
rti.com

Data-Centric Programming
Best Practices:

WHITEPAPER

ABSTRACT

Systems are often implemented by teams using a variety
of technologies, programming languages, and operating
systems. Integrating and evolving these systems becomes
complex. Traditional approaches rely on low-level messaging
technologies, delegating much of the message interpretation
and information management services to application logic.
This complicates system integration because different
applications could use inconsistent interpretations and
implementations of information-management services,
such as detecting component presence, state management,
reliability and availability of the information, handling of
component failures, etc.

Integrating modern systems requires a new, modular network-
centric approach that avoids these historic problems by
relying on standard APIs and protocols that provide stronger
information-management services.

For example, many of these systems are heterogeneous,
mixing a variety of computer hardware, operating systems,
and programming languages. Developers often use Java, .NET,
or web-scripting to develop consoles and other GUI-oriented
applications, and C or C++ for specialized hardware, device
drivers, and performance- or time-critical applications. The
end system might mix computers running Windows, Linux,
and other operating systems, such as Mac OS X, Android, or
real-time operating systems like VxWorks and INTEGRITY. The
use of standard APIs and interoperable protocols allows all
these systems to be easily integrated and deployed.

Today, these systems are typically developed using a service-
oriented approach and integrated using standards-based
middleware APIs such as DDS, JMS, and CORBA, and protocols
such as DDS-RTPS, Web-Services/SOAP, REST/HTTP, AMQP,
and CORBA/IIOP.

This whitepaper focuses on “real-world” systems, that is,
systems that interact with the external physical world and
must live within the constraints imposed by real-world physics.
Good examples include air-traffic control systems, real-time
stock trading, command and control (C2) systems, unmanned
vehicles, robotic and vetronics, and Supervisory Control and
Data Acquisition (SCADA) systems.

More and more these “real-world” systems are integrated
using a Data-Centric Publish-Subscribe approach, specifically
the programming model defined by the Object Management

USING DDS TO INTEGRATE REAL-WORLD SYSTEMS

Group (OMG) Data Distribution Service (DDS) specification.
This whitepaper describes the basic characteristics of real-
world systems programming, reasons why DDS is the best
standard middleware technology to use to integrate these
systems, and a set of “best practices” guidelines that should
be applied when using DDS to implement these systems.

REAL-WORLD SYSTEMS PROGRAMMING

Real-World systems refer to a class of software systems that
operate continuously and interact directly with real-world
objects, such as aircraft, trains, stock transactions, weapons,
robotic and manufacturing equipment, etc. Unlike systems
involving only humans and computers, real-world systems
have to live within the constraints imposed by the physics of
the external world. Notably, time cannot be slowed, paused,
or reversed. The implication is that these systems must be
able to handle the information at the pace it arrives at, as well
as be robust to changes in the operating environment.

In addition to these environmental considerations, the nature
of typical real-world applications also places demands on
their availability and need to continue operating even in the
presence of partial failures.

In order to interact with the real world, software must include
a reasonable, if simplified, model of the external world. This
model typically includes aspects of the “state of the world”
relevant to system operations. Here the word “state” is used
in the normal sense in software modeling and programming.
State summarizes the past inputs to the system from its initial
state and contains all the information necessary for a system
or program to know how it should react to future events or
inputs. Imagine that a new component or application starts
and joins a system. The “state of the system” contains the
information that this new component needs to acquire
before it is ready to start performing its function. A typical
component would normally only need access to a subset of
that state, the portion that directly affects its operation.

For example, in an air-traffic management problem, the
relevant aspects of the state of the world might include the
current location and trajectory of every aircraft, the flight
plans of all flights within a 24-hour window, specific details on
each aircraft (type, airline, crew), etc.

Once a software component or subsystem is running, it
interacts with other components by exposing part of its

http://www.rti.com
http://www.rti.com

WHITEPAPER • DATA-CENTRIC PROGRAMMING BEST PRACTICES

2 • rti.com

state, notifying other components when its state changes,
and invoking operations on (or sending messages to) other
components. Each component reacts to these information
exchanges by updating its internal model of the world and
using that to perform its necessary actions.

DEFINING A DATA MODEL

A data model is simply an organized description of the
state of the system. Thus, it includes data types, processes
for transferring and updating those types, and methods for
accessing the data. It does not typically include functions that
can alter the data or (importantly) the application-level logic
that affects the data.

Governance organizations and system integrators often start
their design by designing the system data-model. There are
good reasons for this approach:

•	 A data model provides governance across disparate teams
and organizations, allowing components developed at
different points in time by different organizations to be
integrated. This makes it an ideal starting point for a
central design or governance authority.

•	 A data model represents the better understood, more
invariant aspects of the system. Typically the data model
is grounded in the “physics of the system.” That is, it
describes the kinds of objects and sensors it manages
(like aircraft locations, flight plans, and vehicle positions).
The data model is not strongly tied to application-specific

use cases (e.g., the possible fields in a flight plan are a
consequence of the nature of aircraft flight); this makes
the data model a good starting point, since the full set of
use cases might not be well known in advance or might
be the responsibility of a different team.

•	 A data model increases decoupling between systems and
components. The data model is grounded in the essential
information present in the system and it does not depend
so much on the use cases that access the information.
For example, an air-traffic control model might include
a definition of a “flight plan,” but not whether it is
automatically generated using an optimization algorithm,
checked for collisions, or altered in mid-flight. Using the
data model as the basis for the integration avoids over-
constraining the design, leaving it open to allow future
evolution and use cases. Contrast this with a design based
on defining service invocation APIs which are intimately
tied to the details of each service and are likely to change
as new use cases are incorporated.

EXAMPLE DATA MODEL

Imagine designing a simple “chat” application. The underlying
Data-Model could be defined to contain four kinds of objects
summarized in Table 1.

Table 1 provides a very informal description. Normally the Data
Model would be described in formal a high-level language
such as UML. See Figure 1.

Caption caption caption caption

OBJECT KIND KEY FIELDS OTHER FIELDS DESCRIPTION

Person EmailAddress Name, Location, Age, Picture,
Avatar

Identifies each individual that can participate
in “chat” conversations

Account EmailAddress Password, ChallengeQuestion,
ChallengeAnswer

Provides the account credentials necessary to
authenticate individual persons

ChatRoom Name Description, MembershipList Defines a ChatRoom and lists the individuals
that are participating in the chat

ChatMessage SenderEmail,
Timestamp

Contents,
ChatMessageDestination

Contains a chat message sent to a ChatRoom
or a Person

Table 1. Example Data Model

http://www.rti.com
http://www.rti.com

WHITEPAPER • DATA-CENTRIC PROGRAMMING BEST PRACTICES

3 • rti.com

DDS MAINTAINS THE STATE OF THE WORLD AS DEFINED
BY THE DATA MODEL

The single most important benefit of using DDS is that
its programming model directly supports the expression,
maintenance and distribution of the “state of the world” data
model. No other standard messaging middleware technology
does this.

DDS provides the means to create Global Data Spaces where
applications can create or delete data objects and update their
state. Each DDS Global Data Space is uniquely identified by
an integer (the DDS Domain ID) and is maintained separately
from the others. Within a DDS Global Data Space, each data
object is uniquely identified by an application-defined string
(the DDS Topic Name) and the values of a set of application-
defined fields in the data object (the DDS Topic Keys). All
data objects belonging to a DDS Topic share a common
application-defined schema or data type that can be defined
in a variety of languages, such as IDL, XSD, or XML.

With DDS as the underlying middleware, as soon as you have
a data model, you also have a direct way to implement it in a
distributed system and access it from your applications. This
is because DDS allows direct mapping and access to the data
model. All the governance body or system architects need to

do is materialize the data model in terms of a type-definition
language (like XSD, XML, or IDL), define the separate Global
Data Spaces that should be used, and map each of the
separate types of data objects to a DDS Topic name. This
process is simple, unambiguous, and can be done using
standard languages as part of the data model definition—
without requiring any glue code or application-specific
mappings.

Once the data model is mapped to DDS domains, Topics and
Keys, the APIs to interact with the data model are already
given. They are the standard CRUD (Create, Read, Update,
and Delete) operations which can be applied to any data
object in the DDS Global Data Space.

As an added bonus, you can attach DDS Quality of Service
(QoS) policies to your data model. QoS policies allow you to
specify things like whether some collections of data objects
should be sent reliably (RELIABILITY policy), whether a
specific collection of data objects (e.g., those representing
the current position of all UAVs currently flying) should be
updated at a specific rate (DEADLINE policy), the relative
priority in notifying and providing updated values when a
data object changes (LATENCY_BUDGET policy), whether
the state of specific sets of data objects should be kept in
durable storage and made available to new components when

they appear in the system (DURABILITY policy), etc.
Finally, DDS has many built-in services that provide all the
“state management” features that normally would have to be
implemented in application code. For example, DDS maintains
the “history” of changes for any data object up to a configured
“depth” per Topic. The history can be maintained in terms of
number of changes or in terms of the timestamp when the
change was made (HISTORY and LIFESPAN policies). DDS
can also arbitrate among redundant sources of data, providing
ways to set up reliable systems with failover schemas. It can

monitor the presence and liveliness of applications and
then notify the user when writers of a data object drop out.
DDS allows applications to filter updates based on their
frequency or content, thus saving bandwidth and processing.
It automatically discovers new applications and Topics as they
appear. It can record changes, store data in databases, allow
you to monitor and visualize the data, and more. All these
capabilities are provided by standard components and APIs,
saving users considerable application code, as well as the
associated test code, documentation, and maintenance.

http://www.rti.com
http://www.rti.com

WHITEPAPER • DATA-CENTRIC PROGRAMMING BEST PRACTICES

4 • rti.com

ABOUT DDS

DDS stands for Data Distribution Service. It is a set of
specifications standardized by the Object Management

Group (OMG). OMG (www.omg.org) is the largest systems
software international standards organization, known for
many specifications including the Unified Modeling Language
(UML). The current DDS family of specifications is summarized
in the table below:

In addition to enabling the data-centric approach, DDS has
these advantages:

•	 Existence of solid, multi-vendor supported standards for
both APIs and protocols

•	 Messaging performance and scalability

•	 Ability to integrate different operating systems and
programming languages

•	 Configurability via QoS

Standards are important to reduce costs, avoid vendor lock-
in, and ensure the long-term availability of the technology.
The DDS family of standards is the only one that covers the
programming language APIs (ensuring portability between
implementations), the wire protocol (ensuring interoperability
between components that use different implementations
of the middleware) and QoS. And it does so for multiple
programming languages, such as C, C++, Java, .NET, Ada, etc.
Competing standards like JMS or Web-Services lack one or
more of these aspects.

Performance and scalability are often critical in “real-world”
event-driven systems. Since you cannot slow down or stop
time, systems must be able to handle events at the rate
they occur or else fail with potentially costly or harmful
consequences. Independent tests have demonstrated that
DDS implementations provide the highest performance
standards-based middleware available. Features like a
protocol that natively supports reliable multicast and
operates without brokers or servers make DDS stand out
when compared to alternatives like JMS or Enterprise Service
Bus (ESB) implementations.

Many real-world systems are heterogeneous: they mix
a variety of hardware and software platforms. It is not
uncommon to see graphical interfaces built using Java or
.NET technologies, with performance-critical components in
C or C++, running on a mix of Linux, Windows, and real-time
operating systems, and connected over various transports.
These systems greatly benefit from a standard API that can

be used in many programming languages and is supported
on a wide variety of platforms and transports. DDS uniquely
provides that capability.

Configurability via QoS can be extremely important for
components that have limited capacity due to size, weight,
power, or deployment considerations. A typical real-world
system might mix in some small hand-held computers
or computers that can only communicate over low-
bandwidth networks. While this might not be the case for
every component, it is important that the ones with these
limitations can still participate in a system without being
overwhelmed by the information the rest provide, and also
without slowing down the rest. Configurability via QoS is the
key here; it is natively supported by the DDS standard’s built-
in library of 20+ QoS policies. This is also important when a
system must accommodate some operating change or partial
failure condition; in that case, QoS allows the more important
information to be properly prioritized and managed.

BEST PRACTICES IN DDS PROGRAMMING

As we have seen, DDS is a powerful tool to integrate
components and systems. We now have extensive experience
in hundreds of applications, and can recommend these
guidelines to best realize its potential:

•	 Start by defining a data model, then map the data-model
to DDS domains, data types and Topics.

•	 Fully define your DDS Types; do not rely on opaque bytes
or other custom encapsulations.

•	 Isolate subsystems into DDS Domains. Use mediation,
such as RTI Routing Service, to bridge Domains.

•	 Use keyed Topics. For each data type, indicate the fields
that uniquely identify the data object.

•	 Large teams should create a targeted application
platform with system-wide QoS profiles and limited
access to the DDS APIs.

Date Distribution Service for
Real-Time Systems (DDS)

Specification of the programming model, QoS, and language APIs used to program a Data-
Centric Publish-Subscribe application.

Data Distribution Service
Real-Time Publish-Subscribe
Interoperability Wire Protocol
(DDS-RTPS)

Specification of the wire protocol used by DDS to exchange information. It includes
discovery, data encapsulation, reliability, multicast, and many selectable QoS parameters.

Extensible and Dynamic Types
for DDS (DDS-XTYPES)

Specification of the valid set of data types that can be sent/received via DDS, as well as
how to describe them using languages like IDL, XSD, or XML; how to represent them in a
serialized form when they are sent over the wire; and how to access the data and types
from a programming language using plain language objects or dynamic APIs.

UML Profile for DDS (DDS-
UML Profile)

Specification of how to model a DDS system using a UML tool.

DDS for Lightweight CORBA
Component Model (LwCCM)

Configuration of DDS QoS via profiles defined in XML, and extensions to the LwCCM
specification so it can leverage DDS.

http://www.rti.com
http://www.rti.com
http://www.omg.org

WHITEPAPER • DATA-CENTRIC PROGRAMMING BEST PRACTICES

5 • rti.com

•	 Configure QoS using XML Profiles.

The rest of this whitepaper further details these guidelines.

START BY DEFINING A DATA MODEL, THEN MAP THE DATA
MODEL TO DDS DOMAINS, DATA TYPES AND TOPICS

From the previous discussion, it should be clear why
architects should start by defining a data model. The point
of this guideline is to encourage people not to skip this step,
and to complete it by defining how the data model should be
mapped to the DDS Global Data Space.

Use the data model to express the essential information that
defines the state of your system. Think about the reactions
you expect in the system to the state changes and use this to
check that your data model is complete.

It is often useful to divide the data model into a control plane
and a data plane. This allows separation of the application
and system management functions from the logic of the
application components them-selves.

A checklist for a well-defined model:

•	 It can be fully expressed in terms of data structures and
their relationships.

•	 It can be easily explained and understood to someone
familiar with the problem domain, without requiring the
person to be knowledgeable in programming or software
engineering.

•	 It is defined using a platform-independent modeling
language, such as UML, XML or IDL. This way the model is
not tied to a specific platform, technology, or deployment
scenario. The same model could be deployed on top
of different technology stacks (DDS, WSDL, message
bus), programming languages (Java, C++, C#), and
configurations (platforms, networks, etc.).

•	 There are no location dependencies in the model. It can
be deployed on a single computer or on a network.

•	 The different scenarios and behaviors of the system can
be expressed in terms of changes to the state of elements
in the data model.

Following this guidance will result in a well-defined data
model and an unambiguous, portable, and interoperable way
for applications to communicate according to the data model.
This will ensure your system remains open to future changes,
allowing new components and use cases to be added with no
need to alter the existing ones.

EXAMPLE

For the simple ChatRoom data-model defined earlier, we could
use a single DDS Domain and data types that correspond
to each kind of object: Person, Account, ChatMessage, and
ChatRoom.

A simple mapping of the data model to DDS would use
separate Topics for each ChatRoom. The name of the Topic
could be built by adding the suffix “_ChatRoom” to the name
of the ChatRoom. For example for a ChatRoom with name

“DDS_News” we could use the Topic name “DDS_News_
ChatRoom”. Similarly, we could use separate Topics for each
Person. The name of the Topic could be constructed by adding
the suffix “Person” to the email of the Person. All these Topics
would be associated with the “ChatMessage” data type. In
the mapping to DDS, we would only use the “SenderEmail”
field as the DDS Key. This would allow us to better control the
history of messages cached by an application.

Given this mapping, the creation of a new ChatRoom (e.g.
“DDS_News”) corresponds to creating the corresponding
DDS Topic (“DDS_News_ChatRoom”). Joining a ChatRoom
corresponds to creating a DataWriter (so we can send
messages) and a DataReader (so we can receive messages)
on that Topic. Writing to the ChatRoom “DDS_News”
would correspond to writing a ChatMessage object to the
corresponding Topic “DDS_News_ChatRoom”. Sending and
receiving messages to a Person uses a very similar approach
based on the Topics that use the “_Person” suffix.

Additional Topics could be introduced to monitor and manage
the users and their accounts.

Other mappings are also possible. For example, all ChatRoom
messages could share a single Topic and the messages
destined to a specific ChatRoom could be selected by using
a content filter on the Destination field of the ChatMessage.
A description of the benefits of each approach is beyond the
scope of this paper.

FULLY DEFINE YOUR DDS TYPES, DO NOT RELY ON OPAQUE
BYTES OR OTHER CUSTOM ENCAPSULATIONS

Some architects and integrators map the data model to DDS
domains and Topics without using the type-definition facility
available in DDS. Instead, they abuse the DDS “opaque bytes”
or “string” types and manage all the data marshalling and
demarshalling at the application layer.

Mapping the data model to opaque bytes or strings (even XML
strings) is a bad practice for several reasons, some obvious
and some subtle:

Using opaque bytes or strings requires more application
code to be written, tested, and maintained. This also means
there must be a separately maintained document that
explains the marshalling. Moreover, the code to marshal and
demarshal must be present in all application components,
meaning that either it has to be physically shared—a hard
task when components are implemented over time or by
separate vendors—or it has to be duplicated by each team
and in each programming language used. These steps create
opportunities for error and cost.

Perhaps less obvious is that using opaque bytes or strings will
prevent the middleware from giving you a lot of “free services.”
For example, the middleware will not be able to perform
content filtering for you. Not only does that mean that the
application must do the filtering, but it is also far less efficient
on the network, since filtering will have to be implemented
on the receiver side. When DDS is aware of the data type and
filtering requirement, it can filter at the source. This avoids
sending the data to subscribers that are not interested, saving
valuable CPU and network bandwidth.

Many other built-in DDS services depend on having access

http://www.rti.com
http://www.rti.com

WHITEPAPER • DATA-CENTRIC PROGRAMMING BEST PRACTICES

6 • rti.com

to the data type: routing and mediation, storing data into
relational databases, exposing data to web clients using HTTP,
visualizing data in tools, and integrating with Microsoft Excel
are just a few. One of the most powerful features of DDS is
content awareness; using opaque types throws this away.

Note that exposing types to DDS does not mean you must
propagate them via discovery. This is the default, but can be
separately configured. Exposing the type simply means there
is a well-defined language (defined by the OMG and the W3C)
that describes the data types and ways to marshal that type
into network messages.

In summary, if the data exchanged at the system interfaces
is not strongly typed, you very likely have an integration
problem waiting to happen. Use of opaque data types
should be the exception. A strongly typed interface makes
it possible for the middleware to intelligently filter data at
the source, somewhere in the middle, or at the end; generic
transformation rules can be applied; new components can
easily be integrated; etc.

EXAMPLE

In our ChatRoom example, we defined the data type associated
with the ChatMessage. As a consequence we can now use
content filters to select messages that contain certain text or
are sent by people of certain age ranges. We can record and
automatically store ChatMessages in a database so we can
run queries that monitor certain patterns; we could later add
more services (e.g., a translation service) that use the content,
etc.

ISOLATE SUBSYSTEMS INTO DDS DOMAINS. USE
MEDIATION, SUCH AS RTI ROUTING SERVICE, TO BRIDGE
DOMAINS

Large systems are best developed as a composition of
smaller subsystems. Subsystems are often developed by
different teams or even different companies, and are subject
to different governance and conventions.

Rather than considering the data model as a single monolith,
it is often better to think of it hierarchically. At the top level
is the information that needs to be shared among the top-
level subsystems; this must be agreed upon and controlled
using a process that takes into consideration the needs (and
possibly involves the stakeholders from) all these subsystems.
Once this is done, each subsystem can separately define the
information that will be shared among components in the
subsystem (but not between subsystems). This information
can be defined using a process that takes into consideration
only the needs of the subsystem and can be subject to different
governance and revision cycles. Complex subsystems can be
further broken into other subsystems, recursively applying the
previous process.

The mapping of the data model into DDS should preserve this
modularity. The system should use DDS Domains to isolate
subsystems that have little overlap in the information model,
are developed by different communities, or have significant
size or complexity.

If two subsystems have little information model overlap, then
the processes/components in one subsystem are primarily
sharing information with other processes/components in that

same subsystem. By placing the subsystems in different DDS
domains, the traffic will be completely separate, and can use
different multicast addresses and ports. Moreover, discovery
information will also be kept separate so that processes
and applications are not made needlessly aware of other
processes/applications (from the DDS discovery point of
view). This could save significant network bandwidth, CPU,
and memory on each of the participating components.

If two subsystems are developed by different communities,
they will likely follow different governance and will want to
place explicit controls on the information that enters and
exits the subsystems. Often the information that traverses
system boundaries will need to be mediated, changed in
format, pruned of certain fields, etc. It is also common
for these subsystems to be deployed in separate network
segments or be protected by firewalls. In all these cases,
placing each subsystem in a separate domain provides a
natural way to control the scope of the information and an
easy ways to manage the information that flows in and out of
the subsystem. Turnkey bridging and mediation applications,
such as RTI Routing Service, can be used to easily administer
how the information flows, enable and disable flows, inject
transformations, and monitor flows.

Finally, some subsystems are large or complex, and involve
many hundreds or thousands of processes communicating
over DDS, with hundreds of DDS Topics. These should be
partitioned into separate DDS Domains. The partitions should
be chosen so that information shared among processes in
the same partition is maximized, and information flowing
between partitions is minimized.

EXAMPLE

Rather than exposing all ChatRooms to all users, we could
use DDS Domains to create separate, shared areas. Only
people in a specific Domain would see and have access to
the ChatRooms in that Domain. If certain messages need to
traverse Domains, we can configure DDS routing services to
accomplish this goal. This approach can be used to scale the
number of users and ChatRooms to very large numbers.

USE KEYED TOPICS. FOR EACH DATA TYPE, INDICATE TO
DDS THE FIELDS THAT UNIQUELY IDENTIFY THE DATA-
OBJECT

Sometimes integrators mapping their data models to DDS
Types do not indicate which fields within their data types
uniquely identify each data object. That is, they do not define
any DDS Keys.

While there are some valid scenarios in which a DDS Topic
should not have a key, these situations are quite rare. As a rule
of thumb, all DDS Topics should have keys. A similar situation
occurs when defining database schemas. How often do you
encounter SQL tables that have no key fields? Without a
key, you would only be able to have a single record (row) in
a table, or there would be no concept of updating a record,
only inserting new records, resulting in ever growing tables.
Either way, there would be no way to store “state” into tables.
Additionally, many DDS QoS policies and built-in services
depend on having a key:

•	 History cache. DDS can keep a cache of the last set of

http://www.rti.com
http://www.rti.com

WHITEPAPER • DATA-CENTRIC PROGRAMMING BEST PRACTICES

7 • rti.com

changes (e.g., say the last 10 changes) applied to each
data object. This is done separately for each data object,
so a rapidly changing object does not “replace” the
last value of another one that changes less frequently.
This capability can also be maintained by the source
application and the durability service that initializes
late-joining readers. This feature is also very important
for late-joining readers that want to be initialized with
the most current value of each object (or the last few
changes that happened to each data object). Without a
key, DDS cannot perform smart caching and late joiners
will be forced to replay through old history before getting
to the most current value.

•	 Ensuring regular data-object updates. DDS contains
a built-in mechanism that ensures each data object is
updated regularly. The configuration is made per Topic
using the DEADLINE QoS policy. If a data object is not
updated, the application is immediately notified with the
ID of the offending object. Statistical counters are also
maintained, allowing external applications to monitor the
health of the system. If a Key is not specified, this facility
will not be available.

•	 Ownership arbitration and failover management.
DDS applications can use the OWNERSHIP QoS policy
to specify that data objects can only be updated
exclusively by one writer. The owner of each data object
is automatically managed by DDS based on the presence
of data writers, their ownership strength value, and their
ability to meet the QoS they signed up for. DDS will
automatically fail over to the highest-strength active
data-writer.

•	 High-performance, content-based filtering on
multicast networks. RTI Data Distribution Service has
the capability to leverage the smart multicast-filtering
features available in most network switches. This feature
can greatly increase the data-distribution scalability
and performance in situations where a single DDS Topic
has many subscribers, each needing only a subset of
the information published on the Topic. If the Topic
has defined a set of key fields and the subscribers are
selecting the data of interest based only the value of the
key fields, then the filtering can be done with extreme
efficiency and virtually no impact on the publisher.

•	 Integration with relational databases. Data distributed
over DDS often originates or terminates in relational
database tables. Individual records in a table are uniquely
identified by the values of the fields marked as the “key”
for that table. If those same fields are also marked as
forming the key for the corresponding DDS Topic, then
the integration is seamless and the DDS data cache can
work hand-in-hand with the database table storage. If the
DDS Topic does not define a key, then DDS cannot take
advantage of several optimizations which are especially
important in situations where subsystems can become
disconnected or have bursty traffic.

•	 Visualization in Excel and other table-oriented displays.
Understanding and monitoring a system often require
visualization of the data in the DDS Global Data Space,
as well as the data sent over DDS. It is very natural to
visualize this information using tabular displays, where
each row represents the value of a specific data object.
These displays can be updated live as applications

publish updates to these objects, record object creations
and deletions, provide historical views of the evolution of
each data object, etc. The DDS standard’s data-centric
features make it possible to create generic displays
that will work for any kind of data and therefore require
no programming. With RTI’s Spreadsheet Add-in for
Microsoft Excel, you can look at this data live.

•	 Smart management of slow consumers and applications
that become temporarily disconnected. In real
deployment scenarios, components or subsystems
can become temporarily disconnected and rejoin later.
Some components may be slower or become busy and
unable to keep up with the information they requested;
the information volume might increase in a bursty or
unexpected manner, etc. Given that time cannot be
slowed or stopped, real-world systems must find a way to
handle these situations gracefully. One option is to buffer
messages, hoping that when the situation improves the
system will be able to catch up. However, this is not always
feasible without exceeding some internal resource limit.
Even if memory is unlimited, it is not always desirable
to save all that old data. When the situation recovers, a
buffer full of old data will burden the lagging consumer
with old information, when it should be reacting to the
most current. This might be wasteful, expensive, or even
fatal. If, on the other hand, the DDS Topic contains a key,
then DDS can be smart and only cache and deliver the
latest updates to each data object.

•	 Achieving consistency among observers of the Global
Data Space. There are many scenarios where DDS is used
to communicate and synchronize portions of a system’s
state. An example of this state could be the current arrival
and departure times of aircraft, the current location of
UAVs being controlled by a set of ground stations, or the
current classification of a set of radar tracks. Many of
these scenarios can have different sources contributing
to different portions of the global state. Building a
consistent state picture in these scenarios is a very
challenging problem; in the past, it required very complex
application code. DDS can handle this problem via QoS
policies such as DESTINATION_ORDER and OWNERSHIP.
Using DDS mechanisms, even if the state observed by
different consumers is temporarily different due to timing
or temporary message loss, DDS will ensure it eventually
converges. However, this will only work correctly if the
application has specified keys for the Topic; otherwise
there are situations where portions of the state could be
lost.

THERE ARE VERY FEW REASONS NOT TO USE KEYS

In our experience, people do not define keys because (1) they
do not understand the implications, (2) they are concerned
that using them would “lock” them into using DDS, as keys
are not supported by other publish-subscribe middleware
like JMS, or (3) they are afraid it will impact performance or
resource usage.

Hopefully, the importance and value of keys are now clear.
Avoiding keys for “portability” to other publish-subscribe
middleware technologies is misguided. Rather than leveraging
what is already in DDS, this capability will need to be re-
implemented at the application level. This incurs obvious
costs. The application also cannot really do this job correctly

http://www.rti.com
http://www.rti.com

WHITEPAPER • DATA-CENTRIC PROGRAMMING BEST PRACTICES

8 • rti.com

because it has no efficient way to control the middleware’s
internal queues and protocol state. Application-level
implementations usually must introduce extraneous brokers
or mediation components, which themselves introduce new
bottlenecks and failure modes.

In summary, if the data exchanged at the system interfaces
is not strongly typed, you very likely have an integration
problem waiting to happen. Use of opaque data types
should be the exception. A strongly typed interface makes
it possible for the middleware to intelligently filter data at
the source, somewhere in the middle, or at the end; generic
transformation rules can be applied; new components can
easily be integrated; etc.

Performance is not a significant concern. Extensive
benchmarking on RTI Data Distribution Service shows that in
almost all scenarios, the performance impact introduced by
using keys is negligible. Latency differences are typically less
than 5%.

In most situations, the extra resources consumed by DDS Keys
are very small and typically less than what the application
would otherwise use itself to implement the equivalent
functionality. However, in some cases with millions of
instances, it might not be practical to have DDS manage the
instances and it is better not to define a key.

We believe that the only real reason not to define a key is
when the Topic represents a pure message and there is a
natural way to view it as an update to a data object. This
situation is rare. Imagine an instant-messaging system where
users or agents exchange messages (or a typical phone
SMS system). While the messages do not strictly represent
updates to data objects, it is still very helpful to think of them
as such, with the key being, for example, the identity of the
message sender. This allows receivers to organize and view
messages according to the sender, cache the last “N” from
each sender, efficiently filter by sender, etc., without writing
application code.

EXAMPLE

In the ChatRoom example, we defined keys for every data
type. Specifically, we used the “SenderEmail” as the key for the
ChatMessage data type that we use to send chat messages.
This selection allows applications to configure the number of
messages that should be preserved from each user on each
ChatRoom. This count can be selected by setting the “history
depth” attribute in the HISTORY QoS Policy.

LARGE TEAMS SHOULD CREATE A TARGETED APPLICATION
PLATFORM WITH SYSTEM-WIDE QOS PROFILES AND
LIMITED ACCESS TO THE DDS APIS.

When DDS is used in projects that involve large teams, a small
“infrastructure” team should provide a simplified interface
to the underlying middleware (and operating system)
services. This team should provide XML-based QoS profiles.
The platform should tailor the DDS API to the application.
However, do not deeply wrap the DDS APIs. Rather, provide
tailored APIs to configure the system, define the types, and
create the necessary DDS entities, but allow developers to
access the underlying DDS entities so that they have access
to the features and standard capabilities available in DDS as

their systems evolve.

The wrapper should not end up looking like a mini “pub-sub”
API. Instead, the wrapper should provide communications in
the application’s terms and with standardized QoS profiles.
This would preclude un-predictable use of QoS combinations
by those less trained in the standard and simplify configuration
and programming of simple use cases.

However, teams should not completely wrap the DDS API,
which would unnecessarily limit flexibility. Instead, we
recommend:

•	 Wrap creation, not communication. Most designs should
provide constructor methods that automate the creation
of common types. However, there’s little reason to wrap
the sending and receiving functions. The basic DDS API
is already very simple, so the platform can support direct
calls to “read” and “write” the data.

•	 Provide QoS profile files. DDS has a large API for dealing
with QoS configuration. Infrastructure teams could wrap
this API; however, it is simpler, more maintainable, and
more flexible to use the facility that allows configuration
of QoS via XML files.

•	 Expect evolution. The wrapper API is normally defined
at an initial point in the project. Wrapping the entire API
requires an arbitrary decision about which DDS features
will be “important” or “useful.” The team developing the
wrapper might have limited knowledge of DDS, might
want to take advantage of new features, or might not
anticipate some application use-case that could benefit
from DDS features. Therefore, important features or QoS
policies might not be exposed. At a later time, when this
is needed, the presence of the wrapper makes it hard to
access these features because a separate module has to
be modified and rebuilt. Therefore, the wrapper should
provide access to the underlying DDS Entities (DDS
DomainParticipants, Topics, Publishers, Subscribers,
DataWriters, and DataReaders); that way when extra
functionality is required, it will be readily accessible.

•	 Carefully add functionality to the wrapper. Done well,
adding application-level functionality to the wrapper
can reduce application-level code. Done poorly, this is
limiting. Thus, this should be treated as a system-design
level decision.

Other situations that could justify development of a wrapper
are:

•	 When adding functionality or additional protocols that
use DDS underneath. For example, when implementing a
client/server (request/reply API) on top of DDS.

•	 When the intent is to create a domain-specific API that
changes the programming model. In other words, the
wrapper is not intended to be used for sending/receiving
messages or reading/writing data. Rather, its purpose
deals with something specific to its domain, which under
the hood is implemented using DDS. In these situations,
the mapping between operations in the wrapper layer
and operations in the DDS API might be complex and
involve multiple calls, which further justifies the creation
of this wrapper.

http://www.rti.com
http://www.rti.com

WHITEPAPER • DATA-CENTRIC PROGRAMMING BEST PRACTICES

9 • rti.com

EXAMPLE

If we expect many users to program Chat applications,
GUIs, etc., then we could define a wrapper API that exposes
objects and operations that would be more intuitive for
people thinking of “Chat” applications. For example, we could
define a ChatRoomClass, so that rather than creating a DDS
Topic, the application would construct a ChatRoomClass
object (the implementation of the constructor would then be
responsible for creating the DDS Topic). Similarly, there would
be operations to “join” the ChatRoom, send a ChatMessage,
etc. which would wrap the corresponding DDS operations.

CONFIGURE QOS USING THE XML PROFILES

The ability to use XML to configure DDS QoS was standardized
by OMG in 2008 as part of the DDS for LwCCM specification,
and has been available in RTI Data Distribution Service since
version 4.4.

This feature allows an application developer or system
integrator to define the QoS values that will be used in an
XML file. The values of the QoS are not compiled into the
executable; therefore, they can be changed each time the
application starts. This makes it easy to optimize and tune QoS
related issues (performance, scalability, reliability, resource
consumption, availability, etc.) at integration or deployment
time.

The implementation of this feature makes it very easy to
use and manage. For example, a full XML schema document
(XSD) is provided and can be used to validate the XML file
that defines the profiles. Moreover, many editors will use this
XSD to provide auto-completion and help when creating the
QoS profile file.

In addition, the QoS profiles defined in XML support profile
inheritance, so new profiles can be defined as specializations
of existing ones. They also support conditional specification
based on the Topic name, so that a single file can be used to
separately configure the QoS that will be used for each Topic.
They can be organized into libraries, etc. All these features
make using XML-based QoS profiles powerful and easy.

CONCLUSIONS

Real-world systems must operate continuously and interact
directly with real-world objects. They must perform within
the constraints and timing imposed by the physical world.
In practice, this means they must be able to handle the
information as it arrives and be robust to changes in the
operating environment.

Such systems are increasingly being integrated using a data-
centric, publish-subscribe approach, specifically using the
programming model defined by the OMG DDS specification.
The main benefit of DDS is its ability to map the application
data-model directly into application code. DDS is the only
middleware standard that covers the programming language
APIs (ensuring portability between implementations), the
wire protocol (ensuring interoperability between components
that use different implementations of the middleware) and
QoS. It also supports multiple programming languages, such

as, C, C++, Java, .NET, and Ada.
This whitepaper defined “best practices” guidelines, gleaned
from extensive experience with hundreds of DDS based
applications. They should be considered when using DDS
to implement real-world systems. These guidelines can be
summarized as follows:

•	 Start by defining a data model, then map the data model
to DDS domains, data types and Topics.

•	 Isolate subsystems into DDS Domains. Use mediation,
such as RTI Routing Service, to bridge Domains.

•	 Fully define your DDS Types; do not rely on opaque bytes
or other custom encapsulations

•	 Use keyed Topics. For each data type, indicate to DDS the
fields that uniquely identify the data object.

•	 Large teams should create a targeted application
platform with system-wide QoS profiles and limited
access to the DDS APIs.

•	 Configure QoS using the XML Profiles.

ABOUT

1. OMG DDS Specification version 1.2.
http://www.omg.org/spec/DDS/1.2/PDF/

2. OMG DDS Real-Time Publish-Subscribe Protocol,
interoperability Wire Protocol version 2.1.
http://www.omg.org/spec/DDSI/2.1/PDF/

3. Extensible Topics for DDS Specification.
http://www.omg.org/spec/DDS-XTypes/1.0/Beta1/PDF

4. DDS for LwCCM Specification.
http://www.omg.org/spec/dds4ccm/1.0/Beta1/PDF

5. SPAWAR NESI Guidance.
http://nesipublic.spawar.navy.mil/nesix/View/P1190

6. RTI Benchmarks.
http://www.rti.com/products/dds/benchmarks-cpp-linux.
html

http://www.rti.com
http://www.rti.com
http://www.omg.org/spec/DDS/1.2/PDF/
http://www.omg.org/spec/DDSI/2.1/PDF/
http://www.omg.org/spec/DDS-XTypes/1.0/Beta1/PDF
http://www.omg.org/spec/dds4ccm/1.0/Beta1/PDF
http://nesipublic.spawar.navy.mil/nesix/View/P1190
http://www.rti.com/products/dds/benchmarks-cpp-linux.html
http://www.rti.com/products/dds/benchmarks-cpp-linux.html

232 E. Java Drive, Sunnyvale, CA 94089
Telephone: +1 (408) 990-7400
Fax: +1 (408) 990-7402
info@rti.com

CORPORATE HEADQUARTERS

WHITEPAPER • DATA-CENTRIC PROGRAMMING BEST PRACTICES

rti.com

rti_software

rtisoftware

company/rti

connextpodcast

rti_software

RTI, Real-Time Innovations and the phrase “Your systems. Working as one,” are registered trademarks or trademarks
of Real-Time Innovations, Inc. All other trademarks used in this document are the property of their respective owners.
©2020 RTI. All rights reserved. 50018 V4 0820 10 • rti.com

Real-Time Innovations (RTI) is the largest software framework provider for smart machines and real-world systems.
The company’s RTI Connext® product enables intelligent architecture by sharing information in real time, making large
applications work together as one.

With over 1,500 deployments, RTI software runs the largest power plants in North America, connects perception to control in
vehicles, coordinates combat management on US Navy ships, drives a new generation of medical robotics, controls hyperloop
and flying cars, and provides 24/7 medical intelligence for hospital patients and emergency victims.

RTI is the best in the world at connecting intelligent, distributed systems. These systems improve medical care, make our roads
safer, improve energy use, and protect our freedom.

RTI is the leading vendor of products compliant with the Object Management Group® (OMG) Data Distribution Service™ (DDS)
standard. RTI is privately held and headquartered in Sunnyvale, California with regional headquarters in Spain and Singapore.

Download a free 30-day trial of the latest, fully-functional Connext DDS software today: https://www.rti.com/downloads.

ABOUT RTI

http://www.rti.com
http://www.rti.com
https://www.instagram.com/rti_software/
https://soundcloud.com/connextpodcast
http://www.rti.com
https://twitter.com/rti_software
https://www.facebook.com/RTISoftware/
https://www.linkedin.com/company/rti/
https://soundcloud.com/connextpodcast
https://www.instagram.com/rti_software/
https://www.linkedin.com/company/rti/
https://twitter.com/rti_software
https://www.facebook.com/RTISoftware/
http://www.rti.com
http://www.rti.com
http://www.rti.com/downloads

