
• Mitchell, Siegel, Schiefelbein, and babikyan
Applying Publish-Subscribe to Communications-on-the-Move Node Control

VOLUME 16, NUMBER 2, 2007 LINCOLN LABORATORY JOURNAL 413

Applying Publish-Subscribe
to Communications-on-the-
Move Node Control
J. Darby Mitchell, Marc L. Siegel, M. Curran N. Schiefelbein, and Armen P. Babikyan

n Modern military satellite communications terminals have typically been
built as multiprocessor systems. Because of increasing pressure for reuse and
modularity, current programs have been encouraged to consider the use of
component middleware. While Common Object Request Broker Architecture is
the most mature middleware standard available, its invocation semantics present
considerable challenges for the development of such systems. Through reasoning
about quality attributes, we found that a real-time publish-subscribe middleware
reduces coupling, improves composability, and reduces the risk of architectural
mismatch, deadlock, and integration problems compared to an invocation-
based system. In building a communications-on-the-move (COTM) node, we
found that this type of middleware, which exemplifies an implicit-invocation
architectural style, promotes ease of system evolution and an incremental
integration approach.

B ecause of the computational demands of
modern military communications terminals,
systems tend to be implemented as distributed

real-time embedded (DRE) systems. We divide func-
tionality among several processes on different processors
for two reasons: to enable the system to meet the real-
time requirements imposed on it, and to inject external
inputs into the system, whether from a user interface or
some sort of sensor. Because these processes must co-
operate to realize the functionality of the system, the
consequence of this design decision is that they must
exchange data and control messages. Therefore, one of
the first design decisions an architect must make, after
deciding to distribute functionality, is how to facilitate
this exchange of data and control messages.

DRE systems architects are increasingly looking to
middleware* to provide this capability. Middleware cre-
ates an abstraction layer that decouples an application
from the system calls and network interfaces required to
send and receive data on a particular platform. Middle-

ware typically provides location transparency, synchro-
nization, and bit representation conversion, as well as
well-defined semantics for exchanging data. While mid-
dleware may not be applicable to all DRE systems, it is
certainly worthy of consideration.

The use of middleware is not an all-or-nothing
proposition. High-rate data traffic that may not be able
to absorb the overhead of any abstraction can still be
passed by lower-level network interfaces. In modern
military communications systems, it is commonly ac-
cepted that middleware can be used for control, if not
for data [1]. This article discusses the justification and
implementation of a software control framework for a
prototype communications system using publish-sub-
scribe middleware.

* Middleware is software that mediates between an application pro-
gram and a network. It manages the interaction between disparate ap-
plications across heterogeneous computing platforms [2].

• Mitchell, Siegel, Schiefelbein, and babikyan
Applying Publish-Subscribe to Communications-on-the-Move Node Control

414 LINCOLN LABORATORY JOURNAL VOLUME 16, NUMBER 2, 2007

terminology

Before continuing, we must review a few terms that de-
scribe how components exchange data. A.D. Birrell and
B.J. Nelson introduced Remote Procedure Call (RPC)
in 1984 [3]. One of their guiding principles was for the
semantics of RPC to be as similar to the semantics of lo-
cal procedure calls as possible. Object-oriented program-
ming introduced the term invocation to refer to calling
a procedure exported by an object’s interface (hereafter
referred to as a method). With the rise of middleware in
the 1990s, software developers began referring to in-
voking a method of a remote object as remote invoca-
tion. However, one of the stated goals of middleware is
distribution transparency, which implies that local and
remote invocations are semantically and syntactically
equivalent. As a result the term invocation is often used
to refer to calling a method, whether or not the object is
local or remote.

It is also common to see the shorthand A invokes B
to refer in general to activation of the object B’s inter-
face by object A. While middleware may obscure the
distinction between local and remote invocation from a
programmer’s perspective, from a software architecture
perspective these two uses of the term are distinct, with
very different implications. R. Guerraoui and M. Fayed

provide a good discussion of architectural concerns with
distribution transparency [4].

This article focuses on software architecture for DRE
systems, and uses the partial taxonomy illustrated in
Figure 1 and Table 1 to provide a vocabulary to discuss
the semantics of connectors. D. Garlan and M. Shaw
state that “connectors mediate interactions among com-
ponents, that is, they establish the rules that govern
component interaction and specify any auxiliary mecha-
nisms required [5].” We say partial taxonomy because
(a) only two dimensions are represented (synchroniza-
tion and connection type), and (b) the graph is obvious-
ly incomplete with respect to synchronous connectors.

While this taxonomy is by no means complete, it
has the advantage of being convenient. It allows us to
discuss the design of a distributed system in terms of
the connectors rather than the components. Assume
that middleware, which provides a type of connector,
handles all the details of implementing that connector:
message passing, synchronization, and marshalling* for
any data exchanged with remote processes, and perhaps
some sensible alternative to message passing for local
processes such as shared memory.

Activation

Invocation
(1:1)

n:1 ?

Collection
(n:1)

Evocation
(1:1)

1:n ?
Delegation

(synchronous)

Distribution
(1:n)

Notification
(asynchronous)

FIGURE 1. Partial taxonomy of connector semantics, show-
ing the relationship between the different types of connector
semantics for distributed interaction.

Table 1. Taxonomy Terms

Activation A general term for interaction
 with a remote component.

Delegation A general term for synchronous
 activation, whereby the originator
 waits for and receives a response
 that implies completion of the
 operation.

Invocation A strictly one-to-one delegation.

Notification A general term for asynchronous
 activation, whereby the originator
 immediately continues its execution
 after the message is sent.

Evocation A strictly one-to-one notification.

Distribution A general term for one-to-many
 notification.

Collection A general term for many-to-one
 notification.

* Marshalling is a term used in middleware to refer collectively to
serialization and representation conversion.

• Mitchell, Siegel, Schiefelbein, and babikyan
Applying Publish-Subscribe to Communications-on-the-Move Node Control

VOLUME 16, NUMBER 2, 2007 LINCOLN LABORATORY JOURNAL 415

Previous Work with invocation

In our previous efforts, our team developed a custom
middleware layer for control messages. With limited
time and resources, we developed a simple framework
similar in concept to basic Common Object Request
Broker Architecture (CORBA) [6]. This framework
provided both invocation and evocation semantics,
and included features like serialization, representation
conversion, and name resolution. The majority of the
component interactions were designed as invocations
consistent with object-oriented programming practices.
However, as we designed this framework, we realized
that there were conditions that could result in deadlock.
Given our limited time and resources, this led us to
strict design constraints for how the top-level compo-
nents could interact.

Deadlock Potential

In 1999, in its Evolutionary Design of Complex Soft-
ware (EDCS) announcement, the United States De-
fense Department stated that

“a major theme of this year’s demonstrations is the
ability to build software systems by composing com-
ponents, and do it reliably and predictably. We want
to use the right components to do the job. We want to
put them together so the system doesn’t deadlock.” [7]

Because invocation semantics are synchronous, and an
invoked method may, in turn, invoke other methods
on other objects, connections may form a cyclic depen-
dency graph, as shown in Figure 2(a). Unless a separate
thread handles incoming invocations, this dependency

results in deadlock. Also, if an object tries to invoke a
method on an object that does not exist, as shown in
Figure 2(b), deadlock can occur.

Generally, middleware frameworks implement sever-
al tactics to avoid deadlock. Even if the middleware of-
fers advanced options for server-threading models such
as support for concurrent requests [6], deadlock may
still be a risk if there is contention for shared resources
among methods. Time-outs are generally used to miti-
gate the availability problem shown above. However,
potential for deadlock continues to be a concern in the
design of distributed object systems [8]. While progress
is being made toward proving deadlock freedom for dis-
tributed-object systems [9, 10], this design process ig-
nores the broader issue: invocation semantics limit the
ways in which objects can be composed into a system.
This reliance on invocation semantics limits the reuse
potential of a component.

Some may argue that deadlock due to resource con-
tention occurs in multi-threaded non-distributed sys-
tems, and therefore is an essential, rather than an acci-
dental, complexity of the design process [11]. We assert
that deadlock need not be an integration concern at all.

Architectural Mismatch

Two commonly used patterns for exchanging data via
invocation are illustrated in Figure 3. A client may re-
quest data from a server, which returns it. Alternately, a
forwarder may forward data to a receiver. The difference
is that the data are either pulled or pushed.

The architectural mismatch illustrated in Figure 4
suggests further limitations of invocation with respect
to reusability [12]. We cannot connect a PositionClient
and a PositionForwarder, even though one requires po-
sition and one provides it, because they each expect to
initiate the invocation. Obviously we wouldn’t design a

FIGURE 2. Potential deadlock in invocation semantics. (a)
Cyclical dependency; (b) invocation of an unavailable object.

A

C

(b)

(a)

A B

C

A B

PositionClient

PositionServer

Data flow Data flow

PositionForwarder

PositionReceiver

FIGURE 3. Data flow in common design patterns for invoca-
tion. Comparing this with Figure 4 illustrates how data flow
and direction of invocation are independent of each other.

• Mitchell, Siegel, Schiefelbein, and babikyan
Applying Publish-Subscribe to Communications-on-the-Move Node Control

416 LINCOLN LABORATORY JOURNAL VOLUME 16, NUMBER 2, 2007

system with a PositionClient and a PositionForwarder,
but the fact that the direction of data flow is indepen-
dent of the direction of invocation is a risk to the reus-
ability of these components.

Architectural mismatch will probably always be a
challenge. However, we assert that it should not be so
between two components that use the same type of con-
nector and agree on data format.

Timeliness

Timeliness concerns can propagate through invocation
semantics. Consider the illustration in Figure 5. The
timeliness of component A is dependent on the time re-
quired for component C to process method foo, which
is dependent upon the time to invoke methods on com-
ponents D and E. Assume that B invokes method bar
immediately after A invokes method foo. In a single-
threaded server model, B’s invocation will not occur
until after foo (and the invocations to D and E) has
completed. Even in a very clever threading model, the
invocation process can still pose a problem if foo and
bar both require exclusive access to the same shared
resource.

If component A or B has very strict timeliness con-
straints, those constraints are inherited by components
C, D, and E. If A’s invocation must complete in time
t, then foo can take no longer then t – l, where l is the
round-trip latency of the request-response from A to C.

PositionClient
int main() {
double lat, lon, alt;
PositionServer x;
lon = x.getLongitude();
lat = x.getLatitude();
alt = x.getAltitude();

}

interface PositionServer{
double getLongitude();
double getLatitude();
double getAltitude();

}

interface PositionReceiver{
double setLongitude();
double setLatitude();
double setAltitude();

}

PositionForwarder
int main() {
double lat = 45.00;
double lon = 45.00;
double alt = 100.00;
PositionReceiver x;
x.setLongitude(lon);
x.setLatitude(lat);
x.setAltitude(alt);

}

Invokes Invokes

FIGURE 4. Invocation direction in common design patterns. Components that are built to use invocation po-
tentially exhibit architectural mismatch.

A D

EB

C
foo()
bar()

FIGURE 5. Timeliness in invocation. Invocation of one com-
ponent can lead to invocations of other components and im-
pact timeliness.

The time l then imposes timeliness constraints on D
and E, which include the round-trip latencies for their
invocations as well.

Another problem related to timeliness that can result
from the use of invocation on systems with priority-
based scheduling is priority inversion. We were not us-
ing priority-based scheduling in our previous work, but
we mention it here because of its implications to time-
liness. Since method invocations are synchronous, it is
possible for a higher-priority client to synchronize with
a low-priority server process, which is then preempted
by a medium-priority process. Such issues are generally
mitigated with an end-to-end priority policy and prior-
ity inheritance, although this policy does not completely
eliminate the problem.

• Mitchell, Siegel, Schiefelbein, and babikyan
Applying Publish-Subscribe to Communications-on-the-Move Node Control

VOLUME 16, NUMBER 2, 2007 LINCOLN LABORATORY JOURNAL 417

considering notification

We consider the partial taxonomy of architectural styles
found in L. Bass, P. Clements, and R. Kazman’s book
[13], and find that systems of cooperating components
can be built using the implicit-invocation style, a sub-
style of event systems, as shown in Figure 6. Event sys-
tems are also referred to as reactive or selective broadcast
systems. M. Shaw and D. Garlan discuss the implemen-
tation of implicit invocation:

“…Instead of invoking a procedure directly, a compo-
nent can announce (or broadcast) one or more events.
Other components in the system can register an in-
terest in an event by associating a procedure with it.
When the event is announced, the system itself invokes
all the procedures which have been registered for the
event.” [14]

While the style refers to invocation, this is actually a
reference to the callback procedure invoked. This is not
a constraint on the connector used between processes,
which could be notification.

According to Garlan and Shaw, implicit invocation
is very good at promoting reuse and extensibility, which
are essential requirements for our system. They mention
that it “eases system evolution,” which will be discussed
in a later section [15].

We look to architectural design patterns for examples
of an implicit-invocation pattern for distributed systems
communication. One communication design pattern,
Publisher-Subscriber [16], uses notification semantics.
We prefer the term Publish-Subscribe to Publisher-Sub-
scriber because the former emphasizes the connector
rather than the components. This distinction seems ap-

propriate when we consider an architectural design pat-
tern for connecting components. Publish-Subscribe spe-
cializes the distribution and collection connectors with a
registration scheme, and then composes them to create
a Publish-Subscribe connector by adding a variation of
the Mediator pattern [17] called a Topic, or event chan-
nel. A Topic is an intermediate abstraction represented
by a name and type.

A Publisher registers its intent to publish a particu-
lar Topic. A Subscriber registers to receive updates on
a particular Topic. These two events can occur in any
order. The middleware maintains mappings of Publish-
ers to Topics and Topics to Subscribers. When a Pub-
lisher has an update, the middleware publishes it to all
current Subscribers of that Topic. In this way, Publish-
Subscribe provides location transparency and many-to-
many, anonymous notification between Publishers and
Subscribers, as shown in Figure 7.

According to Bass et al., consideration of quality
attributes is an integral part of the architecture design
process [13]. It is important to recognize that there are
trade-offs inherent in any design, and that there is no
way to maximize all quality attributes. It is also impor-
tant to realize that architectural design is a sequence
of design trade-offs, and the most important decisions
should be made first. In the design of the architecture
for a distributed system, the way the components con-
nect should be one of the first decisions the designer
should make.

Given our resources and time constraints, we were
not able to perform an extensive analysis of quality attri-
butes, or develop a complete set of quality attribute sce-
narios for our system. On the basis of Bass et al.’s work

Independent
components

Communicating
processes

Event
systems

Implicit
invocation

FIGURE 6. Partial taxonomy of architecture styles for coop-
erating components. Implicit invocation is a type of event-
driven architectural style for cooperating components.

“VehiclePosition”
struct Position {
double latitude;
double longitude;
double altitude;

}

Publisher SubscriberTopic

FIGURE 7. Publish-Subscribe. A publisher and a subscriber
are decoupled through a topic, which is defined by a name
and a type.

• Mitchell, Siegel, Schiefelbein, and babikyan
Applying Publish-Subscribe to Communications-on-the-Move Node Control

418 LINCOLN LABORATORY JOURNAL VOLUME 16, NUMBER 2, 2007

[13], we were able to reason about quality attributes and
use them as a guide for architectural design. Now we
examine the trade-offs among different qualities for in-
vocation versus notification.

Simplicity and Composability

There are several dimensions to simplicity, but obvious-
ly one of them is algorithm simplicity. With invocation,
programming a sequence of synchronous interactions
between components is a trivial exercise. Implementing
a sequence of synchronous interactions is more work
with notification. One approach is by implementing the
components as state machines. Clearly, this approach is
not as straightforward as the invocation approach.

Algorithms are further complicated by using Publish-
Subscribe, since there are no guarantees that there are
any Subscribers when an update is published. Likewise,
there are no guarantees to a Subscriber that the system
contains a Publisher for a given Topic. So, Publishers
and Subscribers can make no assumptions about which
other components are present in the system, or when
they are present.

The simplicity of invocation semantics comes at the
cost of potential for deadlock, as mentioned previously.
Notification, being asynchronous, does not suffer from
this drawback. If the system uses notification exclusive-
ly, it has the advantage of removing deadlock from the
integration problem. Removing deadlock as an integra-
tion concern removes constraints on how components
may be composed to create a system.

Reliability and Predictability

When considering invocation and notification, we thus
know that there is an obvious trade-off between reliabil-
ity and predictability. Using invocation, the calling pro-
cess waits for and receives a result, guaranteeing that the
remote method has completed successfully. The trade-
off for this reliability is the fact that the time required
to complete an invocation depends on the object and
method invoked, the current load of the processor it re-
sides on, and the current network load.

With notification, the sender must assume that the
message will be received and processed correctly. The
time required to complete a notification is only the time
required to create and send a message, which is inde-
pendent of the object(s) being notified. Obviously, if
distribution semantics were not optimized with some
multicast or broadcast messaging scheme, notification

would be slightly less predictable, since it would create
and send a message to each receiver.

Timeliness

The timeliness of a notification is independent of the
processing time of the receiver(s). It is solely depen-
dent on the processing required to create and send
the notification(s). As long as the component is not
designed to busy wait for a response to a notification
(which would be a serious design mistake, given the ar-
chitectural style), its timeliness is completely indepen-
dent of the other components in the system.

The design trade-off is one of progress. While a
component’s timeliness can be verified in component
testing, its progress is solely dependent upon the inputs
it receives, and therefore the other components it is in-
tegrated with. If a component expects to be provided
with vehicle position, and uses that information to cal-
culate velocity, then it obviously will not make progress
in calculating velocity if it receives no notifications of
position.

Reusability

We have identified two risks related to reuse for invoca-
tion: limitations on system structure due to deadlock,
and potential for architectural mismatch. We have al-
ready observed that deadlock should not be an integra-
tion problem with notification. There is also less risk of
architectural mismatch because the data source always
initiates the interaction. With publish-subscribe, com-
ponents cannot make assumptions about the existence
of other components. Of course, components must
agree on data type to exchange data in any case. Evoca-
tion could also have a mismatch if the interface-method
signatures were not the same. However, publish-sub-
scribe does not suffer from this limitation.

As we consider these qualities in the context of a
DRE system, predictability should be given priority
over reliability. We don’t mean that reliable communica-
tions aren’t necessary. However, the nature of architec-
tural design is a series of trade-off decisions. Since we
are building a system that must be predictable by defini-
tion, we choose to make a decision that promotes pre-
dictability and defer the reliability problem. It still must
be resolved, because a system that loses control messages
will not act predictably either. As we will see, however,
there are other ways to achieve reliability that don’t have
the same trade-off with predictability.

• Mitchell, Siegel, Schiefelbein, and babikyan
Applying Publish-Subscribe to Communications-on-the-Move Node Control

VOLUME 16, NUMBER 2, 2007 LINCOLN LABORATORY JOURNAL 419

Reusability and extensibility are essential as well,
since the plan for this system calls for incrementally add-
ing functionality over the course of at least three spirals
spanning several years. These were the factors that led
us to consider applying publish-subscribe to our mobile
communications node prototype.

Middleware comparison

We considered two potential middleware frameworks:
CORBA and the Network Data Distribution Service
(NDDS). CORBA, a standards-based middleware spec-
ification published by the Object Management Group
(OMG), has many commercial and open-source imple-
mentations. NDDS is a commercial product of Real-
Time Innovations (RTI).

CORBA

The design of CORBA has evolved from its origins in
enterprise-distributed systems. The fact that its primary
connector type is invocation is an artifact of those ori-
gins. With the publication of the Real-Time CORBA
specifications for dynamic [18] and static [19] schedul-
ing, it has been retrofitted for use in distributed real-
time systems. However, the primary connector is still
invocation.

CORBA has the advantage of flexibility: we can use
invocation, evocation, or a special connector called de-
ferred synchronous. This last option is like evocation with
a return value that gets cached by the middleware. The
trade-off of this flexibility is that the more connector
types that middleware provides, the more opportunities
there are for architectural mismatch. This flexibility thus
represents an increased risk to potential reuse.

CORBA has the advantage of maturity and stan-
dardization. A number of open-source and commercial
CORBA implementations can interoperate with one
another. Several are fully compliant with the Real-Time
CORBA specification and the minimum CORBA spec-
ification (designed to reduce memory and storage foot-
print) [20]. CORBA does have a fault-tolerance specifi-
cation, but it is not clear how much vendor support it
has. Furthermore, it is not at all apparent how to inte-
grate Fault-Tolerant CORBA with Real-Time CORBA.

Due to its maturity, CORBA has the additional ad-
vantage of offering a host of supporting services such as
Naming, Event, Notification, Lifecycle, Concurrency,
Security, and Transaction. A CORBA vendor is not
required to implement all these services, but many im-

plementations supply most or all of the services. Some
implementers of the Real-Time CORBA specification
provide real-time implementations of the Event [21]
and Notification [22] services.

CORBA has language mappings for C, C++, Java,
Ada, COBOL, Smalltalk, Lisp, Python, and several oth-
er languages. CORBA’s Event and Notification services
do not specify any multicast optimizations.

NDDS

NDDS has been designed and built for distributed real-
time control systems. The fact that its primary connec-
tor type uses notification semantics is an artifact of its
origins. NDDS did provide a client-server option in the
version we used, but it was being phased out. The lat-
est version of NDDS offers only notification semantics.
This version is not as flexible as the alternatives available
in CORBA, but it does help mitigate the opportunities
for architectural mismatch resulting from mismatched
connectors. The version of NDDS we used was a pro-
prietary commercial product. The vendor did publish
their wire format, Real-Time Publish-Subscribe (RTPS)
[23].

NDDS provides a variety of parameters to tune Qual-
ity of Service (QoS), and provides end-to-end QoS guar-
antees. One of the disadvantages of this flexibility is the
potential for architectural mismatch. Two components
may agree on a topic, but disagree on QoS expectations
that may prevent them from communicating. Also, not
all combinations of parameter settings are semantically
valid, which can make tuning them a challenge.

NDDS was available for Java, C, and C++, which
was sufficient for our needs. NDDS provides a multicast
option to optimize its distribution semantics. NDDS
provides a reliable notification mode, which adapts no-
tification with an acknowledgement scheme that is han-
dled completely by the middleware. Publishing is still
asynchronous. However, the middleware sets a timer
and expects an acknowledgement from the subscriber’s
middleware. If the timer elapses without acknowledge-
ment, the middleware resends. This option trades off a
small amount of predictability (i.e., the uncertainty of
when an acknowledgement will be handled and the pos-
sibility that the middleware may have to resend a mes-
sage) to ensure reliable delivery.

Reliable delivery is a weaker guarantee than the reli-
ability of invocation, since a complete invocation guar-
antees that the receiver has successfully processed the

• Mitchell, Siegel, Schiefelbein, and babikyan
Applying Publish-Subscribe to Communications-on-the-Move Node Control

420 LINCOLN LABORATORY JOURNAL VOLUME 16, NUMBER 2, 2007

message. However, there seems to be an appropriate
separation of concerns. The message is a concern of the
sender until passed to the middleware. It is the concern
of the middleware until delivered to the receiver, and it
is then a concern of the receiver for correctly processing
the message.

NDDS has a mechanism for active fault tolerance us-
ing the concept of publication strength. Two identical
copies of a component can be run on different proces-
sors. Since they subscribe to the same publications, they
receive the same inputs and generate the same outputs
in the form of publications. However, one of the com-
ponents can be set with a higher publication strength,
meaning that its publications supersede those of its twin.
If this primary component crashes, the backup (publish-
ing at a lower publication strength) is still active.

Comparing Publish-Subscribe in CORBA and NDDS

Both CORBA and NDDS provide publish-subscribe
capabilities. However, what is the primary communi-
cation mechanism in NDDS is an add-on service in
CORBA. The CORBA Event and Notification services
provide publish-subscribe semantics. They are standard
CORBA layered services, meaning that they are built

on top of the object request broker (ORB) and gener-
al inter-ORB protocol (GIOP). The limitations of the
CORBA Event service are discussed by D.C. Schmidt
and C. O’Ryan [24]. The CORBA Notification service
is based on the Event service, and is designed for just
a few event channels and receiver-side content filtering.
NDDS is designed for many topics and effectively fil-
ters on the publisher side.

OMG has recently published the Data Distribution
Service for Real-Time Systems Specification for COR-
BA [25], which specifies publish-subscribe semantics.
This is a specialized CORBA specification, meaning that
it does not mandate the use of a layered implementa-
tion that is based on ORB and GIOP. RTI, who devel-
oped NDDS, is one of the primary contributors to this
standard. The specification identifies different profiles,
representing levels of compliance. The latest version of
NDDS complies with several of the profiles identified in
the DDS specification. The version of NDDS we used
was not compliant with the standard, which was still be-
ing finalized when we were considering middleware.

While it is possible to do asynchronous messaging
with CORBA, or to use an add-on service to approxi-
mate Publish-Subscribe semantics, the model doesn’t

WLAN

CDL

GBS WGS (Ka)

Commercial (Ku)

MILSTAR

DVB

LDR/
MDR

WLAN

HMMWV HMMWV with MCN

FIGURE 8. Mobile communication node (MCN) on a high-mobility multipurpose wheeled vehicle (HMMWV)–
system content, showing the communications links between the MCN and other systems. MILSTAR stands for
military strategic tactical and relay satellite connected through low and medium data rate (LDR/MDR) links; GBS
is a global broadcast system communicating through the DVB digital video broadcast link; WGS is a wideband
gapfiller satellite; CDL is a converged data link; and WLAN is a wireless local area network.

• Mitchell, Siegel, Schiefelbein, and babikyan
Applying Publish-Subscribe to Communications-on-the-Move Node Control

VOLUME 16, NUMBER 2, 2007 LINCOLN LABORATORY JOURNAL 421

seem conducive to the needs of DRE systems com-
posed of cooperating processes such as the system we
are building. On the basis of these considerations, we
selected NDDS as the middleware for our software con-
trol plane.

System context

The mobile communications node, shown in Figure 8,
is a prototype vehicle-mounted communications system
built to demonstrate how exploitation of an ensemble
of networks containing links of various types (e.g.,
ground-to-space, ground-to-air, ground-to-ground) can
provide for reliable, wideband, on-the-move commu-
nications. The prototype currently has some real-time
requirements that are not particularly strict. There is
some uncertainty as to which links the system will need
to support in the future. Therefore, the system must ac-
commodate the insertion of new COTS and/or custom
link components, which may or may not have real-time
control requirements. The system must make some ba-

sic services available to the different links, such as con-
figuration, vehicle position, and spacecraft tracking.

System architecture

The system architecture concept for our prototype mo-
bile communications node is illustrated in Figure 9. The
currently supported links are low and medium data rate
(LDR/MDR), global broadcast system (GBS) receive-
only, and wireless local area network (WLAN). While
only three links are currently implemented (two recon-
figurable and one static), the system supports the inser-
tion of additional link components or COTS radios.
The specific components of the system architecture are

1. Node Agent. This control component is responsible
for configuring the other components of the node and
monitoring their status as necessary. It may also respond
to changes in status by reconfiguring or notifying other
components. It may also reconfigure the router to at-
tempt to reroute traffic destined for failed links.

2. Reconfigurable Links. These are links that can be

Reconfigurable links

Static links

HAIPE
Red
LAN

INU

Node component
Link component
User data (IP/RF)
Node control
Aperture pointing
COTS/custom API
Adapter

RF

Modem

Modem

COTS radio

Node
agent

Black
LAN

FIGURE 9. MCN system architecture, showing the top-level notational components required to realize the MCN. HAIPE is a
high-assurance internet protocol encryption device. COTS/custom API stands for a customized commercial off-the-shelf appli-
cation programming interface, LAN stands for local area network, and INU is an inertial navigation unit

• Mitchell, Siegel, Schiefelbein, and babikyan
Applying Publish-Subscribe to Communications-on-the-Move Node Control

422 LINCOLN LABORATORY JOURNAL VOLUME 16, NUMBER 2, 2007

composed from available link components. Such links
have three elements: a modem, a radio frequency (RF)
component, and an antenna. In the prototype, either
a GBS or a military strategic tactical and relay satellite
(MILSTAR) link can be created by using the same RF
and antenna (but different modems).

3. Static Links. These links are not dynamically re-
configurable by the Node Agent in real time. A node
may contain multiple such links. Each link transmits
and receives data by using its own dedicated radio con-
taining both an RF module and an antenna.

4. Inertial Navigation Unit. This package is used by
the node to determine its location and orientation in in-
ertial space.

5. Router. The router in the node performs store-
and-forward routing of IP-encapsulated data packets.
The router is connected to each modem via an Ethernet
cable. We made the assumption that COTS modems or
radios would have an Ethernet data port. We accepted
the constraint that custom modems would provide an
Ethernet data port.

6. High-Assurance Internet Protocol Encryption. This
device, also called HAIPE, performs the encryption and
decryption required to support connection of a classi-
fied local area network (LAN) to the node.

7. Unclassified and Classified LANs. Users connect
hosts to these networks to run various applications.

Our hardware team made several key hardware and
platform decisions that enabled us to consider the use
of middleware for this system. For the node agent and
other node components we selected a CompactPCI
backplane with Ethernet support and an Intel x86 sin-
gle-board component (SBC) running the Linux oper-
ating system. Decisions on future modem applications
included using PowerPC and VxWorks, which are
supported by several middleware vendors, and using a
general-purpose protocol as a modem controller to hide
special-purpose protocol modem components from the
rest of the node architecture. The first two decisions are
realized in the existing prototype. The second two are
design constraints on the custom modems we may build
in the future. Obviously, there may be requirements for
some future modem that invalidates either or both of
these decisions, and so we are gambling to some extent.

Software architecture

The software control architecture for our mobile-com-
munications-node prototype is illustrated in Figure 10.

NDDS is running over the CompactPCI backplane.
There are currently two Intel x86 SBCs plugged into
the backplane: the node control processor and the space
tracking processor. Empty slots are available for addi-
tional SBCs or custom boards to support the insertion
of additional modems.

Several legacy subsystems from our previous work
have been integrated into the prototype. The MIL-
STAR-on-the-move (MOTM) terminal was developed
by using the custom remote-invocation framework
mentioned previously. This is a completed terminal
for receive-only MDR and LDR MILSTAR protected
satcom that is plugged via Ethernet cable into the node
backplane. It uses remote invocation to interact with the
physics package unit over this Ethernet link. It is also
connected to the node controller via serial cable, to fa-
cilitate the operation of the LDR adapter [17], which
publishes signal-strength metrics retrieved from the
LDR modem.

The second link selected for insertion into the pro-
totype was a COTS GBS receive capability, which uses
the same RF and antenna positioner as the MOTM
terminal. The inertial navigation unit (INU), RF, and
antenna subsystem from that system were integrated as
a separate subsystem into the prototype to allow it to be
shared with GBS. The antenna control processor is con-
nected via serial interface to the space-tracking proces-
sor. The INU device is controlled by the physics pack-
age unit, which is adapted to NDDS by the Attitude
Heading Reference System (AHRS) adapter. The legacy
antenna subsystem is controlled by the physics package
unit via the antenna adapter. The RF interface module
was also built as an adapter. The tracker is responsible
for spacial tracking of the GBS satellite. We designed a
digital video broadcasting (DVB) adapter for control of
the GBS DVB receiver, but found that GBS DVB had a
convenient web interface for setting modem parameters.
Once set, these parameters become the default. There-
fore, the DVB adapter is not currently necessary.

The network agent, router manager, and wireless
adapter, illustrated in Figure 10, have not been built yet.
They will be required for our experiments with fast re-
routing, but are not currently necessary for the opera-
tion of the prototype. The network agent will receive
signal-strength metrics from the links (e.g., the wireless
adapter). It will then use the router manager to reroute
traffic destined for failed links. Until we begin experi-
mentation with fast rerouting, static routes and links are

• Mitchell, Siegel, Schiefelbein, and babikyan
Applying Publish-Subscribe to Communications-on-the-Move Node Control

VOLUME 16, NUMBER 2, 2007 LINCOLN LABORATORY JOURNAL 423

sufficient. This simplification of the problem demon-
strates how we are benefiting from one of the advantages
of publish-subscribe, the ease of system evolution.

Software Design

Component design with publish-subscribe requires a
different approach than its current object-based invoca-
tion. In object-based invocation, one of the consequenc-
es of distribution transparency is that a component is
typically structured as an object. With publish-sub-
scribe, it makes more sense to structure components as
state machines that change state according to events.
Object-oriented design still plays a vital role in building
the elements that make up a component.

High-level design using NDDS is mostly about par-

titioning the data to be exchanged into topics. No re-
mote methods are invoked or object-oriented interfaces
specified in IDL, only topics that consist of a name and
a type. A topic type is defined in IDL, and code gen-
eration is used to create the appropriate structure (or
class) definition and marshalling code for the target lan-
guage. The topic name is used to differentiate topics of
the same type. For example, the topic in Figure 7 has
a type position, and a name VehiclePosition. We could
also create another topic named SatellitePosition, which
has the same type.

Figure 11 illustrates how the topics currently imple-
mented in the node prototype map to publishers and
subscribers. The individual topics are described in Tables
2 and 3 and in the following sections. The logger, which

Space-tracking processor

Node control processor

DVBR tracking
receiver

(GBS beacon)

Beacon Rx
API

RF
interface

multiplexer

Router

Logger RIM
adapter

Router
manager

Network
agent

Antenna
adapter

Tracker DTR
adapter

AHRS
adapter

NDDS

GBS DVB
receiver

Wireless
link

Wireless
adapter

DVBR
adapter

Node
controller

Position
service

Black
LAN

LDR
adapter

INU

Positioner

Antenna subassembly

Antenna control
processor

Physics
package unit

MILSTAR-on-the-move
terminal

RFI

Legacy
LDR API

RFIRFI

Router
API

RF
interface

API

802.11
control

API

GBS DVB
control

API

UDPSSH

FIGURE 10. MCN software architecture. This is a run-time view illustrating how the various top-level components of the MCN
software are connected via the Network Data Distribution Service (NDDS) to peripheral devices. AHRS stands for attitude and
heading reference system; DTR is data terminal ready, RIM is an RF interface module; SSH and UDP are secure-shell and user-
datagram protocols; DVB is digital video broadcasting; and DVBR is a DVB receiver.

• Mitchell, Siegel, Schiefelbein, and babikyan
Applying Publish-Subscribe to Communications-on-the-Move Node Control

424 LINCOLN LABORATORY JOURNAL VOLUME 16, NUMBER 2, 2007

is not shown in the figure, can potentially subscribe to
all topics.

Just as interface methods in object-based invocation
can be notionally divided into commands and queries,
topics types in publish-subscribe can be divided into
two subtypes: samples and events.

Samples. Samples are periodic, typically represent-
ing measurements of the environment. Because of their
periodic nature, samples can be sent best effort; reliable
delivery is not necessary. The consequences of losing a
single update are relative to the rate of publication, and
since samples are typically fairly high rate, the loss of
one is not a serious problem. Refer to Figure 11 for a
mapping of publishers and subscribers to the sample
topics listed in Table 2.

Events. Events are aperiodic, representing unique
changes in component or system state. Events can be
commands, parameter updates, status updates, or ex-
ception notifications. Because they represent unique
changes in component or system state, the loss of a sin-
gle event could cause a serious error. Therefore, events
are sent by using the reliable mode provided by the
middleware. Status messages are also set with a time-to-
keep quality-of-service value. This information enables
late-joining subscribers to get the complete sequence of
status events for all components in the system. Refer to
Figure 11 for a mapping of publishers and subscribers to
the event topics listed in Table 3.

Within the node prototype, several topics appear to
have no current subscribers. These topics may be de-
signed for functionality that is to be added, like fast re-
routing, or for debugging purposes. An update that is
published when there are no subscribers to that topic
gets dropped by the middleware, and no network traf-
fic is generated. It is also possible for a component to
subscribe to a topic for which there are no publishers. It
simply means that the callback for that subscription will
never get called.

Some topics are being published to more than one
subscriber. These are currently being sent unicast, be-
cause the difference in end-to-end latency between one-
to-one unicast and one-to-four unicast is on the order
of 80 msec [26]. Granted, these are vendor performance
metrics, but they would need to be off by several orders
of magnitude to be a concern. If it became a timeliness
concern, we could switch to multicast to optimize the
publications.

Some command publications have a device ID field,
which represents a command directed at a particular ob-
ject. How is this any different than invoking an object?
For one thing, invocation contains an implicit assump-
tion that the object exists. Sending an event with a de-
vice ID is like saying “if a device with this ID exists, it
should perform this command.” There is no presump-
tion of existence. This decoupling is what contributes to
the ease of system evolution.

E6

Component
Sample topic
Event topic
Publication
Subscription

E1S4

S3 S1

E2

E3

E4

S7 S8

E7

E5

S6

S9

S2

S5

Node
controller

Position
service

LDR
adapter

DTR
adapter

RF
interface
module

Antenna
adapterTrackerAHRS

adapter

FIGURE 11. MCN software topic mapping, showing the mapping of publishers and sub-
scribers to topics. Sample topics are listed in Table 2, and Event topics are listed in Table 3.

• Mitchell, Siegel, Schiefelbein, and babikyan
Applying Publish-Subscribe to Communications-on-the-Move Node Control

VOLUME 16, NUMBER 2, 2007 LINCOLN LABORATORY JOURNAL 425

Client Services

We have recognized the need for three client services so
far. A client service is defined as some service relating to
the control of the node prototype that may be utilized
by clients on the unclassified LAN.

Node Controller. The node controller provides a sim-
ple command-line user interface to the node, with shell

features such as tab completion. Clients can use secure
shell (SSH) for a secure remote login into the node con-
trol processor and launch the node controller process to
send commands to devices and check their status.

Logger. As mentioned previously, the logger is used
primarily for system monitoring and debugging pur-
poses. It is capable of subscribing to one or more top-
ics, which is a little like using a tool to snoop network

Table 2. Sample Topics*

UtcTime (S1) Universal Time Coordinated (UTC) time, published at 10 Hz for time synchronization.

AhrsLocation (S2) Longitude, latitude, and altitude of the vehicle published at 1 Hz.

AhrsDisplacement (S3) Displacement of the vehicle from a known point published at 1 Hz.

AhrsVelocity (S4) Three vectors indicating the vehicle-position rate of change, published at 1 Hz.

AntennaReferenceAngle (S5) Pointing angle for the antenna subsystem.

AcquisitionMetric (S6) Energy measurement to aid in debugging acquisition problems,
 published as the antenna scans a particular pattern.

AntennaAngles (S7) Current reference, dither, offset, and bias angles for the antenna.

DtrSamples (S8) Received power and carrier-to-noise ratio published at 10 Hz.

LdrEnergyMetric (S9) Measurement of LDR energy from the MILSTAR terminal.

* Labels S1 through S9 are coded to locations in Figure 11.

Table 3. Event Topics†

DeviceStatus (E1) Typically, devices that are commanded will send a notification of update in device status. This
 notification includes a device ID (to distinguish the device, since many devices publish to this
 topic), a status code or error code, and an optional string (for reporting any details to the user).

TrackCommand (E2) Issues commands to the Tracker. A TrackCommand update contains a device ID, a command,
 and a satellite name. Commands to start, stop, suspend, or resume.

AntennaCommand (E3) Issues commands to the Antenna subsystem. An AntennaCommand consists of a device ID,
 a command, and a bias angle used for acquisition. Commands to start and stop acquisition,
 and set bias angle.

DtrParams (E4) This topic is used to update various parameters on the DVB tracking receiver. Publishing an
 update to the topic sets the new parameters on the device.

DeviceCommand (E5) This topic is used for basic operations common to all devices, like reset and kill.
 A DeviceCommand consists of a device ID and a command.

LdrCommand (E6) Commands to enable/disable energy metrics, antenna commands, encoding, and interleaving,
 as well as commands to set downlink mode and interleaver size.

RimCommand (E7) Commands to switch RF Interface Multiplexer to LDR/MDR or GBS.

† Labels E1 through E7 are coded to locations in Figure 11.

• Mitchell, Siegel, Schiefelbein, and babikyan
Applying Publish-Subscribe to Communications-on-the-Move Node Control

426 LINCOLN LABORATORY JOURNAL VOLUME 16, NUMBER 2, 2007

traffic. The logger allows a user to see what one or more
components in the system are publishing at any given
time. Several instances of the logger can be launched
and set to log different sets of topics.

Position Service. The position service subscribes to the
AHRS adapter’s publications for the vehicle’s position
and velocity, and can be configured upon launch to send
these data in a custom user-datagram protocol (UDP)
format to designated client IP addresses on the user data
network. These clients can run Precision Lightweight
Global Positioning System Receiver (PLGR) simula-
tor software called PLGRsim, which was developed by
Mark Smith in the Laboratory’s Wideband Technical
Networking group. PLGRsim enables clients on the
LAN to run applications that require vehicle position
via PLGR, such as FBCB2.

Node Controller—Drivers and Adapters

The Node Controller is the node user’s interface for
commanding the various elements of the node. It can
be used for such node functions as switching between
LDR/MDR and GBS receive, activating GBS satellite
tracking, and querying the status of any device. The
node controller has a collection of drivers, which act as
proxies for the adapters in the system.

Because of the loosely coupled design, the node con-

troller process can be killed without any negative impact
to the operation of the node prototype. When the node
controller is relaunched, it retrieves the cached status of
each device in the system, and picks up exactly where it
left off. Figure 12(a) illustrates how the node controller
component uses a driver object to communicate with a
device through its associated adapter component.

Drivers are used to send command and parameter
updates to devices. Drivers also represent a cache of an
active device’s last status, exception, and sample publi-
cations. The user can retrieve this information with a
simple command. Drivers are also used by a test case in
our automated test suites to verify the correct behavior
of the adapter, as shown in Figure 12(b).

Adapters are used to adapt the native interface of a
device to published events and samples. Adapters in test
cases are run in a dummy mode, which does not actually
invoke the device. This facilitates testing of the device-
adapter interface for each device, even when the device
is not available. Integration tests between adapters and
devices are performed manually.

Logging Notification Yields Behavioral Decoupling

The logging of events during the execution of software
applications has become an area of increasing interest
and activity. Over the past ten years, flexible and con-

(a)

(b)

Component
Object
Event types
Invocation
Notification

Logger

Test case

Node controller

Device

Driver

Status

Parameters

Commands

Adapter

Driver

Status

Commands

Adapter

Parameters

FIGURE 12. Drivers and adapters. (a) Enabling the node controller to manage devices; (b) test-harness facilitating the
testing of events.

• Mitchell, Siegel, Schiefelbein, and babikyan
Applying Publish-Subscribe to Communications-on-the-Move Node Control

VOLUME 16, NUMBER 2, 2007 LINCOLN LABORATORY JOURNAL 427

trollable freeware logging packages have been developed
and used in the construction of large software projects
[27]. Modern loggers are flexible enough to allow event
data to be logged to any combination of files, databases,
or custom listeners. They are controllable enough that
their output can be selectively enabled and/or redirected
at run time on the basis of parameters of each individual
events, such as program component or debug level.

The benefits of easier debugging and data gather-
ing are not lessened in the case of distributed applica-
tions, but they can be more difficult to realize. Consider
a system consisting of processes A and B executing on
separate machines and communicating via invocation.
A run-time logging service that accepts logging invo-
cations from both A and B is, in effect, an additional
distributed component C. This logging service adds to
the complexity of the system’s interactions and to the
risk of deadlocks, bottlenecks, and priority inversions.
Furthermore, executing such a system under different
logging configurations can result in different behaviors
when the interactions between A and B are sensitive to
the temporal effects of interactions with C. Bugs that
appear or disappear on the basis of logging or debug-
ging efforts are known as heisenbugs (after Heisenberg’s
Uncertainty Principal), and are notoriously difficult to
isolate [28].

The decoupling of A and B from C removes this
added risk by using publish-subscribe instead of invoca-
tion. Conceptually, A and B always publish all of their
events. The fact that C subscribes or does not subscribe
to a given set of logging events does not affect A or B’s
behavior. Furthermore, it becomes possible to log all of
the communications between distributed components
in the system by configuring the logger to record every
publication of any sort. It is also possible to have any
number of loggers running at once, on any number of
attached systems, recording any subset of the events and
communications in the system, with no effect on the
behavior of the other components. Certainly this mul-
tiplicity of functions could have a significant impact on
timeliness, if sufficient subscribers were added. Howev-
er, this concern is mitigated by optimizing publications
with multicast.

Our architecture always executes one logger to record
all events in human-readable format. Users wishing to
use the system to gather data may launch additional log-
ger instances themselves to record specific publications
in human- or machine-readable format.

C++ Exceptions: Stack Traces and Notification

We augment the standard C++ exception behavior on
Linux in the following four ways.

1. Stack traces. Our exceptions generate stack-trace
strings containing the symbol name and address asso-
ciated with each unwound stack frame, by using the
GNU C++ Compiler’s (gcc) backtrace function. We
translate these addresses when available, to source file
and line numbers by spawning an external addr2line
process, which is included on most Linux systems, and
having it parse the running binary. The resulting string
included in each exception is similar in appearance to a
Java stack trace.

2. Signals. We instantiate signal handlers for a set of
signals, which upon execution throw exceptions. On
modern Linux systems, this instantiation correctly un-
winds the stack as the signal handler stack is situated
upon the regular application stack frame. For example,
a null pointer dereference will generate a full stack trace
with line numbers right up to the receipt of a segmenta-
tion violation signal.

3. Uncaught exceptions. We install handlers to display
the textual information for all uncaught exceptions.

4. Notification. We provide convenient macros so that
adapter-derived objects can automatically publish any
exception generated by the contained code fragment.

Our code was inspired by an IBM developer Works
article and does much to ease the C++ development
process [29]. By tying notification into our exception
handling, we made it possible that both the user at the
console at the time of failures and the developer read-
ing log files after the fact receive sensible, context-rich
information.

future Work

We want to consider the problem of dynamic routing
on shorter time scales than are currently supported by
typical routing protocols such as OSPF. Adding a cus-
tom modem with more stringent hard real-time control
requirements using publish-subscribe would be an in-
teresting evolution of the system architecture. We would
like to consider a software design that implements com-
ponents as hierarchical state machines, as described in
Reference 30.

Obviously, as we add more links to the prototype, the
fast rerouting problem gets more interesting. If we add
directional links, then topology decision making would

• Mitchell, Siegel, Schiefelbein, and babikyan
Applying Publish-Subscribe to Communications-on-the-Move Node Control

428 LINCOLN LABORATORY JOURNAL VOLUME 16, NUMBER 2, 2007

be interesting. Also, we’re interested in the capability of
reconfiguring links to take full advantage of available re-
sources. We would like to spend some time modeling
link state and decision making, and developing and im-
plementing a link abstraction to create a unified control
interface for link components.

conclusion

Military communications systems can be constructed by
using many different software technologies. The ques-
tion we have considered is which architectural approach
for middleware best supports the goals of DRE systems.
Not all DRE systems have the same requirements or
quality attribute goals. However, some qualities are es-
sential to the definition of a DRE system. We have con-
sidered two architectural approaches in the context of
these qualities.

We observe that invocation makes component pro-
gramming slightly easier and system integration much
harder, while publish-subscribe makes component pro-
gramming slightly harder and system integration much
easier. Since RPC was developed, many advances, such
as languages and library support, have made program-
ming easier. Many modern-day software projects strug-
gle in the integration phase. It therefore makes sense to

choose an architectural approach that trades off some
component simplicity for integration simplicity. Because
components cannot be integrated until they are built,
integration naturally falls after component construc-
tion. Selecting an approach that increases integration
complexity shifts uncertainty and risk to the latter stages
of a project. On the other hand, choosing an approach
that complicates construction but simplifies integration
front-loads the risk and uncertainty. This architectural
approach should lead to a progressive reduction of un-
certainty throughout the project schedule.

We observe that publish-subscribe, a distribution
system implementation of the implicit-invocation ar-
chitectural style, promotes reuse and extensibility. By
decoupling communicating components, this approach
insulates them from one another’s behavior, timeli-
ness, and predictability concerns. This decoupling also
removes deadlock as an integration problem, improv-
ing the composability of components developed for
publish-subscribe.

While systems can certainly be built by using a num-
ber of architectural approaches, we must consider some
inherent trade-offs. We have shown, and we believe,
that publish-subscribe demonstrates some very attrac-
tive qualities as a middleware for DRE systems.

• Mitchell, Siegel, Schiefelbein, and babikyan
Applying Publish-Subscribe to Communications-on-the-Move Node Control

VOLUME 16, NUMBER 2, 2007 LINCOLN LABORATORY JOURNAL 429

R e f e R e n c e s
 1. Software Communications Architecture Specification Version

2.2, Joint Tactical Radio Systems Joint Program Executive Of-
fice, jtrs.spawar.navy.mil/sca/downloads.asp?ID=2.2.

 2. Free On-Line Dictionary of Computing, www.foldoc.org.
 3. A.D. Birrell and B.J. Nelson, “Implementing Remote Pro-

cedure Calls,” ACM Trans. Comput. Syst. 2 (1), 1984, pp.
39–59.

 4. R. Guerraoui and M.E. Fayad, “OO Distributed Program-
ming Is Not Distributed OO Programming,” Commun. ACM
42 (4), 1994, pp. 101–104.

 5. M. Shaw and D. Garlan, Software Architecture: Perspectives on
an Emerging Discipline (Prentice Hall, Upper Saddle River,
N.J., 1996), p. 165.

 6. Common Object Request Broker Architecture: Core Speci-
fication Version 3.0.3 (see Section 11.3.8.1, Thread Policy),
Object Management Group, Mar. 2004, www.omg.org/docs/
formal/04-03-12.pdf.

 7. www.dacs.dtic.mil/topics/edcs/demodays.shtml.
 8. N. Kaveh and W. Emmerich, “Deadlock Detection in Distrib-

uted Object Systems,” Proc. 8th European Software Engineering
Conference/Foundations of Software Engineering (ESEC/FSE)/
9th ACM Special Interest Group on Software Engineering (SIG-
SOFT) Symp., Vienna, 11 Sept. 2001, pp. 44–51.

 9. N. Kaveh, “Using Model Checking to Detect Deadlocks in
Distributed Object Systems,” Engineering Distributed Ob-
jects, W. Emmerich and S. Tai, eds. (Wiley, Chichester, U.K.,
2000).

 10. P. Inverardi and S. Uchitel, “Proving Deadlock Freedom in
Component-Based Programming,” Fundamental Approach-
es to Software Engineering: 4th International Conference, FASE
2001: Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2001: Genova, Italy, April 2–
6 2001: Lecture Notes in Computer Science (LNCS) 2029, pp.
60–75.

 11. F.P. Brooks, “No Silver Bullet—Essence and Accidents of Soft-
ware Engineering,” Proc. Int. Federation for Information Pro-
cessing (IFIP) Tenth World Computing Conf., Dublin, 1–5 Sept.
1986, pp. 1069–1076.

 12. D. Garlan, R. Allen, and J. Ockerbloom, “Architectural Mis-
match or Why It’s Hard to Build Software from Existing
Parts,” Proc. 17th Int. Conf. on Software Engineering (ICSE),
Seattle, 23–30 Apr. 1995, pp. 179–185.

 13. L. Bass, P. Clements, and R. Kazman, Software Architecture
in Practice, chaps. 4 and 5 (Addison Wesley, Reading, Mass.,
1998), pp. 71–130.

 14. M. Shaw and D. Garlan, Software Architecture, p. 172.
 15. Ibid., p. 173.
 16. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and

M. Stal, Pattern-Oriented Software Architecture: A System of
Patterns, vol. 1 (Wiley, Chichester, U.K., 1996).

 17. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software (Addison-
Wesley, Reading, Mass., 1995).

 18. Real-Time CORBA Specification Version 2.0, Object
Management Group, Nov. 2003, www.omg.org/cgi-bin/
doc?formal/03-11-01.pdf.

 19. Real-Time CORBA Specification Version 1.2, Object Man-
agement Group, Jan. 2005, www.omg.org/cgi-bin/apps/
doc?formal/05-01-04.pdf.

 20. Minimum CORBA Specification Version 1.0, Object Man-

agement Group, Aug. 2002, www.omg.org/docs/formal/
02-08-01.pdf.

 21. T.H. Harrison, D.L. Levine, and D.C. Schmidt, “The De-
sign and Performance of a Real-Time CORBA Event Service,”
Proc. 12th ACM SIGPLAN Conf. on Object-Oriented Program-
ming, Systems, Languages, and Applications, Atlanta, 5–9 Oct.
1997, pp. 184–200.

 22. P. Gore, I. Pyarali, C.D. Gill, and D.C. Schmidt, “The Design
and Performance of a Real-Time Notification Service,” Proc.
10th IEEE Real-Time and Embedded Technology and Applica-
tions Symp., Toronto, 25–28 May 2004, pp. 112–120.

 23. Real-Time Publish Subscribe Protocol (RTPS) Wire Protocol
Specification Version 1.0, IEC/PAS 62030 International Elec-
trotechnical Commission, domino.iec.ch/webstore/webstore
.nsf/artnum/033452.

 24. C.O. Ryan, D.C. Schmidt, and J.R. Noseworthy, “Patterns
and Performance of a CORBA Event Service for Large-Scale
Distributed Interactive Simulations,” Int. J. Comput. Syst. Sci.
Eng. 17, Mar. 2002.

 25. Data Distribution Service for Real-Time Systems Specification
Version 1.1, Object Management Group, Dec. 2005, www.
omg.org/docs/formal/05-12-04.pdf.

 26. NDDS version 3.0i Data Delivery Performance, Real-Time
Innovations, Mar. 2002.

 27. Log for C++, Open Source Technology Group, log4cpp.
sourceforge.net.

 28. Heisenbug, Wikipedia, en.wikipedia.org/wiki/Heisenbug.
 29. S. Agrawal, “C++ Exception-Handling Tricks for Linux,”

IBM developerWorks, 23 Feb. 2005, www-128.ibm.com/
developerworks/library/l-cppexcep.html?ca=dnt-68.

 30. M. Samek, Practical Statecharts in C/C++: Quantum Pro-
gramming for Embedded Systems (CMP Books, San Francisco,
2002).

• Mitchell, Siegel, Schiefelbein, and babikyan
Applying Publish-Subscribe to Communications-on-the-Move Node Control

430 LINCOLN LABORATORY JOURNAL VOLUME 16, NUMBER 2, 2007

m. curran f. schiefelbein
is an associate staff member in the Biodefense Systems group; she was formerly a
member of the Wideband Tactical Networking group. Her current research studies
the performance of distributed wireless sensor networks for advanced warning of
biological or chemical attacks. She earned her A.B. and Sc.M. degrees in computer
science at Brown University.

armen p. babikyan
is an associate staff member in the Wideband Tactical Networking group. His
current research interests broadly span topics in computer networks, distributed
systems, wireless networks, grid computing, and asynchronous networking.
He received B.S. (with honors) and M.S. degrees in computer science from the
University of Massachusetts at Amherst.

j. Darby mitchell
is an associate staff member in the Wideband Tactical Networking group. His
current research includes software architectures, design patterns, and middleware
for distributed real-time embedded systems. He received a B.S. degree in computer
science at the University of North Carolina at Wilmington, and an M.S.E. degree
in software engineering from Carnegie Mellon University.

marc l. siegel
is a software engineer at Liquid Machines, Inc.; he was formerly an assistant staff
member of the Wideband Tactical Networking group. His current research interests
include static analysis of concurrency in distributed systems, expert systems, and
advanced C++ techniques. He earned a B.S. degree in computer science from
Brown University.

