

GCP

GCP

Intel Skylake**

Intel Skylake**

Intel Skylake**

Intel Cascade Lake

Intel Cascade Lake

Intel Cascade Lake

Intel Cascade Lake

2.00

2.00

2.00

2.80

2.80

2.80

3.10

16

16

16

16

16

16

16

60

104

14.4

64

128

16

64

n1-standard-16

n1-highmem-16

n1-highcpu-16

n2-standard-16

n2-highmem-16

n2-highcpu-16

c2-standard-16

Cloud Machine Type CPU Platform
Frequency
(GHz) vCPUs

Memory
(GiB) Disk Type

[FIG 2]

*We limited the i3en.6xlarge to 16 CPUs by setting the --cpu-options flag that AWS provides to

CoreCount=8,ThreadsPerCore=2.

**GCP’s n1 series offers a variety of CPU platforms (Skylake, Broadwell, Haswell, Ivy Bridge, and Sandy Bridge).

We pinned the platform for these tests to Skylake using the --min-cpu-platform flag.

***Most Azure machine types offer a variety of CPU platforms (Skylake, Broadwell, and Haswell). All machines
we tested on contained Intel Broadwell processors.

Tested Machine Types

7

Note, we held CPU and Storage as similar as possible across machine

types and clouds while allowing memory to match the defaults for these

specifications. We chose 16 CPUs as we were most familiar with the

performance characteristics of these machine types but note that results

could vary by CPU size. We used an ubuntu-1604-xenial-v20190122a OS

image across all three clouds. We expect the clouds to choose the best

images for providing good performance for their VMs. While it is possible

that the various permutations of Linux may impact performance, we did

not test this effect.

For each cloud, we ran in the US-central or US-east regions where possible.

We expect performance to vary across both availability zone and time of

day based upon loads at the various cloud data centers. We did not study

the impact of location or time.

Last year, we used a SCSI interface for locally attached SSDs on GCP

and an NVMe interface for locally attached SSDs on AWS because these

were the defaults. This year, we switched over to using an NVMe interface

wherever possible across all clouds. By making this change, we observed a

7% increase in throughput in performance when running TPC-C on GCP.

Top Performing Machine Types
Here is a chart outlining the top performing new machine types on each cloud:

[FIG 3]

AWS

AWS

AWS

AWS

Azure

Azure

Azure

GCP

GCP

GCP

GCP

Intel Skylake

Intel Skylake

Intel Broadwell

Intel Skylake

Intel Haswell

Intel Platinum 8168

Intel Broadwell

Intel Cascade Lake

Intel Cascade Lake

Intel Cascade Lake

Intel Cascade Lake

3.00

3.00

2.30

2.50

2.00

2.70

2.30

2.80

2.80

2.80

3.10

16

16

16

24*

16

16

16

16

16

16

16

c5d.4xlarge

c5n.4xlarge

i3.4xlarge

i3en.6xlarge

Standard_GS4

Standard_F16s_v2

Standard_DS14_v2

n2-standard-16

n2-highmem-16

n2-highcpu-16

c2-standard-16

32

42

122

192

224

32

112

64

128

16

64

SSD

EBS

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

1 x 400

N/A

2 x 1,900

2 x 7,500

1 x 448

1 x 128

1 x 224

2 x 350

2 x 350

2 x 350

2 x 350

Cloud Machine Type CPU Platform
Frequency
(GHz) vCPUs

Memory
(GiB) Disk Type

Disk Size
(GB)

*We limited the i3en.6xlarge to 16 CPUs by setting the --cpu-options
flag that AWS provides to CoreCount=8,ThreadsPerCore=2.

Unlike last year, we began our experimentation with

microbenchmarks instead of TPC-C. We switched

the order of the analysis because we wanted to

consider more machine types and, in particular, the

differences in how the microbenchmarks impact

customer workloads. At a macro-level, we evaluated

each cloud on a simulated customer workload

(TPC-C). We finished the experiments with a focus

on customer workloads (and not microbenchmarks)

because it most directly simulates real-world

customer behavior and provides a holistic picture

of performance.

Experiments

9

CPU Experiment

matrix
stresses floating point operations, memory, and processor data cache

sem
stresses POSIX semaphore operations and rapid context switching
between OS threads

branch
stresses CPU branch prediction logic.

cpu
stresses CPU through a suite of 68 “methods”

We tested a compute performance microbenchmark first as it can have a large impact

on performance. CPU is a surface benchmark affected by variables across the hardware

(and software) stack. Those variables range from processor microarchitecture to memory

hierarchy, to the hypervisor and system kernel running on top of it. CPU is also affected

by both the cloud instance types you choose and the CPU platforms your virtual machines

(VMs) are placed onto. It can even vary across VMs that claim to use the same CPU.

With so many different variables affecting this layer, there are a lot of different metrics

one could look at to benchmark performance, ranging from floating point operations and

bit manipulations to measuring the performance of control-flow patterns. For tools that

measure all of these, the two we explored most thoroughly are stress-ng and sysbench.

Stress-ng is an open-source, third-party tool that anyone can use to benchmark cloud

providers. We chose stress-ng over sysbench because it offers more benchmarks and

provided more flexible configurations than sysbench.

The output of these tests is a metric referred to as Bogo Ops (bogus operations/second).

As the name implies, it’s best to avoid putting too much weight into what these Bogo Ops

are, but it’s a useful metric for comparing across machines.

For this experiment, we chose to test all machine types using stress-ng’s matrix stressor.

This stressor provides a good mix of memory, cache, and floating point operations.

We found its behavior to be representative of real workloads like CockroachDB. Because of

this, the results we see here have a strong correlation with the results we see later in TPC-C.

This is in contrast with the cpu stressor, which steps through its 68 methods in a round-

robin fashion, allowing it to be disproportionately affected by changes in some of its slower,

less-representative methods like stressing deeply recursive call stacks. GCP and AWS both

shared concerns about the cpu stressor with us ahead of time and our own experimentation

validated those concerns. The results we found using the cpu stressor were difficult to

explain across CPU platforms and were not useful predictors of TPC-C performance,

indicating that it is not a representative benchmark. We therefore decided only to present

results using the matrix stressor.

About stress-ng

Stress-ng comes packaged with a large

suite of stress mechanisms, called

“stressors”, each one exercising one or

more subsystems of a computer. Here

are a few, for example

https://kernel.ubuntu.com/~cking/stress-ng/
https://github.com/akopytov/sysbench

10

AWS CPU

AW
S

M
a

ch
in

e
Ty

p
e

Bogo Ops per Second

c5d.4xlarge

c5n.4xlarge

c5.4xlarge

i3en.6xlarge

i3.4xlarge

r5ad.4xlarge

r5a.4xlarge

m5a.4xlarge

m5ad.4xlarge

r5d.4xlarge

m5d.4xlarge

m5.4xlarge

40475.26 ± 1267.47

39884.04 ± 137.80

37993.93 ± 2020.13

38062.91 ± 2390.16

36961.61 ± 222.22

35846.05 ± 112.03

36046.16 ± 197.23

35815.68 ± 363.35

35980.32 ± 109.63

34392.75 ± 4821.18

33156.25 ± 2473.24

31985.73 ± 252.40

AWS: Average Bogo Ops per Second

[FIG 4]

AWS produced a wide range of bogo ops

per second across their many machine types.

It’s unsurprising that the C series, AWS’s

compute optimized series, outperformed their

other machine types. In general, we see the

machine types with higher processor clock

frequencies dominating this comparison.

AWS is also the only cloud where we tested

AMD machines. Specifically, we tested four

different AMD EPYC 7000 series instance

types, which each contain an “a” specifier.

The CPU benchmarks do not show a

significant difference one way or the

other when comparing these against the

Intel processors.

Azure CPU

Azure, like AWS, offers a wide range of

performance profiles on Stress-ng. The

groupings we see with the Azure machine

types were primarily defined by 2 factors:

the processor provided and hyperthreading.

Most machines were provided with 16 cores

and 1 thread per core. The exceptions were

the Standard_F16s_v2, Standard_E16s,

and the Standard_DS16s_v3. This was

the largest factor in influencing the CPU

benchmark. Within each of those groups,

the score for each machine achieved what

was expected based on the frequencies of

the CPUs being used.

Azure: CPU Average Bogo Ops Per Second

[FIG 5]

A
zu

re
 M

a
ch

in
e

Ty
p

e

Bogo Ops per Second

Standard_DS14_v2

Standard_DS5_v2

Standard_DS14

Standard_GS4

Standard_F16s_v2

Standard_E16s_v3

Standard_D16s_v3

85079.17 ± 40.00

85054.67 ± 143.06

84988.10 ± 66.39

79390.76 ± 53.60

73411.89 ± 99.91

48693.95 ± 671.06

48241.59 ± 1396.97

0 100,00025,000 50,000 75,000

0 100,00025,000 50,000 75,000

11

GCP CPU

GCP introduced both the n2 series and the c2

series earlier this year, both of which use the

new Intel Cascade Lake Processor. We see from

the benchmarks these result in significantly

higher performance than the corresponding n1

series instances, which use last generation Intel

Skylake processors. Like with AWS, the results

here are highly correlated with the processor

clock frequency for each instance type.

GCP: Average Bogo Ops Per Second

[FIG 6]

G
C

P
 M

a
ch

in
e

Ty
p

e

Bogo Ops per Second

c2-standard-16

n2-highcpu-16

n2-highmem-16

n2-standard-16

n1-standard-16

n1-highcpu-16

n1-highmem-16

37394.911 ± 14.909

33367.750 ± 25.205

33273.933 ± 15.084

32015.900 ± 28.023

27030.961 ± 85.682

26,581.21 ± 219.634

26278.689 ± 157.902

Overall CPU

The best performing Azure machines achieved significantly better results on the CPU microbenchmark. The largest

difference between the CPUs on each cloud was that even though all machines have 16 vCPUs, the top performing

Azure machines use 16 cores with 1 thread per core. The other clouds use hyperthreading across all instances and

use 8 cores with 2 threads per core to achieve 16 vCPUs. The effects of avoiding hyperthreading may have inflated

benchmark and is not guaranteed to directly represent performance on other workloads. The other takeaway from

this comparison is that these results are highly correlated with the clock frequency of each instance type.

As expected, this appears to be a good indicator of compute performance.

One big omission from this analysis is a price per CPU metric, similar to TPC-C’s price per tpmC. We plan to add

this in next year’s version of the report but chose not to include it in this version since it wasn’t a disqualifying

metric in the build-up to TPC-C.

C
lo

ud
 M

a
ch

in
e

Ty
p

e

CPU Throughput (Bogo Ops per second)

25,0000 50,000 75,000 100,000

AWS c5d.4xlarge

Azure Standard_DS14_v2

GCP c2-standard-16

CPU Throughput: Maximum per Cloud

[FIG 7]

0 100,00025,000 50,000 75,000

https://cloud.google.com/blog/products/compute/expanding-virtual-machine-types-to-drive-performance-and-efficiency
https://cloud.google.com/compute/docs/machine-types#c2_machine_types
https://cloud.google.com/compute/docs/machine-types#c2_machine_types

We split network benchmark testing into two tests: one for network throughput, and one for

network throughput latency. Throughput is the quantity of data being sent and received over

a time period. Latency is the time required to transmit a packet across a network. Round-trip

latency includes the return time. It’s important to note that latency is highly dependent upon

your network topology. You can expect much lower latency if you’re sending information

between VMs within the same availability zone than you can if you have VMs across zones.

As a reminder, we ran in the US-central or US-east regions where possible for each cloud.

To test throughput, we used a popular open-source tool called iPerf and latency via another

common open-source tool, ping.

Since last year, we’ve learned that our network tests did not show the true network IO

throughput as the network wasn’t saturated to max capacity by client traffic. A single

client may not drive enough IO to max the network (e.g. underpowered CPU vs. large network

capacity). A common practice is to use several clients on different hosts to drive traffic to

a single host. Last year, we used a single client and reported numbers from the client side.

This leaves a reviewer with uncertainty whether the true max network throughput capacity

is measured. This year, we improved our test setup by testing load from multiple clients (i.e., 3)

and observing the results from a single destination server.

Another major change from last year is that we increased the periodicity of ping by using the

-interval flag. The high default interval used last year can allow the CPU to go to sleep and

therefore impact performance.

Network
Experiment

About iPerf and ping

iPerf attempts to connect the client and the server with the data from buffer

size via the protocol. iPerf’s configurations include a buffer data size (128kb), a

protocol, a server, and a client. This test provides a throughput for the network

which allows for us to compare the performance of the network on AWS, Azure,

and GCP. iPerf supports both User Datagram Protocol (UDP) and Transmission

Control Protocol (TCP). Pick the right protocol for your use-case, as it can have

huge implications on performance.

https://github.com/esnet/iperf
https://linux.die.net/man/8/ping

13

AWS Network Throughput

AWS is a leader in network performance

transparency as they publish their expectations.

Other clouds didn’t provide their expectations

publicly which made it more difficult to sanity

check our results. In addition to transparency,

we found that the AWS network results reliably

matched the specs offered as, for example, we

observed the c5n machine type to exactly match

their claim of 25 Gbps of peak bandwidth.

M
a

ch
in

e
Ty

p
e

c5n-4xlarge

i3en-6xlarge

c5-4xlarge

c5d-4xlarge

i3-4xlarge

m5-4xlarge

m5a-4xlarge

m5ad-4xlarge

m5d-4xlarge

r5a-4xlarge

r5ad-4xlarge

r5d-4xlarge

AWS: Network Throughput Multi

[FIG 8]

Network Throughput (Gb/sec)

Azure Network Throughput

Azure’s top performer on network throughput,

the Standard_DS14_v2 clocks in at 8 Gb/sec, 2

Gb/sec below the minimum network throughput

offered by AWS. In our testing, the AWS network

looks categorically better than Azure’s network.

Azure: Network Throughput Multi

[FIG 9]

M
a

ch
in

e
Ty

p
e

Network Throughput (Gb/sec)

Standard_DS14_v2

Standard_E16s_v3

Standard_F16s_v2

Standard_DS5_v2

Standard_GS4

Standard_DS14

200 40 60 80

200 40 60 80

25.17 ± 0.500

22.75 ± 2.220

10.072 ± 0.017

10.067 ± 0.020

10.1125 ± 0.022

10.0475 ± 0.015

10.065 ± 0.045

10.0925 ± 0.033

10.0675 ± 0.022

10.07 ± 0.035

10.06 ± 0.021

10.1025 ± 0.062

7.71 ± 0.731

7.155 ± 0.548

7.07 ± 2.956

6.865 ± 0.579

6.56 ± 2.397

5.855 ± 0.717

https://aws.amazon.com/about-aws/whats-new/2018/11/introducing-amazon-ec2-c5n-instances/

14

GCP Network Throughput

As discussed above in the machine type

section, GCP recommends using --min-cpu-

platform=skylake for the n1 family of machines,

which they believe has an outsized impact on

network performance. GCPs bottom machine

type, the n1-highcpu-16 is inline with AWS’s top

performing machines.

M
a

ch
in

e
Ty

p
e

Network Throughput (Gb/sec)

200 40 60 80

c2-standard-16

n2-highcpu-16

n2-standard-16

n2-highmem-16

n1-highmem-16

n1-standard-16

n1-highcpu-16

GCP: Network Throughput

[FIG 10]

Combined Network Throughput

GCP’s network looks much better than either AWS or Azure’s networks. Not only do their top performing machines

beat each network’s top performing machines, but, so to do their bottom performing machines. Even their least

performant machine (n1-highcpu-16 in figure 10) is consistent with AWS’ maximum network throughput as seen

in our tests. This is especially impressive because last year, AWS outperformed GCP in our network tests. It is a

credit to GCP that they have improved their network performance and we are left wondering exactly how they

accomplished this improvement.

C
lo

ud
 M

a
ch

in
e

Ty
p

e

Network Throughput (Gb/sec)

200 40 60 80

AWS c5n.4xlarge

Azure DS14_v2

GCP c2-standard-16

Maximum Network Throughput - Multi

[FIG 11]

61.825 ± 9.341

50.275 ± 12.428

48.372 ± 9.291

40.805 ± 14.764

20.897 ± 4.779

21.06 ± 4.561

18.242 ± 3.668

15

Network Latency
In addition to throughput, we also tested network latency. Without testing for latency we can

miss significant delays in service that may be masked by overall performance. For example,

latency limits the performance of individual operations.

We see a familiar C5 series entry leading

the way for low latency on AWS. AWS network

latency is also remarkably consistent with

a narrow range. Predictability is preferable

because it provides consistent expectations

for users.

AWS Network Latency

A
zu

re
 M

a
ch

in
e

Ty
p

e
c5n.4xlarge

r5d.4xlarge

c5.4xlarge

m5d.4xlarge

m5.4xlarge

i3en.6xlarge

c5d.4xlarge

r5ad.4xlarge

m5ad.4xlarge

m5a.4xlarge

r5a.4xlarge

i3.4xlarge

0.055 ± 0.005

0.056 ± 0.005

0.060 ± 0.000

0.060 ± 0.000

0.064 ± 0.005

0.065 ± 0.006

0.065 ± 0.006

0.088 ± 0.005

0.098 ± 0.017

0.098 ± 0.008

0.100 ± 0.010

0.100 ± 0.017

AWS: Network Latency

[FIG 12]

Average Latency (ms)

0.2500.000 0.500 0.750 1.000

Azure Network Latency

Similarly to CPU, Azure offers a large degree

of spread among its various machine types. In

addition, Azure Network latency is significantly

higher than either GCP or AWS. This matches

their comparatively poorer performance on

Network throughput.

A
zu

re
 M

a
ch

in
e

Ty
p

e

Average Latency (ms)

Standard_F16s_v2

Standard_GS4

Standard_DS14_v2

Standard_E16s_v3

Standard_DS14

Standard_DS5_v2

0.483 ± 0.037

0.595 ± 0.026

0.595 ± 0.026

0.595 ± 0.026

0.595 ± 0.026

1.094 ± 0.047

Azure: Average Network Latency

[FIG 13]

0.2500.000 0.500 0.750 1.000

16

GCP Network Latency

The n1 series offers approximately the same

network latency as what we observed in

our previous report. However, unlike in CPU,

GCP’s n2 series dramatically improved its

network latency. In addition, the C2 series

offers even better network latency. GCP

clearly made great strides in its entire network

to increase throughput and lower latency at

the same time.

G
C

E
M

a
ch

in
e

Ty
p

e

Average Latency (ms)

0.2500.000 0.500 0.750 1.000

c2-standard-16

n2-highmem-16

n2-standard-16

n2-highcpu-16

n1-highcpu-16

n1-standard-16

n1-highmem-16

0.074 ± 0.00956

0.148 ± 0.02872

0.148 ± 0.02872

0.148 ± 0.02872

0.224 ± 0.02820

0.224 ± 0.03127

0.236 ± 0.03259

GCP: Average Network Latency

[FIG 14]

Combined Network Latency

Even the best machine on Azure is more than 5 times worse than on AWS or GCP. GCP dramatically improved its

network latency since the last version of this report, but AWS is still king. All of its machine types offer low network

latency on average and its top end machines outperform competitors.

C
lo

ud
 M

a
ch

in
e

Ty
p

e

Ping Latency (ms)

0.1000.000 0.200 0.300 0.400 0.500

AWS c5n.4xlarge

Azure Standard_F16s_v2

GCP c2-standard-16

Network Latency: Minimum Average Latency

[FIG 15]

Once again, the importance of storage I/O depends

on your application. For CockroachDB, an application

that’s always reading and writing to persistent storage,

this is critical. For other stateless applications, storage

performance may not make such a difference. It’s

important to note that there’s a variety of different

storage technologies available, from classic spinning

hard discs and modern SSDs to network-attached

storage and replicated storage. Even when you’re

running in the cloud, there are a number of choices you

can make when provisioning storage.

Storage
I/O Experiment

18

To start, storage hardware comes in two flavors in these cloud offerings - locally attached

storage and network attached storage. In AWS, these are referred to as “instance store”

volumes and “elastic-block storage” (EBS) volumes. In Azure, these are referred to as

“temporary disks” and “managed disks”. In GCP, these are referred to as “local SSDs” and

“persistent disks” (PD). The guarantees that these storage devices provide differ. For instance,

network attached storage volumes typically have strong guarantees about the survivability of

data across instance lifecycle events. Choosing the flavor of storage that is right for a given

application requires taking both the guarantees of the disks and the performance of the disks

into account.

As with network benchmarking, storage benchmarks are split into two camps: throughput and

latency. These measurements take on a similar meaning, but there are a few subtle details.

For one, we’re no longer dealing with symmetric components, so latency is always implicitly

defined as round-trip latency (from a user to a storage application and back).

Storage I/O measurements also have another dimension to them that’s critical to acknowledge.

Storage devices provide interfaces to read and write data, and these typically have vastly

different performance characteristics. We’re going to measure both of these independently

to get a holistic picture of storage performance.

We tested I/O using a configuration of sysbench that simulates small writes with frequent

syncs for both write and read performance. We ran the sysbench test writing to an SSD to

achieve similar results to running a database in production. This test measures throughput

based on a fixed set of threads, or the number of items concurrently writing to disk.

About sysbench

Sysbench is an open-source benchmarking tool that’s popular in the

database world, since it began as a database-specific benchmarking

suite. It’s since evolved into a general purpose benchmarking tool with

a lot of flexibility. For our purposes, we’ll be using it as a filesystem

level benchmark as we test storage devices.

19

About Storage I/O
Write Performance
At its core, sysbench is measuring how much data it can write from storage per second.

We ran the benchmark over a range of concurrency levels, starting at 1 thread (writing alone)

moving our way up to 64 threads (writing concurrently). This was really important to test,

because storage devices have different performance levels for different levels of concurrency.

AWS Storage I/O
Write Performance

For AWS, most machine types come with a fixed

number of SSDs. Other clouds offer more flexibility.

As a result, we chose to have all clouds limited to

one SSD to make it easy to make comparisons

across benchmarks.

AWS storage optimized machines, the i3 series (e.g.,

i3 and i3en), offer vastly superior storage write

throughput. We also noticed a linear increase in

throughput up through 8 threads, whereupon it

becomes mostly flat. This is in sharp contrast to the

other machine types which don’t increase nearly as

steeply with the number of threads.

Storage: AWS Write Throughput (MiB/s)

[FIG 16]

W
ri

te
 T

h
ro

u
g

h
p

u
t

(M
iB

/s
)

1 4 8 16 32 64

2,000

1,500

1,000

500

0

Threads

i3en.6xlarge*

m5d.4xlarge

r5d.4xlarge

c5d.4xlarge

c5n.4xlarge EBS

m5.4xlarge EBS

r5a.4xlarge EBS

m5a.4xlarge EBS

m5ad.4xlarge

r5ad.4xlarge

i3.4xlarge

c5.4xlarge EBS

i3en.6xlarge

* Winning machine

20

Similarly to throughput, the i3 series (e.g., i3 and i3en)

offer the lowest write latency as well. It’s interesting

how all of the machine types increase write latency

with the number of threads as contrasted to the shapes

of these lines in the write throughput.

Unsurprisingly, the i3 series also offers the most

amount of IOPS on the write benchmark with similar

patterns to the throughput discussed above.

Storage: AWS Write iOPS

[FIG 18]

W
ri

te
 i

O
P

s

Threads

80,000

60,000

40,000

20,000

0

i3en.6xlarge*

m5d.4xlarge

r5d.4xlarge

c5d.4xlarge

c5n.4xlarge EBS

m5.4xlarge EBS

r5a.4xlarge EBS

m5a.4xlarge EBS

m5ad.4xlarge

r5ad.4xlarge

i3.4xlarge

c5.4xlarge EBS

Storage: AWS p95 Write Latency

[FIG 17]

p
9

5
 L

a
te

n
c

y
 (

m
s

)

Threads

20

15

10

5

0

m5a.4xlarge EBS

r5a.4xlarge EBS

c5.4xlarge EBS

c5n.4xlarge EBS

m5ad.4xlarge

c5d.4xlarge

m5d.4xlarge

i3en.6xlarge*

m5.4xlarge EBS

r5d.4xlarge

r5ad.4xlarge

i3.4xlarge

1 4 8 16 32 64

1 4 8 16 32 64

i3en.6xlarge

i3en.6xlarge

* Winning machine

* Winning machine

21

Azure Storage I/O
Write Performance

Azure didn’t offer similar priced and scoped storage

instance types when compared to AWS. However,

it did offer a similar range of performance in its

other machines.

Storage: Azure Write Throughput (MiB/s)

[FIG 19]

W
ri

te
 T

h
ro

u
g

h
p

u
t

(M
iB

/s
)

Threads

Standard_F16s_v2 MD

Standard_GS4 MD

Standard_DS14_v2

Standard_DS5_v2

Standard_DS14

Standard_E16s_v3

Standard_F16s_v2

Standard_GS4*

Standard_DS5_v2 MD

Standard_DS14 MD

Standard_E16s_v3 MD

2,000

1,500

1,000

500

0
p

9
5

 L
a

te
n

c
y

 (
m

s
)

Storage: Azure p95 Write Latency

[FIG 20]

Standard_F16s_v2 MD

Standard_GS4 MD

Standard_DS14_v2

Standard_DS5_v2

Standard_DS14

Standard_E16s_v3

Standard_F16s_v2

Standard_GS4*

Standard_DS5_v2 MD

Standard_DS14 MD

Standard_E16s_v3 MD

20

15

10

5

0

1 4 8 16 32 64

Threads

1 4 8 16 32 64

Standard_GS4

Standard_GS4

* Winning machine

* Winning machine

Initially, Azure demonstrates low latency for

threads up to 16. However, after 16 threads, Azure’s

latency grows much higher than AWS’s write

latency. Note that the MD types quickly fall off

the scale of this chart (which we held consistent

with AWS and GCP). At 16 threads and higher, the

Azure SSDs also outpace the graph’s scale. Azure

consistently underperforms AWS and GCP on

storage write latency.

22

Threads
W

ri
te

 i
O

P
s

Storage: Azure Write iOPS

[FIG 21]

Standard_F16s_v2 MD

Standard_GS4 MD

Standard_DS14_v2

Standard_DS5_v2

Standard_DS14

Standard_E16s_v3

Standard_F16s_v2

Standard_GS4*

Standard_DS5_v2 MD

Standard_DS14 MD

Standard_E16s_v3 MD

80,000

60,000

40,000

20,000

0

1 4 8 16 32 64

Standard_GS4

* Winning machine

Similarly to write throughput, the Standard_GS4

outperforms the other Azure machine types in write

IOPs. Also like throughput, the spread varies among

machine types by a large amount. Note that the

managed disks (md) all result in lower IOPs than the

SSDs on this benchmark.

23

GCP Storage I/O Write Performance

GCP doesn’t have a storage-optimized instance, but local SSD can be attached to most

VMs with either NVMe or SCSI interfaces. We like the flexibility GCP provides in allowing

users the ability to configure the number of SSDs attached to a single host. Other clouds

don’t provide this same flexibility. For the tests below (and throughout this report), we

only used one SSD (despite two being the default for some instance types) to be able

to make cross cloud comparisons. These micro-benchmarks didn’t take cost into account

(but will likely do so next year) so it doesn’t penalize GCP that we are only using one disk

for this analysis.

Storage: GCP SSD Write Throughput (miB/s)

[FIG 22]

n1-highmem-16 PD

n1-highcpu-16 PD

n2-standard-16 PD

n2-highmem-16 PD

n2-highcpu-16 PD

n2-standard-16*

n2-highcpu-16*

n2-highmem-16*

n1-standard-16*

n1-highmem-16*

n1-highcpu-16*

c2-standard-16*

n1-standard-16 PD

Threads

W
ri

te
 T

h
ro

u
g

h
p

u
t

(M
iB

/s
)

Unsurprisingly, SSDs outperformed the persistent

disk (PDs) in storage throughput benchmarks.

We can clearly see that all SSDs outperform all PDs.

2,000

1,500

1,000

500

0

1 4 8 16 32 64

C2, N2, N1 SSD Series

* Winning machines

24

It’s also interesting to note how closely each machine’s

curve resembles the other machines. There doesn’t

appear to be a strong difference in storage profiles by

machine type in GCP when accounting for SSD or PD.

Latency didn’t seem to be impacted by the delineation

between SSDs and PDs. In fact, there is little variance

across any of the machine types for write latency.

Unsurprisingly, IOPS mirrors the throughput

distribution. All SSDs outperform all PDs. And,

similarly to above, the results appear nearly

identical by machine type.

Storage: GCP p95 Write Latency

[FIG 23]

n1-highmem-16

n1-standard-16

n2-highmem-16

n2-highcpu-16

n1-standard-16 PD

n2-highcpu-16 PD

n1-highcpu-16 PD

n1-highmem-16 PD

n2-standard-16 PD

c2-standard-16

n2-highmem-16 PD

n1-highcpu-16

p
9

5
 L

a
te

n
c

y
 (

m
s

)

Threads

20

15

10

5

0

Threads

W
ri

te
 i

O
P

s

Storage: GCP Write IOPS

[FIG 24]

n1-highcpu-16 PD

n2-standard-16 PD

n2-highmem-16 PD

n2-highcpu-16 PD

c2-standard-16*

n1-highcpu-16*

n1-highmem-16*

n1-standard-16*

n2-highcpu-16*

n2-highmem-16*

n2-standard-16*

n1-standard-16 PD

n1-highmem-16 PD

80,000

60,000

40,000

20,000

0

1 4 8 16 32 64

1 4 8 16 32 64

C2, N2, N1 SSD Series

* Winning machines

* No winning machines

25

Combined Storage Write Performance

After comparing all three clouds top performing machines, AWS offers superior write storage performance

with the i3en machine type.

Both AWS and GCP appear to hit a bottleneck at 4 threads while Azure contains to increase write iOPs until 16

threads. For applications with more threads, Azure write iOPs really shine through after falling behind initially

on smaller thread sizes.

Storage: Write p95 Latency Storage: Maximum Write iOPs

[FIG 26] [FIG 27]

W
ri

te
 L

a
te

n
c

y
 (

m
s

)

W
ri

te
 I

O
P

S
 p

e
r

s
e

c
o

n
d

Threads Threads

20

15

10

5

0

80,000

60,000

40,000

20,000

10,000

0

AWS i3en Azure p95 Latency GCP p95 Latency AWS i3en Azure Standard_GS4 GCP n2-standard-16

1 4 8 16 32 64 1 4 8 16 32 64

Storage: Maximum Write Throughput

[FIG 25]

Threads

W
ri

te
 T

h
ro

u
g

h
p

u
t

(M
iB

/s
e

c
)

2,000

1,500

1,000

500

0

AWS i3en Azure Standard_gs4 GCP n2-standard-16

1 4 8 16 32 64

26

About Storage I/O
Read Performance
Similar to write performance, sysbench also measures how much data it can read from storage

per second. We ran the benchmark over a range of concurrency levels, starting at 1 thread

(reading alone) moving our way up to 64 threads (reading concurrently). This was really

interesting to test, because different storage devices support different levels of concurrency.

AWS Storage I/O
Read Performance

Unsurprisingly, AWS’s storage optimized machines,

the i3 series, again outperformed their other machine

types. We did find it surprising that the i3en series

underperformed the older i3 series on the storage

read benchmarks (e.g., throughput, and latency as

shown in FIG. 28).

Threads

Storage: AWS Read Throughput (MiB/s)

[FIG 28]

c5n.4xlarge EBS

m5.4xlarge EBS

r5a.4xlarge EBS

m5a.4xlarge EBS

i3.4xlarge*

i3en.6xlarge

m5d.4xlarge

r5d.4xlarge

r5ad.4xlarge

m5ad.4xlarge

c5d.4xlarge

c5.4xlarge EBS

4,000

3,000

2,000

1,000

0

R
e

a
d

 T
h

ro
u

g
h

p
u

t
(M

iB
/s

)

1 4 8 16 32 64

i3.4xlarge

* Winning machine

27

In fact, the i3en is only middle of the pack as we

review the p95 read latency. The c5d becomes the

second best machine after the default i3 entry.

Again, like on the write benchmarks, read IOPS

mirrors read throughput. The main takeaway is

that AWS’s storage optimized machines live up

to their billing as strong choices when optimizing

for storage performance.

Storage: AWS p95 Read Latency

[FIG 29]

i3en.6xlarge

r5ad.4xlarge

i3.4xlarge*

m5d.4xlarge

c5.4xlarge EBS

m5a.4xlarge EBS

r5a.4xlarge EBS

m5.4xlarge EBS

c5n.4xlarge EBS

m5ad.4xlarge

c5d.4xlarge

r5d.4xlarge

p
9

5
 L

a
te

n
c

y
 (

m
s

)

Threads

15

10

5

0

Threads

R
e

a
d

 i
O

P
s

Storage: AWS Read iOPs

[FIG 30]

m5.4xlarge EBS

c5n.4xlarge EBS

r5a.4xlarge EBS

c5.4xlarge EBS

m5d.4xlarge

i3.4xlarge*

c5d.4xlarge

r5d.4xlarge

i3en.6xlarge

r5ad.4xlarge

m5ad.4xlarge

m5a.4xlarge EBS

125,000

100,000

75,000

50,000

25,000

0

1 4 8 16 32 64

1 4 8 16 32 64

i3.4xlarge

i3.4xlarge

* Winning machine

* Winning machine

28

Azure Storage I/O

Read Performance

Azure’s read throughput is similar to their write

throughput. It’s in the middle of the AWS spread

but, even when excluding the storage optimized

instances, can’t reliably outperform AWS.

Storage: Azure Read Throughput (MiB/s)

[FIG 31]

Standard_F16s_v2 MD

Standard_GS4 MD

Standard_DS14_v2

Standard_DS5_v2

Standard_DS14

Standard_E16s_v3

Standard_F16s_v2

Standard_GS4*

Standard_DS5_v2 MD

Standard_DS14 MD

Standard_E16s_v3 MD

Threads

4,000

3,000

2,000

1,000

0

R
e

a
d

 T
h

ro
u

g
h

p
u

t
(M

iB
/s

)

Storage: Azure p95 Average Read Latency

[FIG 32]

Standard_F16s_v2 MD

Standard_GS4 MD

Standard_DS14_v2

Standard_DS5_v2

Standard_DS14

Standard_E16s_v3

Standard_F16s_v2

Standard_GS4*

Standard_DS5_v2 MD

Standard_DS14 MD

Standard_E16s_v3 MD

p
9

5
 L

a
te

n
c

y
 (

m
s

) 15

10

5

0

Azure’s read latency is extremely variable. It jumps

quickly as threads increase. The standard_DS14

and Standard_DS5_v2 offer the best latency profile

as they make it to 32 threads before sharply rising.

1 4 8 16 32 64

Threads

1 4 8 16 32 64

Standard_GS4

Standard_GS4

* Winning machine

* Winning machine

29

R
e

a
d

 i
O

P
s

Storage: Azure Read iOPS

[FIG 33]

Standard_F16s_v2 MD

Standard_GS4 MD

Standard_DS14_v2

Standard_DS5_v2

Standard_DS14

Standard_E16s_v3

Standard_F16s_v2

Standard_GS4*

Standard_DS5_v2 MD

Standard_DS14 MD

Standard_E16s_v3 MD

125,000

100,00

75,000

50,000

25,000

0

Similarly to write latency, Azures MDs (and later

SSDs) cannot perform at the same levels of AWS

and GCP. We chose to hold the scale constant to

the other clouds to better be able to make cross-

cloud comparisons. Similarly to write latency,

Azure consistently underperforms AWS and GCP

on storage read latency.

Like with Azure throughput, the Standard_GS4

offers the best Read iOPS on Azure.

GCP Storage I/O
Read Performance

Just like in the write throughput benchmarks,

all of GCPs SSDs outperform their PDs. While

the spread is tightly grouped across most

threads, it does appear as if the n1-standard-16

offers slightly better initial read throughput.

Storage: GCP Read Throughput (MiB/s)

[FIG 34]

n1-highmem-16 PD

n1-standard-16 PD

n1-highcpu-16 PD

n2-standard-16 PD

n2-highcpu-16 PD

n1-standard-16*

c2-standard-16*

n2-standard-16*

n2-highmem-16*

n2-highcpu-16*

n1-highmem-16*

n1-highcpu-16*

n2-highmem-16 PD

4,000

3,000

2,000

1,000

0

R
e

a
d

 T
h

ro
u

g
h

p
u

t
(M

iB
/s

)
Threads

1 4 8 16 32 64

Threads

1 4 8 16 32 64

Standard_GS4

C2, N2, N1 SSD Series

* Winning machine

* Winning machines

30

R
e

a
d

 i
O

P
s

Storage: GCP Read iOPs

[FIG 36]

n1-highmem-16 PD

n1-standard-16 PD

n1-highcpu-16 PD

n2-standard-16 PD

n2-highcpu-16 PD

n1-standard-16*

c2-standard-16*

n2-standard-16*

n2-highmem-16*

n2-highcpu-16*

n1-highmem-16*

n1-highcpu-16*

n2-highmem-16 PD

Storage: GCP p95 Read Latency

[FIG 35]

n2-highcpu-16*

n2-highmem-16*

n2-standard-16*

c2-standard-16*

n2-highcpu-16 PD

n1-standard-16 PD

n1-highcpu-16 PD

n1-highmem-16 PD

n2-standard-16 PD

n2-highmem-16 PD

n1-highcpu-16*

n1-highmem-16*

p
9

5
 L

a
te

n
c

y
 (

m
s

)

15

10

5

0

Finally, Read IOPS match Read throughput.

Interestingly, unlike in the write latency charts,

the SSDs also outperform all PDs in read latency.

Threads

1 4 8 16 32 64

Threads

1 4 8 16 32 64

125,000

100,00

75,000

50,000

25,000

0

C2, N2, N1 SSD Series

C2, N2, N1 SSD Series

* Winning machines

* Winning machines

31

Combined Storage Read Performance

Google’s SSDs consistently outperform PDs in all storage metrics.

Similarly to the combined storage write performance, AWS wins across all categories with its i3 machine type.

We chose to test workload performance by using TPC-C, a popular OLTP benchmark tool that simulates an

e-commerce business, given our familiarity with this workload. TPC-C is a popular OLTP benchmark tool that

simulates an e-commerce business with a number of different warehouses processing multiple transactions at

once. It can be explained through the above microbenchmarks, including CPU, network, and storage I/O.

AWS c5d.4xlarge Azure Standard_GS4 GCP n1-standard-16

 Storage: Minimum Read Latency Storage: Read iOPs

[FIG 38] [FIG 39]

A
v

e
ra

g
e

 L
a

te
n

c
y

 (
m

s
)

R
e

a
d

 I
O

P
S

 p
e

r
s

e
c

o
n

d

Threads Threads

40

30

20

10

0

125,000

100,000

75,000

50,000

25,000

0

AWS i3.4xlarge
p95 Latency

Azure Standard_GS4
p95 Latency

GCP n2-standard-16
p95 Latency

1 4 8 16 32 64 1 4 8 16 32 64

Storage: Read Throughput

[FIG 37]

Threads

R
e

a
d

 T
h

ro
u

g
h

p
u

t
(M

iB
/s

e
c

) 4,000

3,000

2,000

1,000

0

1 4 8 16 32 64

AWS r5d.4xlarge Azure Standard_GS4 GCP n2-standard-16

We chose to test overall workload performance by using TPC-C,

given our affinity for and familiarity with this workload. TPC-C is

a popular OLTP benchmark tool that simulates an e-commerce

business with a number of different warehouses processing multiple

transactions at once. It can be explained through the above

microbenchmarks, including CPU, network, and storage I/O.

TPC-C is measured in two different ways. One is a throughput

metric, throughput-per-minute type C (tpmC) (also known as the

number of orders processed per minute). The other metric is the total

number of warehouses supported. Each warehouse is a fixed data size

and has a max amount of tpmC it’s allowed to support, so the total

data size of the benchmark is scaled proportionally to throughput. For

each metric, TPC-C places latency bounds that must be adhered to

in order to consider a run “passing”. Among others, a limiting passing

criteria is that the p90 latency on transactions must remain below

5 seconds. This allows an operator to take throughput and latency

into account in one metric. Here, we consider the maximum tpmC

supported by CockroachDB running on each system before the latency

bounds are exceeded.

In 2017, our internal testing suggested more equitable outcomes

between AWS and GCP. In 2018, AWS outperformed GCP by 40%.

We attributed this to AWS’s Nitro System present in c5 and m5 series.

Did this hold true in the 2020 report?

TPC-C
Performance

http://www.tpc.org/tpcc/
https://www.cockroachlabs.com/blog/cockroachdb-2dot1-performance/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#ec2-nitro-instances

33

In 2019, we saw that AWS came across on top on this benchmark once

again, but that GCP made tremendous strides to close the gap between

itself and AWS. Azure performed similarly to the top two with its best

machines. All clouds are within 5% of one another.

Interestingly, the highest performing machine types from each cloud

are also the same machine types which performed the best on the CPU

and Network Throughput tests. Both AWS’s c5n.4xlarge and GCP’s c2-

standard-16 won the CPU, Network Throughput, and Network Latency

tests while Azure’s Standard_DS14_v2 won the CPU and Network

Throughput throughput tests. However, the machine types which

performed best on the read and write storage tests (e.g., AWS i3.4xlarge

and i3en.6xlarge, GCPs n2-standard-16, and Azure’s Standard_GS4)

varied in their TPC-C performance. This suggests that these tests are

less influential in determining OLTP performance. These results match

our expectation that OLTP workloads like TPC-C are often limited by

compute resources due to their relatively high ratio of transactions

to data size.

2020 TPC-C Results by Cloud

[FIG 40]

C
lo

ud
 M

a
ch

in
e

Ty
p

e

Max tpmC (Throughput)

10,0000 20,000 30,000

AWS c5d.4xlarge

Azure Standard_DS14_v2

GCP c2-standard-16

AWS c5n.4xlarge

AWS i3en.6xlarge

GCP n2-highmem-16

GCP n2-standard-16

Azure Standard_GS4

GCP n2-highcpu-16

Azure Standard_F16s

AWS i3.4xlarge

34

TPC-C Performance per Dollar

Efficiency matters as much as performance. If you can achieve top performance but have to pay

2x or 3x, it may not be worth it. For this reason, TPC-C is typically measured in terms of price

per tpmC. This allows for fair comparisons across clouds as well as within clouds. In this analysis,

we use the default on-demand pricing available for each cloud because pricing is an extremely

complex topic. GCP, in particular, was keen to note that a true pricing comparison model would

need to take into account on-demand pricing, sustained use discounts, and committed use

discounts. While is true that there is a high cost associated with paying up-front costs, we applied

this evenly across all three clouds.

We recommend exploring various permutations of these pricing options depending upon your

workload’s requirements. Producing a complex price comparison across each cloud would be

a gigantic undertaking, in and of itself, and we believe that Cockroach Labs is not best positioned

to offer this kind of analysis. Finally, we are reporting the raw TPC-C performance numbers above

because we are also aware that, depending upon the size of your organization, you may be able

to negotiate discounts not available from the list prices on each vendor’s website.

Price per tpmC by Cloud Machine Type

[FIG 41]

C
lo

ud
 M

a
ch

in
e

Ty
p

e

Price per tpmC

$1.00$0.00 $2.00 $3.00 $4.00 $5.00

GCP n2-highcpu-16

AWS c5d.4xlarge

GCP c2-standard-16

Azure Standard_F16s

AWS c5n.4xlarge

GCP n2-standard-16

GCP n2-highmem-16

Azure Standard_DS14_v2

AWS i3en.6xlarge

Azure Standard_GS4

AWS i3.4xlarge

Again, all three clouds come close on the cheapest price per tpmC. However, this year we see that

the GCP n2-highcpu-16 offers the best performance per dollar in the tested machine types. If price

is less of a concern, AWS is the best performer on throughput alone.

GCP shows dramatic improvement in the 2020

Cloud Report edging out AWS and Azure on price per

performance of TPC-C but slightly underperforming

AWS and Azure on max tpmC available on a three

node cluster.

Setting up a highly performant configuration isn’t

always intuitive. It’s also important to note that over

the past couple years of testing, we’ve seen different

cloud providers performance change drastically.

Since these results fluctuate as the clouds adopt new

hardware, it’s important to regularly re-evaluate your

configuration (and cloud vendor).

CockroachDB remains committed to our stance as

a cloud-agnostic database. We will continue to use

AWS, Azure, GCP, and others for internal stability and

performance testing. We also expect that these results

will change over time as all three companies continue

to invest in a modern infrastructure ecosystem.

Conclusion

CockroachLabs is the company
behind CockroachDB, the ultra-
resilient SQL database.
With a mission to Make Data Easy, Cockroach Labs is led by a team

of former Google engineers who have had front row seats to nearly two

decades of database evolution. The company is headquartered in New

York City and is backed by an outstanding group of investors including

Benchmark, G/V, Index Ventures, Redpoint, and Sequoia.

cockroachlabs.com

The research and writing in this PDF are copyright Cockroach Labs, 2019, under the Creative Commons License (CC BY 4.0).

http://cockroachlabs.com

