
Softer Side
On The

Modeling and Middleware

Easy access to information ranks
as a central goal of the military’s
networked future. The DoD’s vision,

called the Global Information Grid (GIG),
calls for connecting systems across the
globe. These systems range from enter-
prise business servers to battlefi eld tactical
systems. The challenge is to get the right
data to the right place at the right time.

The enterprise portion of the GIG
relies on commercial standards like Web
services. However, Web services can’t ad-
dress the real-time requirements of a tac-
tical system like fi re-control. These real-
time systems need targeted technology,
and that technology must be specifi ed by
targeted standards.

Responding to those demands, the
Object Management Group (OMG) fi -
nalized the Data-Distribution Service
(DDS) for Real-Time Systems Specifi ca-
tion in June 2004. The OMG is the stan-
dards body responsible for many modern
software standards, including CORBA,
UML and MDA. The new DDS standard
directly addresses the communication
needs of real-time systems via network
middleware—the software fabric that al-
lows computer programs to “talk” and
easily exchange information over the net-

work (Figure 1). DDS is the most signifi -
cant middleware addition that OMG has
made in recent years.

DDS Communications Model
DDS is well suited to address the needs

of real-time applications. The DDS pub-
lish-subscribe architecture lets applica-
tions communicate simply by publishing
the information they have and subscribing
to the information they need. DDS handles
automatic discovery, reliability and redun-
dancy over otherwise unreliable networks.

Publish-subscribe is a powerful par-
adigm. But the real key to DDS’s power is

its ability to “fl exibly-but-precisely” spec-
ify performance requirements between
all the different parts of the system. DDS
achieves this power through the perva-
sive use of Quality of Service (QoS) pa-
rameters. QoS parameters confi gure the
system and establish “contracts” between
publishers and subscribers that specify
exactly how information should fl ow be-
tween those nodes. QoS contracts pro-
vide the performance predictability and
resource control required by real-time
systems, while preserving the modularity,
scalability and robustness inherent to the
anonymous publish-subscribe model.

DDS Spec Outfi ts Publish-
Subscribe Technology for the GIG

Recently fi nalized, the OMG’s Data-Distribution Service (DDS) for Real-Time Systems enables real-
time, data-critical applications for the Global Information Grid.

Gerardo Pardo-Castellote, Chief Technology Offi cer
Real-Time Innovations

Network middleware: A library between the
operating system and the application that
insulates application from the raw network
and provides an easier way to communicate

Hardware (e.g. Ethernet)

Network stack (e.g. IP)

Middleware

Application

Middleware

Application ApplicationApplicationApplication Application

Figure 1

The new DDS standard relies on network middleware—the software fabric that allows
computer programs to “talk” and easily exchange information over the network.

Reprinted from COTS Journal April 2005

The Softer Side

DDS is well suited for heterogeneous
networks, as it handles format conversion
across operating systems, processor ar-
chitectures and programming languages.

These characteristics make it ideally
suited for the heterogeneous dynamic envi-

ronments introduced by the increased use
of wireless devices at the edge of the GIG.

Despite its novelty the technology is
well proven. The DDS standard unifi es
some of the best practices present in suc-
cessfully deployed real-time data-distri-

bution middleware such as NDDS from
Real-Time Innovations and SPLICE from
Thales. Since its fi nalization DDS has
gained broad adoption. It is now man-
dated for data distribution by the Navy
Open Architecture Computer Environ-
ment (Navy OACE) and DISR and has al-
ready been adopted by programs such as
FCS, DD(X), LCS and SSDS.

A Simpler Programming Model
DDS enables applications to use a much

simpler programming model when dealing
with distributed-data applications. Rather
than developing custom event/messaging
schemes or creating wrapper CORBA ob-
jects to access data remotely, the applica-
tion can identify the data it wishes to read
and write using a simple topic-name, and
use a data-centric API to directly read and
write the data (Figure 2).

The DDS publish-subscribe model
connects anonymous information publish-
ers (writers) with information subscribers
(readers). A distributed application is com-
posed of processes called “participants”,
each running possibly in a separate com-
puter. A participant may simultaneously
publish (write) and subscribe (read) data-
fl ows identifi ed by topic-name. This opera-
tional view can be pictured as a “data-fl ow
bus.” The data model means the developer

Track Track Track

Engagement

EngagementEngagement

Command

Publisher1 Publisher2 Subscriber1 Subscriber2 Subscriber3

Command

Figure 2

DDS uses Topics to identify the data-flows between publishers and subscribers.

Reprinted from COTS Journal April 2005

DoD Mandates DDS
In 2001, the Object Management Group (OMG) responded to industry’s

call for a publish-subscribe standard. The Data-Distribution Service (DDS)
for Real-Time Systems Specifi cation was adopted at the OMG in 2003 and
fi nalized in 2004. DDS is the fi rst publish-subscribe standard for real-time,
data-critical systems.

In an effort to reduce costs and increase speed and fl exibility of system
procurement, the DoD has been pushing the industry to establish and use
open architectures. The idea behind these efforts is to make it simpler and
cheaper to integrate systems together by clearly defi ning the infrastructure
software and electronics that “glue” the subsystems or systems together.
One of the early efforts was the Navy Open Architecture out of PEO IWS and
the Naval Surface Warfare Center in Dahlgren. They selected DDS as their
publish-subscribe standard for moving data in real time.

In July of 2004, the Department of Defense Information Technology
Standards Registry (DISR) selected DDS as its mandated publish-subscribe
standard for the GIG. That same month, the DISR replaced the Joint Techni-

cal Architecture as the DoD’s standards registry. DDS is now mandated
across the DoD.

A more recent open architecture effort is being led by Boeing in their
role as the Lead System Integrator for the Future Combat System program.
They selected DDS as the key middleware technology for the System of Sys-
tems Common Operating Environment (SoSCOE). SoSCOE is the infrastruc-
ture through which all of the various systems and subsystems communicate.
It is the key integration middleware in the FCS.

Other programs have stepped up to use DDS. These include the Single
Integrated Air Picture; the Navy’s Littoral Combat Ship, Aegis, E2C and
Ship Self-Defense System; the Air Force’s Joint Strike Fighter and AWACS;
and the Army’s Apache program. In addition, the Army’s Weapon Systems
Technical Architecture is integrating DDS into its solution. The DDS standard
was created to fulfi ll an industry need for a standard interface for distributing
data in real-time systems. Its quick adoption and wide use, especially in the
DoD, is testimony to its importance in data-critical systems.

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

Global Data Space

P

P

PDistributed
Node

P

P

P

X

P

P

Figure 3

DDS creates the illusion of a Global Data Space where applications can read and write data.

The Softer Side

as well as other domains such as traf-
fi c monitoring and industrial sensing.
Tactical systems at the edge of the GIG
have complex data-fl ows—one-to-many,
many-to-one, many-to-many—that re-
quire real-time performance, reliability,
fault-tolerance, dynamic confi guration
changes and scalability. The GIG envi-
ronment must refl ect the speed and ever-
changing nature of the real world.

The lack of established standards
has led to the development of ad-hoc,
custom, one-off solutions with sub-op-
timal performance and robustness that
end up being very expensive to maintain.
Commercial implementations of publish-
subscribe data-distribution middleware
have existed and have been deployed with
success. However, each vendor provided
a different API and slightly different se-
mantics for equivalent concepts.

This situation was similar to the one
prior to the adoption of UML. Successful
modeling tools existed but widespread ac-
ceptance, availability of trained develop-
ers and broad knowledge exchange did not
come until the UML standard consolidated
terminology and notation. The recent
adoption of the Data-Distribution Service
(DDS) for Real-Time Systems Specifi cation
by the Object Management Group (OMG)
is doing for data-distribution what UML
did for modeling technologies.

Why DDS?
DDS is the fi rst networking standard

specifi cally targeting distributed real-time
data-centric systems. It combines a simple
data model, effi cient distribution, extreme
confi gurability and natural fault-tolerance.
It holds the promise of a new generation
of networking technology that will en-
able large, distributed, high-performance
systems. More detailed information about
the fi nalized Data-Distribution Service
(DDS) for Real-Time Systems Specifi cation
can be found at www.omg.org/cgi-bin/
doc?ptc/2004-03-07. This article’s author,
Gerardo Pardo-Castellote, serves as Chair-
man of the DDS Standards Committee.

Real-Time Innovations
Santa Clara, CA.
(408) 200-4700.
[www.rti.com].

designs that easily support extremely com-
plex, fl exible data-fl ow requirements.

QoS parameters control virtually ev-
ery aspect of the DDS model and the un-
derlying communications mechanisms.
Many QoS parameters are implemented as
“contracts” between publishers and sub-
scribers; publishers offer and subscribers
request levels of service. The middleware
is responsible for determining if the offer
can satisfy the request, thereby establish-
ing the communication or indicating an
incompatibility error. Ensuring that par-
ticipants meet the level-of-service con-
tracts guarantees predictable operation
necessary for real-time systems.

For example, periodic DataWriters can
indicate the rate at which they can publish
by offering guaranteed update deadlines
via the “Deadline” QoSPolicy. By setting
a deadline, a compliant DataWriter prom-
ises to send a new update at a minimum
rate. Similarly, DataReaders can also spec-
ify a deadline for receiving the next sam-
ple update. If the deadline is missed, the
middleware can notify a listener installed
by the application. DataReaders may also
request data at that or any slower rate via
the TimeBasedFilter QosPolicy.

DataWriters may offer levels of reliabil-
ity (via the Reliability QoSPolicy), param-
eterized by the number of past issues they
can store to retry transmissions (via the His-
tory QoSPolicy). DataReaders may request
differing levels of reliable delivery, ranging
from fast-but-unreliable “best efforts” to
highly reliable in-order delivery. This pro-
vides per-data-fl ow reliability control.

The middleware can also arbitrate be-
tween multiple DataWriters of the same
Topic as specifi ed by the Ownership and
OwnershipStrength QosPolicies. Under
exclusive ownership, each data-object can
only be updated by a single DataWriter. Da-
taReaders will only see the changes made
by the active DataWriter with the highest
ownership-strength. The built-in detection
of DataWriter liveliness also provides auto-
matic fail-over; if a strong DataWriter fails,
all DataReaders immediately receive up-
dates from the backup (weaker) DataWriter.

DDS: The Real-Time in Net-Centric
The need for data-distribution is

fundamental to tactical military systems

or system integrator can essentially ignore
the complexity of the data fl ow and rely on
each participant getting the data it needs
from the bus.

Participants using DDS can read and
write data effi ciently and naturally. Under-
neath, the DDS middleware will distribute
the data so that each reading participant
can access the “most-current” values. In
effect, the service creates a global “data
space” that any participant can read and
write (Figure 3). It also creates a name space
to allow participants to fi nd and share ob-
jects. In reality the data does not really
“live” in any one computer. Rather it lives
in the local caches of all the applications
that have an interest in it. Here is where the
publish-subscribe aspect becomes key.

DDS also provides a “state propaga-
tion” model. This model allows nodes to
treat DDS-provided data structures like
distributed shared-memory structures,
with values effi ciently updated only when
they change. There are facilities to ensure
coherent and ordered state updates.

Intuitive and Scalability
DDS is designed to automatically dis-

cover publishers and subscribers for each
topic and autonomously establish data
fl ows between them as permitted by the set-
tings of the quality of service parameters.
That makes it well suited for wireless en-
vironments where dynamic confi guration
changes are common. Unlike Jini, CORBA
and other client-server technologies, DDS
does not rely on centralized name servers
and is therefore highly resilient to partial
failures in the network.

At a fundamental level, DDS is de-
signed to work over unreliable transports
such as UDP, multicast or wireless net-
works. No facilities require central servers
or special nodes. Effi cient, direct, peer-to-
peer communications, or even multicast-
ing, are used to implement every part of
the model.

Guaranteeing Predictable
Operation

DDS allows for fi ne control over Qual-
ity of Service (QoS) on a “per-data-fl ow ba-
sis.” Each publisher-subscriber pair can es-
tablish independent QoS agreements. This
aspect, unique to DDS, enables application

Reprinted from COTS Journal April 2005

