
TOOLS

1

1. INTRODUCTION

ixed language programming has become
more common in aerospace and defense
(A&D) and safety critical applications since

the US Department of Defence (DoD) relaxed its Ada-
only mandate in 1997. Still, many high-integrity and
safety-related projects in the US continue to choose
Ada for their development language, and the use of
Ada is actively encouraged on safety-related projects
in a number of other countries. Recently, though, there
has been a marked increase in the practice of mixing
programming languages, particularly combinations of
Ada with C. Implementations that mix Ada, C, and C++
provide the high-reliability and safety critical benefits of
Ada plus the advantages of using standard building
blocks such as real-time operating systems,
networking stacks and advanced display systems, all
typically implemented in C. There are unique
integration and debugging challenges with mixed
language implementations. Fortunately, there are tools
that can help developers visualize, analyze and debug
device software that mixes GNAT Ada, C and C++. This
article looks at some practical development examples
using RTI ScopeTools and Wind River's VxWorks
RTOS.

A developer may choose to combine Ada and C in
their application for a variety of reasons:

First, existing safety-critical systems implemented
in Ada are being enhanced with additional
functionality that requires the use of an RTOS,
usually written in C.

Second, distributed applications are becoming
more prevalent, through the adoption of TCP/IP
and related networking technologies, which are
often implemented in C. This adoption is being
driven in NATO defence systems by strategies
such as Network Centric Warfare (NCW) and
Network Enabled Connectivity (NEC), and also in
the US through the DoD Memorandum ("Internet
Protocol Version 6 (IPv6)", 9 June 2003) in relation
to the use of IPv6.

Third, the advances in display systems are now
open to exploitation by safety-critical and safety-
related device software implemented in Ada,
which need to interface with OpenGL and other
graphical libraries implemented in C.

Finally, code reuse is a growing trend in software
development, one that increases the likelihood of
a system that mixes Ada and C.

In aerospace systems, all of these factors can occur
together. A case in point is Integrated Modular Avionics
(IMA) systems, where Ada & C device software can
operate side by side on the same processor, driving
graphical displays, and communicate over an Ethernet
or AFDX network.

2. MIXED LANGUAGE

REQUIREMENTS

In order to efficiently develop and optimize mixed
language device software, developers need to be able
to perform the following:

To call Ada procedures from C functions and vice
versa

To perform mixed language source-level
debugging 

To understand the memory utilization of the mixed
language application

To understand the system-level behavior of the
mixed language application

These requirements are explored in the following
subsections, along with practical implementation
examples.

3. MIXED LANGUAGE INTERACTION

Many programming languages provide limited support
for interfacing to other programming languages; as a
result, language compilers and debuggers have
provided limited support as well. Developers have
therefore needed to implement their own bindings
between languages in assembler, an error-prone
activity that can result in non-portable code. In the case

M

Copyright 2005 by Dedicated Systems Magazine - 2005 Q1 (http://www.dedicated-systems.com)

By Paul Parkinson, Senior Systems Architect
and Pauline Shulman, Senior Product Manager,
resp. from Wind River. and Real-Time Innovations, Inc.

Putting the Pieces Together - 
The Promise of Mixed Language

Programming
Implementations that mix Ada, C, and C++ provide the high-reliability and safety critical benefits of Ada
plus the advantages of using standard building blocks such as real-time operating systems(RTOS),
networking stacks and advanced display systems, all typically implemented in C. Increasingly common
since 1997 when the US DoD relaxed its Ada-only mandate, mixed language programming brings
unique integration and debugging challenges. This paper discusses tools that can help developers
visualize, analyze and debug device software that mixes GNAT Ada, C and C++. It provides practical
examples based on RTI ScopeTools and Wind River's VxWorks RTOS.

Putting the Pieces Together - 
The Promise of Mixed Language

Programming



TOOLS

2 Copyright 2005 by Dedicated Systems Magazine - 2005 Q1 (http://www.dedicated-systems.com)

of the Ada95 Programming Language, this provides a
well-defined interface to the C language (Ada 95
Reference Manual, Annexe B: Interface to Other
Languages), enabling developers to easily and safely
call C functions from Ada procedures and the
converse.

A federated command & control system implemented
in Ada historically may have performed I/O over a bus
or via serial devices directly from Ada routines. In order
to upgrade this system to support IPv6 networking
connectivity, though, it is likely that the application will
need to interface with an IPv6 stack implemented in C. 

For reasons of future maintainability, we may prefer not
to embed IPv6-specifc code within the Ada command
& control application. Instead we may prefer to use an
abstraction layer to hide or minimize the interface with
the network stack. This could be achieved through the
use of the Inter Process Communication (IPC)
capabilities provided by the underlying Real Time
Operating System (RTOS). In the case of a VxWorks-
based implementation, VxWorks message queues
could be used for IPC, and a GNAT Ada procedure
would call the msgQReceive() API which is
implemented in C as follows:

This enables calls from GNAT Ada to C in a
straightforward manner, provided that the appropriate
Ada data types are selected to interface to the data

types used in the parameters to the C function. A
blocking msgQReceive() call from the Ada application
is shown below:

The reverse mapping can be achieved in a similar way
through use of a pragma Export.

4. MIXED LANGUAGE DEBUGGING

Once developers have used the ability to call C
functions from Ada procedures, and vice versa, they
will also want to perform source-level debugging of
this mixed language application code.This presents its
own challenges, particularly as compilers and
debuggers have tended to use a variety of Object
Module Formats (OMF), and developers who have tried
to bind C++ applications created by different compilers
know this problem all too well. In recent years, industry
has sought to standardize on Executable & Linking
Format (ELF) and Debugging With Arbitrary Record
Format (DWARF). This has made the parsing of object
files more straightforward, but these tools still need to
be aware of their own naming conventions and also
the naming conventions of other tools which have
created object code that needs to be debugged. 

In the case of the GNAT Ada & GNU C compilers,
these potential obstacles were overcome by the
Ada95 language and by the inherent compatibility of
GNAT and GNU due to their common heritage. At the
compiler level, GNU C and GNAT Pro Ada use the
same GCC technology (they are two front ends to the
same GCC backend). As a result, both compilers
produce the same object code and debugging

Return_Value := Msg_Queue_Receive
(Data_Queue_Id, Ada_Buffer'Address, Result_Structure_Size, -1);

function Msg_Queue_Receive
(Msg_Queue_Id : Integer;
Buffer : System.Address;
Max_NBytes : Interfaces.C.unsigned;
Timeout : Integer)
return Integer;

pragma Import (C, Msg_Queue_Receive, "msgQReceive");

Figure 1. RTI MemScope tree view of mixed language device software.



TOOLS

3

formats, thus enabling developer to freely mix Ada and
C in their applications. In the case of the Ada
command & control application, this enables the
debugger to step from an Ada procedure into a C
function, following the application's flow of execution in
the usual manner.

5. MIXED LANGUAGE MEMORY

UTILIZATION

A mixed language debugger alone doesn't meet all
the challenges posed by the development of mixed
language applications. In the command & control
system case, for example, memory may be
dynamically allocated by C functions interfacing to the
IPv6 stack for passing of data which may be
subsequently freed by Ada procedures within the core
of the command and control application. Here tools
that are C-centric or Ada-centric alone will not be
sufficient. Instead the developer will need dynamic
visualization tools to monitor the dynamic memory
utilization of both languages in order to assess the
memory utilization of the mixed language application
overall. 

This behavior presents the system designer with
additional considerations if the Ada & C runtime
systems perform dynamic memory allocation from
different memory pools, or use different memory
allocation schemes, and may force the designer to
partition or assign memory ahead of time. Ideally, the
Ada & C runtime systems would share a common

underlying method. In fact, the GNAT Ada runtime
library, which invokes the C runtime library's dynamic
memory allocation routines, including malloc() and
free(), uses this approach. Thus, only accesses to the
C runtime library's routines need to be traced in order
to trace the dynamic allocation or deallocation of
memory by either language,. 

In the case of the Ada command & control application,
the RTI MemScope tool could be used to trace all
dynamic memory allocations and deallocations by
either Ada code, C code, and any dynamically
allocated memory buffers passed between them on
the VxWorks system. This is illustrated by Figure 1
below, showing the VxWorks task tProducer which is
implemented in C, and an Ada task tAdaConsumer,
where the Ada procedure consumer() calls the C
function tDemoValProcess(), which in turn calls the
VxWorks API malloc().

6. MIXED LANGUAGE SYSTEM

BEHAVIOR

In a mixed language environment it is also important
to understand the performance characteristics of the C
& Ada application components in the context of the
entire system. This can determine if the task
scheduling & interaction of the application is correct,
and if it is meeting its performance requirements. In the
case of the Ada command and control application, the
developer would want to be able to analyze the correct
behavior of the Ada application on receipt of data

Copyright 2005 by Dedicated Systems Magazine - 2005 Q1 (http://www.dedicated-systems.com)

Figure 2. Wind River System Viewer showing Ada procedure call 
to VxWorks C API.



TOOLS

4

packets from the C-based TCP/IP network stack using
the IPC mechanisms provided by the RTOS, and also
the throughput latency. This would require the
interactions of both C & Ada code with the RTOS to be
traceable, which is generally achieved through
instrumentation. 

Because GNAT Ada tasks map directly to VxWorks
tasks, the Wind River System Viewer can display the
flow of data packets at system level (as shown in figure
2 below), and measure the transfer time between C-
based network stack and Ada command & control
application.

7. MIXED OS DEVELOPMENT - 

THE NEXT PIECE

We have examined some of the driving factors for the
development of mixed language device software, the
challenges they present and ways they can be
overcome. What about mixing different operating
systems (OS) within an application? The growth in
distributed networked applications may also require
the development of applications not simply in mixed
languages, but in a mixed OS environment.

Consider the case of a command and control system
that requires both hard real-time performance and also
high I/O throughput. A mixed OS configuration using

VxWorks and Linux, for example, might bring the best
combination of guaranteed performance, universal
connectivity, and flexible design. The key to such
flexibility is having a capable development suite that
can work with a broad range of platform building
blocks, both multiple languages and multiple OS's.
Such integrated development suites are also the key to
boosting developer productivity, since they shield the
developer from having to master a separate toolset for
each operating system, language, compiler, debugger
and visualization tool. To meet this need, leading tools
vendors are moving to adopt the Eclipse open-source
framework ---a sort of universal tools platform--- and
consequently are making great strides in improving
the development workflow. A case in point is the Wind
River Workbench which is based on the Eclipse 3.0
specification, supports hundreds of plugin tools, and
works with the most widely distributed device software
operating systems, VxWorks and Linux, as well as in-
house operating systems 

This article was written by Paul Parkinson, who is a
Senior Systems Architect at Wind River.
And by Pauline Shulman, who is a Senior Product
Manager at Real-Time Innovations, Inc.

Copyright 2005 by Dedicated Systems Magazine - 2005 Q1 (http://www.dedicated-systems.com)


