
rti.com

System Architecture
for Robust Integration

WHITEPAPER

ABSTRACT

Enterprises increasingly need to develop distributed systems
in an agile manner, with minimal perturbation to end users
and at lower costs. An important consideration in realizing
these benefits is to break down expensive system stovepipes
and to leverage common services and capabilities. Only a
competitive marketplace based on interoperable standards
with transparent governance can provide the agility, reuse,
and cost control necessary. A vendor-specific or non-
interoperable infrastructure cannot, regardless of whether the
customer has access to its source code.

Interoperability requires that distributed services share a
common understanding of the data on which they operate—
the data’s structure as well as its Qualities of Service (QoS,
i.e. how it changes and how it’s distributed). Using an agreed-
upon message format (sometimes called an Interface Control
Document, or ICD) is not sufficient, because if the relationship
of message to data is not explicit, the integration infrastructure
cannot govern the data. Instead, every application must take
the job on itself—in a redundant, application-specific way.
Applications become more brittle and harder to develop, and
without a robust integration infrastructure, systems become
closed stovepipes.

System architectures can be classified based on the level to
which they govern their data.

• An application-centric architecture provides little or no
governance. It is so called because each application is
a world unto itself. Its state is implicit and not exposed.
The operations that act on that state are specific to that
application. As a result, applications cannot interoperate
unless they are tightly coupled to each other. Each
application must understand the others, so it is difficult
to change them independently. Such architectures are
therefore typically appropriate for monolithic distributed
“systems” (really just single applications) under the tight
control of an authority capable of evolving them all at
once.

Example implementation technology: CORBA

Example scenario: Each object defines a unique interface,
to which all of its clients are tightly coupled.

AN INTRODUCTION TO COMMON INTEGRATION PATTERNS

• A data-centric architecture provides strong governance
over data. It is so called because it organizes the
interactions among applications in terms of stateful data
rather than in terms of operations to be performed. Data
structure and QoS are explicit and discoverable. The
operations that act on that state are uniform1. As a result,
the integration infrastructure is able to enforce the data
structure and QoS contracts on behalf of the applications,
such that applications are not permitted to communicate
malformed data or to change data in inappropriate ways.
Applications are easier to develop, less dependent on
each other, and more fault-tolerant. Such architectures
are therefore involving multiple teams.

Example implementation technologies: SQL databases
[4] (data at rest only), RESTful web services [6] (data at
rest only), and OMG DDS [2] (data in motion).

Example scenario: Two applications connect to a
relational database. One changes a row in the database,
identified by its key, and the other subsequently queries
the updated value.

In between these two, a message-centric architecture
governs the mechanism of communication (i.e. the
flow of messages) but not the state data to which that
communication refers. State and/or operations may be
exposed using application-specific message sets—for
example, an ICD describing that a message with contents
X updates a certain state that should be been established
by a previous message with contents Y. The integration
infrastructure is able to govern the flow of messages,
ensuring that they flow where they are intended and that
their contents are well formed; applications are therefore
somewhat decoupled from one another. However, the
infrastructure cannot determine whether messages have
the appropriate impacts on system state, or govern the
distribution of that state, or ensure that applications
operate based on up-to-date and correct views of the
broader system. As a result, integrations are typically
point-to-point among constituent subsystems and tend
to be brittle. Applications are responsible for maintaining
their own state, which can lead to challenges if they fail
and restart or need to be redeployed elsewhere on the
network. Such architectures are appropriate for small to
medium-sized distributed systems that have a limited

1 These operations typically follow a pattern called “CRUD”—Create, Read, Update, and Delete—because most supporting technologies have
parallels to these operations. In SQL [4], the operations are INSERT, SELECT, UPDATE, and DELETE. In HTTP, they are POST, GET, PUT, and
DELETE. In DDS, they are WRITE, READ, DISPOSE, and UNREGISTER.

http://www.rti.com
http://www.rti.com

WHITEPAPER • SYSTEM ARCHITECTURE FOR ROBUST INTEGRATION

2 • rti.com

number of known constituent subsystems and that can
be upgraded all at once if necessary.

Example implementation technologies: AMQP [1], Java
Message Service (JMS) [3], WS-Notification [5]

Example scenario: One application may expose a
notification “mouse clicked” and another exposes an
operation “create widget”. Both of these operations
are expressed in terms of JMS messages. An Enterprise
Service Bus (ESB) sits between them and sends a “create
widget” message every time it receives a “mouse clicked”
message.

Data-centric architecture is most broadly applicable, because
it provides strong governance over the integration. However,
the simpler the integration to be performed, and the more
control that the integrating organization has over the
constituent subsystems, the less serious the ramifications of
a lack of governance. Consequently, for systems of modest
complexity under a single authority, other approaches may
yield acceptable results.

INTEGRATION PRINCIPLES

System integrators have found that robust Open-Architecture
integration requires interoperability at three levels:

• Byte Level. The system elements must be able to
exchange unstructured data. (Technologies that support
application-centric architecture address interoperability
up to this level.)

• Message Level. The system elements must share a
common “syntax” for their communication. (Technologies
that support message-centric architecture address
interoperability up to this level.)

• Data Level. The system elements must relate the
messages they exchange to explicit data objects that
change in well-defined ways—they must share a common
set of semantics. (Technologies that support data-centric
architecture address interoperability up to this level.)

Data-centric architecture relates messages to data according
to the following principles:

• The structure, changes, and motion of stateful data
must be well defined. “State” consists of the information
that an application needs in order to interpret
messages correctly. For example, suppose there is an
announcement, “the score is four to three”. What game
is being played? Who are the players? Which one of
them has four points and which three? The answers to
these questions comprise the state that is necessary to
understand the message. This is a specialization of the
Service-Oriented Architecture principle of standardized
service contracts; see [10].

• The contracts governing the structure, changes, and
motion of stateful data must be discoverable. This is the
same as the Service-Oriented Architecture principle of
discoverable service contracts; see [8].

• State must be managed by the infrastructure, and
applications must be stateless. This is the same as the
Service-Oriented Architecture principle of stateless
applications [9] as captured in the state repository
pattern [7].

• State must be accessed and manipulated by a set of
uniform operations. Operations express attempts to
change the state. This principle is shared with the REST
Architecture; see [6].

The above principles allow applications and systems to
interoperate at the level of an explicit data model. When a
system’s data model is explicit, it can be used at run time
by applications to make dynamic decisions based upon the
content of the data, increasing capability and operational
agility. Further, interactions can be governed by infrastructure,
reducing per-application costs and inter-application coupling.
On the other hand, if the data model is implicit, decisions must
be pre-determined, established, and enforced by static code
prior to execution, decreasing agility and increasing vendor
lock-in.

SUMMARY

In traditional IT systems, a modest number of applications
were developed by related teams within the same organization
and managed by a single authority. These systems had short
life cycles and could be evolved all at once if necessary.
Consequently, message-centric approaches were sufficient.
However, today’s enterprises are increasingly being asked
to address systems of systems that must be long-lived and
incorporate subsystems that were not known a priori and for
which “big bang” upgrades are impossible. In such systems,
appropriate dissemination and synchronization of state are
critical, and a data-centric approach can significantly improve
agility and drive down total cost of ownership.

http://www.rti.com
http://www.rti.com

WHITEPAPER • SYSTEM ARCHITECTURE FOR ROBUST INTEGRATION

3 • rti.com

APPENDIX: TECHNOLOGY EVALUATION

This section describes several technologies in terms of the
architectural principles outlined in this document.Note that
architecture abstractions and technology implementations
are related but independent. A system’s architecture may be
at a certain level while the technologies that implement it are
at a lower level. In this case, the system builders will have to
“make up the difference” themselves, leading to increased
cost and risk. Consider the implications for interoperability,
reliability, and system maintenance of such an approach vs.
one based on more capable technologies.

Nevertheless, in systems of systems, it may be necessary
to integrate a subsystem that has a given architecture (e.g.
data-centric) with another subsystem that has a different
architecture (e.g. message-centric). This can be done by
means of a mediation service between the subsystems.

• As messages flow from the message-centric subsystem to
the data-centric one, the mediation service collapses and
correlates messages with one another to generate changes
to the data objects to which they pertain.

• As data objects change in the data-centric subsystem, the
mediation service generates the appropriate messages
describing those changes in the message-centric subsystem.

• As messages flow from the message-centric subsystem to
the data-centric one, the mediation service collapses and
correlates messages with one another to generate changes
to the data objects to which they pertain.

• As data objects change in the data-centric subsystem, the
mediation service generates the appropriate messages
describing those changes in the message-centric subsystem.

PRINCIPLE DDS AMQP RELATIONAL
DATABASE

WS-NOTIFICATION

Interoperable
Transport Protocol

Yes
(DDS-RTPS/UDP)

Yes
(TCP)

No Yes
(HTTP)

Interoperable
Messaging Protocol

Yes
(DDS-RTPS)

Yes No Yes
(SOAP)

Standardized
Contracts

-Formal Type
Definition Language

Yes
(OMG IDL or W3C
XSD)

Yes
(AMQP-specific)

Yes
(SQL)

Yes
(W3C XSD)

-Operations Yes
(Uniform operations;
portable API [2])

Partial
(Formal message syntax;
non-standard API)

Yes
(Uniform
operations;
portable API [4])

Partial
(Formal message
syntax; non-standard
API)

-Data Structure Yes Partial
(Optional message format
definitions, but unspecified
association between
message flow and format and
between message and data)

Yes Partial
(Standard message
formats, but messages
have undefined
relationship to data)

-Data Motion Yes No No No

-Data Changes Yes No No No

-Run-Time Contract
Enforcement

Yes No Yes No

State Repository,
Stateless Applications

Yes No Yes No

Discoverable
Contracts

Yes No Yes Yes

http://www.rti.com
http://www.rti.com

232 E. Java Drive, Sunnyvale, CA 94089
Telephone: +1 (408) 990-7400
Fax: +1 (408) 990-7402
info@rti.com

CORPORATE HEADQUARTERS

WHITEPAPER • SYSTEM ARCHITECTURE FOR ROBUST INTEGRATION

rti.com

rti_software

rtisoftware

company/rti

connextpodcast

rti_software

RTI, Real-Time Innovations and the phrase “Your systems. Working as one,” are registered trademarks or trademarks
of Real-Time Innovations, Inc. All other trademarks used in this document are the property of their respective owners.
©2020 RTI. All rights reserved. 50016 V4 0820 4 • rti.com

RESOURCES

The following resources are referenced in this document.

SPECIFICATIONS

1. Advanced Message Queuing Protocol (AMQP), version 1-0r0. AMQP
Working Group. http://www.amqp.org/confluence/display/AMQP/
AMQP+Specification.

2. Data Distribution Service (DDS), version 1.2. Object Management Group
(OMG), document number formal/2007-01-01. http://www.omg.org/spec/
DDS/1.2/.

3. Java Message Service (JMS), version 1.1. Java Community Process
(JCP), Java Specification Request (JSR) 914. http://www.jcp.org/en/jsr/
detail?id=914.

4. Structured Query Language (SQL). International Organization for
Standardization (ISO), document number ISO/IEC 9075-14:2008.
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=45499.

5. Web Services Notification (WSN), version 1.3. OASIS. http://www.oasis-
open.org/committees/wsn/.

ADDITIONAL RESOURCES

6. REST architecture: http://en.wikipedia.org/wiki/
 Representational_State_Transfer

7. SOA Pattern: State Repository.
 http://soapatterns.org/state_repository.php

8. SOA Principle: Service Discoverability.
 http://www.soaprinciples.com/service_discoverability.php

9. SOA Principle: Service Statelessness.
 http://www.soaprinciples.com/service_statelessness.php

10. SOA Principle: Standardized Service Contract.
 http://www.soaprinciples.com/standardized_service_contract.php

Real-Time Innovations (RTI) is the largest software framework provider for smart machines and real-world systems.
The company’s RTI Connext® product enables intelligent architecture by sharing information in real time, making large
applications work together as one.

With over 1,500 deployments, RTI software runs the largest power plants in North America, connects perception to control in
vehicles, coordinates combat management on US Navy ships, drives a new generation of medical robotics, controls hyperloop
and flying cars, and provides 24/7 medical intelligence for hospital patients and emergency victims.

RTI is the best in the world at connecting intelligent, distributed systems. These systems improve medical care, make our roads
safer, improve energy use, and protect our freedom.

RTI is the leading vendor of products compliant with the Object Management Group® (OMG) Data Distribution Service™ (DDS)
standard. RTI is privately held and headquartered in Sunnyvale, California with regional headquarters in Spain and Singapore.

Download a free 30-day trial of the latest, fully-functional Connext DDS software today: https://www.rti.com/downloads.

ABOUT RTI

http://www.rti.com
http://www.rti.com
https://www.instagram.com/rti_software/
https://soundcloud.com/connextpodcast
http://www.rti.com
https://twitter.com/rti_software
https://www.facebook.com/RTISoftware/
https://www.linkedin.com/company/rti/
https://soundcloud.com/connextpodcast
https://www.instagram.com/rti_software/
https://www.linkedin.com/company/rti/
https://twitter.com/rti_software
https://www.facebook.com/RTISoftware/
http://www.rti.com
http://www.rti.com
http://www.amqp.org/confluence/display/AMQP/AMQP%2BSpecification
http://www.amqp.org/confluence/display/AMQP/AMQP%2BSpecification
http://www.omg.org/spec/DDS/1.2/
http://www.omg.org/spec/DDS/1.2/
http://www.jcp.org/en/jsr/detail%3Fid%3D914
http://www.jcp.org/en/jsr/detail%3Fid%3D914
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm%3Fcsnumber%3D45499
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm%3Fcsnumber%3D45499
http://www.oasis-open.org/committees/wsn/
http://www.oasis-open.org/committees/wsn/
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://soapatterns.org/state_repository.php
http://www.soaprinciples.com/service_discoverability.php
http://www.soaprinciples.com/service_statelessness.php
http://www.soaprinciples.com/standardized_service_contract.php
http://www.rti.com/downloads

