
RF Design www.rfdesign.com 7

DefenseElectronics

Data-centric pervasive information
is the wave of the future
This article explores the evolution from data networks to pervasive data.
With pervasive data, all information is available anytime at any place, without
consideration of its origin. The article offers a high-level, practical view of the
state of distributed data transport, storage and management. It starts with the
basic state-of-the-art of real-time networking middleware, addresses the tough
performance issues, and fi nally develops a vision for the pervasive-information
future.

By Stan Schneider

The coming information infrastructure for
pervasive, real-time data differs from the

Internet. This new data-centric network will
connect devices, not people, and will change
how devices interact. The technological key
driving this data-centric transformation is
real-time middleware, but to fully exploit the
opportunities of data-centric networking there
needs to be a change in the thought model that
designers apply.

Today’s network makes it easy to con-
nect nodes, but not easy to fi nd and access
the information resident in networks of
connected nodes. This is changing; we will
soon assume the ability to pool information
from many distributed sources, and access
it at rates meaningful to physical processes.
This “data-centric” architecture will drive the
development of vast, distributed, information-
critical applications.

The change must begin with a shift from
code-centric or architecture-centric thinking to
data-centric design, which is a fundamentally
different approach. Instead of confi guring
clients and servers or building data-access
objects and invoking remote methods, data-
centric design implies that the developer
directly controls information exchange. Data-
centric developers don’t write or specify code;
they build a “data dictionary” that defi nes who
needs what data. Then they answer informa-
tion questions about the data’s source, how
fast the data is coming, its need to be reliable,
its need for storage, and what happens if a
node fails.

With this information in hand, the developer
then maps the information fl ow using the
publish-subscribe information fl ow model.
This model should be familiar; it mirrors
time-critical information-delivery systems
used in everyday life, including television,
radio, magazines and newspapers. Such pub-
lish-subscribe systems are good at distributing
large quantities of time-critical information

quickly, even in the presence of unreliable
delivery mechanisms.

Publish-subscribe works by creating the
illusion of a shared global data space within
the network (Figure 1). This data space con-
tains data objects that applications in nodes
distributed across the network can access
using simple read and write operations. A
node that writes data to the space is said to
“publish” the data and a node that reads data
is a “subscriber.”

To use this data fl ow model, applications
must be programmed in a new way. Rather
than simply asking for data from each other
as needed, the application must separate the

Figure 1. The publish-subscribe model creates a virtual global data space that nodes can read from
and write to in order to exchange information.
Figure 1. The publish-subscribe model creates a virtual global data space that nodes can read from

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

PP

P

P

X

P

P

P

P

Global Data Space

information-access intent (what it wants
to do) from the information exchange
itself. This means that the application
must declare its intent of writing data and
specify which data objects it will write
(i.e., defi ne its publications). It must also
declare its intent to read data and specify
which data objects it intends to read (i.e.,
defi ne its subscriptions). Both declara-
tions must be made before the application
actually writes or reads the data itself.

By thus separating intent from ex-
change, the application provides the
middleware with advanced information
about data exchanges, giving the middle-
ware an opportunity to reserve resources
so that the information access can be as
effi cient as possible. The information fl ow
map that the publish-subscribe declara-

tions describe thus directly translates to a set
of logical communications channels between
publisher nodes (data sources) and subscriber
nodes (users of data). The developer does not
need to implement these channels because
publish-subscribe middleware on the network
handles the actual communications. The
middleware passes messages directly between
the communicating nodes and handles both
discovery—what data should be sent where—
and delivery—when and how to send it.

Middleware a key enabler
Publish-subscribe middleware is the key

enabling technology for data-centric design.

Figure 2. In the data-centric model, middleware
handles the communications of data among
applications, freeing the developer from dealing
with the details of data transport.

information-access intent (what it wants
to do) from the information exchange
itself. This means that the application
must declare its intent of writing data and
specify which data objects it will write
(i.e., defi ne its publications). It must also
declare its intent to read data and specify
which data objects it intends to read (i.e.,
defi ne its subscriptions). Both declara-
tions must be made before the application
actually writes or reads the data itself.

change, the application provides the
middleware with advanced information
about data exchanges, giving the middle-
ware an opportunity to reserve resources Figure 2. In the data-centric model, middleware

8 www.rfdesign.com August 2006

For one thing, it makes system integration
easier. Designers have always built interface
specifi cations that detail which information
fl ows between system components and created
the buses that carry that information. Changes
to the information content can have a ripple
effect throughout the system, requiring chang-
es to many interrelated components. With a
publish-subscribe network, the information
fl ow specifi cation is the design. The inter-
face specifi cations are, essentially, directly
implemented by the middleware. Individual
nodes simply “subscribe” to data they need
and “publish” information they produce and
the middleware does the rest.

The middleware, also called “networking
middleware,” is composed of software layers
above the basic TCP/IP stack that implement
sophisticated data transfer and management
models (Figure 2). These layers implement
software agents that shuttle information
between different components of complex,
distributed applications. There are many
types of such middleware besides the publish-
subscribe model, such as document sharing,
distributed databases, and messaging systems,
but most fall short of creating a pervasive,

real-time data network.
Distributed Hash Tables and peer-to-peer

document sharing—technologies like BitTor-
rent and Kazaa—create a distributed source
for individual fi les. These technologies are
massively scalable sources of relatively
low-bandwidth data. They make virtually no
attempt, however, to keep the data consistent
throughout the network.

Distributed databases provide much higher
bandwidth and data consistency than peer-to-
peer sharing systems. In addition, they often
strive for very high-fi delity data control.
In fact, transactional systems, designed for
applications like banking, offer guaranteed
integrity and persistent data, even in the face
of system failures. High-performance scalabil-
ity, however, is a challenge for such systems.
The random-access semantics of memory and
the implied totally reliable “instantaneous”
response cannot be implemented transpar-
ently in a network where computers can join
and leave and communications links have
sporadic faults.

Data distribution and messaging systems,
which includes the publish-subscribe model,
strive to update multiple nodes with rapidly
changing data at speeds measured in micro-
seconds. Technologies include the traditional
“middleware” such as CORBA, message
queues and JMS. While some of these systems
boast impressive data transfer performance,
most target smaller systems of only a few
hundred nodes, and leave data consistency as
an exercise for the application.

DDS enables the net-centric
vision

The need for data-distribution is fundamen-
tal to C4I as well as other domains such as
traffi c monitoring and industrial sensing.

Within the GIG there are complex datafl ows
(one-to-many, many-to-one, many-to-many)
with differing requirements in terms of real-
time performance (update rates, latency,
bandwidth); reliability; fault-tolerance (re-
dundancy, automatic failover, no single point
of failures); dynamic confi guration changes
(participants may join or leave arbitrarily);
and scalability. The GIG environment refl ects
the fl uid and ever-changing nature of the real
world.

The lack of established standards has led
to the development of ad-hoc custom one-off
solutions with sub-optimal performance and
robustness that end up being expensive to
maintain. Commercial implementations of
publish-subscribe data-distribution middle-
ware have existed and have been deployed
with success. However, each vendor provided
a different API and slightly different semantics
for equivalent concepts.

This situation was similar to the one prior
to the adoption of UML. Successful model-
ing tools existed but widespread acceptance,

For one thing, it makes system integration

The DDS standard
The data distribution service (DDS)

specifi cation standardizes the software
application-programming interface (API)
by which a distributed application can use
“data-centric publish-subscribe” (DCPS)
as a communication mechanism. Since
DDS is implemented as an “infrastruc-
ture” solution, it can be added as the
communication interface for any software
application.

Advantages of DDS:
● based on a simple “publish-sub-

scribe” communication paradigm;
● fl exible and adaptable architecture

that supports “auto-discovery” of new or
stale endpoint applications;

● low overhead—can be used with
high-performance systems;

● deterministic data delivery;
● dynamically scalable, effi cient use of

transport bandwidth;
● supports one-to-one, one-to-many,

many-to one, and many-to-many com-
munications; and

● large number of confi guration pa-
rameters that give developers complete
control of each message in the system.

DDS provides an infrastructure layer
that enables many different types of
applications to communicate with each
other. The DDS specification is gov-
erned by the Object Management Group
(OMG), which is the same organization
that governs the specifi cations for CORBA,
UML and other standards. A copy of the
DDS specifi cation can be obtained from
the OMG website at www.omg.org.

RF Design www.rfdesign.com 9

1.0 Common Services MUX

TDM
DIA
FIL

NAV MCP IPCC

3.0 Fusion
RIP TRK MSI

5.0 Communications
L11L4 L16

7.0 Visualization
ACISHMI

2.0 Sensors
IFFRDR ESM SAFE

4.0 BM C2
TDAWAC

6.0 Sensor Control
DSCSEN

8.0 Training

availability of trained developers, and broad
knowledge exchange did not come until the
UML standard consolidated terminology and
notation. The recent adoption of the Data-Dis-
tribution Service (DDS) for real-time systems
specification by the Object Management
Group (OMG) is doing for data-distribution
what UML did for modeling technologies.
(See sidebar, “The DDS Standard.”)

The DDS is a middleware technology that
is especially well suited to address the needs
of the C4I applications within the GIG. DDS
uses a publish-subscribe approach to let ap-
plication developers and system integrators
focus on the logic of the applications and
communicate by publishing the information
they have and subscribing to the information
they need. DDS handles automatic discovery,
reliability and redundancy over otherwise
unreliable networks. A key aspect of the
DDS standard is the pervasive use of quality
of service (QoS) to confi gure the system and
establish middleware-brokered QoS contracts
between publishers and subscribers. QoS con-
tracts provide the performance predictability
and resource control required by real-time
C4I systems while preserving the modular-
ity, scalability and robustness inherent to the
anonymous publish-subscribe model.

DDS is well suited for heterogeneous net-
works as it handles format conversion across
operating systems, processor architectures and
programming languages.

These characteristics make it ideally suited
for the heterogeneous dynamic environments
introduced by the increased use of wireless
devices within the GIG.

The QoS parameters help confi gure the
system to ensure that each application receives
its data in what the application considers to be
a timely fashion. Publishers defi ne a maximal
level for each QoS policy, declaring their best
ability to deliver data. Subscribers request
a minimum level for each QoS policy. The
middleware then brokers a “contract” between
the two and reserves the resources needed to
support the data exchange at the right QoS
level. These contracts provide the performance

Figure 3. The systems of the Hawkeye aircraft
contain many communicating modules, forming
a complex data fl ow pattern that can be hard to
integrate and maintain.

predictability and resource control required
by real-time and embedded systems. At the
same time they help preserve the modular-
ity, scalability and robustness inherent to the
anonymous publish-subscribe model.

These contracts describe a one-to-one
data exchange but can do more. Special QoS
parameters also support such things as event
propagation and messaging. This allows
applications to publish data that has many
subscribers, creating a broadcast effect for data
that is not critical, such as a series of frequent
temperature readings that control systems are
monitoring. In such applications, the loss of

10 www.rfdesign.com August 2006

CEC

1.0 Common Services MUX

TDM
DIA
FIL

NAV MCP IPCC

3.0 Fusion
RIP TRK MSI

5.0 Communications
L11L4 L16

7.0 Visualization
ACISHMI

2.0 Sensors
IFFRDR ESM SAFE

4.0 BM C2
TDAWAC

6.0 Sensor Control
DSCSEN

8.0 Training

an occasional reading has no impact. Using
the broadcast approach, then, reduces traffi c
on the network by eliminating the need for
acknowledgments and re-sends of data.

Information-critical applications
simplifi ed

These fl exible data delivery mechanisms
along with the speed and reliability of data
transfers that DDS provides enable the
creation of distributed, information-critical
applications that are the next generation of
computing. A real-world example can be taken

Figure 4. Complex data fl ow patterns can result
in equally complex interactions where a change
in one module forces changes (shown in red)
in many others in order to maintain a match
among the communications links.

from the design of the Navy’s E-2C Hawkeye
aircraft. The various software modules in the
system communicated information to one
another using direct links, quickly resulting
in a complicated information infrastructure
(Figure 3) that was diffi cult to integrate.
Changes to one part of the system could af-
fect many other parts (Figure 4). The data
fl ow, data-centric thinking transformed this
design by replacing all of the individual links
with a publish-subscribe structure (Figure 5),
greatly simplifying system integration and
maintenance.

The simplifi ed distribution of data is only
one element of the power inherent in DDS,
however. Technologies to fi nd, store and
deliver data have always been available if
there is enough time and resources. The
situation becomes much more interesting,
however, if the data is easily available in
real time. There really is no crisp defi nition
of “real time,” however. The term can refer
to anything from mathematically provable
response times to “fast enough.” In practice,
however, two general meanings have arisen
for real time, one in enterprise software and
one in embedded systems.

In the enterprise, a system is real time if
it responds “now” as perceived by a human.
Thus, a system that reports stock trades
within a few minutes is real time; the stock
listings in yesterday’s paper are not. A “real-
time” airline reservation system that takes 10
seconds for each request is likely acceptable.
One that takes 10 minutes is not. The chal-
lenge to achieving real-time performance
in enterprise systems typically involves
accessing or searching through large data-
bases of information and presenting them in
an intuitive display.

In embedded systems, real time means
being predictable and fast with respect to the
relevant physical processes. The primary chal-
lenges here are locating the right information,
determining where it should go, and delivering
it quickly. Consider a control system that must
respond to a sensor (e.g., a temperature rise)

RF Design www.rfdesign.com 11

by changing some actuator (e.g., closing a
valve). To respond to the stimulus, the sensor
must detect the stimulus, that detection must be
reported to peripheral hardware, the peripheral
must interrupt the CPU, the operating system
must process the interrupt, the application
must calculate a response, the response must
be passed to the actuator, and the valve must
close. If each of these steps takes fi xed time,
the system will be deterministic. If those times
add up to a small enough value, the valve
can close before the boiler overheats and the
system can be called real time. Generally, an
embedded system that reliably responds in a
millisecond or so is considered real time.

Making middleware real-time
So, what makes middleware real time?

The easy answer would be that middleware is
real time if it can always process requests in
a suffi ciently short deterministic time frame.
Unfortunately, this is rarely possible or even
defi nable. Most designers cannot assume a reli-
able or strictly time-deterministic underlying
network transport, so most real-time systems
must operate without these luxuries and simply
concentrate on getting the information to its
destination on time.

Making the system distributed across a
network greatly complicates things. Network
hardware, software, transport properties, con-
gestion and confi guration affect the system’s
response time. Furthermore, the defi nition of
“on time” may have different meanings for
different nodes in a distributed system. Sys-
tems that merge embedded and enterprise
applications are even more complicated,
combining the challenges facing both.

Fortunately, strict time-determinism in the
network may be unnecessary. Most architects
do not know the real performance bounds of
their systems. They know, however, that their
network transport affords the raw ability to
succeed if properly managed. The key to suc-
cessful distributed real-time middleware, then,
is to “properly manage” the delivery of data.

ABOUT THE AUTHOR

Stan Schneider is chief executive offi cer
of Real-Time Innovations Inc., which
he founded in 1991 to develop produc-
tivity tools for real-time applications.
A recognized expert in real-time
software systems and architectures,
Schneider holds a BS in Applied Math-
ematics (Summa Cum Laude) and a
PhD in Electrical Engineering and
Computer Science from Stanford
University. He can be reached at Stan.
Schneider@rti.com.

Figure 5. The publish-subscribe data model simplifi es the interactions among software modules,
replacing point-to-point channels with communications to and from a framework that handles the
data distribution.

Figure 5. The publish-subscribe data model simplifi es the interactions among software modules,

1.0 Common Services MUX

TDM
DIA
FIL

NAV MCP
aADNS

IPCC
TIS

3.0 Fusion
CECRIP TRK MSI

5.0 Communications
L11L4 L16 IPv6

7.0 Visualization
ACISHMI T40

2.0 Sensors
IFFRDR ESM SAFE

4.0 BM C2 DWC
TDAWAC RAIDER CHAT

6.0 Sensor Control
DSCSEN

8.0 Training

Publish-Subscribe Fram
ew

ork

The publish-subscribe model makes such
management possible. The many logical
pathways, redundant data sources, and timely
distribution of data that the model supports
provide the tools that applications develop-
ers need in order to handle the unreliability
and lack of determinism in the underlying
network. The result can be an information-
handling system that pools the resources of
many distributed data sources and delivers it
at rates that are applicable for the control of
physical processes.

Many challenges still need to be addressed
in performance, scalability and data integ-
rity, but a data-centric, pervasive-information
future is coming. The technologies for infor-
mation distribution, storage and discovery
are evolving rapidly and are merging into a
pervasive data model. They will soon satisfy
and combine the real-time performance re-
quirements of embedded systems and high-
performance data access needs of the enter-
prise. Data-centric architectures such as DDS
will change the world by making information
truly pervasive. That pervasive information,
available at nearly instant speeds, will enable
much more capable distributed, data-critical
applications.

