
.

CEO OF REAL-TIME INNOVATIONS, INC.
SUNNYVALE, CALIFORNIA

L E A D I N G

INDUSTRIAL INTERNET OF THINGS

STAN SCHNEIDER, PHD

for the

APPLICATIONS & ARCHITECTURE

i

INTRODUCTION TO THE IIOT ...01
SOME EXAMPLE IIOT APPLICATIONS ... 03

CONNECTED MEDICAL DEVICES FOR PATIENT SAFETY04

The Integrated Clinical Environment (ICE) ...05

MICROGRID POWER SYSTEMS ... 07

The DER Time Challenge .. 07

Microgrid Architecture ...08

LARGE-SCALE SCADA CONTROL .. 10

AUTONOMY ... 1 1

TOWARDS A TAXONOMY OF THE IIOT ... 13
PROPOSED TAXONOMIC CRITERIA ... 14

Reliability .. 15

Real Time .. 16

Data Item Scale .. 17

Module Scale ... 18

Runtime Integration .. 19

Distribution Focus..20

Collection Focus ... 21

DIMENSIONAL DECOMPOSITION AND MAP TO IMPLEMENTATION 21

Taxonomy Benefits .. 23

STANDARDS AND PROTOCOLS FOR CONNECTIVITY 24
IOT PROTOCOLS ... 24

MQTT .. 25

XMPP .. 26

DDS... 27

AMQP ... 29

OPC UA ...30

THE BOTTOM LINE: HOW TO CHOOSE? ...31

CONNECTIVITY ARCHITECTURE FOR THE IIOT 33
THE N-SQUARED CHALLENGE .. 34

THE IIRA CONNECTIVITY CORE STANDARD ... 35

THE IIOT APPROACH TO SECURITY ... 37

DDS AS A CORE STANDARD ... 37

DDS Unique Features .. 37

THE DDS DATA BUS ... 38

DATA-CENTRICITY MAKES DDS DIFFERENT 40
THE FUTURE OF THE IIOT ...42

LEADING APPLICATIONS AND ARCHITECTURE FOR THE
INDUSTRIAL INTERNET OF THINGS (IIOT)
Stan Schneider, PhD. CEO of Real-Time Innovations, Inc. Sunnyvale, California

01

INTRODUCTION TO
THE IIOT
The Internet of Things (IoT) is the name given to the

future of connected devices. There are two clear subsets.

The “Consumer IoT” includes wearable computers,

smart household devices, and networked appliances.

The “Industrial IoT (IIoT)” includes networked smart

power, manufacturing, medical, and transportation.

Technologically, the Consumer IoT and the Industrial IoT

are more different than they are similar.

The Consumer IoT attracts more attention because it is

more understandable to most people. Consumer systems

typically connect only a few points, for instance, a watch

or thermostat to the cloud. Reliability is not usually

critical. Most systems are “greenfield,” meaning

there is no existing infrastructure or distributed

design that must be considered. There are many

exciting new applications that will change daily

life. However, the Consumer IoT is mostly

a natural evolution of connectivity from

human-operated computers to automated

things that surround humans.

While it will grow slower than the Consumer

IoT, the IIoT will eventually have much larger

economic impact. The IIoT will bring entirely

new infrastructures to our most critical and

impactful societal systems. The opportunity

to build truly intelligent distributed machines

that can greatly improve function and efficien-

cy across virtually all industries is indisputable.

The IIoT is the strategic future of most large

companies, even traditional industrial manufac-

turers and infrastructure providers. The dawn of a

new age is clear.

Unlike connecting consumer devices, the IIoT will

control expensive, mission-critical systems. Thus, the

requirements are very different. Reliability is often a huge

challenge. The consequences of a security breach are

vastly more profound for the power grid than for a home

thermostat. Existing industrial systems are already net-

worked in some fashion, and interfacing with these legacy

02

“brownfield” designs is a key blocking factor. Plus, unlike

consumer devices that are mostly connected on small

networks, industrial plants, electrical systems or transpor-

tation grids will encompass many thousands or millions of

interconnected points.

Building a technology stack for any one of these appli-

cations is a challenge. However, the real power is a single

architecture that can span sensor-to-cloud, interoperate

between vendors and span industries. The challenge is to

evolve from today’s mashup of special-purpose standards

and technologies to a fast, secure, interoperable future.

In the long term, there is an even larger opportunity. The

future of the IIoT will include enterprise-class platforms

that guarantee real-time delivery across enterprises and

metro or continental areas. This will become a new utility

that enables reliable distributed systems. This utility will

support twenty-first-century infrastructure like intelligent

transportation with autonomous vehicles and traffic

control, smart grids that integrate distributed energy re-

sources, smart healthcare systems that assist care teams

and safe flying robot air traffic control systems. This utility

will be as profound as the cell phone network, GPS or the

Internet itself.

There are many consortia of companies targeting the IIoT.

The largest and fastest growing is the Industrial Internet

Consortium (IIC)1. The IIC was founded in 2014 by global

industrial leaders: GE, Intel, Cisco, AT&T and IBM. As of this

writing in 2016, it includes over 250 members. The German

government, along with several large German manufac-

turers, has an active effort called Industrie 4.0.2 There is

also a smaller startup consortium called the OpenFog

Consortium.3 Of these, the IIC is by far the broadest. It

addresses end-to-end designs in all industries. Industrie

4.0 is focused only on manufacturing. And OpenFog

targets “intelligence at the edge,” meaning the movement

of powerful, elastic computing out of data centers into

neighborhoods and customer premises. However, all share

many common members and goals. They are working

together in many ways.

1 http://iiconsortium.org

2 https://en.wikipedia.org/wiki/Industry_4.0

3 www.openfogconsortium.org

03

Because of its size and growth, the IIC gets by far the most

attention. The goal of the IIC is to develop and test an

architecture that will span all industries. Just as Ethernet,

Linux and the Internet itself grew as general-purpose tech-

nologies that pushed out their special-purpose predeces-

sors, the IIC will build a general-purpose Industrial Internet

architecture that can build and connect systems such as

transportation, medical, power, factory, industrial controls

and others. The IIC’s unique and powerful combination of

leaders from both government and industry gives it the

necessary platform to make this huge impact.

The IIC was the first to create a venue for users across

industries with similar challenges. This actually created the

IIoT as a true market category and changed the landscape

dramatically. Suddenly, hundreds of companies are decid-

ing their strategy for this new direction. Gartner, the large

analyst firm, predicts that the Smart Machine era will be

the most disruptive in the history of IT. That disruption will

be led by smart distributed infrastructure called the IIoT.

SOME EXAMPLES
IIOT APPLICATIONS
The author is the CEO of Real-Time Innovations, Inc.

(RTI).4 RTI is the largest vendor of embedded middleware

company and the leading vendor of middleware compliant

with the Data Distribution Service (DDS) standard.5

All applications in this section are operational RTI Connext

DDS systems. The DDS standard is detailed in later sec-

tions; the applications are presented first to provide back-

ground and highlight the breadth of the IIoT challenge.

These are only a few of nearly 1,000 applications. Further

examples can be found at www.rti.com.

4 http://www.rti.com

5 http:/www.omg.org/dds

04

Connected Medical Devices
for Patient Safety
Thirty years ago, health care technologists realized a

simple truth: monitoring patients improves outcomes.

That epiphany spawned the dozens of devices that

populate today’s hospital rooms: pulse oximeters,

multi-parameter monitors, ECG monitors, Holter

monitors, and more. Over the ensuing years, tech-

nology and intelligent algorithms improved many

other medical devices, from infusion pumps (IV

drug delivery) to ventilators. Healthcare is much

better today because of these advances.

However, hospital error is still a leading cause of

death; in fact, the Institute of Medicine named it the

third leading cause of death after heart disease and

cancer. Thousands and thousands of errors occur in hos-

pitals every day. Many of these errors are caused by false

alarms, slow responses, and inaccurate treatment delivery.

Today, a new technology disruption is spreading through

patient care: intelligent, distributed medical systems.

By networking devices, alarms can become smart, only

sounding when multiple devices indicate errant physio-

logical parameters. By connecting measurements to treat-

ment, smart drug delivery systems can react to patient

conditions much faster and more reliably than busy hos-

pital staff. By tracking patients around the hospital and

connecting them to cloud resources, efficiency of care can

be dramatically improved. The advent of true Internet of

Things networking in healthcare will save costs and lives.

FIGURE 2: A modern hospital needs hundreds of types of devices.

These must communicate to improve patient safety and outcome, to

aid resource deployment and maintenance, and to optimize business

processes. RTI Connext DDS adapts to handle many different types of

dataflows, different computing platforms and transports.

FIGURE 1: Connected

medical devices will intelligently

analyze patient status, create

“smart alarms” by combing

instrument readings, and

ensure proper patient care.

An intelligent, distributed IIoT

system will help care teams

prevent hundreds of thousands

05

THE INTEGRATED CLINICAL
ENVIRONMENT (ICE)

Researchers and device developers are making quick

progress on medical device connectivity. The Integrated

Clinical Environment standard (ASTM F2761)6 is one key

effort to build such a connected system. ICE combines

standards. It takes data definitions and nomenclature from

the IEEE 11073 (x73) standard for health informatics. It

specifies communication via the Data Distribution Service

(DDS) standard. ICE then defines via the DDS standard

control, data logging and supervisory functionality to

create a connected intelligent substrate for smart clinical

connected systems.

Like most standards, large organizations may take time

to adapt to a standards-driven environment. ICE none-

theless represents an excellent example of how to build

smarter systems.

6 http://www.icealliance.org/

FIGURE 3: An intelligent Patient Controlled Analgesia system. The

supervisor combines oximeter and respirator readings to reduce

false alarms and stop drug infusion to prevent overdose. The RTI

DDS data bus connects all the components with appropriate

real-time reliable delivery.

06

PATIENT MONITORING

Modern hospitals use hundreds of types of devices for

patient care and monitoring. These systems must work in

a large hospital environment. Integrating whole hospitals

with thousands of devices presents challenges for scal-

ability, performance and data discovery.

To prove the design viable for GE Healthcare, RTI built a

simulation to prove that DDS could handle a thousand-bed

hospital with over 100,000 devices. The simulation ran in

RTI’s networking lab. It sent realistic dataflows between

hundreds of applications, instances of RTI’s Connector

product. RTI services developed a matrix (Excel spread-

sheet) to configure Connector to send the mix of data

types and rates expected from real devices. RTI developed

an automated test harness to deploy these applications

across the lab’s test computers and collect the results. A

graph of part of the simulation topology is presented in

the following text. RTI’s test harness collected dataflow

rates and loading across this topology.

The system handled realistic scale, performance and

discovery. Since it is important to communicate real-time

waveforms and video, the potential network-wide data-

flow is large. However, the need is “sparse;” most data is

only needed at relatively few points. As explained in the

succeeding text, DDS can propagate specifications to

the senders to indicate exactly what each receiver needs

from the senders. The senders then filter the information

to send only what’s needed, thereby eliminating wasted

bandwidth. Discovering data sources is also critical, since

62% of hospital patients move every day. So, the system

also tested transitions between network locations.

FIGURE 4: Medical devices must

operate in a complex hospital

environment. The system must

be able to find data sources,

track them as patients move,

and scale to handle the load.

This realistic test simulated a

large hospital.

07

When deployed, the new system will ease patient track-

ing. It will coordinate devices in each room and connect

rooms into an integrated whole hospital. Information will

flow easily and securely to cloud-based Electronic Health

Records (EHR) databases. The hospital of the future will

become an intelligent, distributed machine in the IIoT.

Microgrid Power Systems
The North American electric power grid has been de-

scribed as the biggest machine in the world. It was de-

signed and incrementally deployed based on centralized

power generation, transmission and distribution concepts.

Times have changed. Instead of large, centralized power

plants burning fossil fuels that drive spinning masses,

Distributed Energy Resources (DERs) have emerged as

decentralized, local alternatives to bulk power. DERs are

typically clean energy solutions (solar, wind, thermal)

that take advantage of local environmental and market

conditions to manage the local generation, storage or

consumption of electricity.

THE DER TIME CHALLENGE

Most renewable energy sources are not reliable producers.

Solar and wind can change their power output very quickly.

Unfortunately, that dynamic behavior is not compatible

with today’s grid. Today’s grid uses local power substations

to convert high-voltage power to neighborhood distribu-

tion voltage levels. Those stations estimate power needs

and reports back to the utility. The utility then needs up to

15 minutes to spin up (or down) a centralized generation

plant to match the estimate.

So, since a solar array can lose power in a matter of

seconds with a fast moving cloud, the grid cannot react.

An alternate source has to be available and ready to pick

up the load immediately. If there isn’t sufficient backup,

the voltage on the grid can drop and the grid can fail. The

only way to provide that backup today is to provide “spin-

ning reserve” capacity, meaning the generators use more

energy than the grid needs.

08

As solar energy resources grow in a utility’s service area,

the utility has to have more excess spinning reserve ready

as backup. While the sun is shining, power may be flowing

from these distributed solar arrays back to the grid.

However, the fossil fuel generators need to be running and

spun up sufficiently to quickly take over if the solar arrays

stop producing. So, with every solar array pushing power

on to the grid, there is an equivalent fossil fuel generator

spinning in the background to take over. Thus, little fossil

fuel is saved. Even worse, driving the generators without

load makes them overheat and even prematurely wears

out bearings.

To fix this, the utility needs 15-30 minutes of extra time

to ramp up the generators. Then, they would not need to

have the spinning reserve. The only way to provide the time

needed is to implement energy storage or load reduction.

MICROGRID ARCHITECTURE

Microgrids are the leading way to provide that time.

Microgrids combine intermittent energy sources, energy

storage systems like batteries, and some local control

capability. This allows the microgrid to smooth out the

changes in DER power. A microgrid can even “island” itself

from the main power grid and run autonomously.

Microgrids usually encompass a well-defined, relatively

small geographic region. College campuses have been

proving grounds for this technology, as have military

bases. A microgrid can respond rapidly and locally to a

loss of power from solar arrays or local wind turbines using

backup energy sources like batteries. Many proof-of-con-

cept microgrid projects are active; they range from small

FIGURE 5: A Microgrid uses

peer-to-peer data communi-

cation and edge intelligence

to automate local power

generation and balance against

the power load. Microgrids help

integrate intermittent energy

sources like solar and wind.

09

demos to utility-class pilot testbeds. All seek to incorporate

energy storage and load reduction techniques into the grid.

Two key capabilities for microgrids are intelligent control

at the edge of the grid and peer-to-peer, high-perfor-

mance communications for local autonomy (see Figure

5). With these, a local battery energy storage system can

receive a message in milliseconds from the solar arrays

when backup energy is needed. The local controller on the

battery can then quickly switch the battery from charge

to source mode. This keeps the local energy consumers

powered and gives the utility time to spin up central power

resources as needed.

The OpenFMB™ Framework7 is the first field system ad-

dressing the need for reliable, safe, upgradeable distributed

intelligence on the grid. OpenFMB directly addresses the

decentralization issue facing utilities and regulators by

leveraging existing electricity information models (e.g., IEC

61968/61970, IEC 61850, MultiSpeak and SEP 2) and cre-

ating a data-centric “bus” on the grid to allow devices to

talk directly to one another. The initial use cases targeted

by OpenFMB are microgrid focused, and the OpenFMB

framework is closely adhering to the IIC’s Industrial Internet

Reference Architecture IIRA.

The OpenFMB team held a major demonstration in

February 2016 with 25 different companies. Many parts of

7 http://sgip.org/Open-Field-Message-Bus-OpenFMB-Project

FIGURE 6: NASA KSC’s launch

control is a massive, reliable

SCADA system. It comprises

over 400,000 points, spread

across the launch platform and

the control room. The launch

control system integrates many

thousands of devices, from

tiny sensors to large enterprise

storage systems. It spreads over

many miles.

Photo: NASA/Bill Ingalls

10

the implementation use RTI’s Connext DDS platform. DDS

interfaces were developed for the Optimization Engine,

Load Simulators, the Point of Common Coupling (PCC)

transition logic, and other required simulators to drive the

demonstration. To test non-proprietary interoperability,

the system built a cross-platform solution with multiple

operating system targets and CPU architectures. The

demonstration proves that IIoT interoperability is a practi-

cal, achievable path for fielded utility devices and systems.

Large-Scale SCADA Control
NASA Kennedy Space Center’s launch control system

is the largest SCADA (Supervisory Control And Data

Acquisition) system in the world. With over 400,000

control points, it connects together all the equipment

needed to monitor and prep the rocket systems. Before

launch, it pumps rocket fuels and gasses, charges all elec-

trical systems, and runs extensive tests. During launch, a

very tightly controlled sequence enables the main rocket

engines, charges and arms all the attitude thrusters, and

monitors thousands of different values that make up a

modern space system. It must also adapt to the various

mission payloads, some of which need special preparation

and monitoring for launch.

The launch control system has very tight and unique

communications requirements. The system is distribut-

ed over a large area and the control room. It must be

secure. Dataflow is “tidal:” activity cycles through the

surge of preparation, spikes during the actual launch,

then ebbs afterward. During the most critical few

seconds, it sends hundreds of thousands of messages

per second. Connext DDS intelligently batches updates

from thousands of sensors, reducing traffic dramatically.

Everything must be stored for later analysis. All informa-

tion is viewable (after downsampling) on HMI stations

in the control room. After launch, all the data must be

available for replay, both to analyze the launch and to

debug future modifications in simulation.

11

Autonomy
RTI was founded by researchers at the Stanford Aerospace

Robotics Laboratory (ARL)8. The ARL studies complex

electromechanical systems, especially those with increas-

ing levels of autonomy.

Unmanned air and defense vehicles have long relied on DDS

for deployments on land, in the air, and underwater. DDS

is a key technology in many open architecture initiatives,

including the Future Airborne Capability Environment

(avionics), Unnamed Air Systems (UAS) Control Segment

Architecture, UAS ground stations) and the Generic

Vehicle Architecture (military ground vehicles).

UAS have complex communication requirements, with

flight-critical components distributed across the air and

ground segments. Further, to operate in the U.S. National

Airspace System (NAS) the system must be certified to

the same safety standards as civil aircraft. RTI recently an-

nounced a version of DDS with full DO-178C Level A safety

certification evidence. It was developed to meet the needs

of the Ground Based Sense and Avoid (GBSAA) system

pictured in Figure 8.

8 http://sgip.org/Open-Field-Message-Bus-OpenFMB-Project

Figure 8: The Ground Based

Sense and Avoid (GBSAA)

system includes many

distributed radars. It will soon

allow unmanned vehicles to fly

in the U.S. National Airspace

System (NAS). Applications of

unmanned vehicles will include

operator training, repositioning,

search and rescue, and

disaster relief.

US Army photo by Sofia Bledsoe.

 ■ Sensor data captured to both
Recording Services (for forensic use)
and Persistence Service (for durability)

 ■ Multicast batching from 1000s of
sensors with many small samples;
keeps interrupt load down

 ■ Sensor data viewable in real-time
(after time-based filtering) on the
HMIs

 ■ RS-RS bridge used for encrypted data
in motion, between the event platform
and control

Figure 7:

12

This technology is now also being applied aggressively to

autonomous cars for consumer use. This market is perhaps

the most disruptive of the IIoT applications. Because the

ground is a much more complex environment, autono-

mous cars face even greater challenges than air systems.

They must coordinate navigation, traffic analysis, collision

detection and avoidance, high-definition mapping, lane de-

parture tracking, image and sensor processing, and more.

Safety certification for the entire system as whole is

prohibitively expensive. Dividing the system into modules

and certifying them independently reduces the cost

dramatically. “Separation kernels” are operating systems

that provide guaranteed separation of tasks running on

one processor. “Separation middleware” provides a similar

function to applications that must communicate, whether

they are running on one processor or in a distributed

system. A clean, well-controlled interface eases certifica-

tion by enabling modules to work together.

FIGURE 9: Autonomous vehicles must analyze complex

situations and react quickly. They merge information from

multiple sensors, plan trajectories through traffic and road

lanes, and control the vehicle in real time. Slower subsystems

support navigation, monitoring, and route optimization.

13

TOWARD A
TAXONOMY OF
THE IIOT
There is today no organized system science for the

IIoT. We have no clear way to classify systems, evaluate

architectural alternatives, or select core technologies.

To address the space more systematically, we need to

develop a taxonomy of IIoT applications based on their

system requirements.

This taxonomy will reduce the space of requirements to

a manageable set by focusing only on those that drive

significant architectural decisions. Based on extensive ex-

perience with real applications, we suggest a few divisions

and explain why they impact the architecture. Each of

these divisions defines an important dimension of the IIoT

taxonomic model. We thus envision the IIoT space as a

multi-dimensional requirement space. This space provides

a framework for analyzing the fit of architectures and

technologies to IIoT applications.

A taxonomy logically divides types of systems by their

characteristics. The first problem is to choose top-level

divisions. In the animal kingdom, you could label most

animals “land, sea or air” animals. However, those envi-

ronmental descriptions don’t help much in understanding

the animal. For instance, the “architecture” of a whale is

not much like an octopus, but it is very like a bear. To be

understood, animals must be divided by their character-

istics and architecture, such as heart type, reproductive

strategies, and skeletal structure.

It is similarly not useful to divide IIoT applications by their

industries like “medical, transportation and power.” While

these environments are important, the requirements simply

do not split along industry lines. For instance, each of

these industries has some applications that must process

huge data sets, some that require real-time response, and

others that need life-critical reliability. Conversely, systems

with vastly different requirements exist in each industry.

The bottom line is that fundamental system requirements

vary by application and not by industry, and these differ-

ent types of systems need very different approaches.

FIGURE 10: Environment does

not indicate architecture.

Dividing animals by “land, sea,

and air” environment is scientifi-

cally meaningless. The biological

taxonomy instead divides by

fundamental characteristics.

Sea

Land

Air

14

Medical

Power

Transportation

Thus, as in biology, the IIoT needs an environment-indepen-

dent system science. This science starts by understanding

the key system challenges and resulting requirements. If we

can identify common cross-industry requirements, we can

then logically specify common cross-industry architectures

that meet those requirements. That architecture will lead

to technologies and standards that can span industries.

There is both immense power and challenge in this state-

ment. Technologies that span industries face many chal-

lenges, both political and practical. Nonetheless, a clear

fact of systems in the field is the similarity of requirements

and architecture across industries. Leveraging this fact

promises a much better understood, better connected

future. It also has immense economic benefit: over time,

generic technologies offer huge advantage over spe-

cial-purpose approaches. Thus, to grow our understanding

and realize the promise of the IIoT, we must abandon our

old industry-specific thinking.

Proposed Taxonomic Criteria
So, what can we use for divisions? What defining charac-

teristics can we use to separate the mammals from the

reptiles from the insects of the IIoT?

There are far too many requirements, both functional and

non-functional, to consider in developing a “comprehen-

sive” set to use as criteria. As with animals, we need to find

those few requirements that divide the space into useful,

major categories.

The task is simplified by the realization that the goal is to

divide the space so we can determine system architecture.

Thus, good division criteria are (1) unambiguous and (2)

impactful on the architecture. That makes the task easier,

but still non-trivial. The only way to do it is through ex-

perience. We are early in our quest. However, significant

progress is within our collective grasp.

This work draws on extensive experience with nearly 1,000

real-world IIoT applications. Our conclusion is that an IIoT

taxonomy is not only possible but also critical to both the

individual systems building and the inception of a true

cross-industry IIoT.

While the classification of IIoT systems is very early, we

do suggest a few divisions. To be as crisp as possible, we

FIGURE 11: Industry does not in-

dicate architecture. Dividing IIoT

applications by “medical, power,

or transportation” environment

is as scientifically meaningless

as dividing animals by their

environments. To make progress,

we need an IIoT taxonomy that

instead divides by fundamental

characteristics.

15

also chose numeric “metrics” for each division. The lines, of

course, are not that stark. And those lines evolve with tech-

nology over time at a much faster pace than biological evo-

lution. Nonetheless, the numbers are critical to force clarity;

without numerical metrics, meaning is often too fuzzy.

RELIABILITY

Metric: Continuous availability must exceed “99.999%” to
avoid severe consequences

Architectural Impact: Redundancy

Many systems describe their requirements as “highly reli-

able,” “mission critical” or “minimal downtime.” However,

those labels are more often platitudes than actionable

system requirements. For these requirements to be mean-

ingful, we must be more specific about the reasons we

must achieve that reliability. That requires understanding

how quickly a failure causes problems and how bad those

problems are.

Thus, we define “continuous availability” as the probabil-

ity of a temporary interruption in service over a defined

system-relevant time period. The “five 9s” golden speci-

fication for enterprise-class servers translates to about 5

minutes of downtime per year. Of course, many industrial

systems cannot tolerate even a few milliseconds of unex-

pected downtime. For a power system, the relevant time

period could span years. For a medical imaging machine,

it could be only a few seconds.

The consequences of violating the requirement are also

meaningful. A traffic control system that goes down for a

few seconds could result in fatalities. A website that goes

down for those same few seconds would only frustrate

users. These are fundamentally different requirements.

Reliability thus defined is an important characteristic

because it greatly impacts the system architecture.

A system that cannot fail, even for a short time, must

support redundant computing, sensors, networking,

storage, software and more. Servers become troublesome

single-point-of-failure weak points. When reliability is truly

critical, redundancy quickly becomes a—or perhaps the—

key architectural driver.

FIGURE 12: IIoT reliability-critical

applications. Hydropower dams

can quickly modulate their

significant power output by

changing water flow rates and

thus help balance the grid; even

a few milliseconds of unplanned

downtime can threaten stability.

Air-traffic control faces a similar

need for continuous operation;

a short failure in the system

endangers hundreds of flights.

A proton-beam radiation

therapy system must guarantee

precise operation during

treatment; operational dropouts

threaten patient outcomes.

Applications with severe conse-

quences of short interruptions in

service require a fully-redundant

architecture, including comput-

ing, sensors, networking, storage

and software.

16

REAL TIME

Metric: Response < 100ms

Architectural Impact: Peer-to-peer data path

There are many of ways to characterize “real time.” All

systems should be “fast.” However, for these requirements

to be useful we must specifically understand which timing

requirements drive success.

Thus, “real time” is much more about guaranteed response

than it is about fast. Many systems require low average

latency (delivery delay). However, true real-time systems

succeed only if they always respond “on time.” This is the

maximum latency, often expressed as the average delay

plus the variation or “jitter.” Even a fast server with low

average latency can experience large jitter under load.

In a distributed system, the most important architectural

impact is the potential jitter imposed by a server or broker

in the data path. An architecture that can satisfy a human

user annoyed by a wait longer than eight seconds for a

website will never satisfy an industrial control that must

respond in 2 milliseconds. We find that the “knee in the

curve” that greatly impacts design occurs when the speed

of response is measured in a few tens of milliseconds or

even microseconds. We choose 100 ms, simply because

that is about the unpredictable delay of today’s servers.

Systems that most respond faster than this usually must

be peer-to-peer, and that is a huge architectural impact.

FIGURE 14: IIoT real-time appli-

cations. To provide quality feel

to surgeons, distributed control

loops for medical robotics

must run at rates up to 3 kHz

and control the “jitter” to only

tens of microseconds. Similarly,

autonomous cars must react

fast enough to safely control the

vehicle and prevent collisions.

These fundamental performance

needs imply a system architec-

ture that does not send data

through intermediaries.

Robotics photo: DLR CC-BY 3.

FIGURE 13: Added Server Latency. Although the hardware transmit time is often negligible, sending data

through a server “hop” requires traversing the sending machine’s transmit stack, the server’s receive stack, the

server’s processing queue, the server’s transmit stack and finally the destination’s receive stack. Each of these

has threads, queues and buffers that add uncontrolled latency. Worse, the server cannot easily prioritize traffic

as easily as the end points. Thus, systems that are sensitive to maximum latency often cannot use data servers.

17

DATA ITEM SCALE

Metric: More than 10,000 addressable data items

Architectural Impact: Selective delivery filtering

Scale is a fundamental challenge for the IIoT. It is also

complex; there are many dimensions of scale, including

number of “nodes,” number of applications, number of de-

velopers on the project, number of data items, data item

size, total data volume, and more. We cannot divide the

space by all these parameters.

In practice, however, they are related. For instance, a

system with many data items probably has many nodes.

Despite the broad space, we have found that two simple

metrics correlate well with architectural requirements.

The first scale metric is addressable “data item scale,”

defined as the number of different data instances that

could be of interest to different parts of the system. Note

that this is not the same as the size of a single large data

set, such as a stream of data from a single fast sensor.

The key scale parameter is the existence of many different

data items that could potentially be of interest to differ-

ent consumers. So, a few fast sensors create only a few

addressable data items. Many sensors or sources create

many data items. A large number of addressable data

items implies difficulty in sending the right data to the

right place.

When systems get “big” in this way, it is no longer practical

to send every data update to every possible receiver. We

find that the challenge is significant for as few as 100 data

items. It is extreme for systems with more than 10,000 ad-

dressable data items. Above this limit, managing the data

itself becomes a key architectural need. These systems

need an architectural design that explicitly understands

the data, thereby allowing selective filtering and delivery.

There are two approaches in common use: run-time in-

trospection that allows consumers to choose data items

themselves, and “data-centric” designs that empower the

infrastructure itself to understand and actively filter the

data system-wide.

Figure 15: IIoT applications

with many data items. IIoT

systems often produce far too

much data to send everything

to every possible consumer.

“Gust control” in a wind

turbine farm, for instance,

needs weather updates from

the turbines immediately “up

wind,” a specification that

changes with time. Traffic

control systems are very

interested only in vehicles

approaching an intersection.

These applications require

the architecture to provide

selective data availability, so

only the right information

loads the network and the

participants.

18

MODULE SCALE
Metric: More than 10 teams or interacting applications

Architectural Impact: Interface control and evolution

The second scale parameter we choose is the number of

“modules” in the system, where a module is defined as a

reasonably independent piece of software. Each module is

typically an independently-developed application built by

an independent team of developers on the “project.”

Module scale quickly becomes a key architectural driver.

The reason is that system integration is inherently an

“n-squared” problem. Each new team presents another

interface into the system. Smaller projects built by a cohe-

sive team can easily share interface specifications without

formality. Larger projects built by many independent

groups of developers face a daunting challenge. System

integration can occupy half of the delivery schedule and

most of its risk.

In these large systems, interface control dominates the

interoperability challenge. It is not practical to expect

interfaces to be static. Modules, or groups of modules,

that depend on an evolving interface schema must

somehow continue to interoperate with older versions of

that schema. Communicating all the interfaces becomes

hard. Forcing all modules to “update” on a coordinated

timeframe to a new schema becomes impossible. Thus,

interacting teams quickly find that they need tool, process,

and eventually architectural support to solve the system

integration problem.

Of course, this is a well-studied problem in enterprise

software systems. In the storage world, databases ease

system integration by explicitly modeling and controlling

“data tables,” thus allowing multiple applications to access

information in a controlled manner. Communication tech-

nologies like enterprise service buses (ESBs), Web services,

enterprise “queuing” middleware, and textual schema like

XML and JSON all provide evolvable interface flexibility.

However, these are often not appropriate for industrial

systems, usually for performance or resource reasons.

Data-centric systems expose and control interfaces direct-

ly, thus easing system integration. Databases, for instance,

provide data-centric storage and are thus important in

systems with many modules. However, databases provide

FIGURE 16: IIoT applications

built by large teams. Hundreds

of different types of hospital

medical devices, from heart

monitors to ventilators, must

combine to better monitor

and care for patients. Similarly,

ship systems integrate dozens

of complex functions like

navigation, power control

and communications. When a

complex “system of systems”

integrates many complex

interfaces, the system architec-

ture itself must help to manage

system integration

and evolution.

19

storage for data at rest. Most IIoT systems require data in

motion, not (or in addition to) data at rest.

Data-centric middleware is a relatively new concept for

distributed systems. Similar to a database data table,

data-centric middleware allows applications to interact

through explicit data models. Advanced technologies can

even detect and manage differences in interfaces between

modules and then adapt to deliver to each endpoint in

the schema what the endpoint expects.9 These systems

thus decouple application interface dependencies, allow-

ing large projects to evolve interfaces and make parallel

progress on multiple fronts.

RUNTIME INTEGRATION

Metric: More than 20 “devices,” each with many parame-
ters and data sources or sinks that cannot be configured
at development time

Architectural Impact: Must provide a discoverable inte-
gration model

Some IIoT systems can (or even must) be configured and

understood before runtime. This does not mean that every

data source and sink is known, but rather that this configu-

ration is relatively static. Others, despite a potentially large

size, have applications that implement specific functions

that depend on knowing what data will be available. These

systems can or must implement an “end point” discovery

model that finds all the data in the system directly.

However, other systems cannot easily know what devices

or data will be available until runtime. For instance, when

IIoT systems integrate racks of field-replaceable machines

or devices, they must often be configured and understood

during operation. For instance, a plant controller HMI may

need to discover the device characteristics of an installed

device or rack so a user can choose data to monitor.

The key factor here is not addition or changes in which

device is used. It is more a function of not knowing which

types of devices may be involved.

9 http://www.omg.org/spec/DDS-XTypes/

FIGURE 17: IIoT device integra-

tion challenge. Large systems

assembled in the field from a

large variety of “devices” face a

challenge in understanding and

discovering interacting devices

and their relationships. The most

common example applications

are in manufacturing. These

applications benefit from a

design that offers the ability for

remote applications and human

interfaces to “browse” the

system, thus discovering data

sources and relationships.

20

These systems must implement a different way to discover

information. Instead of searching for data, it is more effi-

cient to automate the process by building runtime maps

of devices and their data relationships. The choice of

“20” different devices is arbitrary. The point is that when

there are many different configurations for many devices,

mapping them at runtime becomes an important archi-

tectural need. Each device requires some sort of server

or manager that locally configures attached sub-devices,

and then presents that catalog to the rest of the system.

This avoids manual gymnastics.

DISTRIBUTION FOCUS

Metric: Fan out > 10

Architectural Impact: Must use one-to-many connection
technology

We define “fan-out” as the number of data recipients that

must be informed upon change of a single data item. Thus,

a data item that must go to 10 different destinations each

time it changes has a fan out of “10.”

Fan-out impacts architecture because many protocols

work through single 1 : 1 connections. Most of the enter-

prise world works this way, often with TCP, a 1 : 1 session

protocol. Examples include connecting a browser to a

Web server, a phone app to a backend, or a bank to a

credit card company. While these systems can achieve

significant scale, they must manage a separate connection

to each endpoint. When many data updates must go to

many endpoints, the system is not only managing many

connections, but it is also sending the same data over and

over through each of those connections.

IIoT systems often need to distribute information to many

more destinations than enterprise systems. They also often

need higher performance on slower machines. Complex

systems even face a “fan-out mesh” problem, where many

producers of information must send it to many recipients.

When fan-out exceeds 10 or so, it becomes impractical to

do this branching by managing a set of 1 : 1 connections.

An architecture that supports efficient multiple updates

greatly simplifies these systems.

FIGURE 18: “IIoT applications

needing data distribution. Many

applications must deliver the

same data to many potential

endpoints. Coordinated vehicle

fleets may update a cloud

server, but then that information

must be delivered to many

distributed vehicles. An emer-

gency services communications

system must allow many remote

users access to high-bandwidth

distributed voice and video

streams. Many industries use

“hardware in the loop” simula-

tion to test and verify modules

during development. Across

all these industries, an efficient

architecture must deliver data to

multiple points easily.

21

COLLECTION FOCUS

Metric: One-way data flow from more than 100 sources

Architectural Impact: Local concentrator or gateway
design

Data collection from field systems is a key driver of the IIoT.

Many systems transmit copious information to be stored

or analyzed in higher-level servers or the cloud. Systems

that are essentially restricted to the collection problem do

not share significant data between devices. These systems

must efficiently move information to a common destina-

tion, but not between devices in the field.

This has huge architectural impact. Collection systems

can often benefit from a hub-and-spoke “concentrator” or

gateway. Widely distributed systems can use a cloud-based

server design, thus moving the concentrator to the cloud.

Dimensional Decomposition and
Map to Implementation
The analogy with a biological taxonomy only goes so far.

Industrial systems do not stem from common ancestors

and thus do not fall into crisply-defined categories. As

implied previously, most systems exhibit some degree

of each of the characteristics. This is actually a source

FIGURE 19: IIoT Collection and Monitoring Applications. Collecting

and analyzing field-produced data is perhaps the first “killer app”

of the IIoT. The IIC’s “track and trace” testbed, for instance, tracks

tools on a factory floor so the system can automatically log use.

Other applications include monitoring gas turbines for efficient

operation, testing aircraft landing gear for potentially risky

situations and optimizing gas pipeline flow control. Since there is

little inter-device flow, “hub and spoke” system architectures that

ease collection work well for these systems.

22

of much of the confusion, and

the reason for our attempt to

choose hard metrics at the risk

of declaring arbitrary bound-

aries. In the end, however, the

goal is to use the characteristics

to help select a single system

architecture. Designs and tech-

nologies satisfy the previously

mentioned goals to varying

degrees. With no system

science to frame the search, the

selection of a single architecture

based on any one requirement

becomes confusing.

Perhaps a better analysis is to consider each of the key

characteristics as an axis in an n-dimensional space. The

taxonomical classification process then places each appli-

cation on a point in this n-dimensional space.

This is not a precise map. Applications may be complex

and thus placement is not exact. The metrics mentioned

before delineate architecturally significant boundaries that

are not in reality crisp. So, the lines that we have named are

somewhat fuzzy. However, an exact position is often not im-

portant. Our classification challenge is really only to decide

on which side of each boundary our application falls.

In this framework, architectural approaches and the

technologies that implement them can be considered

to “occupy” some region in this n-dimensional space.

For instance, a data-centric technology like the Object

Management Group (OMG) DDS provides peer-to-peer,

fully-redundant connectivity with content filtering. Thus,

it would occupy a space that satisfies many reliable,

real-time applications with significant numbers of data

items, the first three challenge dimensions previously

mentioned. The Message Queuing Telemetry Transport

(MQTT) protocol, on the other hand, is more suited to the

data collection focus challenge. Thus, these technologies

occupy different regions of the solution space. Figure 20

represents this concept in three dimensions.

FIGURE 20: n-Dimensional

Requirement Space.

Architectural approaches and

their implementing technologies

satisfy some range of each of

the dimensions above, and thus

occupy a region in an n-dimen-

sional “requirement space.” The

value of a taxonomy is to help

designers decompose their

problem into relevant dimen-

sions so they can then select an

appropriate approach.

23

Thus, the application can be placed in the space, and the

architectural approaches represented as regions. This

reduces the problem of selecting an architecture to one

of mapping the application point to appropriate architec-

tural regions.

Of course, this may not be a unique map; the regions

overlap. In this case, the process indicates options. The

tradeoff is then to find something that fits the key require-

ments while not imposing too much cost in some other

dimension. Thinking of the system as an n-dimensional

mapping of requirements to architecture offers important

clarity and process. It greatly simplifies the search.

TAXONOMY BENEFITS

Defining an IIoT taxonomy will not be trivial. The IIoT en-

compasses many industries and use cases. It encompasses

much more diversity than applications for specialized in-

dustry requirements, enterprise IT, or even Consumer IoT.

Technologies also evolve quickly, so the scene is constantly

shifting. This present state just scratches the surface.

However, the benefit of developing a taxonomical under-

standing of the IIoT is enormous. Resolving these issues

will help system architects choose protocols, network

topologies, and compute capabilities. Today, we see

designers struggling with issues like server location or

configuration, when the right design may not even require

servers. Overloaded terms like “real time” and “thing” cause

massive confusion between technologies despite the fact

that they have no practical use-case overlap. The industry

needs a better framework to discuss architectural fit.

Collectively, organizations like the IIC enjoy extensive

experience across the breadth of the IIoT. Mapping those

experiences to a framework is the first step in the devel-

opment of a systems science of the IIoT. Accepting this

challenge promises to help form the basis of a better

understanding and logical approach to designing tomor-

row’s industrial systems.

24

STANDARDS AND
PROTOCOLS FOR
CONNECTIVITY
IoT Protocols
The IoT Protocol Roadmap in Figure 21 outlines the basic

needs of the IoT. Devices must communicate with each

other (D2D), device data must be collected and sent to the

server infrastructure (D2S), and that server infrastructure

has to share device data (S2S), possibly providing it back

to devices, to analysis programs or to people.

From 30,000 feet, the main IoT protocols can be described

in this framework as:

 ■ MQTT: A protocol for collecting device data and

communicating it to servers (D2S)10

 ■ XMPP: A protocol best for connecting devices to

people, a special case of the D2S pattern, since

people are connected to the servers11

 ■ DDS: A fast bus for integrating intelligent machines

(D2D)12

 ■ Advanced Message Queuing Protocol (AMQP):
A queuing system designed to connect servers to

each other (S2S) 13

 ■ Open Platform Communications (OPC) Unified
Architecture (OPC UA): A control plane technology

that enables interoperability between devices14

Each of these protocols is widely adopted. There are at

least 10 implementations of each. Confusion is understand-

able, because the high-level positioning is similar. In fact,

the first four all claim to be real-time publish-subscribe IoT

protocols that can connect thousands of things. Worse,

those claims are true, depending on how you define “real

10 http://mqtt.org/

11 http://xmpp.org/

12 http://portals.omg.org/dds/

13 https://www.amqp.org/

14 http://opcfoundation.org

25

time,” “publish-sub-

scribe” and “thing.”

Nonetheless, all five

are very different

indeed! They do not,

in fact, overlap much

at all. Moreover, they

don’t even fill strict-

ly comparable roles.

For instance, OPC

UA and DDS are

best described as

information systems

that have a protocol;

they are much more

than just a way to

send bits.

The previously men-

tioned simple taxonomy frames the basic protocol use

cases (Figure 21). Of course, it’s not really that simple. For

instance, the “control plane” represents some of the com-

plexity in controlling and managing all these connections.

Many protocols cooperate in this region.

Today’s enterprise Internet supports hundreds of proto-

cols; the IoT will support hundreds more. It’s important to

understand the class of use that each of these important

protocols addresses.

MQTT

MQTT targets device data collection (Figure 22). As the

name states, the main purpose is telemetry or remote

monitoring. Its goal is to collect data from many devices

and transport that data to the IT infrastructure. It targets

large networks of small devices that need to be monitored

or controlled from the cloud.

MQTT makes little attempt to enable device-to-device

transfer, nor to “fan-out” the data to many recipients.

Since it has a clear, compelling single application, MQTT is

simple, offering few control options. It also doesn’t need to

be particularly fast. In this context, “real time” is typically

measured in seconds.

FIGURE 21: IoT protocol

roadmap. Devices communicate

with each other (D2D) and send

data to the IT infrastructure

(D2S). The IT infrastructure

servers use the data (S2S),

communicating back to devices

or to people.

26

A hub-and-spoke architec-

ture is natural for MQTT.

All the devices connect

to a data concentrator

server. Most applications

don’t want to lose data

regardless of how long

retries take, so the protocol

works on top of TCP, which

provides a simple, reliable

stream. Since the IT infra-

structure uses the data, the

entire system is designed

to easily transport data into

enterprise technologies like

ActiveMQ and ESBs.

MQTT targets applications

like monitoring an oil pipe-

line for leaks or vandalism.

Those thousands of sensors

must be concentrated into a single location for analysis.

When the system finds a problem, it can take action to

correct that problem. Other applications for MQTT include

power usage monitoring, lighting control, and even

intelligent gardening. They share a need for collecting

data from many sources and making it available to the IT

infrastructure.

XMPP

XMPP was originally called “Jabber.” It was developed for

instant messaging (IM) to connect people to other people

via text messages (Figure 23). XMPP stands for Extensible

Messaging and Presence Protocol. Again, the name belies

the targeted use: presence—meaning people are intimate-

ly involved.

XMPP uses the XML text format as its native type, making

person-to-person communications natural. Like MQTT, it

runs over TCP, or perhaps over HTTP on top of TCP. Its key

strength is a name@domain.com addressing scheme that

helps connect the needles in the huge Internet haystack.

In the IoT context, XMPP offers an easy way to address

a device. This is especially handy if that data is going

between distant, mostly unrelated points, just like the

FIGURE 22: Message Queuing

Telemetry Transport (MQTT)

implements a hub-and-spoke

data collection system.

27

person-to-person case. It’s not designed to be fast. In

fact, most implementations use polling or checking for

updates only on demand. A protocol called Bidirectional-

streams over Synchronous HTTP (BOSH) lets servers

push messages. But “real time” to XMPP is on a human

scale, measured in seconds.

XMPP provides a great way, for instance, to connect your

home thermostat to a Web server so you can access it from

your phone. Its strengths in addressing security and scal-

ability make it appropriate for Consumer IoT applications.

DDS

In contrast to MQTT and XMPP, DDS targets devices

that directly use device data. It distributes data to other

devices (Figure 24). DDS’s main purpose is to connect

devices to other devices. It is a data-centric middleware

standard with roots in high-performance defense, indus-

trial, and embedded applications. DDS can efficiently

deliver millions of messages per second to many simul-

taneous receivers.

Call
bridge

FIGURE 23: Extensible

Messaging and Presence

Protocol (XMPP) provides

text communications between

diverse points.

28

Devices demand data very differently than the IT infra-

structure demands data. First, devices are fast. “Real

time” may be measured in milliseconds or microseconds.

Devices need to communicate with many other devices

in complex ways, so TCP’s simple and reliable point-to-

point streams are far too restrictive. Instead, DDS offers

detailed quality-of-service (QoS) control, multicast, con-

figurable reliability and pervasive redundancy. In addi-

tion, fan-out is a key strength. DDS offers powerful ways

to filter and select exactly which data goes where, and

“where” can be thousands of simultaneous destinations.

Some devices are small, so there are lightweight versions

of DDS that run in constrained environments.

Hub-and-spoke is completely inappropriate for device

data use. Rather, DDS implements direct device-to-device

“bus” communication with a relational data model. This is

often termed a “data bus” because it is the networking

analog to a database. Similar to the way a database

controls access to stored data, a data bus controls data

access and updates by many simultaneous users. This is

exactly what many high-performance devices need to

work together as a single system.

High-performance integrated device systems use DDS.

It is the only technology that delivers the flexibility, reli-

ability, and speed necessary to build complex, real-time

applications. DDS is very broadly used. Applications

include wind farms, hospital integration, medical imaging,

FIGURE 24: Data Distribution

Service (DDS) connects devices

at physics speeds into a single

distributed application

29

autonomous planes and cars, rail, asset tracking, auto-

motive test, smart cities, communications, data center

switches, video sharing, consumer electronics, oil & gas

drilling, ships, avionics, broadcast television, air traffic

control, SCADA, robotics and defense.

RTI has experience with nearly 1,000 applications. DDS

connects devices together into working distributed appli-

cations at physics speed.

AMQP

AMQP is sometimes considered an IoT protocol. AMQP is

all about queues (Figure 25). It sends transactional mes-

sages between servers. As a message-centric middleware

that arose from the banking industry, it can process thou-

sands of reliable queued transactions.

AMQP is focused on not losing messages. Communications

from the publishers to exchanges and from queues to

subscribers use TCP, which provides strictly reliable

point-to-point connection. Further, endpoints must ac-

knowledge acceptance of each message. The standard

also describes an optional transaction mode with a formal

multiphase commit sequence. True to its origins in the

FIGURE 25: Advanced

Message Queuing Protocol

(AMQP) shares data reliably

between servers.

30

banking industry, AMQP middleware focuses on tracking

all messages and ensuring each is delivered as intended,

regardless of failures or reboots.

AMQP is mostly used in business messaging. It usually

defines “devices” as mobile handsets communicating

with back-office data centers. In the IoT context, AMQP

is most appropriate for the control plane or server-based

analysis functions.

OPC UA

OPC UA is an upgrade of the venerable OPC (OLE for

Process Control) protocol. OPC is operational in thou-

sands of factories all over the world. Traditionally, OPC

was used to configure and query plant-floor servers

(usually Programmable Logic Controllers (PLCs)). Actual

device-to-device communications were then effected via a

hardware-based “fieldbus” such as ModBus or PROFINET.

OPC UA retains some of that flavor; it connects and con-

figures plant-floor servers. The UA version adds better

modeling capabilities. Thus, a remote client (e.g., a graph-

ical interface) can “browse” the device data controlled by

a server on the floor. By allowing this introspection across

many servers, clients can build a model of the “address

space” of all the devices on the floor.

FIGURE 26: OPC UA allows ap-

plications to browse a system’s

object model and interpret the

devices and their connections

31

OPC UA specifically targets manufacturing. It connects

applications at the shop-floor level as well as between the

shop floor and the enterprise IT cloud. In the taxonomy

previously mentioned, it targets systems that require

runtime integration.

The Bottom Line: How to
Choose?
The IoT needs many protocols. Those outlined here differ

markedly. Perhaps it’s easiest to categorize them along a

few key dimensions: QoS, addressing and application.

QoS control is a much better metric than the overloaded

“real-time” term. QoS control refers to the flexibility of

data delivery. A system with complex QoS control may be

harder to understand and program, but it can build much

more demanding applications.

For example, consider the reliability QoS. Most protocols

run on top of TCP, which delivers strict, simple reliability.

Every byte put into the pipe must be delivered to the other

end, even if it takes many retries. This is simple and handles

many common cases, but it doesn’t allow timing control.

TCP’s single-lane traffic backs up if there’s a slow consumer.

Because it targets device-to-device communications, DDS

differs markedly from the other protocols in QoS control. In

addition to reliability, DDS offers QoS control of “liveliness”

(when you discover problems), resource usage, discovery

and even timing.

Next, “discovery”—finding the data needle in the huge

IoT haystack—is a fundamental challenge. XMPP shines

for “single item” discovery. Its “user@domain” addressing

leverages the Internet’s well-established conventions.

However, XMPP doesn’t easily handle large data sets con-

nected to one server. With its collection-to-a-server design,

MQTT handles that case well. If you can connect to the

server, you’re on the network. AMQP queues act similarly

to servers, but for S2S systems. Again, DDS is an outlier.

Instead of a server, it uses a background “discovery” proto-

col that automatically finds data. DDS systems are typically

more contained; discovery across the wide-area network

(WAN) or huge device sets requires special consideration.

32

OPC UA specializes in communicating the information

about the system, its configuration, topology and data

context (the “metadata”). These are exposed in the col-

lective address space of the individual OPC UA servers.

This data can be accessed by OPC UA clients; they can

see what is available and choose what to access. OPC UA

is not designed for flexible device-to-device interaction.

Perhaps the most critical distinction comes down to the

intended applications. Inter-device data use is a funda-

mentally different use case from device data collection.

For example, turning on your light switch remotely (best

for XMPP) is worlds apart from generating that power

(DDS), monitoring the transmission lines (MQTT) or ana-

lyzing the power usage back at the data center (AMQP).

Of course, there is still confusion. For instance, DDS can

serve and receive data from the cloud, and MQTT can send

information back out to devices. Nonetheless, the funda-

mental goals of all five protocols differ, the architectures

differ, and the capabilities differ. All of these protocols are

critical to the (rapid) evolution of the IoT. And all have a

place; the IIoT is a big place with room for many protocols.

To make confusion even worse, many applications integrate

many subsystems, each with different characteristics.

With this variety, what’s the best path? Experience

suggests that designers first identify the application’s

toughest challenge, and then choose the technology that

best meets that single challenge. This is a critical decision;

choose carefully and without prejudice of what you know.

The aforementioned requirements-based dimensional de-

composition can help. After this step, the choice is usually

fairly obvious; most applications contain a key challenge

that clearly fits better with one or the other.

Once the hardest challenge is met, the best way to cover

the rest of the application is usually to push your initial

choice as far as it will go. There are many bridging tech-

nologies, so it is possible to mix technologies. However, it’s

usually easier to avoid multiple protocol-integration steps

when possible.

In the long term, the technologies will offer better interop-

erability. The IIC’s “connectivity core standard” design

described later is a key approach. So, regardless of your

initial choice, the vendor communities are working to

provide a non-proprietary path to interoperability.

33

CONNECTIVITY
ARCHITECTURE FOR
THE IIOT
There is no way to build large distributed systems without

connectivity. Enterprise and human-centric communi-

cations are too slow or too sparse to put together large

networks of fast devices. These new types of intelligent

machines need a new technology. That technology has to

find the right data and then get that data where it needs

to go on time. It has to be reliable, flexible, fast and secure.

Perhaps not as obviously, it also must work across many

types of industries. Only then can it enable the efficiencies

of common machine-based and cloud-based infrastruc-

ture for the IIoT.

Connectivity faces two key challenges in the IIoT: in-

teroperability and security. Interoperability is a challenge

because the IIoT must integrate many subsystems with

different designs, vendor equipment, or legacy infrastruc-

tures. Security is a challenge because most enterprise

security approaches target hub-and-spoke designs with a

natural center of trust. Those designs cannot handle vast

networks of devices that must somehow trust each other.

The IIC’s IIRA addresses both. Ultimately, the IIoT is about

building distributed systems. Connecting all the parts

intelligently so the system can perform, scale, evolve, and

function optimally is the crux of the IIRA. The IIoT must in-

tegrate many standards and connectivity technologies. The

IIC architecture explicitly blends the various connectivity

technologies into an interconnected future that can enable

the sweeping vision of a hugely connected new world.

34

The n-Squared Challenge
When you connect many different systems, the fundamental

problem is the “n-squared” interconnect issue. Connecting

two systems requires matching many aspects, including

protocol, data model, communication pattern and QoS

parameters like reliability, data rate or timing deadlines.

While connecting two systems is a challenge, it is solvable

with a special-purpose “bridge.” But that approach doesn’t

scale; connecting n systems together requires n-squared

bridges. As n gets large, this becomes daunting.

One way to ease this problem is to keep n small. You can

do that by dictating all standards and technologies across

all systems that interoperate. Many industry-specific stan-

dards bodies successfully take this path. For instance, the

European Generic Vehicle Architecture (GVA) specifies

every aspect of how to build military ground vehicles,

from low-level connectors to top-level data models. The

German Industrie 4.0 effort takes a similar pass at the

manufacturing industry, making choices for ordering and

delivery, factory design, technology, and product planning.

Only one standard per task is allowed.

This approach eases interoperation. Unfortunately, the

result is limited in scope because the rigidly-chosen stan-

dards cannot provide all functions and features. There are

simply too many special requirements to effectively cross

industries this way. Dictating standards also doesn’t address

the legacy integration problem. These two restrictions

(scope and legacy limits) make this approach unsuited to

building a wide-ranging, cross-industry Industrial Internet.

On the other end of the spectrum, you can build a very

general bridge point. Enterprise web services work this

way, using an Enterprise Service Bus (ESB), or a mediation

bus like Apache Camel. However, despite the “bus” in its

name, an ESB is not a distributed concept. All systems must

connect to a single point, where each incoming standard

is mapped to a common object format. Because every-

thing maps to one format, the ESB requires only one-way

translation, avoiding the n-squared problem. Camel, for

instance, supports hundreds of adapters that each convert

one protocol or data source to and from Camel’s internal

object format. Thus, any protocol can in principal connect

to any other.

35

Unfortunately, this doesn’t work well for demanding indus-

trial systems. The single ESB service is an obvious choke

and failure point. ESBs are large, slow programs. In the

enterprise, ESBs connect large-grained systems executing

only a few transactions per second. Industrial applications

need much faster, reliable, smaller-grained service. So,

ESBs are not viable for most IIoT uses.

The IIRA Connectivity Core
Standard
The IIRA takes an intermediate approach.15 The design

introduces the concept of a “Connectivity Core Standard.”

Unlike an ESB, the core standard is very much a distribut-

ed concept. Some endpoints can connect directly to the

core standard. Other endpoints and subsystems connect

through “gateways.” The core standard then connects

them all together. This allows multiple protocols without

having to bridge between all possible pairs. Each needs

only one bridge to the core.

15 http://www.iiconsortium.org/IIRA.htm

FIGURE 27: The IIRA connec-

tivity architecture specifies

a QoS-controlled, secure

connectivity core standard. All

other connectivity standards

must only bridge to this one

core standard.

36

Like an ESB, this solves the n-squared problem. But, unlike

an ESB, it provides a fast, distributed core, replacing the

centralized service model. Legacy and less-capable con-

nectivity technologies transform through a gateway to the

core standard. There are only n transformations, where n is

the number of connectivity standards.

Obviously, this design requires a very functional connectiv-

ity core standard. Some systems may get by with slow or

simple cores. But most industrial systems need to identify,

describe, find and communicate a lot of data with demands

unseen in other contexts. Many applications need delivery

in microseconds or the ability to scale to thousands or

even millions of data values and nodes. The consequences

of a reliability failure can be severe. Since the core standard

really is the core of the system, it has to perform.

The IIRA specifies the key functions that connectivity

framework and its core standard should provide: data

discovery, exchange patterns and QoS. QoS parameters

include delivery reliability, ordering, durability, lifespan

and fault tolerance functions. With these capabilities the

core connectivity can implement the reliable, high-speed,

secure transport required by demanding applications

across industries.

 The IIRA outlines several data QoS capabilities for the

connectivity core standard. These ensure efficient, reliable,

secure operation for critical infrastructure.

Data Quality of Service (QoS)
1.	 Delivery: Provide reliability and redelivery

2.	 Timeliness: Prioritize and inform when information is “late”

3.	 Ordering:	Deliver in the order produced or received

4.	 Durability:	Support late joiners, survive failures

5.	 Lifespan: Expire stale information

6.	 Fault	Tolerance: Enable redundancy and failover

7.	 Security:	Ensure confidentiality, integrity, authenticity
and non-repudiation

37

The IIoT Approach to Security
Security is also critical. To make security work correctly,

it must be intimately married to the architecture. For in-

stance, the core standard may support various patterns

and delivery capabilities. The security design must match

those exactly. For example, if the connectivity supports

publish-subscribe, so must security. If the core supports

multicast, so must security. If the core supports dynamic

plug-and-play discovery, so must security. Security that is

intimately married to the architecture can be imposed at

any time without changing the code. Security becomes

just another controlled QoS, albeit more complexly con-

figured. This is a very powerful concept.

The integrated security must extend beyond the core. The

IIRA allows for that too; all other connectivity technologies

can be secured at the gateways.

DDS as a Core Standard
The IIRA does not currently specify standards; the IIC

will take that step in the next release. However, it’s clear

that the DDS standard is a great fit to the IIRA for many

applications. DDS provides automated discovery, each of

the patterns specified in the IIRA, all the QoS settings and

intimately integrated security.

This is no accident. The IIRA connectivity design draws

heavily on industry experience with DDS. DDS has

thousands of successful applications in power systems

(huge hydropower dams, wind farms, microgrids), med-

icine (imaging, patient monitoring, emergency medical

systems), transportation (air traffic control, vehicle control,

automotive testing), industrial control (SCADA, mining

systems, PLC communications) and defense (ships, avi-

onics, autonomous vehicles). The lessons learned in these

applications were instrumental in the design of the IIRA.

DDS UNIQUE FEATURES

DDS is not like other middleware. It directly addresses

real-time systems. It features extensive fine control of

real-time QoS parameters, including reliability, bandwidth

control, delivery deadlines, liveliness status, resource limits

and (new) security. It explicitly manages the commu-

nication “data models,” or types, used to communicate

38

between endpoints. It is thus a “data-centric” technology.

Like a database, which provides data-centric storage, DDS

understands the contents of the information it manages.

DDS is all about the data. This data-centric nature, analo-

gous to a database, justifies the term “databus.”

At its core, DDS implements a connectionless data model

with the ability to communicate data with the desired

QoS. Originally, DDS focused on publish-subscribe com-

munications; participants were either publishers of data

or subscribers to data. Later versions of the specification

added request-reply as a standard pattern. Currently,

RTI also offers a full queuing service that can implement

“one of n” patterns for applications like load balancing.

The key difference between DDS and other approaches

is not the publish-subscribe pattern. The key difference is

data-centricity.

A DDS-based system has no hard-coded interactions

between applications. The data bus automatically discov-

ers and connects publishing and subscribing applications.

No configuration changes are required to add a new smart

machine to the network. The data bus matches and en-

forces QoS.

DDS overcomes problems associated with point-to-point

system integration, such as lack of scalability, interopera-

bility, and the ability to evolve the architecture. It enables

plug-and-play simplicity, scalability and exceptionally

high performance.

The DDS Databus
The core architecture is a “data bus” that ties all the com-

ponents together with strictly controlled data sharing. The

infrastructure implements full QoS control over reliability,

multicast, security and timing. It supports fully redundant

sources, sinks, networks, and services to ensure highly

reliable operation. It needs no communication servers

for discovery or configuration; instead, it connects data

sources and sinks through a background “meta traffic”

system that supports massive scale with no servers.

The data bus technology scales across millions of data

paths, ensures ultra-reliable operation, and simplifies ap-

plication code. It does not require servers, greatly easing

configuration and operations while eliminating failure and

choke points. DDS is by far the most proven technology

39

for reliable, high-performance, large-scale IIoT systems.

As of this writing, there are at least 12 implementations.

Several of these are backed by commercial vendors. RTI

provides the leading implementation.

Conceptually, DDS is simple. Distributed systems must

share information. Most middleware works by simply

sending that information to others as messages.

DDS sends information too, of course. However, DDS

conceptually has a local store of data, which looks to the

application like a simple database table. When you write, it

goes into your local store, and then the messages update

the appropriate stores on remote nodes. When you read,

you just read locally. The local stores together give the

applications the illusion of a global data store. Importantly,

this is only an illusion. There is no global place where all

the data lives; that would be a database. In a data bus,

each application stores locally only what it needs and only

for as long as it needs it. Thus, DDS deals with data in

motion; the global data store is a virtual concept that in

reality is only a collection of transient local stores.

DDS also matches producers and consumers to ensure

proper operation. The matching includes data flow rates,

remote “liveliness,” filtering, security and performance.

Once matched, the middleware enforces the “contract.”

For instance, if a subscriber needs updates 1,000 times

per second, the middleware will ensure a fast producer

is available. The standard defines more than 20 of these

QoS policies.

FIGURE 28: Data-Centric

Communications. The data

bus links any language, device

or transport. It automatically

discovers information sources,

understands data types

and communicates them to

interested participants. It

scales across millions of data

paths, enforces sub-millisec-

ond timing, ensures reliability,

supports redundancy and

selectively filters information.

Each path can be unicast,

multicast, open data or fully

secure. In the figure a medical

device that produces heart

waveforms will send only one

patient’s information to the

nursing station, at a rate it can

handle, if it has permission to

receive the information.

40

DATA-CENTRICITY
MAKES DDS
DIFFERENT
Systems are all about the data. Distributed systems must

also share and manage that data across many processors

and applications. The strategy to understand and manage

this state is a fundamental design decision.

Data-centricity can be defined by these properties:

 ■ The interface is the data. There are no artificial

wrappers or blockers to that interface like messages,

objects, files, or access patterns.

 ■ The infrastructure understands that data. This enables

filtering/searching, tools, and selectivity. It decouples

applications from the data and thereby removes

much of the complexity from the applications.

 ■ The system manages the data and imposes rules

on how applications exchange data. This provides a

notion of “truth.” It enables data lifetimes, data model

matching, CRUD interfaces, etc.

An analogy with the database, a data-centric storage tech-

nology, is instructive. Before databases, storage systems

were files with application-defined (ad hoc) structure. A

database is also a file, but it’s a very special file. A data-

base has known structure and access control. A database

defines “truth” for the system; data in the database can’t

be corrupted or lost.

By enforcing structure and simple rules that control the

data model, databases ensure consistency. By exposing

the structure to all users, databases greatly ease system

integration. By allowing discovery of data and schema,

databases also enable generic tools for monitoring, mea-

suring, and mining information.

Like a database, data-centric middleware imposes known

structure on the transmitted data. The data bus also sends

messages, but it sends very special messages. It sends

only messages specifically needed to maintain state. Clear

rules govern access to the data, how data in the system

changes and when participants get updates. Importantly,

41

the infrastructure sends messages. To the applications,

the system looks like a controlled global data space.

Applications interact directly with data and data prop-

erties like age and rate. There is no application-level

awareness or concept of “message.”

With knowledge of the structure and demands on data,

the infrastructure can do things like filter information,

selecting when or whether to do updates. The infra-

structure itself can control QoS like update rate, reliabil-

ity and guaranteed notification of peer liveliness. The

infrastructure can discover data flows and offer those

to applications and generic tools alike. This knowledge

of data status, in a distributed system, is a crisp defini-

tion of “truth.” As in databases, this accessible source

of truth greatly eases system integration. The structure

also enables tools and services that monitor and view

information flow, route messages and manage caching.

Figure 29: Data-centric

middleware does for data in

motion what a database does

for data at rest. The data-

base’s data-centric storage

fundamentally enables the

simplified development of

very complex information

systems. Analogously, the

data bus offers data-centric

networking that fundamen-

tally enables the simplified

development of very complex

distributed systems. Both

move much of the complexity

from the application (user

code) to the infrastructure.

42

THE FUTURE OF
THE IIOT
The IIoT is clearly in its infancy. Like the early days of

the Internet, the most important IIoT applications are

not yet envisioned. The “killer application” that drove the

first machine-to-machine connections for the Internet

was email. However, once connected, the real power of

distributed systems created an entirely new ecosystem

of value. This included web pages, search, social media,

online retail and banking, and so much more. The real

power of the Internet was barely hinted in its early days.

The IIoT will likely follow a similar pattern. Today, many

companies are most focused on collecting data from in-

dustrial systems and delivering it to the cloud for analy-

sis. This is important for predictive maintenance, system

optimization, and business intelligence. This “killer app”

is driving the initial efforts to build connected systems.

However, the future holds much more promise than

optimizing current systems. By combining high-quality

connectivity with smart learning and machine intelli-

gence, the IIoT future holds many new systems that will

revolutionize our world. It will, for instance, save hundred

of thousands of lives a year in hospitals, make renewable

energy sources truly practical, and completely transform

daily transportation. Projections of the economic and

social benefits range greatly, but all agree the impact is

measured in the multiple trillions of dollars in a short 10

years. That is a daunting, but inspiring number. The IIoT

will be a daunting, but inspiring transformation across

the face of industry.

43

ABOUT RTI

RTI provides the connectivity platform for the Industrial Internet
of Things.

Our RTI Connext® messaging software forms the core nervous
system for smart, distributed applications. RTI Connext allows
devices to intelligently share information and work together as
one integrated system. RTI was named “The Most in Influential
Industrial Internet of Things Company” in 2014 by Appinions and
published in Forbes.

Our customers span the breadth of the Internet of Things,
including medical, energy, mining, air tra c control, trading,
automotive, unmanned systems, industrial SCADA, naval systems,
air and missile defense, ground stations, and science.

RTI is committed to open standards, open community source and
open architecture. RTI provides the leading implementation of
the Object Management Group (OMG) Data Distribution Service
(DDS) standard.

RTI is the world’s largest embedded middleware provider,
privately held and headquartered in Sunnyvale, California.

CORPORATE HEADQUARTERS

232 E. Java Drive

Sunnyvale, CA 94089

Tel: +1 (408) 990-7400

Fax: +1 (408) 990-7402

info@rti.com

www.rti.com

Your Systems. Working as One.

RTI, Real-Time Innovations, RTI Data Distribution Service, DataBus, Connext, Micro DDS, 1RTI,

and the phrase “Your systems. Working as one,” are registered trademarks or trademarks of

Real-Time Innovations, Inc. All other trademarks used in this document are the property of

their respective owners. ©2016 RTI. All rights reserved. v. 90001 1016

