

2 CROSSTALK The Journal of Defense Software Engineering April 2007

What Engineering Has in Common With Manufacturing
and Why It Matters
This article equates software engineering decsions to manufacturing
products. It then picks six lessons from the last 50 years in manufacturing
and applies these lessons to software development.
by Dr. Alistair Cockburn

Collaboration Skills for Agile Teams
In this article, Esther Derby outlines key collaboration skills that help
teams maintain productive relationships, avoid destructive conflict, and
benefit from everyone’s best ideas.
by Esther Derby

Toward Agile Systems Engineering Processes
This article presents thoughts on agility and systems engineering, looking
at how systems engineering can be more agile and how it can support
agility in other disciplines, hoping to look at systems engineering through
the agile lens and to extend the dialogue between agile and plan-driven
software proponents into the systems engineering world.
by Dr. Richard Turner

CMMI Level 5 and the Team Software Process
The 309th Software Maintenance Group’s Team Software Process
(TSP) team successfully addressed many issues to complete its Capability
Maturity Model Integration Level 5 assessment while adapting their
existing TSP process scripts, measures, and forms.
by David R. Webb, Dr. Gene Miluk, and Jim Van Buren

“OO-OO-OO!” The Sound of a Broken OODA Loop
In this article, the author explores why the Observe, Orient, Decide, and
Act Loop gets stuck at the decision step process, and it instructs how to
put the D in the loop as a basis for effective action.
by Dr. David G. Ullman

Using Switched Fabrics and Data Distribution Service to
Develop High Performance Distributed Data-Critical
Systems
The author describes how the Data Distribution Service data-centric
publish-subscribe middleware layer can realize the full potential of a
hardware switched fabric network to deliver a complete solution for
application developers.
by Dr. Rajive Joshi

4

8

11

16

22

26

3
15

21
29
30
31

From the Sponsor

Coming Events
Web Sites

Call for Articles

Letter to the Editor

SSTC 2007

BackTalk

AgileAgile DevDevelelopmentopment

SoftwSoftwaarree EngineerEngineeringing TTechnolechnologogyy

D eD e p ap a rr t m e n t st m e n t s

CrossTalk
CO-SPONSORS:

DOD-CIO

NAVAIR

76 SMXG

309 SMXG

402 SMXG

DHS

STAFF:
MANAGING DIRECTOR

PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

The Honorable John Grimes

Jeff Schwalb

Kevin Stamey

Randy Hill

Diane Suchan

Joe Jarzombek

Brent Baxter

Elizabeth Starrett

Kase Johnstun

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the Department of
Defense Chief Information Office (DoD-CIO); U.S.
Navy (USN); U.S. Air Force (USAF); and the U.S.
Department of Homeland Security (DHS). DoD-CIO
co-sponsor: Assistant Secretary of Defense
(Networks and Information Integration). USN co-
sponsor: Naval Air Systems Command. USAF co-
sponsors: Oklahoma City-Air Logistics Center (ALC)
76 Software Maintenance Group (SMXG); Ogden-
ALC 309 SMXG; and Warner Robins-ALC 402
SMXG. DHS co-sponsor: National Cyber Security
Division of the Office of Infrastructure Protection.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 25.

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, the co-sponsors, or
the STSC.All product names referenced in this issue
are trademarks of their companies.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.web
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Cover Design by
Kent Bingham

ON THE COVER

Additional art services
provided by Janna Jensen

April 2007 www.stsc.hill.af.mil 3

From the Sponsor

Although made famous by Chrysler’s Lee Iaccoca, the phrase was originally a quote
from Thomas Paine. The quote strikes a chord with this month’s theme of Agile

Development. Businesses that just strive to keep up are at great risk of falling behind
or, worse, becoming obsolete. On the other hand, businesses that are innovative and
continually try to stay ahead tend to thrive. The businesses that are likely to succeed are
those businesses who know what the customer wants before they even know they want
it. Agile software and system development techniques are a perfect fit for such a busi-

ness. Whereas traditional developers tend to be isolated from the customer, Agile methods
require developers to be in tune with the needs of the customer. By understanding our cus-
tomer’s world, we can be innovative in meeting their needs. In Department of Defense (DoD)
terms, an intimate relationship with our ultimate customer, the warfighter, helps us understand
the capability needed to accomplish their mission. Their lives and our national security interest
depend on us being in tune with their needs.

As developers and maintainers of DoD software, it’s imperative that we are adequately agile
to enable our warfighters to respond to continually changing threats and technologies. Getting
new code to the field, however, involves much more than just developing the software; we must
also address our policies and procedures for funding, testing, acquiring, training, and distribut-
ing software if we are going to be truly agile. Many emergency fixes are delivered at heroic
speeds, but there is still progress to be made in order to intentionally deliver incremental capa-
bility real-time to need. It may be a far stretch from where we are today but imagine the possi-
bilities of being able to tweak software in flight and receive instant feedback if it meets the user’s
need. A lot would have to change to make that leap, but I believe it is a worthy goal.

To address this challenge, I appreciate the opportunity to share continuing ideas to enhance
Agile development. We begin with Dr. Alistair Cockburn’s insights on the benefits of moving
software incrementally and quickly through development in What Engineering Has in Common
With Manufacturing and Why It Matters. Next, Esther Derby discusses some of the people skills
that tend to be so critical in Agile development in Collaboration Skills for Agile Teams. We complete
our theme articles with a contemplative look at Agile development from Dr. Richard Turner in
Toward Agile Systems Engineering Processes.

In further discussions, my co-sponsors at the 309th Software Maintenance Group share one
of their techniques for achieving Capability Maturity Model Integration Level 5 with CMMI
Level 5 and the Team Software Process by David R. Webb, Dr. Gene Miluk, and Jim Van Buren.
Consistent with Dr. Cockburn’s assertion regarding the importance of decisions is Dr. David G.
Ullman’s discussion on making decisions in “OO-OO-OO!” The Sound of a Broken OODA Loop.
We conclude with Using Switched Fabrics and Data Distribution Service to Develop High Performance
Distributed Data-Critical Systems by Dr. Rajive Joshi.

We must find ways to lead – not follow. Our industry plays a critical role in providing
warfighting capability that is unmatched anywhere in the world. As we consider Agile methods,
we must realize that the DoD cannot afford to fall behind or become obsolete.

“Lead, Follow, or Get Out of the Way”

Kevin Stamey
Oklahoma City Air Logistics Center, Co-Sponsor

4 CROSSTALK The Journal of Defense Software Engineering April 2007

Agile Development

It is generally considered frivolous to
compare engineering – software engi-

neering, in our case – with manufacturing.
Manufacturing (so the reasoning goes)
consists of making the same thing over
and over, while software engineering is
about making something different each
time. In software engineering, coming up
with the design and code is the hard part,
while production is the easy part, some-
times as easy as publishing to the internet.

Software engineering is remarkably sim-
ilar to manufacturing once we notice deci-
sions as the product that moves through a
network of people. In software develop-
ment, people make decisions, hand those
decisions to other people to build on, and
(most importantly for this article) wait for
other people to make their decisions. The
decision in software development corre-
sponds to a part in a manufacturing line:
Both flow through a network, wait in
queues at bottlenecks, have throughput
delays, and so on.

With this equivalence in place, there is
a very real parallel between design and
manufacturing. This is useful to us because
manufacturing has been studied heavily
over the last 100 years, and we can learn
from lessons in that industry.

In what follows, I shall focus on soft-
ware development, but it should be clear
that the same argument applies to every
team-design activity, including engineering,
theatre, publishing, and much of business.

Waiting for Decisions
We start by recognizing that in team-
design activities, people wait on each other
for decisions.

Figure 1 shows a simplified view of the
dependencies between people in software
development (it is missing the feedback
loops, in particular). Figure 2 shows a
more complete mapping of the decision
dependencies, with some typical feedback
loops. The feedback loops complicate mat-
ters, but do not change the basic results.

In Figure 1, the dependency of one
person on another is shown with a large
black arrow. The person at the tail of the
arrow is making decisions and passing
them to the person at the head of the
arrow. A small pyramid represents the
actual decision being passed from one per-
son to another.

In Figure 1, we see the following:
• Business analysts and user interface

(UI) designers waiting for users and
sponsors to decide what functions and

design styles they want.
• Programmers waiting for business ana-

lysts to work out the business rules and
UI designers to allocate behavior to dif-
ferent pieces of the user interface.

• Testers waiting for programmers to
finish their coding.
A nice thing about considering individ-

ual decisions as connecting people is that we
can move away from stereotypes about
how a company’s process or decision-mak-
ing activities ought to look, and instead
focus on how it actually looks – what deci-
sions actually get made by which people,
and who is really waiting for whom.

There is no ideal software process any
more than there is any ideal manufacturing
process. Each company has its own
strong-minded people who make a dispro-
portionate number of decisions that
might, in other companies, be made by
people in other roles. Each company has
its own shortage of UI designers, pro-
grammers, testers, or even sponsors,
which causes its process to have a certain
characteristic shape – people working
overtime or sitting idle because other peo-
ple can not get their work done fast
enough. Each company has its own rea-
sons to have a large, external test depart-
ment, or perhaps no test department at all.

Different Bottlenecks,
Different Processes
In any organization, we can find a backlog
of decisions stacking up at some particu-
lar work group. This creates a bottleneck,
which limits the speed of the overall team.
Bottlenecks are of great concern in man-
ufacturing and have received much study.
The obvious thing to do is to increase the
capacity of the bottleneck group – hire
more people, or better people, or get bet-
ter tools, and so on.

Sooner or later, however, the organiza-
tion hits its limit as to what it can do to
improve the speed of the bottleneck
group. At that point, what comes into play
is the process definition itself.

Figure 3 shows three different, but
fairly typical organizations.

What Engineering Has in Common With
Manufacturing and Why It Matters

Dr. Alistair Cockburn
Humans and Technology

Software engineering is more like manufacturing than most people expect. Once we spot their similarities, we can apply the
lessons learned over the last 50 years in manufacturing to software development. This article picks six lessons to apply to soft-
ware development gleaned from the manufacturing industry.

Wish they’d think

a bit more carefully

before coding!

I wish they’d

decide what functions

they want.

I wish they’d

decide what style

they want!

I wish they’d

decide on the UI

design already!

K

☺ L

☺

L

Users and

Sponsors

Business

Analysts
Testers

Programmers

UI

Designers

A decision

Every line

of code is a

decision.

UI D i

Figure 1: People Wait on Other People for Decisions

What Engineering Has in Common With Manufacturing and Why It Matters

In the first organization, there are not
enough UI and database designers to keep
up with the work. We see decisions stacked
up at their work centers. Assuming that this
organization cannot or will not hire more
UI and database designers, it should look at
ways to have programmers and business
analysts pick up sections of the UI design-
er’s and database designer’s work. Even
assuming that UI design work is special-
ized, parts of that work can be automated,
carried out by assistants, or handled by pro-
grammers.

In the second organization, there are
not enough experienced programmers, and
work requests stack up in front of them. In
this second organization, the reverse is
more the case. The programmers, being
few and inexperienced, might need to
have much of the problem digested for
them as often as possible.

In such a situation, in which I participat-
ed, we recommended that the business ana-
lysts write quite detailed use cases (not con-
taining the user interface, but containing the
business rules more explicitly than we oth-
erwise might), the layouts of the data needs,
plus discussions of different business sce-
narios. The business analysts sat with the
respective programmers as they started on
each use case and discussed the use case, the
scenarios, and the data. The business ana-
lysts left the paperwork with the program-
mers and made themselves available for dis-
cussions and tutorials as needed.

The process we came up with was
aimed at minimizing the trouble the pro-
grammers had to undergo to understand
the problem at hand. This is quite different
from the process in the first organization.

In the third organization, the users and
sponsors are notably missing from the dis-
cussion. What happens in these organiza-
tions is that the business analysts and UI
designers end up making the business deci-
sions and then sending those decisions (or
running products) back to the users and
sponsors for comment. The picture shows
those requests for review stacking up in
front of the users and sponsors.

The third picture also shows the pro-
grammers and database designers sending
decisions back and forth to each other.
Both groups need to come to agreement on
the domain model and how that will be rep-
resented in the code and in the database.

In the third organization, the process
might call for prototypes and early sam-
ples to be produced and put in front of
the users and sponsors. Since those people
have the least availability, the material
should be as fully prepared as possible.
Also, since close collaboration between
the programmers and database designers

is required, those teams should be seated
together, or at least have frequent meet-
ings and joint design reviews.

There are the following two points to
draw from these pictures:
• The organizations should be using dif-

ferent processes.
• These drawings help us to see how

those processes should be different.

Lessons From Manufacturing
To apply the lessons from manufacturing,
we need to recognize the life cycle of a
decision:
• The decision gets made. It might be a

business-level decision, a UI-design
decision, or a decision about a particu-
lar line of code. The person making the
decision does not really know at this

point if it is a good decision or not.
• The decision gets reviewed internally.

Part of reviewing a line of code is
passing it through a test suite. Part of
reviewing a UI design is putting it in
front of a group of test users. Part of
reviewing a business decision is
putting it in front of sponsors and test
markets. The decision fails the review,
gets marked for adjustment, or passes.

• The decision gets pushed out into the
world. At this point, the world makes a
judgement about the quality of the
decision and the decision makers get
very useful feedback.
Even a very good decision has a finite

lifetime, after which time it needs adjusting.
A major goal of the development team is to
get decisions reviewed, repaired, and sent

April 2007 www.stsc.hill.af.mil 5

Wish they’d think

a bit more carefully

before coding!

I wish they’d

decide what functions

they want.

I wish they’d

decide what style

they want!

I wish they’d

decide on the UI

design already!

K

☺ L

☺

L

Users and

Sponsors

Business

Analysts
Testers

Programmers

UI

Designers

A decision

Every line

of code is a

decision.

☺
L

☺☺
☺

☺☺
☺

☺
L

LL

LL

L

☺

☺
☺

☺

☺☺☺

☺☺

☺

UI Designer

UI Designers

Lots of

Programmers

Not Enough

Programmers☺☺
☺

☺

Some

Programmers

A Few

Business Analysts

Many

Business Analysts

Business Analysts

Enough

Users and

Sponsors

Enough

Users and

Sponsors

Absent
Users and

Sponsors

Single, Solitary

Database Designer

Some

Testers

Testers

Database Designers

Figure 2: Optimal Process and Strategies Vary With the Decision-Dependency Network

☺

L

☺
100 lines of code

show up for testing.

☺

☺

☺
☺

☺☺☺☺
☺☺

UI

Designers

Programmers

Business Analysts

Users and

Sponsors

Testers

L

☺
Testers

Testers

How long this line of code/screen/

use case/decision sits in the test

ing queue.

How long this line of code/screen/

use case/decision sits in the test-

ing queue.

Decisions being validated/

broken.

Decisions arriving.

1,000 lines of code

show up for testing.

Hint: Prefer 100

Time

Time

Number of Design Decisions

Figure 3: A More Complete View of a Decision Dependency Network

Agile Development

out into the world earning value as soon as
possible. All the decisions waiting for inter-
nal and external review constitute internal
inventory or work in progress (WIP).

Move Inventory Out
One of the lessons to draw from manufac-
turing is to reduce the WIP, that is, get deci-
sions out of development and into the business. This
is important in manufacturing, and it is also
important in software development, because
the value of decisions decays over time.
Every moment a decision stays in the devel-
opment cycle costs the organization money.
• Each requirement is a decision based on

a business climate. When the business
climate changes, the decision may
become incorrect. If the software is
not yet earning value for the company,
the requirement is a waste.

• An architecture is a decision based on
technology and business. If the tech-
nology changes before the software is
earning value for the company, those
decisions are a waste.

• Each line of code is a decision based
on requirements, domain, technology,
and aesthetics. If anything causes it to
become obsolete before the software
is earning value for the company, it is a
waste.
To the extent that it is not earning value

in the business, each decision loses value
and quality with time. The more decisions
stuck inside the pipeline, the more decaying
inventory the organization is carrying.

Inventory stacks up quickly. Assume
for reference an organization that is so
fast that when a new requirement arrives,
it can implement and deploy it by the next
morning:
• The company with a one-day turn-

around has about one day’s worth of
inventory lying around the office.

• The company with a two-week turn-
around has about 10 days worth of
inventory lying around the office.

• The company with a quarterly delivery
system (assuming they deploy from fresh
requirements every quarter) has about
100 days of inventory lying around.

• The company delivering a three-year
project has 1,000 days of inventory
(decaying) around them.
The message, in software as much as in

manufacturing, is the following: Get the
inventory out the door and earning value! Find
ways to shorten and speed the pipeline.

Move Small Amounts, Continuously
The next lesson to draw from manufactur-
ing is that, for the WIP (decisions still inside
development), reduce the size of transfers
between groups. Move small amounts often
rather than stacking them up in large batch-
es for long periods of time.

Figure 4 shows two ways of transfer-
ring work from the programmers to the
testers.

In the first case, the programmers
hand over 100 lines of code (each week,
let’s suppose). The testers get a regular
weekly arrival rate of about 100 lines of
code and have to integrate and test them
against the rest of the system and against
the known defect log.

The amount actually handed over will
vary, of course, and the actual length of
time needed to work through the new
code will also vary. That variance is part of
why small amounts should be handed over
at any one time.

The lower part of Figure 4 shows the
programmers handing about 1,000 lines of

code to the testers (each quarter, that
would be, to keep the rate of production
about the same as in the upper picture).

The problem with the lower picture is
that all 1,000 lines of code show up at one
time. The responsiveness of the testing
group suddenly becomes much more vari-
able with the large arrival of an unknown
number of bugs of varying sizes.

Equally bad is when the testers start
handing bug reports back to the program-
mers and the programmers suddenly see a
large spike of requests on their input
queue coming from the testers (see the
arrow in Figure 2, from the testers back to
the programmers). The programmers are
now juggling two work queues: requests
for new features and requests for bug fixes.

Manufacturing groups have experi-
enced and studied all the previous exam-
ples, and they concluded that these sorts
of feed systems run best when small
amounts of work get handed from one
group to the next. The ultimate goal is to
hand over just one part from one group or
person to the next.

Toyota pioneered this idea in its lean
or just-in-time manufacturing lines. They
aim for continuous flow, the flow of just one
piece of material from one person to
another (what to do when a queue backs
up is the subject of another lesson).

It is not clear exactly what continuous
flow might mean in software development.
Some design decisions affect large parts of
the system, and some decisions can not be
validated for a long time. However, the
experiences in manufacturing are backed
up by both mathematical models and expe-
riences in agile software development.

It is rare to find development teams
able to deploy fresh requirements every
week, but I have been able to find a few
teams who both deploy weekly and have a
low enough defect rate that they get only a
few requests a day. On one team I talked
with, a person was assigned each day, on a
rotation, to handle any incoming requests,
whether bug reports or requests for small
enhancements. That person would stop
other work, do the work and redeploy the
system before rejoining the main group.
The average time to re-deployment was
half a day. With such a small, steady flow of
requests on the feedback queue, the team
was able to keep from being diverted from
their main assignment.

Cross-Train People
The literature on lean and agile manufac-
turing contains the recommendation to
cross-train (training in multiple areas) peo-
ple at adjacent stations. The idea is that
when a small bubble of inventory shows

6 CROSSTALK The Journal of Defense Software Engineering April 2007

L

☺
100 lines of code

show up for testing.

L

☺
Testers

Testers

How long this line of code/screen/

use case/decision sits in the test-

ing queue.

How long this line of code/screen/

use case/decision sits in the test-

ing queue.

Decisions being validated/

broken.

Decisions arriving.

1,000 lines of code

show up for testing.

Hint: Prefer 100

Time

Time

Number of Design Decisions

Figure 4: Feed Systems Run More Smoothly With Small Transfer Sizes

What Engineering Has in Common With Manufacturing and Why It Matters

up at someone’s input, the neighboring per-
son, having a spare moment, steps over and
works it down. In this manner, small vari-
ances in work flow can be evened out and
not disturb the organization’s overall flow.

We see this in software development
when programmers help testers, user inter-
face designers, and business analysts, or
when business analysts help testers.
Unfortunately, programming is a technical
enough activity that UI designers, testers,
and business analysts are unlikely to be able
to help the programmers. Programmers can
help other programmers, though. We see in
some companies that front-end developers,
middle-ware developers, and back-end
developers help each other when one of the
groups has a sudden bump in work.

Extend the Network
All of these ideas are good – so good, in
fact, that people using them soon find that
their bottleneck lies somewhere in their
supply chain, whether sponsors, subcon-
tractors, or distributors. They start to draw
the dependency network for the larger sys-
tem in which they sit, and they start
including their supply chain partners in
their discussions.

Toyota is well known for working with
its suppliers. Less well known are cases of
software development groups doing it.
The same team I referred to earlier, using
the daily programmer rotation for fixes
and enhancements, also wrote automated
acceptance tests for their subcontractor’s
part of the system. They reasoned that
their time was better spent writing auto-
mated acceptance tests and catching bugs
on arrival than debugging and finding
those same faults in the integrated system
when their supplier’s code broke. The sup-
plier was, of course, surprised and delight-
ed to find they did not have to write the
automated acceptance tests.

The lesson from Toyota and the other
companies who are streamlining the wider
network is the following: The wider the net-
work of we, the faster we all go.

Who’s Writing About This?
Once we see the mapping between manu-
facturing and team design activities, sud-
denly a lot of literature becomes available.

Toyota’s production system (also called
The Toyota Way and lean manufacturing)
is widely documented. A good place to
start is with The Toyota Way Fieldbook [1].

The application of lean manufacturing
principles to design work is described in
Managing the Design Factory [2], Product
Development for the Lean Enterprise [3], and
The Elegant Solution [4].

Tom and Mary Poppendieck describe in

several books [5, 6] how lean manufactur-
ing principles fit software development.
Agile Software Development: The Cooperative
Game [7] contains an experience report
from a software product company (Tomax)
that includes its customers in its dependen-
cy network.

Elihu Goldratt wrote about bottleneck
stations in manufacturing [8] and then
widened the discussion to constraints in
general (theory of constraints) [9]. David
Anderson applied the theory of con-
straints and queue size to software pro-
jects [10]. I have written about strategies
for dealing with bottlenecks that have
reached their capacities [11].

Summary
It is not immediately obvious that soft-
ware development teams can learn from
manufacturing. However, once we chart
the network of dependencies between
people in a software development organi-
zation and make the shift to think of deci-
sions as comprising the team’s inventory,
then the parallels become startlingly clear.

We learn six lessons from the parallels:
• Drawing the decision-dependency net-

work helps us spot the bottleneck sta-
tions, where decisions-to-be-made are
piling up.

• From the different decision-depen-
dency networks in various organiza-
tions, and their varying bottlenecks, we
can see how the optimal process varies
from organization to organization.

• Move inventory out. Decisions decay over
time, so it is important to find ways to
shorten the pipeline from arrival of a
request or decision to the deployment
of the system.

• Move small amounts, continuously.
Transferring large amounts of inven-
tory (decisions, in our case) between
workers causes unpredictable varia-
tions in the organization’s output. It is
better to move small numbers of deci-
sions more often. This reinforces the
idea of incremental development, with
the smallest increment size possible.

• Cross-train people. When people can help
each other across specialties, they can
move quickly to eliminate small bub-
bles in each others’ input queue, thus
smoothing the organization’s output.

• Extend the network. By widening the
network included in the dependency
analysis and queue-size reduction, a
company can smooth its own input
stream and simplify its work.u

References
1. Liker, J., and D. Meier. The Toyota Way

Fieldbook. McGraw-Hill, 2005.

2. Reinertsen, D. Managing the Design
Factory. Free Press, 1997.

3. Kennedy, M. Product Development
for the Lean Enterprise. Oaklea Press,
2003.

4. May, M. The Elegant Solution. Free
Press, 2006.

5. Poppendieck, M., and T. Poppendieck.
Implementing Lean Software Devel-
opment: From Concept to Cash.
Addison-Wesley, 2006.

6. Poppendieck, M. and T. Poppendieck.
“Lean Software Development.” C++
Magazine (Fall 2003).

7. Cockburn, A., Agile Software Devel-
opment: The Cooperative Game. 2nd
Edition. Addison-Wesley, 2006.

8. Goldratt, E. The Goal. North River
Press, 1992.

9. Goldratt, E. Theory of Constraints.
North River Press, 1999.

10. Anderson, D. “Managing Lean Soft-
ware Development With Cumulative
Flow Diagrams.” Proc. of the Borland
Conference, 11-15 Sept. 2004, San
Jose, CA.

11. Cockburn, A., “Two Case Studies
Motivating Efficiency as a Spendable
Quantity.” Humans and Technology
Technical Report HaT TR 2005.00
<http://alistair.cockburn.us/index.
php/Two_Case_Studies_Motivating_
Efficiency_as_a_%22Spendable%22_
Quantity>.

April 2007 www.stsc.hill.af.mil 7

About the Author

Alistair Cockburn, Ph.D.,
is an expert on object-
oriented (OO) design,
software development
methodologies, use cases,
and project management.

He is the author of Agile Software
Development, Writing Effective Use Cases,
and Surviving OO Projects and was one of
the authors of the Agile Development
Manifesto. Cockburn defined an early
agile methodology for the IBM Con-
sulting Group, served as special advisor
to the Central Bank of Norway, and has
worked for companies in several coun-
tries. Many of his materials are available
online at <http://alistair.cockburn.us>.

1814 East Fort Douglas CIR
Salt Lake City, UT 84103
Phone: (801) 582-3162
Fax: (775) 416-6457
E-mail: acockburn@aol.com

Agile Development requires close col-
laboration. But most programmers

and testers have been trained to value
competition and individual effort through
their schooling and professional experi-
ences.

Is it any surprise that working collabo-
ratively on an agile team may not come
naturally? Along with learning new techni-
cal skills and development methods, suc-
cessful agile teams learn – or strengthen –
interpersonal skills. Teams that do not
invest in these skills may see improvement
but miss the potential for high-perfor-
mance.

In my work, I see three areas that help
boost a team to the next level of perfor-
mance. They are the ability to do the fol-
lowing:
• Give congruent feedback.
• Navigate conflict.
• Think and decide together.

In this article, I outline each of these
areas and talk about pitfalls for teams that
lack these essential skills.

Give Congruent Feedback
In more traditional organizations, the
manager or project manager makes assign-
ments and follows up to make sure the
work is on track. People retreat to their
own cubicles and may communicate via
instant messaging or e-mail, even when
the other person is only down the hall.

On agile teams, the team organizes its
own work, making commitments to all on
the team. Ideally, team members are in the
same open workspace, and agile methods
emphasize frequent interaction and face-
to-face communication. This increases the
probability that sooner or later, one per-
son’s behavior will irritate someone or
someone will fail to meet a commitment
made to a peer.

When team members cannot talk to
each other about missed commitments or
behavior that affects the working relation-
ship, resentment builds up. However, tak-
ing problems to a coach or manager cre-
ates an unhealthy triangulation – like the

tattletale on the playground.
Further, there is a cost to withholding

feedback. Not long ago, a developer
approached me for advice about a prob-
lem team member. The developer report-
ed that one team member was alienating
other team members. No one wanted to
work with him, and most of the team
refused to pair program with him.

As the story unfolded, I learned that
the offending team member, Joe, had an
unpleasant habit: He picked his nose. The
team coach had made vague references to
good manners in a team meeting, but the

problem persisted (not surprising, since
general pronouncements are not a substi-
tute for clear, direct feedback).

By the time I talked to the developer,
the problem had been going on for three
months. Joe was confused by the way peo-
ple were treating him. The team was losing
the benefit of his knowledge, and it was
showing up in the quality of the code.

Joe’s habit was a problem. The bigger
problem was that no one on the team
knew how to talk to him about it.

The following is a simple feedback
model to help team members have a feed-
back conversation:
• Create an opening to give feedback.
• Describe the behavior or result with-

out using labels.
• State the impact (on you, the feedback

giver, or on the team).

• If necessary, make a request.
This formula helps people stick to I

language and avoid labels and blame.
People are more likely to make a change
when the feedback giver does not
blame, shame, or evaluate the feedback
receiver. Feedback is information, and
the over-arching goal of feedback is to
improve work and social relationships.

With some coaching, the developer
approached Joe directly. He worked up his
courage and told Joe about his habit and
the effect it had on him. The developer
was surprised to learn that Joe was com-
pletely unaware of his habit. Joe was
embarrassed, but also grateful that some-
one had finally told him.

All teams have disappointments and
friction. Contrary to a widespread fear,
congruent feedback does not damage rela-
tionships; it increases trust and openness.
Clear and early feedback keeps small irri-
tations from growing into major resent-
ments [1].

Navigate Conflict
Conflict is normal and inevitable when
more than one person is on a project.
That is not necessarily bad; lack of con-
flict indicates apathy, not harmony [2].
The way people handle conflict deter-
mines whether a conflict is productive or
destructive. People whose work is inter-
dependent are more productive when
they learn to recognize the causes of dis-
agreements and navigate conflicts pro-
ductively [3].

In my work with groups, I see four
basic sources of interpersonal conflict: mis-
understanding, focusing on positions, dif-
fering values, and bringing up past history.

Misunderstanding
Sometimes people disagree because they
do not understand each other. Sometimes
the misunderstanding is over the use of a
term that has many meanings (system testing
is a common culprit; done is another). Or,
people may not understand the details
under discussion.

I attended a planning meeting where
the participants argued in circles for 20

Collaboration Skills for Agile Teams©

Beyond technical skills, Agile Development depends on effective interactions and collaboration. In this article, Esther Derby
outlines key collaboration skills that help teams maintain productive relationships, avoid destructive conflicts, and benefit from
everyone’s best ideas.

Esther Derby
Esther Derby Associates, Inc.

8 CROSSTALK The Journal of Defense Software Engineering April 2007

“Conflict is normal
and inevitable when

more than one person
is on a project.

That is not necessarily
bad; lack of conflict
indicates apathy,
not harmony.”

© 2007 Esther Derby.

Collaboration Skills for Agile Teams

minutes about which of three approaches
to follow for a release. I felt confused as I
tried to follow the discussion.

“Wait a minute,” I said. “Can someone
write down the different options you’re
considering?”

By the time the team members fin-
ished writing down the options, it was
clear there were actually four main options
– and three variations.

The simplest strategy when people dis-
agree is to review the data and write it
down where everyone can see it.

Focusing on Position
Many of us grow up with the idea that one
side wins and one side loses. That leads us
to focusing on a position – pushing our
favored solution [4] rather than talking
about the problem and how we might
solve it in a mutually agreeable way.

To bring focus back to the problem,
ask what problem are we trying to solve? Then
ask about the concerns behind both (or
all) positions. When team members see
the interests behind the position, they may
find common ground or see a third option
that incorporates interests from both
sides.

A variation on this type of conflict
comes from considering too few options.
One group I worked with fought over
decisions every week. In each case, they
looked at only two options: either we do A
or we do B. Having only two options is
inherently polarizing. Generating addi-
tional options reduces unproductive con-
flict and increases analytical thinking.

Differing Values
When people are unable to reach agree-
ment, even when both options would
solve the problem and both parties seem
interested in moving forward, they may be
at odds over core beliefs about what is true
and good.

Surface the values behind an option by
asking about the strengths of the option.
The words that people use to describe the
strengths offer a clue about what the per-
son values. Look for a third (or fourth or
fifth) option that includes the top
strengths from each option.

For most teams, the majority of the
disagreements they face fall into the previ-
ous three categories: misunderstanding,
focusing on position, or differing values.
When team members learn to recognize
the source of the disagreement, they can
move quickly to resolve the disagreement
– without being disagreeable.

Past History
When people are not able to give congru-

ent feedback and navigate disagreements
productively, simple disagreements esca-
late into ruptured relationships which
show up as cheap shots and sniping.
Trying to resolve the argument on the
merits of the facts will not work because
the argument is not about the facts. When
the disagreement reaches this point, it is
about the belief that the warring parties
hold about each others motivations and
intentions [5].

Ruptured relationships are poison on
any team. On an agile team, where
achieving the goal depends on every team
member’s contribution, ruptures can be
fatal. Unless at least one person is willing
to improve the situation and look at how
he or she has contributed, there is little
hope of positive resolution. The good
news is that when people learn how to
give congruent feedback and know how
to recognize sources of disagreement,
working relationships are not likely to
sink to that level.

Knowing the sources of conflict does
not ensure people navigate conflict suc-
cessfully. Most people have a default
approach to conflict, which may or may
not be effective depending on the situa-
tion. There are five basic approaches to
conflict.
1. Competition assumes that one person

will win and the other will lose. People
press their own preferred solution
rather than seek to understand the
other person’s interests. People who
approach conflicts as competition may
argue their point and undermine the
other’s point.

2. In collaborative problem solving,
both parties seek to find options that
will satisfy both of them.

3. When one person gives into another’s
wishes without representing his or her
own interests, it is called yielding.

4. Sometimes people do everything they
can to avoid a conflict. They pretend
the difference does not exist to save
themselves from the unpleasantness of
confrontation.

5. In compromise, people try to meet
halfway. Each gives up some of what
he wants and achieves some of what
he wants. Compromise is common,
though not always satisfying since no
one is completely happy with the solu-
tion.
All of these are valid and useful ways

to approach conflict in some situations.
And each can be destructive when misap-
plied. Members of successful teams have
the self-awareness to recognize their own
preferred styles and know when to move
out of their default approach to conflict.

Competition can damage relationships,
especially when every disagreement or
conflict becomes an I win/You lose propo-
sition. Competition over small issues feels
like browbeating or bullying. When one or
more team members over-rely on this
conflict approach, relationships and pro-
ductivity suffer.

Collaborative problem-solving might
not be helpful when there is a clear down-
side to meeting the other’s interest, for
example, if the other person wants to pur-
sue an illegal or unethical action. A collab-
orative approach also takes time in order
to uncover interests, generate options, and
reach a mutually satisfying outcome. It is
worth the time when long-term relation-
ships are at stake, but may not be when
time is of the essence or the relationship
is transitory.

Yielding is fine when one person does
not have much investment in the outcome
and the other person does. Yielding hurts
when it is habitual – one person always
gives in to the other. Others may perceive
habitual yielders as doormats and walk all
over them. Habitual yielding carries a cost.
For example, a team that always says yes to
the customer’s requests during iteration
planning meetings avoids the short term
stress of an unpleasant conversation. But
in the long term, the team risks burnout if
they struggle to deliver on unrealistic com-
mitments. They risk their reputation as
trustworthy professionals if they fail to
deliver. Over time, habitual yielding results
in resentment, depression, anger, and con-
tempt [6].

Avoidance may be a reasonable course
when there is nothing to gain by pursuing
an argument; savvy team members learn
how to pick their battles.

Compromise often ends in a half-
horse, half-camel solution that is not fully
satisfying to anyone, and can cause teams
to miss novel solutions. But compromise
is the best option when it is clear that a
collaborative solution is not feasible.

Most people have a preferred style
for approaching conflict. Teams suffer

April 2007 www.stsc.hill.af.mil 9

“The simplest strategy
when people disagree

is to review the
data and write it down

where everyone
can see it.”

Agile Development

when people on the team approach every
conflict with the same style, regardless of
what is at stake and without consideration
for maintaining important relationships.

Think and Decide Together
On many traditional teams, the manager
makes important decisions. But agile
teams work best when they have the
authority to make decisions that affect
their own work (within the context of
organizational standards). In order to
make timely decisions that the team can
support, teams need three broad skills:
1. Generating ideas.
2. Narrowing the number of options.
3. Reaching agreement [7].

When one or more of these elements
is missing, teams struggle to make deci-
sions. The good news is that most agile
teams can learn techniques that will help
them self-facilitate without investing in
extensive facilitation training.

Generating Ideas
A combination of individual brainstorm-
ing and affinity clustering can help a team
generate many ideas in a short period of
time [8]. Pairing these two techniques
allows the group to integrate ideas and
find common threads.

Narrowing the Number of Options
When I see a team stuck evaluating alter-
natives, it is usually for one of the two fol-
lowing reasons: 1) People do not have a
common definition of the options under
discussion (a common source of disagree-
ment described earlier), or 2) the group is
talking about all the options at the same
time.

Overcoming the second problem takes
some discipline: Evaluate each option on
its own before comparing options to each
other.

Draw two lines on a piece of flip-chart
paper, creating three columns, as shown in
Table 1. List the pros and cons of the

options in the first two columns. Make a
note of what is interesting about the
option in the third column. Answer all
three questions for one alternative before
moving on to the next. After the group
has completed this activity for all the
options, it is usually obvious that some of
the ideas are unsuitable.

Reaching Agreement
Teams need a way to test their agreement
and discuss concerns before they arrive at
a final agreement. A simple hand sign can
help a team gauge their level of agree-
ment:
• Thumbs up = I support this proposal.
• Thumbs sideways = I’ll go along with

the will of the group.
• Thumbs down = I do not support this

proposal and wish to speak.
If all thumbs are down, eliminate the

option. On a mixed vote, listen to what
the thumbs-down people have to say, and
re-check the agreement. Thumb-sideways
helps show where support is lukewarm.

Finally, teams need to decide how they
will decide and identify a fall-back decision
rule (in case they are unable to reach
agreement).

Conclusion
With skills in these areas – congruent
feedback, navigating conflict, and thinking
and deciding together – teams have a basis
to work through the inevitable friction.
Without collaboration skills, teams strug-
gle to manage both the upside and down-
side of collaboration. In my work, I see a
predictable progression for teams adopt-
ing agile methods.

In the first months, teams concentrate
on structures: daily stand-up meetings,
iteration planning meetings, and mecha-
nisms to keep progress visible.

Next, they face the difficulties of orga-
nizing their working in short (one week to
30 days) iterations.

When those pieces are in place, teams
typically recognize that their engineering
practices are not adequate to the job and
attack those.

Finally, teams realize that in order to
work effectively with their customer and
with each other, they need collaboration
skills. As Jerry Weinberg famously said,
“It’s always a people problem.”

However, pushing collaboration
skills before a team recognizes the need
is not helpful. Adults are motivated to
learn when they see the value of new
ideas for solving the problems they
face. When agile teams recognize that
collaboration skills will help them deliv-
er valuable software, perhaps with some

nudging from their coach, they are
eager to learn.u

References
1. Seashore, Charles N., Edith Whitfield

Seashore, and Gerald M. Weinberg.
What Did You Say? The Art of Giving
and Receiving Feedback. Bingham
House Books, 1992.

2. Eisenhardt, Kahwajy, and L.J.
Bourgeois. “How Management Teams
Can Have A Good Fight.” Harvard
Business Review (July/Aug. 1997).

3. Katzenbach, Jon R., and Douglas K.
Smith. The Wisdom of Teams:
Creating the High-Performance
Organization. Harper Collins, 1999.

4. Fisher, Roger, and William Ury.
Getting to Yes: Negotiating Agree-
ment Without Giving In. Penguin
Books, 1983.

5. Stone, Douglas, Bruce Patton, and
Sheila Heen. Difficult Conversations:
How to Discuss What Matters Most.
Penguin Books, 1999.

6. Satir, Virginia, John Banman, Jane
Gerber, and Maria Gomori. The Satir
Model: Family Therapy and Beyond.
Science and Behavior Books, 1991.

7. Kaner, Sam. Facilitator’s Guide to
Participatory Decision-Making. New
Society Publishers, 1996.

8. Sanfield, Brian R. The Workshop
Book: From Individual Creativity to
Group Action. New Society Publish-
ers, 2002.

10 CROSSTALK The Journal of Defense Software Engineering April 2007

Alternative 1

InterestingPros Cons

Table 1: Pros and Cons

About the Author

Esther Derby is known
for her work in helping
teams grow to new levels
of productivity and
coaching technical peo-
ple who are making the

transition to management. She is one of
the founders of the Amplifying Your
Effectiveness Conference and is co-
author of Behind Closed Doors: Secrets of
Great Management. Her latest book is Agile
Retrospectives: Making Good Teams Great.
Derby has a master’s degree in organiza-
tional leadership and more than two
decades experience in the wonderful
world of software.

3620 11th AVE S
Minneapolis, MN 55407
Phone: (612) 724-8114
Fax: (612) 724-8115
E-mail: derby@estherderby.com

April 2007 www.stsc.hill.af.mil 11

The concept of agility is cropping up
more and more often throughout the

defense and commercial development
worlds. It has found its way into the
Quadrennial Defense Review, acquisition
plans and procurement requests, and even
into the language of defense executives1.
Promises of faster deployment and evolu-
tionary capability, delighted customers and
users, and fewer late-occurring acquisition
problems are irresistible to the resource-
strapped, schedule-limited, and continu-
ously harried program managers and
acquisition executives.

However, where can the agile benefit
really accrue? Primarily associated with
software development, does the concept
play into the large systems development
that is typical of the defense environment?
How does agility apply to the critical sys-
tems engineering processes? While
research is needed to fully answer these
questions, we can begin to identify touch
points that on the surface seem ripe for
agile approaches.

This article presents some thoughts on
agility and systems engineering – how sys-
tems engineering can be more agile and
how it can support agility in other disci-
plines. It is a concept discussion, not a spe-
cific how-to article. However, looking at
systems engineering through the agile lens
can extend the dialogue that began between
agile and plan-driven software proponents
into the systems engineering world [1].

First of all, why should we care about
agility within systems engineering? Table 1
identifies some of the changes in the envi-
ronment facing systems and software
developers. The rapid change in threats,
requirements, and programmatic parame-
ters has pushed traditional approaches to
the limits of their capabilities. As a result,
there is a growing zeitgeist that somewhat
unfairly casts traditional systems engineer-
ing as a holdover from the 1950’s and
1960’s and as a part of the systems acqui-
sition and development problem. Agilists
generally view systems engineering as rigid
and waterfall-based, overly process-
bounded (MIL-STD-499, MIL-STD-
1521, Institute for Electrical and

Electronics Engineers [IEEE]-15288).
Myopically focused on early correctness,
systems engineering can seem to value
precision over accuracy and complete-
ness over rapid user satisfaction. Figure 1
shows the traditional systems engineering
V-model as it was developed for large sys-
tems. The model has evolved over time,
but the fundamentals still provide a basis
for the life cycle used by defense system
acquirers. That is, establish requirements,
establish an architecture, decompose the
system into subsystems, design the sub-
systems, build the subsystems, test the
subsystems, integrate the subsystems, and

then test the system.
At the same time, agile approaches are

portrayed as the promised land. Praised as
a panacea for all the developmental ills,
agile approaches claim victory over rapid
change, increased complexity, emerging
requirements, and the ubiquitous schedule-
busting integration fiascos. Figure 2 (see
page 12) shows a typical agile process.
Note the iterative rather than sequential
nature. While an iteration could represent
a mini-waterfall, that is not always the case,
particularly in risk reduction activities.

Of course, neither of the broad char-
acterizations of the approaches is particu-

Toward Agile Systems Engineering Processes

Agile software development approaches have been highly successful in a variety of domains. Could they be effective if applied
to systems engineering? This article begins a discussion to answer this question by comparing core agile characteristics to those
of traditional systems engineering.

Dr. Richard Turner
Systems and Software Consortium

Validation

Reporting

User Acceptance

Testing

System

Testing

Installation

Qualification

Unit and

Integration Testing

System Configuration

and Development

Validation

Planning

User

Requirements

System

Requirements

Technical

Architecture

Detailed

Design

Verification

Traceability

Verification

Traceability

System sliced vertically,

evolved iteratively.

Validation

Traceability

Validation

Traceability

Validation

Traceability

Validation

Traceability

Validation

Traceability

Figure 1: V-Model of a Conventional, Large-System Development Process

Table 1. Some Software-intensive System Trends

Traditional Development Current/Future Trends

• Standalone systems • Everything connected (maybe)

• Relatively stable requirements • Rapid requirements change

• •

• Control over evolution of custom

systems

• No control over evolution of

• Enough time to keep stable • Ever-decreasing cycle times

• Stable jobs • Outsourced jobs

• Failures locally critical • Failures broadly critical

• Completely defined systems with

specific functionality

• Complex, adaptive, emergent

systems of systems

• Repeatability-oriented process,

maturity models

• Adaptive process models

Attribute Comment

Learning attitude • Take advantage of lessons learned and adapt both

processes and systems to meet customer needs.

Requirements determine capabilities Commercial off-the-shelf (COTS)

capabilites determine requirements

COTS products

Table 1: Some Software-Intensive System Trends

Agile Development

larly accurate as stated, but they do pro-
vide insight into the turmoil that has con-
tinued to bubble. Regardless of the hype,
there is no denying the need for leaner,
more responsive development processes.
If agile approaches can be harnessed in
systems as well as software engineering,
they are certainly well worth the effort.

But what, you ask, is Agile? There are
nearly as many definitions of Agile as
there are Agile practitioners. I believe,
however, that there are common, key
aspects that must be present to capture the
essence of Agile. Table 2 captures my own
essential list of agile features.

Agility and Systems
Engineering Processes
So how do these attributes apply to sys-
tems engineering? How can we mature
systems engineering to encompass these
attributes? Let us look more closely at a
few of the attributes that seem to address
the engineering process.

Systems Engineering as a
Learning-Based Process
One of the characteristics of traditional
project management, and by implication

much of traditional systems engineering,
is the assumption by all stakeholders that
foreknowledge is perfect. We can define
complete, consistent, testable, and build-
able requirements; decompose perfect
requirements to perfect specifications;
accurately estimate effort, cost, and sched-
ule for the specifications; schedule work
according to this information early in the
program; and measure progress using
earned-value management or similar tech-
niques. While program managers, execu-
tives, sponsors and fund providers may
believe this, engineers know that with any
sufficiently complex system, particularly
unprecedented systems, it is unrealistic to
assume this kind of knowledge. As Philip
Armour said, … for the most part, engineers do
not know how to build the systems they are trying
to build; it is their job to find out how to build
such systems [3]. That is why systems engi-
neering can be visualized as a set of tools
and approaches that allow us to seek
information that fills the gaps in the initial
descriptions. By doing so, it adjusts the
development to fit the reality of what we
have learned. Trade studies, requirements
analysis, demonstrations, prototypes,
models, design evaluations, allocation
analyses, and verification and validations

are all ways to learn about the system
being developed. So, there is no funda-
mental reason systems engineering cannot
be considered a learning process.
Unfortunately, the traditional view of the
systems engineering V-model often is
interpreted so that it provides only a limit-
ed, one-time through chance to learn. By rein-
terpreting the V-model from an agile per-
spective and using timely iterative feed-
back, the learning process can be richer.

Systems Engineers (SEs) as
Focused on Customer Value
SEs are often isolated from the cus-
tomers because their customers are con-
sidered fully represented by the pre-
defined requirements and operational
concepts. These ostensibly perfect
requirements are generally value-neutral,
with no sense given to their importance
in relationship to each other, save some
very high-level key performance parame-
ters or possibly some value thresholds
within a particular requirement. This puts
the learning systems engineer at a huge
disadvantage by debilitating an entire
dimension of the trade space: the ability
to consider the relative value to the cus-
tomer of a requirement in deciding to
defer or relax it in order to meet some
other requirement or for other engineer-
ing reasons. The tradeoff between cross-
cutting aspects like safety, security, main-
tainability, and performance has been
identified as the number one risk by a
University of Southern California survey
of systems and software engineers [4].
The relative importance of the require-
ments must be interpolated using the
engineer’s experience, physical con-
straints, and domain knowledge so that
fundamental engineering decisions can be
made. It would be much easier if the
requirements were not only clear and
concise but also ranked in terms of
importance. There is nothing to prevent
including this dimension by having more
complete and multi-faceted interfaces
with the customer, but the traditional sys-
tems engineering requirements activities
generally do not support it.

Systems Engineering With
Short Iterations
Because systems engineering has been
often viewed as a one-pass process (the
strict V-model), iterations of systems
engineering may sound foreign.
However, there are ways to do iterative
systems engineering. Prototyping, model-

12 CROSSTALK The Journal of Defense Software Engineering April 2007

Validation

Reporting

User Acceptance

Testing

System

Testing

Installation

Qualification

Unit and

Integration Testing

System Configuration

and Development

Validation

Planning

User

Requirements

System

Requirements

Technical

Architecture

Detailed

Design

Verification

Tracability

Verification

Tracability

Envision

and Prepare

Adjust

and Predict

Iteration

Develop

Iteration

Demo and

Retrospect

Deploy and

Support

System sliced vertically,

evolved iteratively.

Management/

Government

2-4 week

iterations

Validation

Tracability

Validation

Tracability

Validation

Tracability

Validation

Tracability

Validation

Tracability

Figure 2: Disciplined Agility Process, Basic Model [2]

Agility and Process Maturity

It is important to understand that agility is not anti-process, but can conform to
Capability Maturity Model Integration (CMMI®) and other process standards. In fact,
the Systems and Software Consortium is currently developing a Process
Implementation Indicator Description table for CMMI Lead Appraisers to use in
appraising agile projects.

Agile concepts in many ways embody Level 5-ness by continuously improving or
adjusting processes. By conducting a retrospective/reflective activity after each itera-
tion, recommendations for improvement can be immediately implemented. Agile mea-
sures can then confirm or contradict the value of changes within the next few iterations
rather than waiting for the next project.

Agile does not specifically address the organizational aspects of many process
standards (e.g. Organizational Process Focus, Organizational Process Definition, and
so forth in CMMI), but is not a stumbling block to satisfying them. Usually, there needs
to be agile instantiations in the set of organizational standard processes to limit tailor-
ing confusion and support agile approaches.

® CMMI is registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

Toward Agile Systems Engineering Processes

ing, demonstrating, and testing can all be
iterative within an integrated systems
engineering and development cycle. The
difference in truly agile iterations is that
each of these should describe a complete
operable system with functionality that is
valuable to the customer. However, in the
early systems engineering phases, deploy-
able operational aspects may not be as
valuable to the customer as reduced risk,
requirements validation, operations con-
cept validation, interface and interoper-
ability verification, or technical feasibility.
Systems engineering activities in later
iterations are focused on operational
capabilities. Development processes
where systems engineering is seen as an
up-front process and the SEs complete
their trades and decomposition tasks and
then move on to another program until
needed for validation (sometimes
referred to as the do it once and the SEs do
lunch approach) are not conducive to iter-
ative work. One of the most creative
ways of envisioning systems engineering
iterations is Barry Boehm’s characteriza-
tion of systems engineering as a
Command and Control, Intelligence,
Surveillance and Reconnaissance (C2ISR)
activity (Figure 3), consisting of numer-
ous Observe, Orient, Decide, Act
(OODA) loops and ongoing intelligence,
surveillance and reconnaissance tasks [5].
This counters the traditional cycle of
requirements, delay, and surprise.

Systems Engineering and
Neutrality to Change
This involves the architectural and design
approach more than pure systems engi-
neering. Unless systems engineering per-
forms its activities and processes with an
eye toward supporting change rather than
avoiding or denying it, change will become
an enemy (rather than an annoying but
faithful family member). System engineer-
ing can use change as a dimension in its
trade studies, evaluate the ease of modifi-
cation or extension within architectural
reviews, and even add requirements and
design constraints that support change
neutrality.

Systems Engineering, Continuous
Integration, and Test Driven
Development (TDD)
Once we accept the idea that SE itera-
tions are feasible, then continuous inte-
gration and TDD are not as problematic.
In order to provide an operable system
that demonstrates value, there must be
ways to maintain the configuration over
time and use it as initial validation of

operational capability, interoperability,
and interface quality. Most likely done in
a completely simulated or hardware-in-
the-loop environment, frequent integra-
tion and requirements based testing
(especially where there are external com-
ponents that you may or may not con-
trol), can identify anomalies, misinterpre-
tations, and downright errors in the inter-
face specifications or implementations
much earlier than traditional late-in-the-
process integration. This does require a
change in the once-through V-model, but
can be thought of as concurrent execu-
tion of processes within the V-model
framework. One way to think of this is to
agree that the processes that define the V-

model are only required to complete in
the order they appear rather than to pro-
ceed sequentially.

Systems Engineering and Lean
Lean, as I interpret it here, is the removal
of low value or unneeded activities as well
as the delay of significant end-user deci-
sions until the latest possible moment. We
have talked about rethinking some activi-
ties to make them more useful, and cer-
tainly most processes have some fat in
them somewhere. However, delaying deci-
sion making in systems engineering is not
easy. There is a drive to complete specifi-
cations, finalize allocations, and set archi-
tectural structures as early as possible.

April 2007 www.stsc.hill.af.mil 13

Attribute Comment

Learning attitude • Take advantage of lessons learned and adapt both

processes and systems to meet customer needs.

Focus on value to customer • Customer prioritizes requirements and progress is

measured by operational features.

Short iterations delivering

value

• Goal of each release is a working system.

• Rolling planning horizon.

• Risk-driven, reality-based iteration planning.

• Change is seen as inevitable; ergo embrace
change applies.

Continuous integration • Integration is an ongoing activity.

• Integration and testing are as automated as

possible.

Test-driven (demonstrable

progress)

• Tests are written before any other artifacts (design,

code).

• Capabilities (requirements) are defined by the tests

(empirical evidence) that validate them.

Lean attitude (remove no-

value-added activities)

• As little ceremony as necessary; just enough (or

just too little) process.

• Decisions delayed until latest feasible time.

Team ownership Team has primary responsibility and authority over

its own plans and processes.

• Quality/performance is everyone’s responsibility.

Neutrality to change (design

processes and system for

change)

•

Table 2: Key Characteristics of Agile

Orient with respect to stakeholders'

priorities, feasibility, and risks.

• Risk/Opportunity analysis.

• Business case/mission analysis.

• Prototypes, models, simulations.

Operate as current system.

Accept new system.

Act on plans and specifications.

• Keep development stabilized.

• Change impact analysis,

 preparation for next cycle

 (mini OODA loop).

Decide on next-cycle capabilities,

architecture upgrades, and plans.

• Stable specifications, COTS upgrades.

• Development, integration, verification and

 validation, risk-management plans.

• Feasibility rationale.

Life Cycle Architecture Milestone for Cycle

Observe new/updated objectives,

constraints and alternatives.

• Usage monitoring.

• Competition, technology,

 marketplace intelligence,

 surveillance, and

 reconnaisaince.

Figure 3: Systems Engineering as C2ISR With Spiral OODA Loop

Agile Development

This is especially critical when there are
long lead manufacturing items in the mix.
Remember, though, Lean does not delay
all decisions, just those that can have sig-
nificant impact on operational acceptance
or high priority functionality and that can
be feasibly delayed. Once you lose the
early omnipotence syndrome, delayed
decisions can retain design flexibility
longer, enabling more rapid reaction to
internal or external changes.

Systems Engineering and
Team Ownership
This may be the most controversial agile
attribute in a process-focused organiza-
tion. If the systems engineering team
owns its own process and can manipu-
late it to meet its project needs, how can
the quality assurance folks ensure that
the correct process is being followed?
This is essentially a management deci-
sion to support empowered teams in
more than name only. While it may
impact the management control residing
with some of the stakeholders, provid-
ing the systems engineering team with
the authority and flexibility of owning
their own process could radically
improve their effectiveness.

Software Considerations for
Agile Systems Engineering
In the introduction, I indicated that sys-
tems engineering could support Agile in
other disciplines. Software is a prime
example. The role of software is a signifi-
cant systems engineering issue that
requires adjustments, if not agility, from
systems engineering processes. As systems
become less hardware with some software that
helps, and become more software with some
hardware to run on, the need for software as
a full participant in systems engineering
becomes critical. This summer, the
National Defense Industrial Association
(NDIA) convened a group of industry,
government, and academia participants to
define the top problems in software-inten-
sive systems (the majority of the systems
currently built) [6]. One of the critical
findings was that fundamental system engineer-
ing decisions are made without full participation of
software engineering.

Software can no longer be relegated
to a secondary activity. The days of soft-
ware coders carrying out specific instruc-
tions from engineers are over. Software is
what provides capability, enables flexibil-
ity, supports net-centric operations,
allows quick response to new threats and
environmental factors, and represents the
majority of the value of a specific sys-

tem, even though the hardware produc-
tion may be the most expensive (and
often most profitable) activity. Initial deci-
sions must consider software architecture
or they can impact the feasibility of soft-
ware solutions and result in disjointed,
untestable, and unmaintainable software
components. The previously referenced
NDIA report states the following:

Complex, distributed, interoperat-
ing systems and evolving software
capabilities have permanently
altered the system level trade space.
Key architectural decisions early in
the system life cycle have great
impact on software capabilities,
attributes, and architectural/design
approaches, yet the software engi-
neering discipline is not consistent-
ly involved in these decisions.

I like to think of this as software-first
engineering. By considering software first,
the SEs can take primary advantage of the
flexibility and adaptability of software,
define the system and its components in
such a way that software development is
less complex, and the system architecture
and design support the effectiveness of
software assurance, safety, and security.
These are attributes that simply cannot be
added on later, particularly in systems of
systems or net-centric systems.

Final Thoughts
I have postulated that traditional systems
engineering may not fit today’s and
tomorrow’s systems because of its inher-
ent rigidity and its often interpreted

waterfall orientation. On the other hand,
agility is much more a state of mind or
philosophical approach than a set of
rules that have to be followed regardless
of appropriateness.

Despite the disagreement from some
agile proponents, process is not the enemy
– bad process is. To encourage agility,
processes should not be dictated by the
process police, but be under the control of
the actors. Process experts can provide
constructive support and guidance when
needed, and process asset libraries
should include agile or agile-friendly
processes that can be used where the
development environment or risk profile
indicates a need for agility.

The fundamental goals of systems
engineering have not changed. However,
as systems grow larger and more com-
plex, new ways of dealing with abstrac-
tion, concurrency, and uncertainty need
to be developed. Agile approaches do
offer reasonable and elegant ways of
evolving systems and software engineer-
ing toward handling these issues.

There are still no silver bullets [7], but
we can accept that there are new kinds of
regular bullets available, new tactics by
which they can be used, and that inte-
grating them into our current operations
can significantly improve the capability
of our existing systems engineering arse-
nals.

As I said in the introduction, my
intent with this article is to extend the
dialogue about innovative ways to con-
sider and apply systems engineering. I
have not included examples, but I believe
there are many systems and software
engineers that have applied some of
these approaches to systems engineering.
I would be grateful if they joined the
conversation by providing their experi-
ences, successful or not, so that we can
create better ways to balance the disci-
pline of systems engineering with the
agility required to develop today’s com-
plex defense systems.u

References
1. Boehm, Barry, and R. Turner.

Balancing Agility and Discipline: A
Guide for the Perplexed. Addison-
Wesley: Boston, 2004.

2. McCabe, R., et al. “Disciplined Agility
Guidebook.” Proprietary Internal
Report. Systems and Software
Consortium, 2006.

3. Armour, Phillip. The Laws of Soft-
ware Process. Auerbach: Boca Raton,
2004.

4. Boehm, Barry, and Jesal Bhuta. USC
CSSE Top 10 Risk Items: People’s

14 CROSSTALK The Journal of Defense Software Engineering April 2007

“While it may impact
the management control

residing with some
of the stakeholders,

providing the systems
engineering team with

the authority and
flexibility of owning their

own process could
radically improve their

effectiveness.”

Toward Agile Systems Engineering Processes

April 2007 www.stsc.hill.af.mil 15

Choice Awards. 2006 <http://csse.
usc.edu/BoehmsTop10/>.

5. Boehm, Barry, and Jo Ann Lane. “21st
Century Processes for Acquiring 21st
Century Software-intensive Systems of
Systems.” CrossTalk, May 2006.

6. NDIA Systems Engineering Division.
“Top Software Engineering Issues
within Department of Defense and
Defense Industry.” Aug. 2006.

7. Brooks, Frederick P. “No Silver Bullet:
Essence and Accidents of Software
Engineering.” Computer 20.4 (Apr.
1987): 10-19.

Note
1. Mr. Krieg, Under Secretary of

Defense (Acquisition, Technology,
Logistics), used agile, agility, flexibility
or related words nearly once a minute
in a recent presentation to business
executives. Mark Schaeffer, Director
for Systems and Software Engineering
in the Office of the Secretary of
Defense, encouraged the process
improvement world to become more
agile in remarks at the 2006 NDIA
CMMI Technology Conference.

About the Author

Richard Turner, D.Sc.,
a Fellow at the Systems
and Software Consor-
tium, is a researcher and
consultant with 30 years
of international experi-

ence in systems, software, and acquisi-
tion engineering. He is a frequent collab-
orator with a wide range of research
organizations and system developers to
transition new software-related technol-
ogy to defense acquisition programs.
Turner is co-author of Balancing Agility
and Discipline: A Guide for the Perplexed,
CMMI Distilled, and CMMI Survival
Guide: Just Enough Process Improvement.

Systems and Software Consortium
2214 Rock Hill RD
Herndon,VA 22017
Phone: (703) 742-7116
Fax: (202) 390-3772
E-mail: turner@systemsand

software.org

Agile Manifesto
www.agilemanifesto.com
On February 11-13, 2001, at The Lodge
at Snowbird ski resort in the Wasatch
mountains of Utah, 17 people met to
talk, ski, relax, and try to find common
ground. What emerged was the Agile
Software Development Manifesto. Rep-
resentatives from eXtreme Program-
ming, SCRUM, Dynamic Systems
Development Method, Adaptive Soft-
ware Development, Crystal, Feature-
Driven Development, Pragmatic Pro-
gramming, and others sympathetic to
the need for an alternative to documen-
tation driven, heavyweight software
development processes convened. Cur-
rently, a larger gathering of organization-
al anarchists would be hard to assemble.
The emergence of the Manifesto for
Agile Software Development symbolizes
the participants’ intents.

Agile Advice
www.agileadvice.com
Agile Advice is a blog about agile meth-
ods such as SCRUM, Lean, and eXtreme
Programming. However, it does not
focus on agile software development.
Rather, the focus of Agile Advice is on

agile methods applied to other types of
work such as managing, video-making,
teamwork in general, creative working,
training, writing, etc. Much of the mate-
rial here is based on Mishkin Berteig’s
experiences as an agile coach, consultant
or trainer to teams and management in
organizations across North America.
From time to time, other people con-
tribute articles to Agile Advice. You are
welcome to contribute as well, particu-
larly if you have a story about agile meth-
ods, agile principles, or agile practices
applied outside of software development.

The Agile Journal
www.agilejournal.com
The Agile Journal is an online magazine
and monthly e-newsletter focused on
providing readers with the need-to-know
information and resources they need to
develop software for an agile business.
Among the topics covered: Open source
solutions, service-oriented architecture,
globally distributed development envi-
ronments, Agile and iterative processes,
integrated tools, and reuse and collabora-
tion.

WEB SITES

COMING EVENTS

May 7-11
DMSC 2007

Defense Modeling and
Simulation Conference

Hampton, VA
www.ndia.org

May 7-11
PSQT 2007 West

Practical Software Quality and Testing
Las Vegas, NV

www.psqtconference.com/2007west

May 14-16
SATURN 2007

3rd SEI Software Architecture Technology
User Network Workshop

Pittsburgh, PA
www.sei.cmu.edu/architecture/

saturn/index.html

May 14-18
STAREAST 2007

Software Testing Analysis and Review
Orlando, FL

www.sqe.com/stareast

May 19-21
ICSP 2007

International Conference on
Software Processes
Minneapolis, MN

www.icsp-conferences.org/icsp2007

May 20-26
ICSE 2007

29th International Conference on
Software Engineering
Minneapolis, MN

www.icse-conferences.org/2007

June 18-21
2007 Systems and Software

Technology Conference

Tampa Bay, FL
www.sstc-online.org

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.

In July 2006, the 309th SMXG was
appraised at a CMMI Level 5. One of

the 309th’s focus projects, the Ground
Theater Air Control System (GTACS)
project, had been using the TSP since
2001. The team had achieved a four-fold
increase in productivity during that time,
had released zero defects since the TSP
was adopted, and had been internally
assessed at a high maturity by the group’s
quality assurance team. GTACS team
members felt confident they could meet
the rigors of a CMMI assessment and
achieve their group’s goal of Level 5.

Watts Humphrey, who is widely
acknowledged as the founder of the
Capability Maturity Model® (CMM®)
approach to improvement and who later
created the Personal Software Process
(PSP)SM and TSP, has noted that one of
the intents of PSP and TSP is to be an
operational process enactment of CMM
Level 5 processes at the personal and pro-
ject levels respectively [1]. CMM and later
the CMMI were always meant to provide a
description of the contents of a mature
process, leaving the implementer with the
task of definition and enactment of these
mature processes. Thus, CMM and CMMI
are descriptive not prescriptive models.
The TSP goal of being an operational
Level 5 process implies that a team prac-
ticing TSP out-of-the-box should be very
close to being Level 5.

The 309th is a large organization of
nearly 800 employees, both civil service
and contactors. The group level is com-

prised of five squadrons, each with a dif-
ferent focus or product line. 309th man-
agement and Software Engineering
Process Group (SEPG) sets group policy
and defines a group level process and
metrics framework. Each squadron
applies the group level process to its
technical domain. So projects, like
GTACS, must ensure their detailed pro-
ject processes are consistent with their
squadron’s process and with group-level
guidance. The GTACS project is also
divided into several sub-teams, all man-
aged as one project. The GTACS soft-
ware team, which performs most of the
GTACS assigned technical efforts, uses
TSP to support its work. A separate
Configuration Management (CM) team
provides CM services. The project’s cus-
tomer, the GTACS Program Office,
retains systems engineering responsibility
and authority. This diverse organizational
structure is important because several of
the CMMI issues that need to be
addressed are clearly the responsibility of
these other entities and were not GTACS
TSP team issues other than alignment
and coordination.

Assessment Timeline
In order to prepare for the assessment,
309 SMXG conducted a series of
Standard CMMI Appraisal Method for
Process Improvement (SCAMPISM)
assessments which included the GTACS
team. There are three kinds of SCAMPI
assessments: A, B, and C. The SCAMPI

A assessment is the final review during
which a CMMI level can be determined.
SCAMPI Bs and Cs are less rigorous and
are intended to prepare the team for the
full SCAMPI A. The 309th SMXG used
SCAMPI Bs to ensure compliance to the
model and value added to the enterprise.
In general the SCAMPI B teams were
told to aggressively identify risks to a
successful SCAMPI A appraisal. When
the SCAMPI B teams identified a
process weakness, they assigned a high,
medium, or low risk rating based on the
seriousness of the noted weakness.

From the perspective of the TSP
team there were four types of weakness-
es: non-team, process, artifact, and document.
The non-team weaknesses were those that
were the responsibility of a team other
than the TSP team, such as the group’s
SEPG or the GTACS CM team.
Examples include policy changes or
changes to the CM process. Process weak-
nesses indicate that the team had no
process in place. An artifact weakness
meant the assessment team found insuf-
ficient artifacts to pass the assessment. A
document weakness meant the team’s
process documentation needed to be
updated.

The initial SCAMPI B for the
GTACS focus project was held about
one year before the SCAMPI A final
assessment and identified 86 weaknesses.
A summary of the counts and types of
these weaknesses is found in Table 1.
Not all weaknesses were project focused.
Some were organizational and some
were squadron focused. Of the project-
focused risks, many were the responsibil-
ity of one of the following: overarching
project management (e.g., data manage-

CMMI Level 5 and the Team Software Process

Jim Van Buren
The Charles Stark Draper Laboratory

In July 2006, the 309th Software Maintenance Group (309th SMXG) at Hill Air Force Base, Utah was appraised at a
Capability Maturity Model Integration (CMMISM) Level 5. One focus project had been using the Team Software ProcessSM

(TSP)SM since 2001. TSP is generally considered a Level 5 process; however, during the preparation for the assessment, it
became obvious to the team that even the stringent process and data analysis requirements of the TSP did not completely
address CMMI requirements for several process areas (PAs). The TSP team successfully addressed these issues by adapting
their process scripts, measures, and forms in ways that may be applicable to other TSP teams.

Software Engineering Technology

David R. Webb
309th Software Maintenance Group

Dr. Gene Miluk
Software Engineering Institute

16 CROSSTALK The Journal of Defense Software Engineering April 2007

Risk Level Total Risks Process

Risks

Artifact

Risks

Document

Risks

Non-Team

Risks

High 19 1 17 0 1

Medium 67 15 18 6 28

Low* 0 0 0 0 0

Total 86 16 35 6 29

Table 1 SCAMPI B1 Noted Weaknesses

* Low risks were not categorized in the first SCAMPI B

Table 1: SCAMPI B1 Noted Weaknesses

SM Team Software Process, Personal Software Process, PSP,
TSP, and SCAMPI are service marks of Carnegie Mellon
University.

® Capability Maturity Model and CMM are registered in the
U.S. Patent and Trademark Office by Carnegie Mellon
University.

CMMI Level 5 and the Team Software Process

ment and stakeholder involvement plans)
or the CM group. The remaining issues
were the responsibility of the TSP team.
Most issues were focused within the
Decision Analysis and Resolution (DAR)
and Causal Analysis and Resolution
(CAR) PAs. The specifics of each of
these are discussed in the PA section
below.

Based on the results of this initial
SCAMPI B, the team continued its pro-
ject work. The major focus was on exe-
cuting the team’s CAR process and
addressing the documentation and
process framework issues. Significantly,
the team did not devote any special
resources to the CMMI preparatory
effort. After this finding, preparatory
work was done by the team and led by
the team’s process manager (a standard
TSP role) as part of normal work duties.
About four months into this effort the
309th realized that DAR could not be
solely addressed at the organizational
level and a new process requirement for
DAR implementation was pushed down
to the project level. The team’s TSP
coach developed a draft process script
and team training was conducted. No
opportunity to execute the DAR process
occurred before the second SCAMPI B.

The weaknesses and risks identified
by the second SCAMPI B are identified
in Table 2. It is important to note that
the assessment team for the second
SCAMPI B was different than the first
and that this team chose to identify areas
for improvement in the low-risk areas,
whereas the first team did not. These
new results gave the GTACS team a dif-
ferent and more thorough understanding
of the remaining weaknesses.

Of the weaknesses noted there were
three groupings: DAR (seven High
Artifact, three Medium Artifact, and one
Low Document); Organizational Process
Performance (OPP) (13 High Non-
Team, one Medium Non-Team, and one
Low Non-Team); and Training (one
High Artifact, two High Non-Team, 12
Medium Document, one Low Artifact,
and one Low Non-Team). The other
weaknesses noted were scattered
throughout the model. Of these, the
most significant for the purposes of this
article were the seven Medium Process
weaknesses. These reflected the fact that
the team had a process gap. In these
seven weaknesses there were three
process gaps: 1) a lack of traceability
matrices in the team’s engineering work
packages, 2) a missing checklist item in
the team’s high-level design inspection
checklist, and 3) the team’s implementa-

tion of statistical process control (SPC)
to monitor selected subprocesses. Of these,
only the SPC issue required a major
change in the team’s practices. It is dis-
cussed in detail below. The team’s
approach to requirements traceability
had previously been to include traceabil-
ity information in the textual require-
ments, design, and test descriptions and
to validate traceability via an inspection
checklist item. It was straightforward to
modify the engineering work package
template to include the traceability
tables. The missing item in the team’s
high-level design inspection checklist
was added, although it had not caused
the team issues in the past.

The Software Engineering Institute
(SEI) has already performed a theoretical
mapping of TSP to CMMI and deter-
mined that DAR is partially addressed by the
TSP, OPP is supported, Quantitative
Process Management (QPM) is 90 percent
directly addressed, and CAR is 60 percent
directly addressed [2]. As the GTACS team
set about to shore up these weaknesses,
they determined that these assessments
were generally accurate; they also came up
with creative ways to update the TSP to
completely address all of these PAs.

The PAs
In addition to the weaknesses previously
described, there were also minor weak-
nesses in requirements management, risk
management, and two QPM issues. Since
the initial preparation for DAR had been
only at the group level, there was no
DAR process or practice in place for the
project. The team’s previous process
improvement discussions, during their
TSP post-mortems, had not produced
the artifacts necessary to meet CAR
requirements. The TSP post-mortem
process and PSP Process Improvement
Proposal (PIP) process do not require the
quantitative analysis that CAR and its link
to QPM does. The team had not formal-
ized its requirements management
process and its documented risks man-
agement process was not consistent with
the TSP risk management process. The
QPM risks were labeled as medium risks
and related to a lack of thresholds and
control limits.

DAR
One of the innovations the team came up
with was in their approach to the Level 3
requirement for decision analysis and res-
olution. Initially, GTACS addressed its
DAR requirements by adopting the orga-
nization’s DAR processes and forms.
Organizational DAR training was held for
the team. GTACS created a draft opera-
tional process in the form of a TSP script.
The DAR script was then used by the
team to analyze three different types of
issues: product design, tool selection, and
process. The final DAR process was then
updated and included in the team’s stan-
dard process (see Figure 1, next page).

The SEI’s report on TSP and CMMI
identified all six DAR-specific practices as
partially implemented and identified vari-
ous launch meetings as points where DAR
activities are implemented. We believe this
partially implemented term underestimates
the risk and resulting effort that TSP
teams will face to meet DAR CMMI
requirements. A better characterization of
TSP’s implementation of DAR is that TSP
is consistent with DAR philosophy but is
nowhere near sufficient. DAR is, at its
heart, a systems engineering sub-process
for making and documenting formal deci-
sions. In some ways it is as critical to the
systems engineering culture as inspections
are to software engineering or personal
reviews are to the PSP/TSP approach.
CMMI has elevated DAR from a practice
to a full-fledged PA and although TSP is
consistent with DAR, TSP is insufficient
to pass a CMMI assessment. A procedure
like that in Figure 1 is required to produce
proper and meaningful DAR artifacts.

A TSP team must also be trained in the
application of DAR. Based on the back-
ground of the team members, this training
may involve getting software engineers to
think like systems engineers. For the
GTACS team, this was surprisingly diffi-
cult. While a DAR process, like that
detailed in Figure 1, may appear straight-
forward and obvious, software engineers
may question its applicability. For years we
have observed good systems engineers
following processes like this to make and
document their systems designs and
design tradeoffs. On the contrary, it has
been significantly more difficult to get

April 2007 www.stsc.hill.af.mil 17

Table 1 SCAMPI B1 Noted Weaknesses

Risk Level Total

Risks

Process

Risks

Artifact

Risks

Document

Risks

Non-Team

Risks

High 23 0 8 0 15

Medium 38 7 6 17 8

Low 22 0 1 11 10

Total 83 7 15 28 33

Table 2: SCAMPI B2 Noted Weaknesses

SM

Low risks were not categorized in the first SCAMPI B

Table 2: SCAMPI B2 Noted Weaknesses

Software Engineering Technology

purely software engineers to document
their design reasoning with the same rigor.
It is, however, a basic engineering practice
that can be easily learned. Our experience
with the GTACS team confirmed this
observation that software engineers are
unfamiliar with systems engineering tech-
niques for formal decision making and
documentation but can be easily trained to
use these techniques.

QPM and OPP
One contentious area surrounding CMMI
High Maturity appraisals and organiza-
tions is the definition and operationaliza-
tion of Maturity Level 4: Quantitatively
Managed. The formative book on CMMI:

Guidelines for Process Integration and Product
Improvement describes Maturity Level 4 as
the following [3]:

Maturity Level 4: Quantitatively
Managed. At maturity level 4, the
organization and projects establish
quantitative objectives for quality
and process performance and use
them as criteria in managing
processes. Quantitative objectives
are based on the needs of the cus-
tomer, end users, organization, and
process implementers. Quality and
process performance is under-
stood in statistical terms and is
managed throughout the life of

the processes.
For selected subprocesses,

detailed measures of process per-
formance are collected and statisti-
cally analyzed. Quality and process
performance measures are incor-
porated into the organization’s
measurement repository to sup-
port fact-based decision making.
Special causes of process variation
are identified and, where appropri-
ate, the sources of special causes
are corrected to prevent future
occurrences.

A critical distinction between
maturity levels 3 and 4 is the pre-
dictability of process performance.

18 CROSSTALK The Journal of Defense Software Engineering April 2007

DAR Process Script

Purpose • To guide the team in making formal decisions.

Entry Criteria Either

• A critical measurement exceeds the thresholds defined in the GTACS DAR threshold matrix.

• A critical decision needing a formal analysis is identified.

General • Critical decisions are ones that have potential impact on the project or project team. Issues with multiple alternative approaches

and multiple evaluation criteria are particularly well suited for formal analysis.

Tailoring • This procedure may be used to make and document other decisions.

Step Activities Description

1 Planning - A Point of Contact (POC) is assigned.

• The POC may be self-assigned if the POC is responsible for the critical decision.

• The team lead assigns the POC otherwise.

The team that will perform the DAR analysis and selection activities (the DAR team) is assigned.

- The POC completes the Entry section of the MXDE Decision Analysis and Resolution Coversheet (section I).

- A working directory is created to hold the DAR artifacts.

- An action item is created in the Project Notebook to track the status of the DAR.

- The approval signatures required for this DAR are determined.

• For DARs initiated because a critical measurement exceeds the thresholds defined in the GTACS DAR threshold

matrix the approval signatures are documented in the Stakeholder Involvement Plan (SIP).

• For other DARs the GTACS

2 Identify

Stakeholders

- The POC identifies stakeholders for this DAR activity. These include the following:

• Those who provide the alternatives, risks, and historical data.

• The DAR team.

• Those who will implement the decision the DAR results in.

3 Stakeholder

Input

- The DAR team obtains input from the stakeholders.

• Alternative approaches. There is no limit to the number of alternative approaches identified.

• Evaluation Criteria and relative weighting.

• Key risks.

4 Evaluation

Criteria

- The DAR team determines the evaluation criteria and relative weighting after considering the input from all stakeholders.

- The DAR team reviews the evaluation criteria with the stakeholders before finalizing the criteria.

5 Selection

Method

- The DAR team determines the ranking and scoring method.

• Suggested ranking and scoring methods are found in the DAR Tools document.

• The DAR team must agree on a scoring method, the scoring range, and have a common understanding of what the

scores represent.

- The selected approach is documented on the MXDE Decision Analysis and Resolution Coversheet (section II).

6 Rank Each

Approach

- For each alternative, the DAR team must assign a score to each decision criteria, employing the ranking and scoring

method previously selected.

- The total weighted score for each alternative is determined.

7 Make a

Decision

- The DAR team makes a decision and reviews it with the stakeholders making changes if necessary.

- The stakeholders review is captured on the MXDE Decision Analysis and Resolution Coversheet (section III).

- The final decision is captured on the MXDE Decision Analysis and Resolution Coversheet (section IV).

8 Post-Mortem - The effort expended on this DAR is captured on the MXDE Decision Analysis and Resolution Coversheet (section IV).

- Approval signatures are obtained and recorded on the MXDE Decision Analysis and Resolution Coversheet (section IV).

- DAR lessons learned are captured in the DAR notes.

- All DAR documents are captured and archived per the GTACS Data Management Plan (DMP).

• The completed MXDE Decision Analysis and Resolution Coversheet.

• Scoring and analysis worksheets.

• CM is notified that the DAR is complete and that the DAR artifacts can be archived to the GTACS data

management repository.

Exit Criteria - The MXDE Decision Analysis and Resolution cover sheet is completely filled out.

- The artifacts produced during the DAR activities have been archived in accordance with the GTACS DMP.

Figure 1: The GTACS Team’s DAR Process Script

-

Technical Program Manager is the approval authority.

Figure 1: The GTACS Team’s DAR Process Script

CMMI Level 5 and the Team Software Process

At maturity level 4, the perfor-
mance of processes is controlled
using statistical and other quantita-
tive techniques, and is quantitative-
ly predictable. At maturity level 3,
processes are typically only qualita-
tively predictable.

Assuming an organization has achieved
Maturity Level 3, the concepts for Level 4
are achieved by implementing the practices
and satisfying the goals for OPP and
QPM. The team weaknesses identified at
Level 4 in QPM and OPP were due to the
facts that GTACS data was not analyzed at
the sub-process level and the data analyses
did not address an understanding of
process variability. To understand the root
cause of these issues, one must understand
how standard TSP projects use data to
quantitatively manage themselves.

TSP uses data for three purposes: pro-
ject planning, project monitoring and over-
sight, and process improvement. For pro-
ject monitoring, TSP fundamentally con-
siders the software development process
as a single entity whose purpose is to help
guide the production of products. Earned
Value (EV), TSP’s primary tool for analyz-
ing schedule and cost, measures the whole
process and not subprocesses. TSP’s two
primary tools for monitoring quality,
Percent Defect Free (PDF) and Process
Quality Index (PQI) also do not focus at
the sub-process level. PDF considers the
whole product and the whole process. PQI
focuses on the evolving quality of product
parts by analyzing the whole process used
to produce them. Its usual use is to identi-
fy potentially troublesome parts for addi-
tional quality analysis. In addition, none of
these measures consider variability from
the statistical process control perspective.
EV considers only how actual cost and
schedule performance is varying from the
planned performance. Both PDF and PQI
consider how quality performance varies
from TSP supplied benchmarks.

OPP looks at quantitative manage-
ment from a top-down perspective. After
the organization determines the critical
processes (or subprocesses) and associat-
ed measures, analysis procedures, and
performance models, a project can then
use the practices of QPM to fulfill pro-
ject OPP requirements. The organiza-
tion’s OPP requirements define the key
organizational metrics as cost perfor-
mance index, schedule performance
index, yield, and rework. The team’s base
TSP practices are collecting all the mea-
sures needed to meet these requirements.
Figure 2 is a portion of the squadron’s
historical data worksheet showing the key

measures the project must collect and
submit and the key metrics derived from
those measures.

As noted earlier, the SCAMPI B
assessment team had identified the team’s
use of EV and PQI (the team was not
using the TSP PDF metric because it did
not add value for its work) as possibly not
fulfilling the intent of the variability of
subprocesses clauses of QPM. After dis-
cussion, the team decided to track rework
and the forecast completion date of its
various work products. These also sup-
ported the team’s two highest priority
project goals: finishing its work on time
and having low rework. The key selection
criteria for these two metrics were that
they could be tracked during the project,
that corrective action could be taken if
they were trending beyond limits or goals,
and that they were of relatively low cost
to implement.

The team’s EV tool computed the
forecast completion date of the project
and because of the way the project plan
was set up, it could also compute the
forecast completion date of each of the
project subparts. The team reviewed
these forecasts at the subpart level every
week. Only once, when a team member
had a medical condition that required
unplanned long-term leave did a forecast
fall past the project end date, causing the
team to replan its approach for this par-
ticular subpart. This matches our prior
TSP experience where the TSP EV pro-
ject tracking process leads the team to
meet its schedule commitments [4].

The team was easily able to use rework
in a way that satisfied the CMMI assessor’s
need to see the team reviewing process
variability. Rework time for this TSP team
was defined as time recorded in the defect
logs. Percentage rework was rework time
divided by total task time. Good historical
data existed from the team’s prior projects.
Rework percentage was computed weekly
and reviewed during the team’s weekly
meeting for both the project’s subparts and
the project as a whole. Rework remained
within control limits throughout the entire
project for all project parts. Figure 3 (see
page 20) is the project-level rework plot
that was reviewed by the team during its
weekly meeting. The rework percentage for
each of the team’s subparts and the project
as a whole were each plotted. The plots
each included the subpart or project under
review, the organizational goal (10 percent),
the Upper Control Limit (10.46 percent),
and the normalized (to the project sched-
ule) plots for previous projects.

The good news is that the data collec-
tion required by the TSP provides all and
more of the data needed to perform such
analyses. Using these data, the GTACS
project was able to come up with QPM
analyses that focused on variability for
effort, schedule, and quality performance
(such as rework) within predicted parame-
ters. The team updated their weekly meet-
ing process to address each of these mea-
sures, to see if they were in control, and to
bring items that had gone astray back
under control. GTACS also added items
to the TSP post-mortem process to collect

April 2007 www.stsc.hill.af.mil 19

Figure 3: Variability in Rework as Tracked by the GTACS Team

1

Figure 2: Portion of a Standard Process Data Worksheet for the GTACS Squadron

Software Engineering Technology

project closeout data that could be used to
determine process performance and vari-
ability overall and at the sub-process lev-
els. These data were then standardized for
sharing across the organization, support-
ing the requirements of OPP (Figure 3).

CAR
The TSP process as it currently stands calls
for a detailed post-mortem analysis of
project and process data, including identi-
fication of improvements. This provides a
great deal of support for the Level 5 CAR
requirement; however, the TSP does lack
CAR formality and feedback to determine
if implemented process improvements
really worked. In order to shore up these
issues, the GTACS team updated the post-
mortem script to directly address CAR.
They created a requirement for a CAR
report, which formally douments the TSP
post-mortem by capturing the data analy-
ses performed, weaknesses identified, and
the suggested process changes to address
these weaknesses. The report also adds to
the TSP post-mortem an analysis of the
impact of previous process improvements.

Training
The TSP rollout strategy that the GTACS
team used included PSP training for all
engineers and managing TSP teams train-
ing for the team lead and the GTACS
TPM. This approach provided the primary
training for eight of the 21 PAs. Additional
organizational specific training on policy
was still required. The PAs addressed by
PSP/TSP were project planning, project
monitoring and control, integrated project
management, integrated teaming, process

and product quality assurance, measure-
ment and analysis, and CAR. Verification
was partially addressed. Training was
required for the management PAs of risk
management and quantitative project man-
agement, all the engineering PAs (Require-
ments Development, Requirements Man-
agement, Technical Solution, Product Inte-
gration, Validation, and Verification), the
support PAs, configuration management,
and DAR, and all the process management
PAs (Organizational Process Focus, Org-
anizational Process Definition, Organiza-
tional Process Performance, and Organ-
izational Innovation and Deployment).

The team addressed the training issue
by creating a team training plan that dis-
cussed how new team members acquired
the skills needed to become full team
members. This included an approach to
obtaining GTACS domain knowledge, the
tools and technologies used by the team,
the processes used by the team, and the
key organizational training needed to sup-
port the team. Most of the details of these
training packages had been in existence
for several years but were not structured
and organized. In fact, the team had a
longstanding improvement proposal to
organize its training approach.

Summary
The GTACS team in 309th SMXG at Hill
Air Force Base, Utah, successfully used the
TSP in reaching their goal of CMMI Level
5. In order to do so, they adapted from and
added to the TSP scripts, measures, and
forms in ways that they believe can help
other TSP teams also achieve this feat, as far
as can be done by a single focus project.u

Related Literature
The topic of relating TSP practice to
CMM-based assessments has been
addressed in two thought papers and at
least two case studies. The thought papers
studied the problem in the abstract by
comparing a theoretical TSP project
against a model. Davis and McHale [5]
first compared TSP against the CMM and
concluded that TSP implements a majority of
the key practices of the SW-CMM. McHale
and Wall [2] later extended this study to
the CMMI. They concluded, that TSP can
instantiate a majority of the project-oriented spe-
cific practices of CMMI.

Naval Air Systems Command used
TSP to advance their CMM efforts. Their
experience report compared their
approach of using TSP to implement
CMM improvement versus non TSP
based CMM improvement approaches.
They reported that they halved the time
needed to move from CMM level 1 to
CMM level 4 by basing their process on
TSP [6, 7]. Cedillo reported that TSP actu-
ally accelerates CMM/CMMI implementation
in a small setting where the process
improvement approach of a small startup
company was based on TSP [8].

References
1. Carnegie Mellon University (CMU).

TSP and CMMI: A Brief History.
<www.sei .cmu.edu/tsp/histor y.
html>.

2. McHale, James, and Daniel S. Wall.
“Mapping TSP to CMMI.” CMU/
SEI-2004-TR-014. CMU, 2004.

3. Chrissis, Mary Beth, Mike Konrad, and
Sandy Shrum. “CMMI®: Guidelines
for Process Integration and Product
Improvement.” CMU, 2003.

4. Webb, David. “All the Right Behavior.”
CrossTalk Sept. 2002 <www.stsc.
hill.af.mil/crosstalk/2002/09>.

5. Davis, Noopur, and Jim McHale.
“Relating the Team Software ProcessSM

to the Capability Maturity Model® for
Software.” CMU/SEI-20020TR-008.
CMU, 2002.

6. Pracchia, Lisa. “The AV-8B Team
Learns Synergy of EVM and TSP Ac-
celerates Software Process Improve-
ment.” CrossTalk Jan. 2004 <www.
stsc.hill.af.mil/crosstalk/2004/01>.

7. Wall, Daniel S., James McHale, and
Marsha Pomeroy-Huff. “Case Study:
Accelerating Process Improvement by
Integrating the TSP and CMMI.”
CMU/SEI-2005-SR-012. CMU, 2005.

8. Cedillo, Karina. “Accelerating CMMI
Implementation With PSP and TSP in
a Small Organization.” SEPG, 2005.

20 CROSSTALK The Journal of Defense Software Engineering April 2007

Figure 3: Variability in Rework as Tracked by the GTACS Team

CMMI Level 5 and the Team Software Process

April 2007 www.stsc.hill.af.mil 21

About the Authors

Gene Miluk, Ph.D., is
currently a senior mem-
ber of the technical staff
at the SEI in the Acqui-
sition Support Program.
For the past 15 years, he

has worked with client organizations
undertaking software process improve-
ment, software acquisition improvement
and technology transition. Prior to join-
ing the SEI, he was the founder of the
Denver Metrics Group, Inc. a firm spe-
cializing in software measurement and
metrics. He has been a frequent lecturer
on software measurement and software
process improvement as well as an
instructor for The University of
California at Berkeley, The University of
California at Irvine, The University of
Colorado at Denver and both Graduate
School of Industrial Administration and
The Heinz School at CMU. He holds a
degree in systems engineering from the
Polytechnic University of New York, a
masters in information systems from the
University of Colorado, and a doctorate
in organizational change from
Pepperdine University.

SEI
4500 Fifth AVE
Pittsburgh, PA 15213
Phone: (412) 268-5795
E-mail: gem@sei.cmu.edu

David R. Webb is a
senior technical program
manager for the 309th
Software Maintenance
Group at Hill Air Force
Base in Utah, a CMMI

Level 5 software organization. He is a
project management and process
improvement specialist with twenty
years of technical, program manage-
ment, and process improvement experi-
ence on Air Force software. Webb is an
SEI-authorized instructor of the PSP, a
TSP launch coach, and has worked as an
Air Force manager, SEPG member, sys-
tems software engineer, and test engi-
neer. He is a frequent contributor to
CrossTalk, and holds a bachelor’s
degree in electrical and computer engi-
neering from Brigham Young University.

309 SMXG/520 SMXS
7278 Fourth ST
Hill AFB, UT 84056
Phone: (801) 940-7005
DSN: 775-3023
Fax: (801) 775-3023
E-mail: david.webb@hill.af.mil

Jim Van Buren provides
support to the Air
Force’s Software Tech-
nology Support Center
(STSC), where he brings
over 25 years of software

development and management expertise
to STSC customers including the
GTACS software team. He is an SEI-
authorized PSP instructor and TSP
launch coach. Van Buren is on the tech-
nical staff of the Charles Stark Draper
Laboratory, serving as Draper’s STSC
program manager. He holds a Bachelor
of Science in computer science from
Cornell University.

Charles Stark Draper Laboratory
517 Software Maintenance Squadron
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056
Phone: (801) 777-7085
Fax: (801) 777-8069
E-mail: jim.vanburen@hill.af.mil

Systems Engineering
 October 2007

Submission Deadline: May 18, 2007

Working As a Team
November 2007

Submission Deadline: June 13, 2007

Software Sustainment
December 2007

Submission Deadline: July 13, 2007

Please follow the Author Guidelines for CrossTalk, available on the
net at <www.stsc.hill.af.mil/crosstalk>. We accept article submissions on all
re-related topics at any time, along with Letters to the Editor and BackTalk.
e now provide a link to each monthly theme, giving greater detail on the types
f articles we're looking for <www.stsc.hill.af.mil/crosstalk/theme.html>.

CALL FOR ARTICLES
If your experience or research has produced information that could be
useful to others,u CrossTalk can get the word out. We are specifically
looking for articles on software-related topics to supplement upcomingl
theme issues. Below is the submittal schedule for three areas of emphasis t
we are looking for:w

Col. John Boyd, U.S. Air Force fighter
pilot ace, developed the concept of

the OODA Loop to describe the process
needed to win at war. This model matured
as he won aerial dogfights in Korea and
Viet Nam and later used it to describe how
to gain a competitive advantage in any sit-
uation. Recently, the OODA loop has
begun to be applied to business and prod-
uct development as a way to describe their
decision-making cycles. In these situa-
tions, the loop often gets stuck at the D
and the team is reduced to making a sound
like OO-OO-OO1. The OODA loop is a
succinct representation of the natural
decision cycle seen in every context: war,
business, product development, or life.

Boyd diagramed the OODA loop as
shown in Figure 1. In words, all decisions
are based on observations of the evolving
situation tempered with implicit filtering
based on the problem being addressed.
These observations are the raw informa-
tion on which the decisions and actions
will be based.

The observed information needs to be
processed to orient it for further making a
decision. In notes from his talk Organic
Design for Command and Control, Boyd said:

The second O, orientation – as the
repository of our genetic heritage,
cultural tradition, and previous
experiences – is the most important
part of the OODA loop since it
shapes the way we observe, the way

we decide, the way we act. [1]

As stated by Boyd and shown in the
Orient box, there is much filtering of the
information through our culture, genetics,
ability to analyze and synthesize, and pre-
vious experience. Since the OODA loop
was designed to describe a single decision
maker, the situation is usually much worse
than shown as most business and techni-
cal decisions have a team of people
observing and orienting, each bringing
their own cultural traditions, genetics,
experience, and other information. It is no
wonder that we often get stuck here, and
the OODA loop is reduced to the stutter-
ing sound of OO-OO-OO.

Getting stuck means that there are no
decisions and thus no actions. In reality, a
decision has been made to do nothing.
Time keeps moving, and resources are
used. In Boyd’s warfighter scenario, the
enemy gets the upper hand. In business,
the competition keeps progressing in its
OODA loops while you keep using your
resources while adding no value. In other
words, getting stuck at the decision point
can have severe, even grave, conse-
quences.

The organizational response to being
stuck is often more analysis, more data,
more simulations, or more decision by wring-
ing hands. Sometimes these efforts help, if
directed at the right sticking point, but often
these activities only postpone decisions
until some external event occurs that

demands a decision. This results in decision
by running out of time or, if the action is dic-
tated by a superior, decision by fiat. Neither
of these have much chance of being a
robust decision.

An important feature of the OODA
loop is that it is not static, it is a loop.
Efforts at orientation affect what is
observed and how the actions are imple-
mented. Each decision and action changes
the context for the observations, and the
result of the action on the environment
causes a push-back that affects the infor-
mation being observed. Competitive
advantage comes from quickness over the
entire loop, and, as with each iteration, the
changes are smaller (as they are modifica-
tions to an understood situation) and can
be more easily managed – therefore stay-
ing ahead of the competition.

To explore why we get stuck, consider
the expanded OODA loop in Figure 2.

In this diagram, the OODA loop ele-
ments are detailed as activities that are
keys to success. The dark box around ori-
ent and decide emphasizes where the bulk
of the discussion is focused. In the fol-
lowing, think of each task in a project or
the development of each feature in a
product as an OODA loop.

Observations originate from human
sources as well as from data, test results,
intelligence sources, and models about a
situation. In software and product devel-
opment, observations include the follow-
ing: formal specifications developed by
the customer; competition’s products; the
results of data collection; and the incom-
plete and evolving results of other pro-
jects. Regardless of the observation
source, this information is evolving, inconsis-
tent, uncertain, incomplete, and is dependent on
who is doing the observing (e.g. two intel-
ligence sources may give conflicting infor-
mation, or two engineers may interpret the
results of a simulation differently).
Further, some of the information is qual-
itative and some is quantitative. This infor-
mational mess is characteristic of most
critical combat, technical, product devel-
opment, and business situations. The goal

“OO-OO-OO!” The Sound of a Broken OODA Loop

The Observe, Orient, Decide, and Act Loop (OODA) was developed to describe the process needed to win at war. Recently,
the OODA Loop has been applied to business and product development as a way to describe decision-making cycles. In these
situations, the loop often gets stuck at the D, and the team is reduced to making a sound like OO-OO-OO. This article
explores why it gets stuck and how to put the D in the loop as a basis for effective action.

Dr. David G. Ullman
Robust Decisions Inc.

22 CROSSTALK The Journal of Defense Software Engineering April 2007

Observations

Unfolding

Circumstances

Decision

(Hypothesis)

Cultural

Tradition

Previous

Experience

New

Information

Analyses/

Synthesis

Genetic

Heritage

Observe Orient Decide Act

Action

(Test)

Unfolding

Circumstances Unfolding

Interaction

With

Environment

Feedback

Feedback

Unfolding

Interaction

With

Environment

Feed

Forward

Feed

Forward

Feed

Forward

Implicit Guidance

and Control

Implicit Guidance

and Control

Figure 1: OODA Loop

“OO-OO-OO!” The Sound of a Broken OODA Loop

of orient is to reduce this mess so we can
decide what to do next and take action –
collect more information, involve more
people, or turn our attention to other
OODA loops.

The goal of orientation is to make sense
of the observations. This requires under-
standing the observations as a basis for
choosing the best course of action. In
many cases, formal analysis can help
reduce this fog, but much of the informa-
tion cannot be easily modeled. Thus, how
this information is managed to match the
human decision-makers’ needs is crucial.

Orientation also is dependent on view-
point. Even on the same team, how the
observations are understood is dependent
on who is trying to understand them. As
Boyd pointed out, understanding is
dependent on previous experience, cultur-
al traditions, and genetic heritage. Beyond
these measures, understanding is also
dependent on one’s role in the organiza-
tion and team objectives. Helping a team
make sense of the situation and develop a
shared understanding while honoring the
different viewpoints is a challenging but
necessary part of getting team buy-in and
making a robust decision.

Orientation should aid in the sharing of
implicit knowledge. By this we mean that in
trying to make sense of the situation and
fuse the observations, some of the stake-
holder’s implicit knowledge must become
explicit and be communicated to others.

Often the OODA loop stalls because
the decision makers are not comfortable
with the uncertainty. Managing uncertainty
implies that beyond concern there is an
effort to do the following: measure the
uncertainty, control what you can, and
minimize the effect of that which you can-
not control. Uncertainty creates risk that a
poor decision will be made. This is over
and above traditional risk consideration –
risk based on past statistics that give infor-
mation on the probability of occurrence
and consequence. Since decisions require
a look into the evolving future, traditional
probability methods (often called frequen-
tist methods) for managing risk and uncer-
tainty cannot be applied. Recently,
Bayesian methods have been used to help
manage these situations (see item in 4c, to
follow).

A key part of orientation is developing
alternative courses of action. In the words of
the French philosopher Emile Chartier,
“Nothing is more dangerous than an idea
when it is the only one you have.” In engi-
neering design and software development,
this means actively searching for multiple
options to consider.

Making a decision is not a single action,

but is a process of repeatedly deciding what
to do next – observe more information, do
further orientation, or take action. A major
component of this is managed deliberation,
which is synergistic with Orient, as it is
part of sense-making and can help lead to
a shared vision of observations. Managed
deliberation implies the following:
• Identifying the areas on which to focus

based on benefit of further effort.
This is a major sticking point in the
OODA loop. It is often difficult to see
where more work needs to be focused.
The benefit is usually hard to measure,
but it should be in terms of the fol-
lowing: 1) anticipated change in satis-
faction with a course of action, 2)
anticipated change in the risk with a
course of action, or 3) anticipated con-
sensus or buy-in from management or
team members.

• Identifying the cost of further effort.
This also is a major sticking point in
the OODA loop. The cost of doing
more work is usually in terms of the
time used and the expense for
researching, testing, or consulting.

• Identifying areas where consensus is
low and impact is high. The goal here
is to separate areas that need effort
(consensus is low and impact is high)
from points that are not critical to a
decision. Part of choosing what to do
next is separating out what is easy to do
from what will actually provide under-
standing needed to make a decision.

• Managed deliberation implies OODA
loops inside OODA loops as the deci-
sion about that to work on next
requires its own OODA activities.
Deciding what to do next requires

fusion of the orientation results. As with
the observations, the result of orientation
is usually evolving, inconsistent, incom-
plete, uncertain, and dependent on who is
doing the orientation. Somehow, this ori-

ented information must be fused to devel-
op a picture of the situation that is cogni-
tively small enough to decide what to do
next.

Fusion may be both an analytical effort
and a consensus building effort. Analytical
methods range from formal optimization
to methods that combine the subjective
opinions of team. More importantly is
building collaboration to get buy-in on the
chosen action. Collaboration requires that
the following is present:
• Everyone can paraphrase the issue to

show that it is understood.
• Everyone has a chance to contribute

to the solution of the problem.
• Everyone has a chance to describe

what is important.
Those who do not agree with the final

decision will more likely support the team
because they have been included in the
decision-making process and appreciate the
compromise needed to reach a decision

The proof of the success of the
OODA loop is in the success of the
Action taken. Here, think of actions as
work activity or pieces of information that
affect work activity. All action affects
future observations. In Why Decisions Fail,
[2] the author studied 400 decisions made
by senior managers in medium to large
organizations. He considered the decision
a success if it was sustained for two years
after the decision was made. In other
words, the action taken had noticeable
impact two years later. He found that fully
half of the decisions failed to have any
impact beyond the use of resources.

It is clear that many decisions in infor-
mation technology OODA loops fail.
According to the 2004 Chaos Report [3],
53 percent of products are delivered late or
over-budget, and an additional 18 percent
are cancelled. Further, projects completed
by large companies have only 42 percent of
the originally designed features and func-

April 2007 www.stsc.hill.af.mil 23

Observations

are:

- Evolving

- Inconsistent

- Uncertain

- Incomplete

- Dependent

Human Sources

Decisions:

- Managing

deliberation

- Fusing information

- Choosing what

to do next

Observe Orient Decide Act

Action

Data and Models

Implicit Guidance

and Control

Unfolding

Interaction

With Other

OODA Loops

Orientation includes:

- Sense-making

- Managing alternate viewpoints

- Sharing implicit knowledge

- Managing uncertainty and risk

- Developing courses of action

Implicit Guidance

and Control

F

Intelligence

Figure 2: Expanded OODA Loop

Software Engineering Technology

tions. Features and functions are often jet-
tisoned during a project to help meet
schedule and budget. This is often referred
to as descoping a project; some organizations
build descoping into their original plans.
The Chaos Report numbers may be worse
than stated as they are self-reported.

Guidelines for Unsticking the
OODA Loop
As ubiquitous and important as the
OODA loop is, most of us receive little
training in how to perform the two key
elements of orient and decide. Sure, we
pick up some clues from our formal train-
ing, yet we are never formally trained in
the OODA elements. Even in military
training [4], there is little detail about how
to manage them. Itemized here are a few
guidelines for staying unstuck and for
making robust decisions, especially in
product and software development.

The Entire OODA Loop:
1a. Identify the OODA loops in your

organization and their interactions.
Each OODA loop provides the envi-
ronment for other interacting OODA
loops. Consider each task or feature
development as an OODA loop and
think through O-O-D-A.

1b. For each OODA loop, ensure you
know who the resulting actions will
affect because they, in turn, may affect
your observations as your loop is
refined.

Observe
2a. Make sure you know the properties of

observations. Each piece of information
comes with details about its stability,
consistency, certainty (see 2b), com-
pleteness, and its dependence on the
observer. Note these and formalize
them, if possible.

2b. All observations are uncertain. Early in
the design of a system, uncertainty is
dominated by lack of knowledge – cog-
nitive uncertainty. As systems mature,
most uncertainty is due to natural vari-
ance in the environment and nature of
materials. In software development,
variation is small compared to cognitive
uncertainty. Anytime anyone gives you
an estimate, the results of a simulation
or experiment, or an opinion, you must
tag it with a level of certainty. You need
to make this explicit. Engineers and
financial analysts in particular are prone
to giving single, deterministic values for
information that is really a distribution.
Push back on them to find the distribu-
tion, even if it is in terms such as very

sure, about, or sort-of. Early in the devel-
opment of a system, all estimates are
uncertain and need to be managed as
such (see item 3d).

Orient
3a. Since orientation is so important, it is

amazing that more emphasis is not put
on its component parts. The major
function of orientation is making sense
of the observations. Since all observa-
tions are understood only in relation to
what the orienter knows; sense is differ-
ent to each person presented with the
observations. Thus, one sticking point
is when the person responsible for the
OODA loop does not have sufficient
knowledge to orient and knows it. This
realization may take awhile. Thus, if
responsible for a decision and it is not
happening, ask if it is because of insuf-

ficient knowledge to make sense of the
situation. If so, find people who do
have the knowledge.

3b. If a problem is sufficiently complex
that a team is involved, then each per-
son on the team has a different context
for orienting. Here, sense making is
communal and challenging so no one
person has either a complete picture or
the capability of developing one. It is
possible to have meetings to discuss
the observations without significant
sense making. The key is to set up
environments that support sense mak-
ing by sharing pertinent information
needed for the decision. Implicit
knowledge needs to be made explicit
in a form that is understandable by
others who have a different context
for understanding the observations.

3c. In a team situation, during orientation,

there will be multiple viewpoints about
what is important. It is necessary to
separate what is important from what
is to be achieved. For example, the cost
of an alternative may be very impor-
tant to some and not as important to
others. This fact needs to be separated
from the estimated cost of each alter-
native being considered. The uncer-
tainty in the estimate may swamp the
differences in importance, but only if
this separation is made explicit. To
restate this, separate out what is to be
achieved (i.e. goals, targets) from how
important it is to achieve them.
Further, disagreements about what is
important can be an asset as manage-
ment of them can support collabora-
tion leading to action buy-in.

3d. Since observations are uncertain, orienta-
tion methods need to be able to manage
uncertain information whether quanti-
tative or qualitative. The risk of not
making a robust decision is dependent
on managing this uncertainty. One way
to tackle uncertainty in software devel-
opment is through simulation and test-
ing across the range of the uncertainty.
This has been formalized through the
use of design of experiments (DOE)
and Taguchi methods [5].

3e. During orientation, make sure you are
considering multiple courses of action
and can itemize them. Develop meth-
ods within your organization that
encourage this. Find ways to help the
champions of each idea compare and
contrast their alternatives with others.

Decide
4a. Making a decision is essentially deciding

what to do next. The default is to do
nothing – getting stuck on OO-OO-
OO. Being stuck is a clear call for any
of the following:
• Build consensus with the informa-

tion you have. This pushes back on
orientation – managing viewpoints,
sharing implicit knowledge, collab-
orating, and developing new cours-
es of action. This is the first choice
about what to do as it is the most
cost effective.

• Perform more analysis to refine the
orientation information. This is
generally more expensive than
working with the information you
have and can lead to paralysis by
analysis – the risk-averse activity of
trying to drive out all uncertainty
by undertaking increasingly higher-
fidelity simulations of the situa-
tion. When the fidelity of the sim-
ulations is superior to the certainty

24 CROSSTALK The Journal of Defense Software Engineering April 2007

“... understanding is
dependent on previous

experience, cultural
traditions, and genetic
heritage. Beyond these

measures, understanding
is also dependent on

one’s role in the
organization and team

objectives.”

“OO-OO-OO!” The Sound of a Broken OODA Loop

of the observations on which the
simulations are based, time and
money are being wasted.

• Return to observation and collect
more information. This is almost
always more expensive and time
consuming than the previous two
options. If the information that
will reduce the risk and unstick the
decision is collectable, it may be
worthwhile.

4b. Work toward learning from past deci-
sions. Knowing how well you are doing
requires keeping track of decisions
made, the actions that follow, and the
success of the actions (i.e. did they
stick?). This is seldom done in a fash-
ion that makes it possible to learn from
OODA loop successes and failures.

4c. Develop methods that manage the
fusion of uncertain observations and
orientation in support deciding what to
do next. Formal tools that help you do
this are just being developed. Since
decisions are based on uncertain esti-
mates of the future, Bayesian methods
are ideal for supporting such activities
[6]. In one such effort developed by the
author, Bayesian tools are packaged in
a distributed team decision-support
system. In this system, there is no need
to understand the Bayesian mathemat-
ics that are hidden behind an easy-to-
use graphical user interface. This sys-
tem attempts to estimate the risk of
making a poor decision and, in many
ways, supports the management of the
uncertain observations and orientation.

Act
5a. A decision that has both high buy-in

and accountability naturally generates
actions that are aligned with the deci-
sion made. The opposite is also true. If
a decision is made and it is not fol-
lowed by consistent actions, then the
problem may lie in earlier OODA
activity (especially see items 3b, 3c, 4a,
and 4c).

5b. Associate the actions taken with spe-
cific OODA loops (e.g. tasks). If you
cannot identify where an action initiat-
ed then it may be an assumption that
has no formal OODA activity behind
it and may be spuriously driving other
loops. Think of actions as any work
effort or piece of information that is
affecting work effort.
In summary, the OODA loop model is

an easy way to think about your product
development effort. It can help focus on
problems that occur along the way – espe-
cially if you hear your organization stutter-
ing OO-OO-OO. Following these guide-

lines can help unstick your OODA loops.u

References
1. Boyd, J. “Organic Design for

Command and Control” <www.d-n-i.
net/boyd/pdf/c&c.pdf>.

2. Nutt, Paul C. Why Decisions Fail.
Berrett-Koehler Publishers, 2002.

3. The Standish Group. “2004 Third
Quarter Research Report: CHAOS
Demographics.” <www.standishgroup.
com/sample_research/index.php>.

4. “Commander’s Estimate of the
Situation.” NWC 4111e. Mar. 2002.
Naval Operations Planning, Naval
Warfare Publication May 2001 (for-
merly NWP11).

5. Phadke, Madhav. “Design of Experi-
ments for Software Testing.” iSixSigma
Magazine Jan. 2003 <www.isixsigma.
com/library/content/c030106a.asp>.

6. D’Ambrosio, Bruce. “Bayesian Meth-
ods for Collaborative Decision-
Making.” Robust Decisions <www.
robustdecisions.com/bayesianmethod
decisions.pdf>.

Note
1. The sound “OO-OO-OO” was ver-

bally described in a presentation by
Harvey S. Gold, lead design for Six
Sigma and Black Belt, DuPont CR&D,
June 2005.

April 2007 www.stsc.hill.af.mil 25

About the Author

David G. Ullman P.E.,
Ph.D., (Emeritus Pro-
fessor of Design, Ore-
gon State University) has
researched design and
decision making for

more than 25 years. Recently, his
research has focused on the importance
of decision-making in the product real-
ization process. He is an active software
and hardware designer. His recent book,
Making Robust Decisions, was published in
December, 2006. Additionally, he is the
author of The Mechanical Design Process,
3rd edition. He is an American Society
of Mechanical Engineers Fellow and a
registered Professional Engineer.

Robust Decisions, Inc.
1655 Hillcrest DR
Corvallis, OR
Phone: (541) 758-5088

(541) 754-3609
E-mail: ullman@robust

decisions.com

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:
DEC2005 c TOTAL CREATION OF SW
JAN2006 c COMMUNICATION

FEB2006 c NEW TWIST ON TECHNOLOGY

MAR2006 c PSP/TSP
APR2006 c CMMI
MAY2006 c TRANSFORMING

JUNE2006 c WHY PROJECTS FAIL

JULY2006 c NET-CENTRICITY

AUG2006 c ADA 2005
SEPT2006 c SOFTWARE ASSURANCE

OCT2006 c STAR WARS TO STAR TREK

NOV2006 c MANAGEMENT BASICS

DEC2006 c REQUIREMENTS ENG.
JAN2007 c PUBLISHER’S CHOICE

FEB2007 c CMMI
MAR2007 c SOFTWARE SECURITY

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

26 CROSSTALK The Journal of Defense Software Engineering April 2007

Fast and predictable performance is
always an issue in the design of a

large-scale networked system dependent
on real-time data processing and analysis,
but especially so when designing distrib-
uted systems with thousands of nodes
that need to move a lot of data around
quickly in a dynamically changing environ-
ment. Switched-fabric networks [1, 2] can
provide fast and highly scalable hardware
solutions and are now being increasingly
used in such applications. What is needed
beyond that is a software solution for
bringing predictability, flexibility, and reli-
ability to distributed data communications.
I describe how the Data Distribution
Service (DDS) [3] data-centric publish-
subscribe middleware layer can realize the
full potential of a hardware switched fab-
ric network to deliver a complete solution
for application developers.

Data-Critical Systems Share
Characteristics
Many large-scale, data-critical applications

can be characterized by three attributes:
the need to gather and distribute data in
real-time, the large amount of data being
transferred, and the entities involved in
this data exchange are varied and may
even change over time. For instance, air
traffic control, financial transaction pro-
cessing, battlefield, naval command and
control, or industrial automation systems
all are examples of data-critical systems
which have these three attributes.

These systems are not necessarily hard
real-time, but their predictability require-
ments are an integral part of the functions
they perform. They gather data from a
variety of sources, sensors for example,
and they distribute the data to a variety of
users like databases, display devices, or
control algorithms. Furthermore, by their
very nature, they are distributed.

Today’s bus-based architectures, typi-
cally multi-Central Processing Units
(CPU), Versa Module Europa (VME)
backplane solution with hard-wired
input/output (I/O) interfaces to sensors

and effectors, fall short in several areas in
addressing the needs of data-critical sys-
tems. For example, these hardware trans-
port mechanisms do not scale, are difficult
to make fault-tolerant, and are difficult to
modify and upgrade once they have been
deployed.

For these reasons, designers of com-
plex, data-critical distributed systems are
turning to switched fabrics to replace bus
backplane and serial interconnect tech-
nologies. StarFabric, Peripheral Compo-
nent Interconnect (PCI) Express Advan-
ced Switching, Serial Rapid I/O and
InfiniBand are some commercial products
that implement different switched fabric
designs [1, 2].

A switched-fabric bus is unique in
that it allows all nodes on a bus to logi-
cally interconnect with all other nodes on
the bus (Figure 1). Each node is physi-
cally connected to one or more switches.
Switches may be connected to each
other. This topology results in a redun-
dant network or fabric, in which there
may be one or more redundant physical
paths between any two nodes. A node
may be logically connected to any other
node via the switch(es). A logical path is
temporary and can be reconfigured, or
switched among the available physical
connections. Switched fabric networks
can be used to provide fault tolerance
and scalability without unpredictable
degradation of performance, among
other features.

Switched Fabrics and Data
Distribution Service
A key characteristic of switched fabrics
is that they allow peer-to-peer communi-
cation between nodes without having to
physically connect every node to every
other node. With every node physically
connected to every other node, adding a
new node is exponentially more and
more expensive as the number of nodes
increases. Because a switched fabric net-
work employs switching to achieve logi-

Using Switched Fabrics and Data Distribution
Service to Develop High Performance

Distributed Data-Critical Systems

High performance and predictability are prerequisites for any large-scale networked system dependent on real-time data pro-
cessing and analysis. Data representing actual events or system status must be evaluated while it is still relevant to tactical
conditions, making it imperative to know when specific data is available to aggregate and evaluate that data in real time.
Unreliable receipt times make effective analysis difficult or impossible.

Dr. Rajive Joshi
Real-Time Innovations, Inc.

A switch connects

multiple bus segments.

A 2nd switch can be used to provide

a redundant fabric interconnect.

(

Figure 1: Switched Fabric Architecture. Multiple Switches Can Be Used to Expand the Fabric and
Provide Hardware Redundancy

Using Switched Fabrics and Data Distribution Service to Develop High Performance Distributed Data-Critical Systems

April 2007 www.stsc.hill.af.mil 27

cal connectivity and reconfigurability,
these systems can be architected to be
highly scalable.

On the software side, publish-sub-
scribe communication systems naturally
map onto switched fabrics. Publish-sub-
scribe systems work by using endpoint
nodes that communicate with each other
by sending (publishing) data and receiv-
ing (subscribing) data anonymously via
topics. A topic is identified by a name
and a data type. A data producer
declares the intent to publish data on a
topic; a data consumer registers its inter-
est in receiving data published on a
topic. The middleware acts as the glue
between the producers and the con-
sumers; it delivers the data published on
a topic by a producer to the consumers
subscribing to that topic. There can be
as many topics as needed – a producer
can publish on multiple topics and a
consumer can subscribe to multiple top-
ics. The middleware layer isolates the
data producers from the consumers;
they have no knowledge of each other.

A publish-subscribe software archi-
tecture allows producers and consumers
to be loosely coupled. As a result, it is
naturally scalable and can easily adapt to
the changing needs of distributed data-
critical systems. The producers and con-
sumers are peers – they directly commu-
nicate with each other, so the topology
of publish-subscribe systems can be
closely matched to that of switched fab-
ric systems. Thus, a publish-subscribe
middleware layer can fully exploit the
potential switched fabric network hard-
ware.

DDS standard (see The DDS
Standard sidebar on page 28) specifies a
data-centric publish subscribe middle-
ware layer, developed with the needs of
distributed data-critical applications in
mind. A well-designed DDS middleware
implementation can be good at real-time
data distribution, be easily field-upgrade-
able, and be transport agnostic. It can be
better at real-time data distribution
because publish-subscribe is more effi-
cient than the traditional request/reply
based architectures in both latency and
bandwidth for periodic data exchange.
Further, applications can be easier to
upgrade in the field because publishers
and subscribers do not care who or how
many their counterparts are. And finally,
since the middleware is layered on top of
the physical means of getting the data
from one place to another, it does not
need to depend on the network trans-
port or topology used.

Figure 2 illustrates the DDS data-

centric publish-subscribe architecture. A
topic has a name and a data type associ-
ated with it and represents the applica-
tion data model. DataReaders and
DataWriters are associated with topics.
A DataWriter can publish data on its
associated topic; a DataReader can sub-
scribe to data on its associated topic.
DDS middleware automatically and
anonymously sets up direct data flows
between DataWriters and DataReaders
associated with a topic, resulting in scal-
able and fault-tolerant data distribution.

New Choices for System
Architects
This marriage of switched fabrics and
DDS real-time middleware offers archi-
tects new flexibility in adding capabilities
that were once much more difficult to
achieve. Many of the features offered by
switched fabrics have complementary
capabilities in the DDS-compliant middle-
ware. For example, switched fabrics typi-
cally offer rich error management features
such as the ability to recognize, report,
and route around failed paths. With DDS-
compliant software, system designers can
also take advantage of DDS error report-
ing facilities.

A key feature of switched fabrics is
support for multiple paths between nodes.
This gives system architects the ability to
easily implement multiple physical inter-
connects that can be combined with
sophisticated error management. Like-
wise, with DDS, applications can take
advantage of redundant publishers that

have different strengths. When a higher
strength publisher fails, a lower strength
one is automatically switched in by the
DDS middleware. In addition to fault tol-
erance, this can also help with load bal-
ancing on heavily used networks.

Switched fabric specifications already
provide for a hot plug or hot swap capa-
bility. This hardware capability can be
combined with a virtual hot plug capability
at the application level using DDS middle-
ware. Unlike traditional tightly coupled
client/server architectures, DDS middle-
ware allows producers and consumers to
be dynamically added or removed in an
operational system.

Many switched fabrics provide sophis-
ticated features that allow, for instance,
bandwidth-reserved, isochronous transac-
tions across the fabric, something that is
not supported by, say, Ethernet.
Corresponding to the hardware QoS facil-
ities, DDS-compliant middleware can
offer a number of QoS policies that make
predictability at the application level possi-
ble. For instance, the TRANSPORT_PRI-
ORITY policy allows developers to man-
age how they prioritize one data flow over
another.

The Road Map for Distributed
Data Services
The existence of DDS as a standard spec-
ification endorsed by the Department of
Defense (DoD) paves the way for address-
ing the challenge of distributing data
among a myriad of defense systems. DDS
is now mandated for data distribution by

()Quality of Service (QoS)

Figure 2: DDS Data-Centric Publish-Subscribe Architecture Organizes the Data in a Distributed
System Around Topics

Software Engineering Technology

28 CROSSTALK The Journal of Defense Software Engineering April 2007

the Navy Open Architecture Computer
Environment [4] and DoD Information
Technology Standards Registry [5] and has
already been adopted by programs such as
Future Combat Systems, DD(X), Littoral
Combat Ship, and Ship Self-Defense
System.

But, despite the existence of a stan-
dard specification, the value of the solu-
tion is highly dependent upon its imple-
mentation. The specification defines cer-
tain features and capabilities, but not how
they should be implemented.

A carefully designed middleware
architecture can reduce the likelihood of
a fault, limit the damage of a fault if it
does occur, help detect faults immediate-
ly, protect the middleware from errors in
application code, and isolate applications
from errors in other applications. That
architecture can also deliver significant
advantages in the performance and flexi-
bility of network distributed data com-
munications.

For example, the DDS specification
defines how a publish-subscribe commu-
nication model should work for a distrib-
uted real-time network. The DDS specifi-
cation defines DataWriters for publishing
and DataReaders for subscribing to a sin-
gle topic on a user-defined data type. This
in itself is standard and straightforward
but how this is implemented can have a
significant impact on network perfor-
mance and scalability.

A robust implementation improves
both performance and scalability by
defining an architecture that supplies
each DataWriter or DataReader with a
queue that buffers messages bound for
another endpoint through a transport.
This architecture supports direct end-to-
end messaging, since each endpoint (a

DataReader or DataWriter) in each appli-
cation directly communicates with a sister
set of endpoints. Each endpoint has a
dedicated set of buffers to hold messages
in transit to other endpoints. This queu-
ing architecture provides for an opti-
mized transfer of messages from
DataWriter to DataReader, no matter
where each resides on the network. And
because the endpoints queue and buffer
transmissions to other endpoints, this
architecture can easily scale to large and
complex networks still with predictable
delivery times.

In a similar manner, DDS defines the
concept of a DomainParticipant, which is
the fundamental container entity that can
participate in a publish-subscribe network.
A DomainParticipant can contain many
DataReaders and DataWriters. Typical
applications may use only one domain,
and therefore have one Domain-
Participant. However, applications are free
to create several DomainParticipants so
multiple instances of this entity can exist
simultaneously.

Multiple execution threads are a way to
optimize responsiveness and performance
while also allowing the system to scale
across a broad fabric-based network. One
possible approach is to use several dedi-
cated threads for each DomainParticipant
in the following manner:
• Event Thread. DDS allows applica-

tion designers to associate various QoS
policies with each topic and data flow
between a DataWriter and DataReader.
These include timing related QoS that
are implemented by the middleware.
The Event thread manages both tim-
ing delays and periodic events such as
protocol heartbeats, deadlines, and
liveliness needed to meet the QoS poli-

cies requested by the application.
• Database Cleanup Thread. This

thread purges old information from
the internal data structures such as
publication declarations and subscrip-
tion requests.

• Receive Threads. A port represents a
transport specific resource for receiv-
ing incoming messages. Data packets
are delivered to transport’s ports.
Different DataReaders can be config-
ured to receive messages on different
ports. In order to minimize the end-to-
end latency, a receive thread is created
per port provided by the transport.
When the application writes new data

to a topic, the message passes all the way
through the middleware down to trans-
port level send in the caller’s thread. In
the user’s thread context, the message is
serialized, deposited into the writer
queue, encapsulated into a wire-protocol
packet, and passed to the transport for
delivery.

In the common case, the entire oper-
ation’s critical path takes no inter-applica-
tion locks and suffers no context switch-
es. The event thread is only involved if
the initial transport operation fails, or to
execute follow-on processing such as
ensuring reliable delivery. The event
thread has ready access to the message
since it is already stored in the writer
queue. When the transport receives a new
packet, the appropriate receive thread
processes the packet, retrieves the mes-
sage, stores it in the reader queue, and
immediately executes the listener call-
back. In the common-case critical path,
there are no inter-application locks or
context switches. If the application
requires the message to be handled with
user threads, it can do so with DDS
WaitSets. Both flexibility and perfor-
mance are optimized, even as the net-
work scales.

Performance can also be impacted
through the poor use of the code execu-
tion path. Since lock contention can have
a significant detrimental impact on perfor-
mance, fast path optimization takes data
to or from the network transport to the
application using a single lock per mes-
sage, greatly simplifying the resource shar-
ing protocol.

Finally, instead of using lists to store
the information needed to dispatch and
manipulate messages, hash tables can be
used. Although hash tables are more com-
plex than lists, they have constant time
access provided that the initial allocation
of space is sufficient. Regardless, in the
worst case, access time is logarithmic,
which is better than linear linked lists.

The DDS Standard

The DDS for Real-Time Systems standard [3], from the Object Management Group
(OMG), defines a publish-subscribe system that has high performance, is efficient, and
offers a predictable way of meeting the data distribution requirements of data-critical
systems with minimal overhead. The standard can be found on the OMG web site at
<www.omg.org/technology/documents/formal/data_distribution.htm>.

The DDS standard has been in existence for almost two years, maps very naturally
to the topologies and capabilities of switched fabrics, and is maturing into a solid tech-
nical approach to managing data distribution across large-scale distributed networks.

The DDS standard has three main goals:
1. To define a model for communication as pure data-centric exchanges, where appli-

cations publish (supply or stream) data which is then available to remote applica-
tions that are interested in it.

2. To provide a mechanism of specifying the available resources and providing policies
that allow the middleware to align the resources to the most critical requirements,
giving system designers the ability to control Quality of Service (QoS) properties that
affect predictability, overhead, and resource utilization.

3. To permit systems to scale to hundreds or thousands of publishers and subscribers
in a robust manner.

Using Switched Fabrics and Data Distribution Service to Develop High Performance Distributed Data-Critical Systems

April 2007 www.stsc.hill.af.mil 29

The Implementation
Optimizes Performance,
Flexibility, and Reliability
Performance, flexibility, and reliability rep-
resent just a few ways that an implementa-
tion of the DDS specification can impact
the three critical characteristics of data
communication over a distributed net-
work – reliability, performance, and flexi-
bility. Alternatively, a poor implementation
of the DDS specification can mean that
the architecture works well under certain
optimal implementations, but fails to take
advantage of greater resources, and fails
to scale as the network grows.

Data communications system devel-
opers do not want to change their appli-
cation code when the fabric is updated,
changed, or augmented. However, many
possible implementations can deliver
suboptimal results when the network
topology changes. A DDS implementa-
tion can take this into account so that the
application can be easily re-optimized to
deliver a comparable level of perfor-
mance in the face of evolving and chang-
ing fabrics.

As switched fabric technology
advances, the middleware must support
those advances by being able to adapt to
new transport mechanisms and different
resource requirements and availability.
Being able to plug-in different transports
in the middleware layer makes it possible
to more easily incorporate new fabric
technologies as they become available
without making any changes at the appli-
cation layer.

A superior implementation of the
DDS standard enables network perfor-
mance to be optimized to the particular
application. It matches the performance
needs with the underlying fabrics and
availability of system resources such as
memory. The design’s flexibility allows it
to target a broad array of applications
and network topologies by supporting
many transports and maintaining individ-
ual resources for each connection.
Finally, the design avoids most key single
points of failure, increasing reliability.u

References
1. Arshad, Nauman, Stewart Dewar, and

Ian Stalker. “Serial Switched Fabrics
Enable New Military System
Architectures.” COTS Journal Dec.
2005 <www.cotsjournalonline.com/
home/article.php?id=100438>.

2. Cotton, David B. “Switched Fabrics
and the Military Market.” COTS Jour-
nal. (Apr. 2005) <www.cotsjournalon
l ine.com/home/ar t ic le.php?id=
100294>.

3. OMG. “Data Distribution Service for
Real-Time Systems, v1.1.” Document
formal/2005-12-04. (Dec. 2005)
<www.omg.org/cgi-bin/doc?formal/
05-12 -04>.

4. Dahlgren Laboratory. Navy Open
Architecture Computing Environ-
ment <www.nswc.navy.mil/wwwDL/
B/OACE/>.

5. Defense Systems Information Agency.
DoD Information Technology Stan-
dards Registry <https://disronline.
disa.mil/>.

About the Author

Rajive Joshi, Ph.D., is a
principal software engi-
neer at Real-Time Inno-
vations, Inc., where he
specializes in the design
of distributed and real-

time systems. He has served as a consul-
tant and developer for distributed sys-
tems projects in the areas of robotics
and automation, including Alstom
Schilling’s Quest’s remote-operated vehi-
cle and CrouseHinds’ automated fila-
ment-alignment system. Joshi is the
author of Multisensor Fusion: A Minimal
Representation Framework, and is a member
of the Institute of Electrical and
Electronics Engineers, Association for
Computing Machinery, and American
Institute of Aeronautics and Astronau-
tics, Inc. He holds a doctorate and a
Master of Science degree in computer
and systems engineering from Rensse-
laer Polytechnic Institute, and has a
Bachelor of Technology in electrical
engineering from the Indian Institute of
Technology in Kanpur, India.

Real-Time Innovations, Inc.
3975 Freedom CIR 6th FL
Santa Clara, CA 95054
Phone: (408) 200-4700 ext. 4754
Fax: (408) 200-4702
E-mail: rajive.joshi@rti.com

Dear CrossTalk Editor,
As always, I thoroughly enjoy CrossTalk articles and most
everything that comes out of the Software Engineering
Institute.

I am of the considered opinion, after more than 42 years of
development experience, that the problems with software qual-
ity can be attributed to a single cause, that being the inability to
recognize complexity and act accordingly.

Resulting in: Do we tackle problems beyond our capability
to solve using human intellect, excluding mathematical process-
es, even at the module level (unknown high levels of McCabe’s
Cyclomatic Complexity Index)?

Does anyone other than the Cleanroom Software
Engineering sequence enumeration requirements analysis
process folks identify and count the number of state transitions
in a single module, much less a whole process or system? Or
understand the implication of having 64 bimodal variables that
can occur in any combination and various legal sequences? Or
understand that programming is the mapping of state transi-
tions to code?

Does anyone understand that the implication of Brooks’
Law is a loss of intellectual control over the process and prod-
uct as the process and staff and product grows in size and com-
plexity?

Is complexity a self-inflicted wound? For example, could the
failed IRS project been designed into multiple cases? Could a
separate system have been created to process the majority of
filers (e.g. 1040EZ), rather than a monolithic, all cases design? I
expect so and would have been a quick success, though I rec-
ognize we may still be developing the more complex cases when
Gabriel blows his horn. Yoder calls such monolithic design A
Big Ball of Mud <www.laputan.org/mud/>.

Do programmers exacerbate the problem by not being able
to defend their own or their team’s performance, such as 12
defects per thousand lines of code for a medium complexity
module?

Thanks for listening!
– Carl Wayne Hardeman

<cwhardeman@yahoo.com>

LETTER TO THE EDITOR

Departments

30 CROSSTALK The Journal of Defense Software Engineering April 2007

BACKTALK

April 2007 www.stsc.hill.af.mil 31

Afew months ago, I wrote an article about transitioning to a
new machine. In that article, I pointed out that I create fre-

quent backups. And then backup the backups. And then – you
get the idea. I indeed AM a bit obsessive compulsive about back-
ups. In my office, I have lots of convenient backup options. I
have network access to a RAID drive (Redundant Array of
Inexpensive Disks, sometimes Redundant Array of Independent
Disks). My RAID cluster gives me fault-tolerant storage of over
a terabyte. By fault-tolerant, I mean that the RAID cluster con-
sists of four disk drives, and any two of them can fail without
losing any data. It’s EXTREMELY reliable. Plus, we have it on
a UPS. I also back up weekly to various USB thumb drives and
two USB disks. I also create a hot backup on my laptop. Do I
need so many backups of my backups? Not really. But when I
DO need my backups, it pays off.

My fabulous new machine that I set up back in October failed
a few weeks ago. Spectacularly. In fact, the magic smoke escaped
from both the mother board AND the hard drive. (For those of
you unfamiliar with the magic smoke concept, it’s the mysterious
substance that powers electronics. The magic smoke is held cap-
tive inside of a chip. If the chip ever breaks, the magic smoke
leaks out, and the device will no longer work. This theory
appears sound – in that whenever I see the magic smoke escap-
ing, the device never works again.) Luckily, my total downtime
due to yet another machine failure was about 20 minutes. Find
unused machine, login to network, connect to RAID drive,
access all files.

Does this mean that I will slack off on the excessive USB
additional backups? Probably not. It has been said (Mark Twain)
that if a cat accidentally sits on a hot stove once, it will never sit
on a hot stove again. In fact, it will probably never sit on a cold
stove again either. I have been burned on poor backups before
– and lost a lot of work that took weeks to recover. And the
problem with being burned is that you’re scared of fire for a long
time. It helps me sleep well at night knowing that there is redun-
dancy in my backup process.

Back during World War II, the story goes that a B-17 returned
from a bombing mission and was severely damaged. The Colonel
had a meeting with his staff to discuss how the damage analysis
could help them protect B-17s better. Looking at the damaged
wings, everybody commented on how shot-up the airplane was
and how additional plating was needed on the wings.
Everywhere there was damage; somebody recommended addi-
tional modification to help strengthen the aircraft. After all of
the staff had spoken, one lone lowly Lieutenant spoke up, and
said, “This aircraft represents one of the bombers that made it
back. What we should do is strengthen it wherever it is NOT
damaged – because the damage we see is obviously survivable.”
Now THAT is thinking outside of the box.

That’s the problem with processes – sometimes you are prob-
ably strengthening them where they have failed in the past.
However, having been burnt, you might be ignoring weak points.
What you need are processes that are adaptable and provide you
with feedback. What kind of feedback? First of all, you need to
know what your current status is. How do you get this status?
Well, if you are a small development effort, you need to TALK.
And I do not mean weekly status reports or End-Of-Month

reports. I mean honest, open, frequent communication. This is
the basis for ANY good process. Capability Maturity Model,
Personal Software Process, Team Software Process, Scrum, Agile;
call it what you want.

I personally like the concept of a daily stand-up meeting –
where you literally stand up for the entire meeting. REALLY
cuts out the long-winded talkers. In fact, my personal favorite
method is when the person talking stands on one foot (not bal-
ancing the whole time – they can switch feet – but one foot
should always be off the ground). In 10-15 minutes, issues get
discussed, problems identified, resources quickly reallocate.
While not every issue is resolved, at least proactive planning can
occur.

What if you are too big for daily stand-up meetings? Well, you
can still emphasize daily meetings for the programming teams,
but somebody has to wrap up the important issues and elevate
them. That is where metrics come in. Metrics are like the tem-
perature of a project. You want to know whenever the project
starts to run a fever. What do you measure? Whatever you need
to measure that will allow you to reduce the fever. Errors. Fix
times. Testing time. Source of errors. Rework.

Don’t run a project based on how you got burned last time.
Yes, it is important not to make the same mistakes again. It is also
important to think ahead, and try not to make any critical new
mistakes, either.

Backup often, but don’t become obsessive. Use due diligence,
not undue diligence. Instead of making one small part of your
process bullet-proof, how about strengthening all (or at least
most) of the weak points. Collect meaningful and useful metrics,
and use the metrics to find out what the weak points are, and
reallocate resources as necessary.

And try not to get burnt.

— David A. Cook
Senior Research Scientist and

Principal Member of the Technical Staff
The AEgis Technologies Group, Inc.

dcook@aegistg.com

(Un) Due Diligence

Can You BackTalk?

Here is your chance to make your point, even if it is a bit
tongue-in-cheek, without your boss censoring your writing. In
addition to accepting articles that relate to software engineer-
ing for publication in CrossTalk, we also accept articles for
the BackTalk column. BackTalk articles should provide a
concise, clever, humorous, and insightful perspective on the
software engineering profession or industry or a portion of it.
Your BackTalk article should be entertaining and clever or
original in concept, design, or delivery. The length should not
exceed 750 words.

For a complete author’s packet detailing how to submit
your BackTalk article, visit our Web site at
<www.stsc.hill.af.mil>.

CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE

BLDG 1238

Hill AFB, UT 84056-5820

PRSRT STD

U.S. POSTAGE PAID

Albuquerque, NM

Permit 737

CrossTalk is

co-sponsored by the

following organizations:

	Front Cover
	Table of Contents
	From the Sponsor
	Agile Development
	What Engineering Has in Common With Manufacturing and Why It Matters
	Collaboration Skills for Agile Teams
	Toward Agile Systems Engineering Processes

	Software Engineering Technology
	CMMI Level 5 and the Team Software Process
	“OO-OO-OO!” The Sound of a Broken OODA Loop
	Using Switched Fabrics and Data Distribution Service to Develop High Performance Distributed Data-Critical Systems

	Coming Events
	Web Sites
	Call for Articles
	Letter to the Editor
	SSTC 2007
	BackTalk
	Back Cover

