
rti.com

Combating NACK Storms
and Slow Consumers

WHITEPAPER

OVERVIEW

Reliable one-to-many communication is frequently prone to
two serious problems in particular: (1) how to prevent a slow
consumer from holding up the rest of the system, and (2) how
to prevent massive amounts of negative acknowledgement
(NACK) traffic from swamping the network. These problems
are related to one another: both deal with the way in which
a communications stack (network protocols combined with
a middleware on top of them) maintains reliability across a
logical network topology with broad fan-out. This paper
discusses how these problems can be lessened or avoided
altogether by leveraging the unique capabilities of RTI Data
Distribution Service middleware.

INTRODUCTION TO ONE-TO-MANY RELIABILITY

NACK storms and slow consumers can plague any reliable
one-to-many communications system. To understand why,
it’s important to understand how reliable protocols typically
work in such scenarios. The following is a basic description
of reliability in RTI middleware. Although there can be
variations—for example, an alternative implementation might
interpose brokers between the producer and consumer—
many of the concepts and interactions described below hold
true for any reliable protocol1.

When a producer publishes data to a set of consumers, it
typically also sends (a) “heartbeats” informing the consumers
that the producer is still functioning and (b) status notifications
indicating which data is available from the producer. (RTI
combines these functions into a single heartbeat message; the
remainder of this paper will assume this design.) Therefore,
relative to consuming applications, one of the following things
will eventually happen:

• The consumer will receive one or more messages from
the producer. By examining the sequence numbers of
these messages, the consumer can determine whether
any previous messages were dropped.

• The consumer will receive meta-information from the
producer indicating that some messages have not arrived.

ROBUST RELIABLE COMMUNICATION WITH RTI DATA DISTRIBUTION SERVICE

• The consumer will receive nothing from the producer. It
will eventually time the producer out and report an error
to the application.

In response, a well-behaved consumer will typically send the
producer positive acknowledgements (“ACKs”), indicating the
messages it has received, and/or negative acknowledgements
(“NACKs”) indicating messages that were missed2.

At this point, one of the following will occur on the producer
side:

• The producer will receive ACKs for the data it has sent.
Provided that it has no requirement to maintain data for
late joiners to the network, it can delete messages from its
send queue as soon as all consumers have acknowledged
them.

• The producer will receive NACKs for one or more
messages. It will respond by resending the missing data.

• The producer will receive no response at all from one or
more consumers. It will eventually time-out the offending
consumers and report an error to the application.

In this way, producers repeatedly write new messages to
a group of consumers and the consumers report back as
to whether or not they have received those messages. As
messages become fully acknowledged, the producer may
discard them.

RTI middleware provides an integrated messaging and
caching infrastructure. In basic message delivery, “live”
messages are delivered directly to the application without
brokers or context switches for minimal latency.

In-memory data caches, on both the producer and consumer
sides, support fine-grained control over the degree of
reliability required. Persistence components elsewhere in
the architecture, combined with these in-memory caches,
minimize latency while optimizing the amount of data actually
stored. RTI’s approach also provides flexibility in the amount
of system resources that are consumed.

1 Much of the description holds true for TCP as well, even though it is based on a stream metaphor instead of explicit datagrams, because it is implemented on top of the
datagram-oriented IP. TCP hides the heartbeat and acknowledgment details from the application, but analogous behavior nevertheless takes place.

2 RTI supports optional ACK suppression to reduce CPU and bandwidth utilization in high fan-out configurations. The description that follows encompasses both positive
and negative acknowledgements. For more information about how ACK suppression works, and when it might be appropriate, see Windowed Reliability below.

http://www.rti.com
http://www.rti.com

WHITEPAPER • COMBATING NACK STORMS AND SLOW CONSUMERS

2 • rti.com

The more information the application provides to the
middleware about the data in which it is interested, and the
communication contracts of that data, the more intelligently
the middleware can manage and minimize the network traffic
that must flow between producers and consumers to Producer
Consumer. (Figure 1) RTI architecture fulfill those contracts.
Network traffic and CPU loads can be reduced, for example,
by exposing filters and time constraints to the middleware,
thereby reducing the probability of pathological ACK- or
NACK-related traffic patterns. And applications can increase
responsiveness—both of automatic behavior adaptation
and of application notifications—by carefully configuring
heartbeat and acknowledgement rates and timeouts. These
concepts and others are discussed in further detail in the
following sections.

PROBLEM: SLOW CONSUMERS

Unfortunately, problems can occur if one or more consumers
are not able to respond to the producer in a timely manner.
If a producer’s send queue is full and it has not received a
response from a particular consumer, it has only a few choices:

• Don’t expect acknowledgements in the first place. A
message producer can inform its consumers that they
don’t need to provide positive acknowledgements when
they receive messages, just negative acknowledgements
when they don’t receive something. This technique
efficiently isolates the producer from slow consumers,
but is only appropriate when the producer and consumer
are loosely coupled and windowed reliability (see below)
is sufficient.

• Enlarge the queue. This tactic can be a good one initially,
but cannot continue indefinitely.

• Make room in the queue by discarding data that has not
yet been fully acknowledged. This action puts reliable
delivery at risk for all other consumers, because if a
consumerlater NACKs a discarded message, the producer
will be unable to repair the missing data.

• Stop waiting for acknowledgements from the slow
consumer. Doing so may amount to failing the consumer
over to a best-effort mode—simply not waiting for
acknowledgment before flushing sent data from the
queue—or, even more severe, refraining from sending
future messages to the consumer altogether. This
tactic puts reliability at risk, but only for the offending
consumer(s).

AVOIDANCE STRATEGIES

The best way to handle this problem is, of course, to avoid it
in the first place. In large part, that means keeping packets off
the wire if they are not needed by the consumer(s) or likely to
be dropped en route.

HELP ME HELP YOU

• Time-Based Filtering (Data Throttling)
For certain types of streaming data and certain
consumers, it may not be necessary to receive every
message. Such would typically not be the case for
market data sent to an algorithmic trading server, of
course, but for messages destined for a user interface—
which can likely only be updated a few times a few
times a second anyway—or for streaming media, time-
based filtering may be appropriate.

RTI allows applications to express time-based filters
in terms of a “minimum separation”: a minimum time
duration that must elapse between messages. For
example, a consumer may express to a producer
that it is only able to process one message every 50
microseconds. As a result, the middleware will drop
intermediate messages to that consumer only. When
possible, these messages will be dropped on the
producer side so that they never burden the network.

The middleware will never impose a time-based filter on
a consumer automatically, as the “missing” messages
would be unexpected by the application logic and could
therefore prove harmful. A minimum separation can be
configured at the initialization time of a consumer (or
class of consumers), as well as dynamically configured
during the live operation of the distributed application.
An adaptive application can take advantage of this
capability to dynamically adjust time-based filters
at run time. For more information about detecting
and responding to slow consumers, see the section,
Management Strategies, below.

• Content-Based Filtering
Content-based filtering is a more widely applicable
strategy for reducing the amount of data on the
network. RTI provides content-aware delivery of
messages, so consuming applications can express which
specific data values are of interest and which are not.
For example, a consumer may be interested in “Offer”
data only when the “price” field contains a value greater
than 20. RTI applies this intelligence in the messaging
layer so that the consumer is only notified of updates
which already meet its specific criteria; this reduces
the load on the consumer of processing unnecessary
updates.

• Address Partitioning
Traffic on a single logical data stream can be partitioned
across a number of physical addresses for load
balancing purposes. Modern enterprise-class switches
support IGMP snooping, which lets them switch
multicast traffic as efficiently as they do unicast. RTI
can take advantage of this feature in the hardware to
partition traffic efficiently and filter unnecessary data
without any network or CPU penalty at the network
edge.

Figure 1. Flow between Producers and Consumers

http://www.rti.com
http://www.rti.com

WHITEPAPER • COMBATING NACK STORMS AND SLOW CONSUMERS

3 • rti.com

CONTROL THE FLOW TO AVOID DROPPED MESSAGES

Applications can shape network traffic and avoid dropped
messages by controlling the flow of packets onto the network.
Like the meter on a freeway entrance ramp, spacing out the
traffic may actually improve latency and throughput overall
by eliminating costly resends3.

RTI provides an optional, comprehensive flow control
capability for application data. Applications can indicate how
often a message producer can send what amount of data, as
well as whether unused capacity may “roll over” and be used
later4; these parameters can be changed dynamically through
the RTI APIs at any time, allowing applications to adapt to
real-time conditions. These reusable, per-producer flow
controller definitions allow a distributed application to shape
network traffic with a high degree of precision.

MANAGEMENT STRATEGIES

Despite the best efforts of an application’s designers and
implementers, pathological circumstances may cause
consumers to fall behind. The first part of this paper
summarized the options a producer has when faced with slow
consumers:

• Request negative acknowledgements only; suppress
positive acknowledgements

• Enlarge the send queue to store more pending data

• Discard unacknowledged data

• Cut off the consumer(s)

RTI provides applications with fine-grained control over all
alternatives.

SEND QUEUE MEMORY MANAGEMENT

Applications can configure how much memory a producer
is allowed to use for its send queue initially, as well as how
much memory this queue is allowed to consume maximally
if unacknowledged data backs up. As the queue fills and
then empties again, the producer will automatically adapt
the rate at which it sends heartbeats to its consumers: the
fuller the send queue, the more aggressively the producer will
spur the consumers to acknowledge the data it has sent. The
application can also receive notifications of these changes.
This degree of responsiveness and control allows applications
to provide resilience and flexibility in the face of fluctuating
message volumes, while preventing a slow consumer from
overwhelming the memory resources of the producer.

RTI’s memory management facility seeks to reduce churn and
memory fragmentation and, more importantly, to minimize
the number of heap allocations that occur on the critical
send/receive path, thereby decreasing latency and increasing
determinism. When the send queue grows, by default it will
allocate a block of contiguous buffers up front to reduce

the probability of future memory allocations. As the queue
empties again, these buffers will be retained for later reuse
rather than being immediately freed.

WINDOWED RELIABILITY

RTI gives applications control over which old data can be
removed from the send queue when it fills up. These windows
of valid data can be defined in terms of time (the maximum
“lifespan” between when a message is written and when it
should be consumed) and/or space (the “depth” of old
messages to be stored in the “history”).

If this level of reliability is sufficient, the message producer
can be completely isolated from slow consumers by means of
ACK suppression. In this reliability mode, a producer informs
its consumers that they only need to provide NACKs, not
ACKs. Because the producer does not expect ACKs from any
consumer, a slow consumer cannot affect it. A finite lifespan
and/or history depth fulfills the need for send-queue emptying
no longer being met by message acknowledgements.

CONSUMER INACTIVATION

At some point, a producer can no longer maintain resources
on behalf of a consumer that is not keeping up. RTI provides
fine-grained control over:

• The rate at which heartbeats are sent from the producer
to its consumers.

• The number of heartbeats a producer will send to a
consumer without response before marking it as inactive.

3 While flow control can improve worst-case latency—by helping to prevent readers from falling behind—and improve or shape throughput, it does come at the
 expense of best-case latency, because network sends must take place in an asynchronous thread.

Figure 2. Slow consumer inactivated to clear send queue

http://www.rti.com
http://www.rti.com

WHITEPAPER • COMBATING NACK STORMS AND SLOW CONSUMERS

4 • rti.com

A consumer that is inactivated will not be forgotten entirely,
but unacknowledged data will not be maintained solely on
its behalf; communication will proceed in a best-effort-like
mode with respect to that consumer. Should the consumer
become responsive again, any data that it missed and that
is still available for other reasons will be made available to it.
As changes in activation and inactivation occur, the application
will be notified asynchronously by means of a callback.

In order to provide higher data availability for consumers that
fall behind and catch up again, as well as for consumers that
may join the network late initially, RTI provides an optional
persistence service. This service can be located on any node
in the network in order to offload heavy storage requirements
from the message producers themselves; service instances
can also be federated to provide redundancy and additional
levels of data availability. A persistence service interposed
between message producers and consumers can seamlessly
provide consumers with an arbitrary amount of historical data
when they become responsive again.

RTI provides an optional, comprehensive flow control
capability for application data. Applications can indicate how
often a message producer can send what amount of data, as
well as whether unused capacity may “roll over” and be used
later4; these parameters can be changed dynamically through
the RTI APIs at any time, allowing applications to adapt to
real-time conditions. These reusable, per-producer flow
controller definitions allow a distributed application to shape
network traffic with a high degree of precision.

SLOW CONSUMER INACTIVATED TO CLEAR SEND QUEUE

Problems can also occur if consumers respond too promptly.
If many consumers miss the same message(s), they may all
NACK at once, flooding the network with reliability meta-
traffic and preventing application data from flowing.

This problem can be multiplied when using multicast, since
resent data will be seen by all consumers, even those that
received the previous messages correctly. In the worst case,
the processing and storage resources consumed by these
unnecessary resends can starve out the processing of new
data, leading to a self-perpetuating feedback loop of NACKs
and resends ricocheting back and forth across the network.
There are three ways to reduce the damage done by surges in
ACK/NACK traffic:

1. Reduce ACK/NACK volumes overall.

2. Smooth NACK spikes to avoid short-term network
flooding.

3. Prevent longer-term network flooding caused by poorly
targeted NACK responses.

Step 1: Prune and Shape Network Traffic to Reduce (N)ACKs

Some of the strategies for avoiding slow consumers can
also help to prevent NACK storms. Specifically, by keeping
unnecessary traffic off the network in the first place, the
middleware removes the need for a consumer to ACK/NACK

it, reducing the probability of a storm. These strategies
are discussed in the section Avoidance Strategies above.

Step 2: Wait Before Responding to Avoid NACK Storms

Like other vendors, RTI provides for heartbeat and
NACK “response delays”: back-off times during which
a producing or consuming application will refrain from
putting traffic on the wire, with the expectation that
others may be attempting to write at the same time.

• The “heartbeat response delay” specifies how long after
receiving a heartbeat from a producer a consumer will
wait before responding with an ACK or NACK.

• The “NACK response delay” governs traffic in the other
direction, allowing a producer to wait before resending
messages to a consumer.

These delays are specified in terms of minimum and maximum
values; the actual delay will be some random value in between
them. This use of a randomly timed response, configured
across a time window, causes NACKs and resent messages to
be spread out in the time window instead of creating peaks of
bandwidth usage.

Without a random response delay, NACKs can occur all at
once, causing a spike in network traffic, as shown conceptually
in the diagram above. This spike can deny network access to
live application data. RTI uses random delays to smooth out
those spikes, allowing data to flow normally.

Step 3: Use Multicast Intelligently to Prevent Feedback
Loops

In many middleware implementations, messages and their
acknowledgements travel either over unicast only or multicast
only. In the former case, message volumes may not scale to
meet real- world needs. In the latter case, even a mild surge
in NACK traffic can result in a follow-on surge of multicast
message repairs, which will be received, and must be
processed, even by those well- behaved consumers that did
not miss the message initially. The associated network and CPU
loads of these repeated resends and re-acknowledgements
can continue to deny network access to live data long after
the initial NACK spike is over.

4 The algorithm is a variation of the well-known “token bucket” pattern. The application has full control over the size of the bucket, the rate of token accumulation,
 and other parameters.

Figure 3: NACK storm prevention with random delays

http://www.rti.com
http://www.rti.com

232 E. Java Drive, Sunnyvale, CA 94089
Telephone: +1 (408) 990-7400
Fax: +1 (408) 990-7402
info@rti.com

CORPORATE HEADQUARTERS

WHITEPAPER • COMBATING NACK STORMS AND SLOW CONSUMERS

rti.com

rti_software

rtisoftware

company/rti

connextpodcast

rti_software

RTI, Real-Time Innovations and the phrase “Your systems. Working as one,” are registered trademarks or trademarks
of Real-Time Innovations, Inc. All other trademarks used in this document are the property of their respective owners.
©2020 RTI. All rights reserved. 50011 V5 0820 5 • rti.com

RTI middleware avoids this problem: it can use both unicast
and multicast addresses and switch from one to the other
seamlessly and intelligently to isolate slow consumers from
their better- behaving peers, helping to prevent the feedback
loops of redundant resends and re- acknowledgements that
can result from a surge in NACK traffic.

First, consumers can be configured (individually or by
class) to listen for messages on either unicast or multicast
addresses. In topologies in which the number of consumers
is limited, unicast addressing can provide superior isolation
and decoupling without significantly impacting performance.
In this scenario, all repair traffic will be targeted to specific
slow consumers, avoiding increased loads on well-behaved
consumers. A single producer can communicate with
consumers using any combination of unicast and multicast
addresses.

Second, even when the middleware is configured to send
application messages over multicast, consumers will respond
with NACKs over unicast to the specific producer whose data
they are missing. The producer, in turn, can respond with
message repairs either over unicast, for maximum isolation of
a small number of slow consumers, or multicast, for efficiency
in the case where many consumers need repairs. How it does
this depends on its configured NACK response delay and the
number of NACKs it receives before the delay elapses.

This scheme limits the ability of poorly behaved consumers
from bringing down the rest of the network in several ways:

• Consumers are decoupled from each other. Since one
consumer does not depend on any other to NACK its
missed data, one misbehaving consumer cannot cause
another to also misbehave or lose data.

• A single slow consumer will never lead to extraneous
resends to up-to-date consumers.

• The middleware can provide robustness in the face
of multiple slow consumers in several ways: (1) by
responding to each of them independently over unicast,
so that up-to-date consumers receive no duplicate
messages that they will have to discard; (2) by
configuring different groups of consumers with different
multicast addresses to allow multiple repairs to be sent
efficiently over multicast while limiting the impact on up-
to- date consumers; and (3) by using ACK suppression
(see the section Windowed Reliability above) to prevent
unnecessary feedback to the producer in the event that
redundant resends do occur.

Used together, these three strategies—intelligent data filtering
and flow control, random delays to smooth traffic spikes, and
adaptive addressing of message resends—can significantly
improve an application’s avoidance of, and robustness to,
traffic spikes.

CONCLUSION

Users of one-to-many reliable messaging systems are rightly
concerned about the negative side effects of pathological
traffic patterns. Fortunately, RTI offers a number of capabilities
that provide robustness and resilience to applications in order
to dramatically reduce the probability of such traffic patterns.
In the event that the worst happens, RTI provides applications
with full control over the failure and recovery modes.Having
now been successively employed on many projects, a data-
centric architecture must be seriously considered for any
new mission-critical undertaking. To learn more, go to
http://www.rti.com.

Real-Time Innovations (RTI) is the largest software framework provider for smart machines and real-world systems.
The company’s RTI Connext® product enables intelligent architecture by sharing information in real time, making large
applications work together as one.

With over 1,500 deployments, RTI software runs the largest power plants in North America, connects perception to control in
vehicles, coordinates combat management on US Navy ships, drives a new generation of medical robotics, controls hyperloop
and flying cars, and provides 24/7 medical intelligence for hospital patients and emergency victims.

RTI is the best in the world at connecting intelligent, distributed systems. These systems improve medical care, make our roads
safer, improve energy use, and protect our freedom.

RTI is the leading vendor of products compliant with the Object Management Group® (OMG) Data Distribution Service™ (DDS)
standard. RTI is privately held and headquartered in Sunnyvale, California with regional headquarters in Spain and Singapore.

Download a free 30-day trial of the latest, fully-functional Connext DDS software today: https://www.rti.com/downloads.

ABOUT RTI

http://www.rti.com
http://www.rti.com
https://www.instagram.com/rti_software/
https://soundcloud.com/connextpodcast
http://www.rti.com
https://twitter.com/rti_software
https://www.facebook.com/RTISoftware/
https://www.linkedin.com/company/rti/
https://soundcloud.com/connextpodcast
https://www.instagram.com/rti_software/
https://www.linkedin.com/company/rti/
https://twitter.com/rti_software
https://www.facebook.com/RTISoftware/
http://www.rti.com
http://www.rti.com
http://www.rti.com
http://www.rti.com/downloads

