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Data-centric pervasive information 
is the wave of the future
This article explores the evolution from data networks to pervasive data. 
With pervasive data, all information is available anytime at any place, without 
consideration of its origin. The article offers a high-level, practical view of the 
state of distributed data transport, storage and management. It starts with the 
basic state-of-the-art of real-time networking middleware, addresses the tough 
performance issues, and fi nally develops a vision for the pervasive-information 
future.

By Stan Schneider

The coming information infrastructure for 
pervasive, real-time data differs from the 

Internet. This new data-centric network will 
connect devices, not people, and will change 
how devices interact. The technological key 
driving this data-centric transformation is 
real-time middleware, but to fully exploit the 
opportunities of data-centric networking there 
needs to be a change in the thought model that 
designers apply.  

Today’s network makes it easy to con-
nect nodes, but not easy to fi nd and access 
the information resident in networks of 
connected nodes. This is changing; we will 
soon assume the ability to pool information 
from many distributed sources, and access 
it at rates meaningful to physical processes. 
This “data-centric” architecture will drive the 
development of vast, distributed, information-
critical applications.

The change must begin with a shift from 
code-centric or architecture-centric thinking to 
data-centric design, which is a fundamentally 
different approach. Instead of confi guring 
clients and servers or building data-access 
objects and invoking remote methods, data-
centric design implies that the developer 
directly controls information exchange. Data-
centric developers don’t write or specify code; 
they build a “data dictionary” that defi nes who 
needs what data. Then they answer informa-
tion questions about the data’s source, how 
fast the data is coming, its need to be reliable, 
its need for storage, and what happens if a 
node fails.

With this information in hand, the developer 
then maps the information fl ow using the 
publish-subscribe information fl ow model. 
This model should be familiar; it mirrors 
time-critical information-delivery systems 
used in everyday life, including television, 
radio, magazines and newspapers. Such pub-
lish-subscribe systems are good at distributing 
large quantities of time-critical information 

quickly, even in the presence of unreliable 
delivery mechanisms.

Publish-subscribe works by creating the 
illusion of a shared global data space within 
the network (Figure 1). This data space con-
tains data objects that applications in nodes 
distributed across the network can access 
using simple read and write operations. A 
node that writes data to the space is said to 
“publish” the data and a node that reads data 
is a “subscriber.” 

To use this data fl ow model, applications 
must be programmed in a new way. Rather 
than simply asking for data from each other 
as needed, the application must separate the 

Figure 1. The publish-subscribe model creates a virtual global data space that nodes can read from 
and write to in order to exchange information.
Figure 1. The publish-subscribe model creates a virtual global data space that nodes can read from 
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information-access intent (what it wants 
to do) from the information exchange 
itself. This means that the application 
must declare its intent of writing data and 
specify which data objects it will write 
(i.e., defi ne its publications). It must also 
declare its intent to read data and specify 
which data objects it intends to read (i.e., 
defi ne its subscriptions). Both declara-
tions must be made before the application 
actually writes or reads the data itself.

By thus separating intent from ex-
change, the application provides the 
middleware with advanced information 
about data exchanges, giving the middle-
ware an opportunity to reserve resources 
so that the information access can be as 
effi cient as possible. The information fl ow 
map that the publish-subscribe declara-

tions describe thus directly translates to a set 
of logical communications channels between 
publisher nodes (data sources) and subscriber 
nodes (users of data).  The developer does not 
need to implement these channels because 
publish-subscribe middleware on the network 
handles the actual communications. The 
middleware passes messages directly between 
the communicating nodes and handles both 
discovery—what data should be sent where—
and delivery—when and how to send it.

Middleware a key enabler
Publish-subscribe middleware is the key 

enabling technology for data-centric design. 

Figure 2. In the data-centric model, middleware 
handles the communications of data among 
applications, freeing the developer from dealing 
with the details of data transport.
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For one thing, it makes system integration 
easier. Designers have always built interface 
specifi cations that detail which information 
fl ows between system components and created 
the buses that carry that information. Changes 
to the information content can have a ripple 
effect throughout the system, requiring chang-
es to many interrelated components. With a 
publish-subscribe network, the information 
fl ow specifi cation is the design. The inter-
face specifi cations are, essentially, directly 
implemented by the middleware. Individual 
nodes simply “subscribe” to data they need 
and “publish” information they produce and 
the middleware does the rest.

The middleware, also called “networking 
middleware,” is composed of software layers 
above the basic TCP/IP stack that implement 
sophisticated data transfer and management 
models (Figure 2). These layers implement 
software agents that shuttle information 
between different components of complex, 
distributed applications. There are many 
types of such middleware besides the publish-
subscribe model, such as document sharing, 
distributed databases, and messaging systems, 
but most fall short of creating a pervasive, 

real-time data network.   
Distributed Hash Tables and peer-to-peer 

document sharing—technologies like BitTor-
rent and Kazaa—create a distributed source 
for individual fi les. These technologies are 
massively scalable sources of relatively 
low-bandwidth data. They make virtually no 
attempt, however, to keep the data consistent 
throughout the network.

Distributed databases provide much higher 
bandwidth and data consistency than peer-to-
peer sharing systems. In addition, they often 
strive for very high-fi delity data control. 
In fact, transactional systems, designed for 
applications like banking, offer guaranteed 
integrity and persistent data, even in the face 
of system failures. High-performance scalabil-
ity, however, is a challenge for such systems. 
The random-access semantics of memory and 
the implied totally reliable “instantaneous” 
response cannot be implemented transpar-
ently in a network where computers can join 
and leave and communications links have 
sporadic faults.

Data distribution and messaging systems, 
which includes the publish-subscribe model, 
strive to update multiple nodes with rapidly 
changing data at speeds measured in micro-
seconds. Technologies include the traditional 
“middleware” such as CORBA, message 
queues and JMS. While some of these systems 
boast impressive data transfer performance, 
most target smaller systems of only a few 
hundred nodes, and leave data consistency as 
an exercise for the application.

DDS enables the net-centric 
vision

The need for data-distribution is fundamen-
tal to C4I as well as other domains such as 
traffi c monitoring and industrial sensing.  

Within the GIG there are complex datafl ows 
(one-to-many, many-to-one, many-to-many) 
with differing requirements in terms of real-
time performance (update rates, latency, 
bandwidth); reliability; fault-tolerance (re-
dundancy, automatic failover, no single point 
of failures); dynamic confi guration changes 
(participants may join or leave arbitrarily); 
and scalability. The GIG environment refl ects 
the fl uid and ever-changing nature of the real 
world.

The lack of established standards has led 
to the development of ad-hoc custom one-off 
solutions with sub-optimal performance and 
robustness that end up being expensive to 
maintain. Commercial implementations of 
publish-subscribe data-distribution middle-
ware have existed and have been deployed 
with success. However, each vendor provided 
a different API and slightly different semantics 
for equivalent concepts.

This situation was similar to the one prior 
to the adoption of UML. Successful model-
ing tools existed but widespread acceptance, 

For one thing, it makes system integration 

The DDS standard
The data distribution service (DDS) 

specifi cation standardizes the software 
application-programming interface (API) 
by which a distributed application can use 
“data-centric publish-subscribe” (DCPS) 
as a communication mechanism. Since 
DDS is implemented as an “infrastruc-
ture” solution, it can be added as the 
communication interface for any software 
application.

Advantages of DDS:
● based on a simple “publish-sub-

scribe” communication paradigm;
●  fl exible and adaptable architecture 

that supports “auto-discovery” of new or 
stale endpoint applications;

●  low overhead—can be used with 
high-performance systems;

●  deterministic data delivery;
●  dynamically scalable, effi cient use of 

transport bandwidth;
●  supports one-to-one, one-to-many, 

many-to one, and many-to-many com-
munications; and

●  large number of confi guration pa-
rameters that give developers complete 
control of each message in the system.

DDS provides an infrastructure layer 
that enables many different types of 
applications to communicate with each 
other. The DDS specification is gov-
erned by the Object Management Group 
(OMG), which is the same organization 
that governs the specifi cations for CORBA, 
UML and other standards. A copy of the 
DDS specifi cation can be obtained from 
the OMG website at www.omg.org.
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availability of trained developers, and broad 
knowledge exchange did not come until the 
UML standard consolidated terminology and 
notation. The recent adoption of the Data-Dis-
tribution Service (DDS) for real-time systems 
specification by the Object Management 
Group (OMG) is doing for data-distribution 
what UML did for modeling technologies. 
(See sidebar, “The DDS Standard.”)

The DDS is a middleware technology that 
is especially well suited to address the needs 
of the C4I applications within the GIG. DDS 
uses a publish-subscribe approach to let ap-
plication developers and system integrators 
focus on the logic of the applications and 
communicate by publishing the information 
they have and subscribing to the information 
they need. DDS handles automatic discovery, 
reliability and redundancy over otherwise 
unreliable networks. A key aspect of the 
DDS standard is the pervasive use of quality 
of service (QoS) to confi gure the system and 
establish middleware-brokered QoS contracts 
between publishers and subscribers. QoS con-
tracts provide the performance predictability 
and resource control required by real-time 
C4I systems while preserving the modular-
ity, scalability and robustness inherent to the 
anonymous publish-subscribe model.

DDS is well suited for heterogeneous net-
works as it handles format conversion across 
operating systems, processor architectures and 
programming languages.

These characteristics make it ideally suited 
for the heterogeneous dynamic environments 
introduced by the increased use of wireless 
devices within the GIG. 

The QoS parameters help confi gure the 
system to ensure that each application receives 
its data in what the application considers to be 
a timely fashion. Publishers defi ne a maximal 
level for each QoS policy, declaring their best 
ability to deliver data. Subscribers request 
a minimum level for each QoS policy. The 
middleware then brokers a “contract” between 
the two and reserves the resources needed to 
support the data exchange at the right QoS 
level. These contracts provide the performance 

Figure 3. The systems of the Hawkeye aircraft 
contain many communicating modules, forming 
a complex data fl ow pattern that can be hard to 
integrate and maintain.

predictability and resource control required 
by real-time and embedded systems. At the 
same time they help preserve the modular-
ity, scalability and robustness inherent to the 
anonymous publish-subscribe model.

These contracts describe a one-to-one 
data exchange but can do more. Special QoS 
parameters also support such things as event 
propagation and messaging. This allows 
applications to publish data that has many 
subscribers, creating a broadcast effect for data 
that is not critical, such as a series of frequent 
temperature readings that control systems are 
monitoring. In such applications, the loss of 
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an occasional reading has no impact. Using 
the broadcast approach, then, reduces traffi c 
on the network by eliminating the need for 
acknowledgments and re-sends of data.

Information-critical applications 
simplifi ed

These fl exible data delivery mechanisms 
along with the speed and reliability of data 
transfers that DDS provides enable the 
creation of distributed, information-critical 
applications that are the next generation of 
computing. A real-world example can be taken 

Figure 4. Complex data fl ow patterns can result 
in equally complex interactions where a change 
in one module forces changes (shown in red) 
in many others in order to maintain a match 
among the communications links.

from the design of the Navy’s E-2C Hawkeye 
aircraft. The various software modules in the 
system communicated information to one 
another using direct links, quickly resulting 
in a complicated information infrastructure 
(Figure 3) that was diffi cult to integrate. 
Changes to one part of the system could af-
fect many other parts (Figure 4). The data 
fl ow, data-centric thinking transformed this 
design by replacing all of the individual links 
with a publish-subscribe structure (Figure 5), 
greatly simplifying system integration and 
maintenance.

The simplifi ed distribution of data is only 
one element of the power inherent in DDS, 
however. Technologies to fi nd, store and 
deliver data have always been available if 
there is enough time and resources. The 
situation becomes much more interesting, 
however, if the data is easily available in 
real time.  There really is no crisp defi nition 
of “real time,” however. The term can refer 
to anything from mathematically provable 
response times to “fast enough.” In practice, 
however, two general meanings have arisen 
for real time, one in enterprise software and 
one in embedded systems.

In the enterprise, a system is real time if 
it responds “now” as perceived by a human.  
Thus, a system that reports stock trades 
within a few minutes is real time; the stock 
listings in yesterday’s paper are not. A “real-
time” airline reservation system that takes 10 
seconds for each request is likely acceptable. 
One that takes 10 minutes is not. The chal-
lenge to achieving real-time performance 
in enterprise systems typically involves 
accessing or searching through large data-
bases of information and presenting them in 
an intuitive display.

In embedded systems, real time means 
being predictable and fast with respect to the 
relevant physical processes. The primary chal-
lenges here are locating the right information, 
determining where it should go, and delivering 
it quickly. Consider a control system that must 
respond to a sensor (e.g., a temperature rise) 
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by changing some actuator (e.g., closing a 
valve). To respond to the stimulus, the sensor 
must detect the stimulus, that detection must be 
reported to peripheral hardware, the peripheral 
must interrupt the CPU, the operating system 
must process the interrupt, the application 
must calculate a response, the response must 
be passed to the actuator, and the valve must 
close. If each of these steps takes fi xed time, 
the system will be deterministic. If those times 
add up to a small enough value, the valve 
can close before the boiler overheats and the 
system can be called real time. Generally, an 
embedded system that reliably responds in a 
millisecond or so is considered real time. 

Making middleware real-time
So, what makes middleware real time? 

The easy answer would be that middleware is 
real time if it can always process requests in 
a suffi ciently short deterministic time frame.  
Unfortunately, this is rarely possible or even 
defi nable. Most designers cannot assume a reli-
able or strictly time-deterministic underlying 
network transport, so most real-time systems 
must operate without these luxuries and simply 
concentrate on getting the information to its 
destination on time.  

Making the system distributed across a 
network greatly complicates things. Network 
hardware, software, transport properties, con-
gestion and confi guration affect the system’s 
response time. Furthermore, the defi nition of 
“on time” may have different meanings for 
different nodes in a distributed system. Sys-
tems that merge embedded and enterprise 
applications are even more complicated, 
combining the challenges facing both.  

Fortunately, strict time-determinism in the 
network may be unnecessary. Most architects 
do not know the real performance bounds of 
their systems. They know, however, that their 
network transport affords the raw ability to 
succeed if properly managed. The key to suc-
cessful distributed real-time middleware, then, 
is to “properly manage” the delivery of data.
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Figure 5. The publish-subscribe data model simplifi es the interactions among software modules, 
replacing point-to-point channels with communications to and from a framework that handles the 
data distribution.
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The publish-subscribe model makes such 
management possible. The many logical 
pathways, redundant data sources, and timely 
distribution of data that the model supports 
provide the tools that applications develop-
ers need in order to handle the unreliability 
and lack of determinism in the underlying 
network. The result can be an information-
handling system that pools the resources of 
many distributed data sources and delivers it 
at rates that are applicable for the control of 
physical processes.

Many challenges still need to be addressed 
in performance, scalability and data integ-
rity, but a data-centric, pervasive-information 
future is coming. The technologies for infor-
mation distribution, storage and discovery 
are evolving rapidly and are merging into a 
pervasive data model. They will soon satisfy 
and combine the real-time performance re-
quirements of embedded systems and high-
performance data access needs of the enter-
prise. Data-centric architectures such as DDS 
will change the world by making information 
truly pervasive. That pervasive information, 
available at nearly instant speeds, will enable 
much more capable distributed, data-critical 
applications.  


