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INTRODUCTION TO 
THE IIOT
The Internet of Things (IoT) is the name given to the 

future of connected devices. There are two clear subsets. 

The “Consumer IoT” includes wearable computers, 

smart household devices, and networked appliances. 

The “Industrial IoT (IIoT)” includes networked smart 

power, manufacturing, medical, and transportation. 

Technologically, the Consumer IoT and the Industrial IoT 

are more different than they are similar. 

The Consumer IoT attracts more attention because it is 

more understandable to most people. Consumer systems 

typically connect only a few points, for instance, a watch 

or thermostat to the cloud. Reliability is not usually 

critical. Most systems are “greenfield,” meaning 

there is no existing infrastructure or distributed 

design that must be considered. There are many 

exciting new applications that will change daily 

life. However, the Consumer IoT is mostly 

a natural evolution of connectivity from 

human-operated computers to automated 

things that surround humans. 

While it will grow slower than the Consumer 

IoT, the IIoT will eventually have much larger 

economic impact. The IIoT will bring entirely 

new infrastructures to our most critical and 

impactful societal systems. The opportunity 

to build truly intelligent distributed machines 

that can greatly improve function and efficien-

cy across virtually all industries is indisputable. 

The IIoT is the strategic future of most large 

companies, even traditional industrial manufac-

turers and infrastructure providers. The dawn of a 

new age is clear. 

Unlike connecting consumer devices, the IIoT will 

control expensive, mission-critical systems. Thus, the 

requirements are very different. Reliability is often a huge 

challenge. The consequences of a security breach are 

vastly more profound for the power grid than for a home 

thermostat. Existing industrial systems are already net-

worked in some fashion, and interfacing with these legacy 



02

“brownfield” designs is a key blocking factor. Plus, unlike 

consumer devices that are mostly connected on small 

networks, industrial plants, electrical systems or transpor-

tation grids will encompass many thousands or millions of 

interconnected points.

Building a technology stack for any one of these appli-

cations is a challenge. However, the real power is a single 

architecture that can span sensor-to-cloud, interoperate 

between vendors and span industries. The challenge is to 

evolve from today’s mashup of special-purpose standards 

and technologies to a fast, secure, interoperable future. 

In the long term, there is an even larger opportunity. The 

future of the IIoT will include enterprise-class platforms 

that guarantee real-time delivery across enterprises and 

metro or continental areas. This will become a new utility 

that enables reliable distributed systems. This utility will 

support twenty-first-century infrastructure like intelligent 

transportation with autonomous vehicles and traffic 

control, smart grids that integrate distributed energy re-

sources, smart healthcare systems that assist care teams 

and safe flying robot air traffic control systems. This utility 

will be as profound as the cell phone network, GPS or the 

Internet itself. 

There are many consortia of companies targeting the IIoT. 

The largest and fastest growing is the Industrial Internet 

Consortium (IIC)1. The IIC was founded in 2014 by global 

industrial leaders: GE, Intel, Cisco, AT&T and IBM. As of this 

writing in 2016, it includes over 250 members. The German 

government, along with several large German manufac-

turers, has an active effort called Industrie 4.0.2 There is 

also a smaller startup consortium called the OpenFog 

Consortium.3 Of these, the IIC is by far the broadest. It 

addresses end-to-end designs in all industries. Industrie 

4.0 is focused only on manufacturing. And OpenFog 

targets “intelligence at the edge,” meaning the movement 

of powerful, elastic computing out of data centers into 

neighborhoods and customer premises. However, all share 

many common members and goals. They are working 

together in many ways.

1 http://iiconsortium.org

2 https://en.wikipedia.org/wiki/Industry_4.0

3 www.openfogconsortium.org
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Because of its size and growth, the IIC gets by far the most 

attention. The goal of the IIC is to develop and test an 

architecture that will span all industries. Just as Ethernet, 

Linux and the Internet itself grew as general-purpose tech-

nologies that pushed out their special-purpose predeces-

sors, the IIC will build a general-purpose Industrial Internet 

architecture that can build and connect systems such as 

transportation, medical, power, factory, industrial controls 

and others. The IIC’s unique and powerful combination of 

leaders from both government and industry gives it the 

necessary platform to make this huge impact.

The IIC was the first to create a venue for users across 

industries with similar challenges. This actually created the 

IIoT as a true market category and changed the landscape 

dramatically. Suddenly, hundreds of companies are decid-

ing their strategy for this new direction. Gartner, the large 

analyst firm, predicts that the Smart Machine era will be 

the most disruptive in the history of IT. That disruption will 

be led by smart distributed infrastructure called the IIoT. 

SOME EXAMPLES 
IIOT APPLICATIONS
The author is the CEO of Real-Time Innovations, Inc. 

(RTI).4 RTI is the largest vendor of embedded middleware 

company and the leading vendor of middleware compliant 

with the Data Distribution Service (DDS) standard.5 

All applications in this section are operational RTI Connext 

DDS systems. The DDS standard is detailed in later sec-

tions; the applications are presented first to provide back-

ground and highlight the breadth of the IIoT challenge. 

These are only a few of nearly 1,000 applications. Further 

examples can be found at www.rti.com.

4 http://www.rti.com

5 http:/www.omg.org/dds
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Connected Medical Devices  
for Patient Safety
Thirty years ago, health care technologists realized a 

simple truth: monitoring patients improves outcomes. 

That epiphany spawned the dozens of devices that 

populate today’s hospital rooms: pulse oximeters, 

multi-parameter monitors, ECG monitors, Holter 

monitors, and more. Over the ensuing years, tech-

nology and intelligent algorithms improved many 

other medical devices, from infusion pumps (IV 

drug delivery) to ventilators. Healthcare is much 

better today because of these advances. 

However, hospital error is still a leading cause of 

death; in fact, the Institute of Medicine named it the 

third leading cause of death after heart disease and 

cancer. Thousands and thousands of errors occur in hos-

pitals every day. Many of these errors are caused by false 

alarms, slow responses, and inaccurate treatment delivery. 

Today, a new technology disruption is spreading through 

patient care: intelligent, distributed medical systems. 

By networking devices, alarms can become smart, only 

sounding when multiple devices indicate errant physio-

logical parameters. By connecting measurements to treat-

ment, smart drug delivery systems can react to patient 

conditions much faster and more reliably than busy hos-

pital staff. By tracking patients around the hospital and 

connecting them to cloud resources, efficiency of care can 

be dramatically improved. The advent of true Internet of 

Things networking in healthcare will save costs and lives.

FIGURE 2: A modern hospital needs hundreds of types of devices. 

These must communicate to improve patient safety and outcome, to 

aid resource deployment and maintenance, and to optimize business 

processes. RTI Connext DDS adapts to handle many different types of 

dataflows, different computing platforms and transports.

FIGURE 1: Connected 

medical devices will intelligently 

analyze patient status, create 

“smart alarms” by combing 

instrument readings, and 

ensure proper patient care. 

An intelligent, distributed IIoT 

system will help care teams 

prevent hundreds of thousands 
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THE INTEGRATED CLINICAL 
ENVIRONMENT (ICE)

Researchers and device developers are making quick 

progress on medical device connectivity. The Integrated 

Clinical Environment standard (ASTM F2761)6 is one key 

effort to build such a connected system. ICE combines 

standards. It takes data definitions and nomenclature from 

the IEEE 11073 (x73) standard for health informatics. It 

specifies communication via the Data Distribution Service 

(DDS) standard. ICE then defines via the DDS standard 

control, data logging and supervisory functionality to 

create a connected intelligent substrate for smart clinical 

connected systems.

Like most standards, large organizations may take time 

to adapt to a standards-driven environment. ICE none-

theless represents an excellent example of how to build 

smarter systems. 

6 http://www.icealliance.org/

FIGURE 3: An intelligent Patient Controlled Analgesia system. The 

supervisor combines oximeter and respirator readings to reduce 

false alarms and stop drug infusion to prevent overdose. The RTI 

DDS data bus connects all the components with appropriate 

real-time reliable delivery.



06

PATIENT MONITORING

Modern hospitals use hundreds of types of devices for 

patient care and monitoring. These systems must work in 

a large hospital environment. Integrating whole hospitals 

with thousands of devices presents challenges for scal-

ability, performance and data discovery.

To prove the design viable for GE Healthcare, RTI built a 

simulation to prove that DDS could handle a thousand-bed 

hospital with over 100,000 devices. The simulation ran in 

RTI’s networking lab. It sent realistic dataflows between 

hundreds of applications, instances of RTI’s Connector 

product. RTI services developed a matrix (Excel spread-

sheet) to configure Connector to send the mix of data 

types and rates expected from real devices. RTI developed 

an automated test harness to deploy these applications 

across the lab’s test computers and collect the results. A 

graph of part of the simulation topology is presented in 

the following text. RTI’s test harness collected dataflow 

rates and loading across this topology.

The system handled realistic scale, performance and 

discovery. Since it is important to communicate real-time 

waveforms and video, the potential network-wide data-

flow is large. However, the need is “sparse;” most data is 

only needed at relatively few points. As explained in the 

succeeding text, DDS can propagate specifications to 

the senders to indicate exactly what each receiver needs 

from the senders. The senders then filter the information 

to send only what’s needed, thereby eliminating wasted 

bandwidth. Discovering data sources is also critical, since 

62% of hospital patients move every day. So, the system 

also tested transitions between network locations. 

FIGURE 4: Medical devices must 

operate in a complex hospital 

environment. The system must 

be able to find data sources, 

track them as patients move, 

and scale to handle the load. 

This realistic test simulated a 

large hospital.
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When deployed, the new system will ease patient track-

ing. It will coordinate devices in each room and connect 

rooms into an integrated whole hospital. Information will 

flow easily and securely to cloud-based Electronic Health 

Records (EHR) databases. The hospital of the future will 

become an intelligent, distributed machine in the IIoT. 

Microgrid Power Systems
The North American electric power grid has been de-

scribed as the biggest machine in the world. It was de-

signed and incrementally deployed based on centralized 

power generation, transmission and distribution concepts. 

Times have changed. Instead of large, centralized power 

plants burning fossil fuels that drive spinning masses, 

Distributed Energy Resources (DERs) have emerged as 

decentralized, local alternatives to bulk power. DERs are 

typically clean energy solutions (solar, wind, thermal) 

that take advantage of local environmental and market 

conditions to manage the local generation, storage or 

consumption of electricity.

THE DER TIME CHALLENGE

Most renewable energy sources are not reliable producers. 

Solar and wind can change their power output very quickly. 

Unfortunately, that dynamic behavior is not compatible 

with today’s grid. Today’s grid uses local power substations 

to convert high-voltage power to neighborhood distribu-

tion voltage levels. Those stations estimate power needs 

and reports back to the utility. The utility then needs up to 

15 minutes to spin up (or down) a centralized generation 

plant to match the estimate. 

So, since a solar array can lose power in a matter of 

seconds with a fast moving cloud, the grid cannot react. 

An alternate source has to be available and ready to pick 

up the load immediately. If there isn’t sufficient backup, 

the voltage on the grid can drop and the grid can fail. The 

only way to provide that backup today is to provide “spin-

ning reserve” capacity, meaning the generators use more 

energy than the grid needs.
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As solar energy resources grow in a utility’s service area, 

the utility has to have more excess spinning reserve ready 

as backup. While the sun is shining, power may be flowing 

from these distributed solar arrays back to the grid. 

However, the fossil fuel generators need to be running and 

spun up sufficiently to quickly take over if the solar arrays 

stop producing. So, with every solar array pushing power 

on to the grid, there is an equivalent fossil fuel generator 

spinning in the background to take over. Thus, little fossil 

fuel is saved. Even worse, driving the generators without 

load makes them overheat and even prematurely wears 

out bearings.

To fix this, the utility needs 15-30 minutes of extra time 

to ramp up the generators. Then, they would not need to 

have the spinning reserve. The only way to provide the time 

needed is to implement energy storage or load reduction.

MICROGRID ARCHITECTURE

Microgrids are the leading way to provide that time. 

Microgrids combine intermittent energy sources, energy 

storage systems like batteries, and some local control 

capability. This allows the microgrid to smooth out the 

changes in DER power. A microgrid can even “island” itself 

from the main power grid and run autonomously. 

Microgrids usually encompass a well-defined, relatively 

small geographic region. College campuses have been 

proving grounds for this technology, as have military 

bases. A microgrid can respond rapidly and locally to a 

loss of power from solar arrays or local wind turbines using 

backup energy sources like batteries. Many proof-of-con-

cept microgrid projects are active; they range from small 

FIGURE 5: A Microgrid uses 

peer-to-peer data communi-

cation and edge intelligence 

to automate local power 

generation and balance against 

the power load. Microgrids help 

integrate intermittent energy 

sources like solar and wind.
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demos to utility-class pilot testbeds. All seek to incorporate 

energy storage and load reduction techniques into the grid.

Two key capabilities for microgrids are intelligent control 

at the edge of the grid and peer-to-peer, high-perfor-

mance communications for local autonomy (see Figure 

5). With these, a local battery energy storage system can 

receive a message in milliseconds from the solar arrays 

when backup energy is needed. The local controller on the 

battery can then quickly switch the battery from charge 

to source mode. This keeps the local energy consumers 

powered and gives the utility time to spin up central power 

resources as needed.

The OpenFMB™ Framework7 is the first field system ad-

dressing the need for reliable, safe, upgradeable distributed 

intelligence on the grid. OpenFMB directly addresses the 

decentralization issue facing utilities and regulators by 

leveraging existing electricity information models (e.g., IEC 

61968/61970, IEC 61850, MultiSpeak and SEP 2) and cre-

ating a data-centric “bus” on the grid to allow devices to 

talk directly to one another. The initial use cases targeted 

by OpenFMB are microgrid focused, and the OpenFMB 

framework is closely adhering to the IIC’s Industrial Internet 

Reference Architecture IIRA.

The OpenFMB team held a major demonstration in 

February 2016 with 25 different companies. Many parts of 

7 http://sgip.org/Open-Field-Message-Bus-OpenFMB-Project

FIGURE 6: NASA KSC’s launch 

control is a massive, reliable 

SCADA system. It comprises 

over 400,000 points, spread 

across the launch platform and 

the control room. The launch 

control system integrates many 

thousands of devices, from 

tiny sensors to large enterprise 

storage systems. It spreads over 

many miles.

Photo: NASA/Bill Ingalls
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the implementation use RTI’s Connext DDS platform. DDS 

interfaces were developed for the Optimization Engine, 

Load Simulators, the Point of Common Coupling (PCC) 

transition logic, and other required simulators to drive the 

demonstration. To test non-proprietary interoperability, 

the system built a cross-platform solution with multiple 

operating system targets and CPU architectures. The 

demonstration proves that IIoT interoperability is a practi-

cal, achievable path for fielded utility devices and systems. 

Large-Scale SCADA Control
NASA Kennedy Space Center’s launch control system 

is the largest SCADA (Supervisory Control And Data 

Acquisition) system in the world. With over 400,000 

control points, it connects together all the equipment 

needed to monitor and prep the rocket systems. Before 

launch, it pumps rocket fuels and gasses, charges all elec-

trical systems, and runs extensive tests. During launch, a 

very tightly controlled sequence enables the main rocket 

engines, charges and arms all the attitude thrusters, and 

monitors thousands of different values that make up a 

modern space system. It must also adapt to the various 

mission payloads, some of which need special preparation 

and monitoring for launch.

The launch control system has very tight and unique 

communications requirements. The system is distribut-

ed over a large area and the control room. It must be 

secure. Dataflow is “tidal:” activity cycles through the 

surge of preparation, spikes during the actual launch, 

then ebbs afterward. During the most critical few 

seconds, it sends hundreds of thousands of messages 

per second. Connext DDS intelligently batches updates 

from thousands of sensors, reducing traffic dramatically. 

Everything must be stored for later analysis. All informa-

tion is viewable (after downsampling) on HMI stations 

in the control room. After launch, all the data must be 

available for replay, both to analyze the launch and to 

debug future modifications in simulation.
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Autonomy
RTI was founded by researchers at the Stanford Aerospace 

Robotics Laboratory (ARL)8. The ARL studies complex 

electromechanical systems, especially those with increas-

ing levels of autonomy.

Unmanned air and defense vehicles have long relied on DDS 

for deployments on land, in the air, and underwater. DDS 

is a key technology in many open architecture initiatives, 

including the Future Airborne Capability Environment 

(avionics), Unnamed Air Systems (UAS) Control Segment 

Architecture, UAS ground stations) and the Generic 

Vehicle Architecture (military ground vehicles). 

UAS have complex communication requirements, with 

flight-critical components distributed across the air and 

ground segments. Further, to operate in the U.S. National 

Airspace System (NAS) the system must be certified to 

the same safety standards as civil aircraft. RTI recently an-

nounced a version of DDS with full DO-178C Level A safety 

certification evidence. It was developed to meet the needs 

of the Ground Based Sense and Avoid (GBSAA) system 

pictured in Figure 8.

 

8 http://sgip.org/Open-Field-Message-Bus-OpenFMB-Project

Figure 8: The Ground Based 

Sense and Avoid (GBSAA) 

system includes many 

distributed radars. It will soon 

allow unmanned vehicles to fly 

in the U.S. National Airspace 

System (NAS). Applications of 

unmanned vehicles will include 

operator training, repositioning, 

search and rescue, and  

disaster relief. 

US Army photo by Sofia Bledsoe. 

 ■ Sensor data captured to both 
Recording Services (for forensic use) 
and Persistence Service (for durability)

 ■ Multicast batching from 1000s of 
sensors with many small samples; 
keeps interrupt load down

 ■ Sensor data viewable in real-time 
(after time-based filtering) on the 
HMIs

 ■ RS-RS bridge used for encrypted data 
in motion, between the event platform 
and control

Figure 7:
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This technology is now also being applied aggressively to 

autonomous cars for consumer use. This market is perhaps 

the most disruptive of the IIoT applications. Because the 

ground is a much more complex environment, autono-

mous cars face even greater challenges than air systems. 

They must coordinate navigation, traffic analysis, collision 

detection and avoidance, high-definition mapping, lane de-

parture tracking, image and sensor processing, and more. 

Safety certification for the entire system as whole is 

prohibitively expensive. Dividing the system into modules 

and certifying them independently reduces the cost 

dramatically. “Separation kernels” are operating systems 

that provide guaranteed separation of tasks running on 

one processor. “Separation middleware” provides a similar 

function to applications that must communicate, whether 

they are running on one processor or in a distributed 

system. A clean, well-controlled interface eases certifica-

tion by enabling modules to work together.

FIGURE 9: Autonomous vehicles must analyze complex 

situations and react quickly. They merge information from 

multiple sensors, plan trajectories through traffic and road 

lanes, and control the vehicle in real time. Slower subsystems 

support navigation, monitoring, and route optimization.
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TOWARD A 
TAXONOMY OF  
THE IIOT 
There is today no organized system science for the 

IIoT. We have no clear way to classify systems, evaluate 

architectural alternatives, or select core technologies. 

To address the space more systematically, we need to 

develop a taxonomy of IIoT applications based on their 

system requirements. 

This taxonomy will reduce the space of requirements to 

a manageable set by focusing only on those that drive 

significant architectural decisions. Based on extensive ex-

perience with real applications, we suggest a few divisions 

and explain why they impact the architecture. Each of 

these divisions defines an important dimension of the IIoT 

taxonomic model. We thus envision the IIoT space as a 

multi-dimensional requirement space. This space provides 

a framework for analyzing the fit of architectures and 

technologies to IIoT applications.

A taxonomy logically divides types of systems by their 

characteristics. The first problem is to choose top-level 

divisions. In the animal kingdom, you could label most 

animals “land, sea or air” animals. However, those envi-

ronmental descriptions don’t help much in understanding 

the animal. For instance, the “architecture” of a whale is 

not much like an octopus, but it is very like a bear. To be 

understood, animals must be divided by their character-

istics and architecture, such as heart type, reproductive 

strategies, and skeletal structure. 

It is similarly not useful to divide IIoT applications by their 

industries like “medical, transportation and power.” While 

these environments are important, the requirements simply 

do not split along industry lines. For instance, each of 

these industries has some applications that must process 

huge data sets, some that require real-time response, and 

others that need life-critical reliability. Conversely, systems 

with vastly different requirements exist in each industry. 

The bottom line is that fundamental system requirements 

vary by application and not by industry, and these differ-

ent types of systems need very different approaches. 

FIGURE 10: Environment does 

not indicate architecture. 

Dividing animals by “land, sea, 

and air” environment is scientifi-

cally meaningless. The biological 

taxonomy instead divides by 

fundamental characteristics.

Sea

Land

Air
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Medical

Power

Transportation

Thus, as in biology, the IIoT needs an environment-indepen-

dent system science. This science starts by understanding 

the key system challenges and resulting requirements. If we 

can identify common cross-industry requirements, we can 

then logically specify common cross-industry architectures 

that meet those requirements. That architecture will lead 

to technologies and standards that can span industries. 

There is both immense power and challenge in this state-

ment. Technologies that span industries face many chal-

lenges, both political and practical. Nonetheless, a clear 

fact of systems in the field is the similarity of requirements 

and architecture across industries. Leveraging this fact 

promises a much better understood, better connected 

future. It also has immense economic benefit: over time, 

generic technologies offer huge advantage over spe-

cial-purpose approaches. Thus, to grow our understanding 

and realize the promise of the IIoT, we must abandon our 

old industry-specific thinking.

Proposed Taxonomic Criteria
So, what can we use for divisions? What defining charac-

teristics can we use to separate the mammals from the 

reptiles from the insects of the IIoT? 

There are far too many requirements, both functional and 

non-functional, to consider in developing a “comprehen-

sive” set to use as criteria. As with animals, we need to find 

those few requirements that divide the space into useful, 

major categories. 

The task is simplified by the realization that the goal is to 

divide the space so we can determine system architecture. 

Thus, good division criteria are (1) unambiguous and (2) 

impactful on the architecture. That makes the task easier, 

but still non-trivial. The only way to do it is through ex-

perience. We are early in our quest. However, significant 

progress is within our collective grasp. 

This work draws on extensive experience with nearly 1,000 

real-world IIoT applications. Our conclusion is that an IIoT 

taxonomy is not only possible but also critical to both the 

individual systems building and the inception of a true 

cross-industry IIoT. 

While the classification of IIoT systems is very early, we 

do suggest a few divisions. To be as crisp as possible, we 

FIGURE 11: Industry does not in-

dicate architecture. Dividing IIoT 

applications by “medical, power, 

or transportation” environment 

is as scientifically meaningless 

as dividing animals by their 

environments. To make progress, 

we need an IIoT taxonomy that 

instead divides by fundamental 

characteristics.
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also chose numeric “metrics” for each division. The lines, of 

course, are not that stark. And those lines evolve with tech-

nology over time at a much faster pace than biological evo-

lution. Nonetheless, the numbers are critical to force clarity; 

without numerical metrics, meaning is often too fuzzy.

RELIABILITY 

Metric: Continuous availability must exceed “99.999%” to 
avoid severe consequences

Architectural Impact: Redundancy

Many systems describe their requirements as “highly reli-

able,” “mission critical” or “minimal downtime.” However, 

those labels are more often platitudes than actionable 

system requirements. For these requirements to be mean-

ingful, we must be more specific about the reasons we 

must achieve that reliability. That requires understanding 

how quickly a failure causes problems and how bad those 

problems are.

Thus, we define “continuous availability” as the probabil-

ity of a temporary interruption in service over a defined 

system-relevant time period. The “five 9s” golden speci-

fication for enterprise-class servers translates to about 5 

minutes of downtime per year. Of course, many industrial 

systems cannot tolerate even a few milliseconds of unex-

pected downtime. For a power system, the relevant time 

period could span years. For a medical imaging machine, 

it could be only a few seconds. 

The consequences of violating the requirement are also 

meaningful. A traffic control system that goes down for a 

few seconds could result in fatalities. A website that goes 

down for those same few seconds would only frustrate 

users. These are fundamentally different requirements.

Reliability thus defined is an important characteristic 

because it greatly impacts the system architecture. 

A system that cannot fail, even for a short time, must 

support redundant computing, sensors, networking, 

storage, software and more. Servers become troublesome 

single-point-of-failure weak points. When reliability is truly 

critical, redundancy quickly becomes a—or perhaps the—

key architectural driver.

FIGURE 12: IIoT reliability-critical 

applications. Hydropower dams 

can quickly modulate their 

significant power output by 

changing water flow rates and 

thus help balance the grid; even 

a few milliseconds of unplanned 

downtime can threaten stability. 

Air-traffic control faces a similar 

need for continuous operation; 

a short failure in the system 

endangers hundreds of flights.  

A proton-beam radiation 

therapy system must guarantee 

precise operation during 

treatment; operational dropouts 

threaten patient outcomes. 

Applications with severe conse-

quences of short interruptions in 

service require a fully-redundant 

architecture, including comput-

ing, sensors, networking, storage 

and software. 
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REAL TIME 

Metric: Response < 100ms

Architectural Impact: Peer-to-peer data path

There are many of ways to characterize “real time.” All 

systems should be “fast.” However, for these requirements 

to be useful we must specifically understand which timing 

requirements drive success.

Thus, “real time” is much more about guaranteed response 

than it is about fast. Many systems require low average 

latency (delivery delay). However, true real-time systems 

succeed only if they always respond “on time.” This is the 

maximum latency, often expressed as the average delay 

plus the variation or “jitter.” Even a fast server with low 

average latency can experience large jitter under load.

In a distributed system, the most important architectural 

impact is the potential jitter imposed by a server or broker 

in the data path. An architecture that can satisfy a human 

user annoyed by a wait longer than eight seconds for a 

website will never satisfy an industrial control that must 

respond in 2 milliseconds. We find that the “knee in the 

curve” that greatly impacts design occurs when the speed 

of response is measured in a few tens of milliseconds or 

even microseconds. We choose 100 ms, simply because 

that is about the unpredictable delay of today’s servers. 

Systems that most respond faster than this usually must 

be peer-to-peer, and that is a huge architectural impact.

FIGURE 14: IIoT real-time appli-

cations. To provide quality feel 

to surgeons, distributed control 

loops for medical robotics 

must run at rates up to 3 kHz 

and control the “jitter” to only 

tens of microseconds. Similarly, 

autonomous cars must react 

fast enough to safely control the 

vehicle and prevent collisions. 

These fundamental performance 

needs imply a system architec-

ture that does not send data 

through intermediaries.

Robotics photo: DLR CC-BY 3.

FIGURE 13: Added Server Latency. Although the hardware transmit time is often negligible, sending data 

through a server “hop” requires traversing the sending machine’s transmit stack, the server’s receive stack, the 

server’s processing queue, the server’s transmit stack and finally the destination’s receive stack. Each of these 

has threads, queues and buffers that add uncontrolled latency. Worse, the server cannot easily prioritize traffic 

as easily as the end points. Thus, systems that are sensitive to maximum latency often cannot use data servers.
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DATA ITEM SCALE 

Metric: More than 10,000 addressable data items

Architectural Impact: Selective delivery filtering

Scale is a fundamental challenge for the IIoT. It is also 

complex; there are many dimensions of scale, including 

number of “nodes,” number of applications, number of de-

velopers on the project, number of data items, data item 

size, total data volume, and more. We cannot divide the 

space by all these parameters. 

In practice, however, they are related. For instance, a 

system with many data items probably has many nodes. 

Despite the broad space, we have found that two simple 

metrics correlate well with architectural requirements. 

The first scale metric is addressable “data item scale,” 

defined as the number of different data instances that 

could be of interest to different parts of the system. Note 

that this is not the same as the size of a single large data 

set, such as a stream of data from a single fast sensor. 

The key scale parameter is the existence of many different 

data items that could potentially be of interest to differ-

ent consumers. So, a few fast sensors create only a few 

addressable data items. Many sensors or sources create 

many data items. A large number of addressable data 

items implies difficulty in sending the right data to the 

right place.

When systems get “big” in this way, it is no longer practical 

to send every data update to every possible receiver. We 

find that the challenge is significant for as few as 100 data 

items. It is extreme for systems with more than 10,000 ad-

dressable data items. Above this limit, managing the data 

itself becomes a key architectural need. These systems 

need an architectural design that explicitly understands 

the data, thereby allowing selective filtering and delivery. 

There are two approaches in common use: run-time in-

trospection that allows consumers to choose data items 

themselves, and “data-centric” designs that empower the 

infrastructure itself to understand and actively filter the 

data system-wide.

Figure 15: IIoT applications 

with many data items. IIoT 

systems often produce far too 

much data to send everything 

to every possible consumer. 

“Gust control” in a wind 

turbine farm, for instance, 

needs weather updates from 

the turbines immediately “up 

wind,” a specification that 

changes with time. Traffic 

control systems are very 

interested only in vehicles 

approaching an intersection. 

These applications require 

the architecture to provide 

selective data availability, so 

only the right information 

loads the network and the 

participants.
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MODULE SCALE 
Metric: More than 10 teams or interacting applications

Architectural Impact: Interface control and evolution

The second scale parameter we choose is the number of 

“modules” in the system, where a module is defined as a 

reasonably independent piece of software. Each module is 

typically an independently-developed application built by 

an independent team of developers on the “project.” 

Module scale quickly becomes a key architectural driver. 

The reason is that system integration is inherently an 

“n-squared” problem. Each new team presents another 

interface into the system. Smaller projects built by a cohe-

sive team can easily share interface specifications without 

formality. Larger projects built by many independent 

groups of developers face a daunting challenge. System 

integration can occupy half of the delivery schedule and 

most of its risk. 

In these large systems, interface control dominates the 

interoperability challenge. It is not practical to expect 

interfaces to be static. Modules, or groups of modules, 

that depend on an evolving interface schema must 

somehow continue to interoperate with older versions of 

that schema. Communicating all the interfaces becomes 

hard. Forcing all modules to “update” on a coordinated 

timeframe to a new schema becomes impossible. Thus, 

interacting teams quickly find that they need tool, process, 

and eventually architectural support to solve the system 

integration problem. 

Of course, this is a well-studied problem in enterprise 

software systems. In the storage world, databases ease 

system integration by explicitly modeling and controlling 

“data tables,” thus allowing multiple applications to access 

information in a controlled manner. Communication tech-

nologies like enterprise service buses (ESBs), Web services, 

enterprise “queuing” middleware, and textual schema like 

XML and JSON all provide evolvable interface flexibility. 

However, these are often not appropriate for industrial 

systems, usually for performance or resource reasons.

Data-centric systems expose and control interfaces direct-

ly, thus easing system integration. Databases, for instance, 

provide data-centric storage and are thus important in 

systems with many modules. However, databases provide 

FIGURE 16: IIoT applications 

built by large teams. Hundreds 

of different types of hospital 

medical devices, from heart 

monitors to ventilators, must 

combine to better monitor 

and care for patients. Similarly, 

ship systems integrate dozens 

of complex functions like 

navigation, power control 

and communications. When a 

complex “system of systems” 

integrates many complex 

interfaces, the system architec-

ture itself must help to manage 

system integration  

and evolution.
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storage for data at rest. Most IIoT systems require data in 

motion, not (or in addition to) data at rest.

Data-centric middleware is a relatively new concept for 

distributed systems. Similar to a database data table, 

data-centric middleware allows applications to interact 

through explicit data models. Advanced technologies can 

even detect and manage differences in interfaces between 

modules and then adapt to deliver to each endpoint in 

the schema what the endpoint expects.9 These systems 

thus decouple application interface dependencies, allow-

ing large projects to evolve interfaces and make parallel 

progress on multiple fronts. 

RUNTIME INTEGRATION 

Metric: More than 20 “devices,” each with many parame-
ters and data sources or sinks that cannot be configured 
at development time

Architectural Impact: Must provide a discoverable inte-
gration model

Some IIoT systems can (or even must) be configured and 

understood before runtime. This does not mean that every 

data source and sink is known, but rather that this configu-

ration is relatively static. Others, despite a potentially large 

size, have applications that implement specific functions 

that depend on knowing what data will be available. These 

systems can or must implement an “end point” discovery 

model that finds all the data in the system directly.

However, other systems cannot easily know what devices 

or data will be available until runtime. For instance, when 

IIoT systems integrate racks of field-replaceable machines 

or devices, they must often be configured and understood 

during operation. For instance, a plant controller HMI may 

need to discover the device characteristics of an installed 

device or rack so a user can choose data to monitor. 

The key factor here is not addition or changes in which 

device is used. It is more a function of not knowing which 

types of devices may be involved.

9 http://www.omg.org/spec/DDS-XTypes/

FIGURE 17: IIoT device integra-

tion challenge. Large systems 

assembled in the field from a 

large variety of “devices” face a 

challenge in understanding and 

discovering interacting devices 

and their relationships. The most 

common example applications 

are in manufacturing. These 

applications benefit from a 

design that offers the ability for 

remote applications and human 

interfaces to “browse” the 

system, thus discovering data 

sources and relationships.
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These systems must implement a different way to discover 

information. Instead of searching for data, it is more effi-

cient to automate the process by building runtime maps 

of devices and their data relationships. The choice of 

“20” different devices is arbitrary. The point is that when 

there are many different configurations for many devices, 

mapping them at runtime becomes an important archi-

tectural need. Each device requires some sort of server 

or manager that locally configures attached sub-devices, 

and then presents that catalog to the rest of the system. 

This avoids manual gymnastics. 

DISTRIBUTION FOCUS

Metric: Fan out > 10

Architectural Impact: Must use one-to-many connection 
technology

We define “fan-out” as the number of data recipients that 

must be informed upon change of a single data item. Thus, 

a data item that must go to 10 different destinations each 

time it changes has a fan out of “10.” 

Fan-out impacts architecture because many protocols 

work through single 1 : 1 connections. Most of the enter-

prise world works this way, often with TCP, a 1 : 1 session 

protocol. Examples include connecting a browser to a 

Web server, a phone app to a backend, or a bank to a 

credit card company. While these systems can achieve 

significant scale, they must manage a separate connection 

to each endpoint. When many data updates must go to 

many endpoints, the system is not only managing many 

connections, but it is also sending the same data over and 

over through each of those connections.

IIoT systems often need to distribute information to many 

more destinations than enterprise systems. They also often 

need higher performance on slower machines. Complex 

systems even face a “fan-out mesh” problem, where many 

producers of information must send it to many recipients. 

When fan-out exceeds 10 or so, it becomes impractical to 

do this branching by managing a set of 1 : 1 connections. 

An architecture that supports efficient multiple updates 

greatly simplifies these systems.

FIGURE 18: “IIoT applications 

needing data distribution. Many 

applications must deliver the 

same data to many potential 

endpoints. Coordinated vehicle 

fleets may update a cloud 

server, but then that information 

must be delivered to many 

distributed vehicles. An emer-

gency services communications 

system must allow many remote 

users access to high-bandwidth 

distributed voice and video 

streams. Many industries use 

“hardware in the loop” simula-

tion to test and verify modules 

during development. Across 

all these industries, an efficient 

architecture must deliver data to 

multiple points easily.



21

COLLECTION FOCUS 

Metric: One-way data flow from more than 100 sources

Architectural Impact: Local concentrator or gateway 
design

Data collection from field systems is a key driver of the IIoT. 

Many systems transmit copious information to be stored 

or analyzed in higher-level servers or the cloud. Systems 

that are essentially restricted to the collection problem do 

not share significant data between devices. These systems 

must efficiently move information to a common destina-

tion, but not between devices in the field.

This has huge architectural impact. Collection systems 

can often benefit from a hub-and-spoke “concentrator” or 

gateway. Widely distributed systems can use a cloud-based 

server design, thus moving the concentrator to the cloud. 

Dimensional Decomposition and 
Map to Implementation
The analogy with a biological taxonomy only goes so far. 

Industrial systems do not stem from common ancestors 

and thus do not fall into crisply-defined categories. As 

implied previously, most systems exhibit some degree 

of each of the characteristics. This is actually a source 

FIGURE 19: IIoT Collection and Monitoring Applications. Collecting 

and analyzing field-produced data is perhaps the first “killer app” 

of the IIoT. The IIC’s “track and trace” testbed, for instance, tracks 

tools on a factory floor so the system can automatically log use. 

Other applications include monitoring gas turbines for efficient 

operation, testing aircraft landing gear for potentially risky 

situations and optimizing gas pipeline flow control. Since there is 

little inter-device flow, “hub and spoke” system architectures that 

ease collection work well for these systems.
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of much of the confusion, and 

the reason for our attempt to 

choose hard metrics at the risk 

of declaring arbitrary bound-

aries. In the end, however, the 

goal is to use the characteristics 

to help select a single system 

architecture. Designs and tech-

nologies satisfy the previously 

mentioned goals to varying 

degrees.  With no system 

science to frame the search, the 

selection of a single architecture 

based on any one requirement 

becomes confusing.

Perhaps a better analysis is to consider each of the key 

characteristics as an axis in an n-dimensional space. The 

taxonomical classification process then places each appli-

cation on a point in this n-dimensional space. 

This is not a precise map. Applications may be complex 

and thus placement is not exact. The metrics mentioned 

before delineate architecturally significant boundaries that 

are not in reality crisp. So, the lines that we have named are 

somewhat fuzzy. However, an exact position is often not im-

portant. Our classification challenge is really only to decide 

on which side of each boundary our application falls. 

In this framework, architectural approaches and the 

technologies that implement them can be considered 

to “occupy” some region in this n-dimensional space. 

For instance, a data-centric technology like the Object 

Management Group (OMG) DDS provides peer-to-peer, 

fully-redundant connectivity with content filtering. Thus, 

it would occupy a space that satisfies many reliable, 

real-time applications with significant numbers of data 

items, the first three challenge dimensions previously 

mentioned. The Message Queuing Telemetry Transport 

(MQTT) protocol, on the other hand, is more suited to the 

data collection focus challenge. Thus, these technologies 

occupy different regions of the solution space. Figure 20 

represents this concept in three dimensions. 

FIGURE 20: n-Dimensional 

Requirement Space. 

Architectural approaches and 

their implementing technologies 

satisfy some range of each of 

the dimensions above, and thus 

occupy a region in an n-dimen-

sional “requirement space.” The 

value of a taxonomy is to help 

designers decompose their 

problem into relevant dimen-

sions so they can then select an 

appropriate approach.
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Thus, the application can be placed in the space, and the 

architectural approaches represented as regions. This 

reduces the problem of selecting an architecture to one 

of mapping the application point to appropriate architec-

tural regions. 

Of course, this may not be a unique map; the regions 

overlap. In this case, the process indicates options. The 

tradeoff is then to find something that fits the key require-

ments while not imposing too much cost in some other 

dimension. Thinking of the system as an n-dimensional 

mapping of requirements to architecture offers important 

clarity and process. It greatly simplifies the search. 

TAXONOMY BENEFITS

Defining an IIoT taxonomy will not be trivial. The IIoT en-

compasses many industries and use cases. It encompasses 

much more diversity than applications for specialized in-

dustry requirements, enterprise IT, or even Consumer IoT. 

Technologies also evolve quickly, so the scene is constantly 

shifting. This present state just scratches the surface. 

However, the benefit of developing a taxonomical under-

standing of the IIoT is enormous. Resolving these issues 

will help system architects choose protocols, network 

topologies, and compute capabilities. Today, we see 

designers struggling with issues like server location or 

configuration, when the right design may not even require 

servers. Overloaded terms like “real time” and “thing” cause 

massive confusion between technologies despite the fact 

that they have no practical use-case overlap. The industry 

needs a better framework to discuss architectural fit.

Collectively, organizations like the IIC enjoy extensive 

experience across the breadth of the IIoT. Mapping those 

experiences to a framework is the first step in the devel-

opment of a systems science of the IIoT. Accepting this 

challenge promises to help form the basis of a better 

understanding and logical approach to designing tomor-

row’s industrial systems.
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STANDARDS AND 
PROTOCOLS FOR 
CONNECTIVITY
IoT Protocols
The IoT Protocol Roadmap in Figure 21 outlines the basic 

needs of the IoT. Devices must communicate with each 

other (D2D), device data must be collected and sent to the 

server infrastructure (D2S), and that server infrastructure 

has to share device data (S2S), possibly providing it back 

to devices, to analysis programs or to people.

From 30,000 feet, the main IoT protocols can be described 

in this framework as:

 ■ MQTT: A protocol for collecting device data and 

communicating it to servers (D2S)10 

 ■ XMPP: A protocol best for connecting devices to 

people, a special case of the D2S pattern, since 

people are connected to the servers11 

 ■ DDS: A fast bus for integrating intelligent machines 

(D2D)12 

 ■ Advanced Message Queuing Protocol (AMQP):  
A queuing system designed to connect servers to 

each other (S2S) 13

 ■ Open Platform Communications (OPC) Unified 
Architecture  (OPC UA): A control plane technology 

that enables interoperability between devices14 

Each of these protocols is widely adopted. There are at 

least 10 implementations of each. Confusion is understand-

able, because the high-level positioning is similar. In fact, 

the first four all claim to be real-time publish-subscribe IoT 

protocols that can connect thousands of things. Worse, 

those claims are true, depending on how you define “real 

10 http://mqtt.org/

11 http://xmpp.org/

12 http://portals.omg.org/dds/

13 https://www.amqp.org/

14 http://opcfoundation.org
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time,” “publish-sub-

scribe” and “thing.” 

Nonetheless, all five 

are very different 

indeed! They do not, 

in fact, overlap much 

at all. Moreover, they 

don’t even fill strict-

ly comparable roles. 

For instance, OPC 

UA and DDS are 

best described as 

information systems 

that have a protocol; 

they are much more 

than just a way to 

send bits. 

The previously men-

tioned simple taxonomy frames the basic protocol use 

cases (Figure 21). Of course, it’s not really that simple. For 

instance, the “control plane” represents some of the com-

plexity in controlling and managing all these connections. 

Many protocols cooperate in this region.

Today’s enterprise Internet supports hundreds of proto-

cols; the IoT will support hundreds more. It’s important to 

understand the class of use that each of these important 

protocols addresses.

MQTT

MQTT targets device data collection (Figure 22). As the 

name states, the main purpose is telemetry or remote 

monitoring. Its goal is to collect data from many devices 

and transport that data to the IT infrastructure. It targets 

large networks of small devices that need to be monitored 

or controlled from the cloud. 

MQTT makes little attempt to enable device-to-device 

transfer, nor to “fan-out” the data to many recipients. 

Since it has a clear, compelling single application, MQTT is 

simple, offering few control options. It also doesn’t need to 

be particularly fast. In this context, “real time” is typically 

measured in seconds.

FIGURE 21: IoT protocol 

roadmap. Devices communicate 

with each other (D2D) and send 

data to the IT infrastructure 

(D2S). The IT infrastructure 

servers use the data (S2S), 

communicating back to devices 

or to people.
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A hub-and-spoke architec-

ture is natural for MQTT. 

All the devices connect 

to a data concentrator 

server. Most applications 

don’t want to lose data 

regardless of how long 

retries take, so the protocol 

works on top of TCP, which 

provides a simple, reliable 

stream. Since the IT infra-

structure uses the data, the 

entire system is designed 

to easily transport data into 

enterprise technologies like 

ActiveMQ and ESBs.

MQTT targets applications 

like monitoring an oil pipe-

line for leaks or vandalism. 

Those thousands of sensors 

must be concentrated into a single location for analysis. 

When the system finds a problem, it can take action to 

correct that problem. Other applications for MQTT include 

power usage monitoring, lighting control, and even 

intelligent gardening. They share a need for collecting 

data from many sources and making it available to the IT 

infrastructure.

XMPP

XMPP was originally called “Jabber.” It was developed for 

instant messaging (IM) to connect people to other people 

via text messages (Figure 23). XMPP stands for Extensible 

Messaging and Presence Protocol. Again, the name belies 

the targeted use: presence—meaning people are intimate-

ly involved.

XMPP uses the XML text format as its native type, making 

person-to-person communications natural. Like MQTT, it 

runs over TCP, or perhaps over HTTP on top of TCP. Its key 

strength is a name@domain.com addressing scheme that 

helps connect the needles in the huge Internet haystack.

In the IoT context, XMPP offers an easy way to address 

a device. This is especially handy if that data is going 

between distant, mostly unrelated points, just like the 

FIGURE 22: Message Queuing 

Telemetry Transport (MQTT) 

implements a hub-and-spoke 

data collection system.
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person-to-person case. It’s not designed to be fast. In 

fact, most implementations use polling or checking for 

updates only on demand. A protocol called Bidirectional- 

streams over Synchronous HTTP (BOSH) lets servers 

push messages. But “real time” to XMPP is on a human 

scale, measured in seconds.

XMPP provides a great way, for instance, to connect your 

home thermostat to a Web server so you can access it from 

your phone. Its strengths in addressing security and scal-

ability make it appropriate for Consumer IoT applications. 

DDS

In contrast to MQTT and XMPP, DDS targets devices 

that directly use device data. It distributes data to other 

devices (Figure 24). DDS’s main purpose is to connect 

devices to other devices. It is a data-centric middleware 

standard with roots in high-performance defense, indus-

trial, and embedded applications. DDS can efficiently 

deliver millions of messages per second to many simul-

taneous receivers.

Call 
bridge

FIGURE 23: Extensible 

Messaging and Presence 

Protocol (XMPP) provides 

text communications between 

diverse points.



28

Devices demand data very differently than the IT infra-

structure demands data. First, devices are fast. “Real 

time” may be measured in milliseconds or microseconds. 

Devices need to communicate with many other devices 

in complex ways, so TCP’s simple and reliable point-to-

point streams are far too restrictive. Instead, DDS offers 

detailed quality-of-service (QoS) control, multicast, con-

figurable reliability and pervasive redundancy. In addi-

tion, fan-out is a key strength. DDS offers powerful ways 

to filter and select exactly which data goes where, and 

“where” can be thousands of simultaneous destinations. 

Some devices are small, so there are lightweight versions 

of DDS that run in constrained environments. 

Hub-and-spoke is completely inappropriate for device 

data use. Rather, DDS implements direct device-to-device 

“bus” communication with a relational data model. This is 

often termed a “data bus” because it is the networking 

analog to a database. Similar to the way a database 

controls access to stored data, a data bus controls data 

access and updates by many simultaneous users. This is 

exactly what many high-performance devices need to 

work together as a single system.

High-performance integrated device systems use DDS. 

It is the only technology that delivers the flexibility, reli-

ability, and speed necessary to build complex, real-time 

applications. DDS is very broadly used. Applications 

include wind farms, hospital integration, medical imaging, 

FIGURE 24: Data Distribution 

Service (DDS) connects devices 

at physics speeds into a single 

distributed application
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autonomous planes and cars, rail, asset tracking, auto-

motive test, smart cities, communications, data center 

switches, video sharing, consumer electronics, oil & gas 

drilling, ships, avionics, broadcast television, air traffic 

control, SCADA, robotics and defense. 

RTI has experience with nearly 1,000 applications. DDS 

connects devices together into working distributed appli-

cations at physics speed.

AMQP

AMQP is sometimes considered an IoT protocol. AMQP is 

all about queues (Figure 25). It sends transactional mes-

sages between servers. As a message-centric middleware 

that arose from the banking industry, it can process thou-

sands of reliable queued transactions.

AMQP is focused on not losing messages. Communications 

from the publishers to exchanges and from queues to 

subscribers use TCP, which provides strictly reliable 

point-to-point connection. Further, endpoints must ac-

knowledge acceptance of each message. The standard 

also describes an optional transaction mode with a formal 

multiphase commit sequence. True to its origins in the 

FIGURE 25: Advanced 

Message Queuing Protocol 

(AMQP) shares data reliably 

between servers.
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banking industry, AMQP middleware focuses on tracking 

all messages and ensuring each is delivered as intended, 

regardless of failures or reboots.

AMQP is mostly used in business messaging. It usually 

defines “devices” as mobile handsets communicating 

with back-office data centers. In the IoT context, AMQP 

is most appropriate for the control plane or server-based 

analysis functions. 

OPC UA

OPC UA is an upgrade of the venerable OPC (OLE for 

Process Control) protocol. OPC is operational in thou-

sands of factories all over the world. Traditionally, OPC 

was used to configure and query plant-floor servers 

(usually Programmable Logic Controllers (PLCs)). Actual 

device-to-device communications were then effected via a 

hardware-based “fieldbus” such as ModBus or PROFINET. 

OPC UA retains some of that flavor; it connects and con-

figures plant-floor servers. The UA version adds better 

modeling capabilities. Thus, a remote client (e.g., a graph-

ical interface) can “browse” the device data controlled by 

a server on the floor. By allowing this introspection across 

many servers, clients can build a model of the “address 

space” of all the devices on the floor.

FIGURE 26: OPC UA allows ap-

plications to browse a system’s 

object model and interpret the 

devices and their connections
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OPC UA specifically targets manufacturing. It connects 

applications at the shop-floor level as well as between the 

shop floor and the enterprise IT cloud. In the taxonomy 

previously mentioned, it targets systems that require 

runtime integration.

The Bottom Line: How to 
Choose?
The IoT needs many protocols. Those outlined here differ 

markedly. Perhaps it’s easiest to categorize them along a 

few key dimensions: QoS, addressing and application. 

QoS control is a much better metric than the overloaded 

“real-time” term. QoS control refers to the flexibility of 

data delivery. A system with complex QoS control may be 

harder to understand and program, but it can build much 

more demanding applications.

For example, consider the reliability QoS. Most protocols 

run on top of TCP, which delivers strict, simple reliability. 

Every byte put into the pipe must be delivered to the other 

end, even if it takes many retries. This is simple and handles 

many common cases, but it doesn’t allow timing control. 

TCP’s single-lane traffic backs up if there’s a slow consumer. 

Because it targets device-to-device communications, DDS 

differs markedly from the other protocols in QoS control. In 

addition to reliability, DDS offers QoS control of “liveliness” 

(when you discover problems), resource usage, discovery 

and even timing. 

Next, “discovery”—finding the data needle in the huge 

IoT haystack—is a fundamental challenge. XMPP shines 

for “single item” discovery. Its “user@domain” addressing 

leverages the Internet’s well-established conventions. 

However, XMPP doesn’t easily handle large data sets con-

nected to one server. With its collection-to-a-server design, 

MQTT handles that case well. If you can connect to the 

server, you’re on the network. AMQP queues act similarly 

to servers, but for S2S systems. Again, DDS is an outlier. 

Instead of a server, it uses a background “discovery” proto-

col that automatically finds data. DDS systems are typically 

more contained; discovery across the wide-area network 

(WAN) or huge device sets requires special consideration.
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OPC UA specializes in communicating the information 

about the system, its configuration, topology and data 

context (the “metadata”). These are exposed in the col-

lective address space of the individual OPC UA servers. 

This data can be accessed by OPC UA clients; they can 

see what is available and choose what to access. OPC UA 

is not designed for flexible device-to-device interaction.

Perhaps the most critical distinction comes down to the 

intended applications. Inter-device data use is a funda-

mentally different use case from device data collection. 

For example, turning on your light switch remotely (best 

for XMPP) is worlds apart from generating that power 

(DDS), monitoring the transmission lines (MQTT) or ana-

lyzing the power usage back at the data center (AMQP). 

Of course, there is still confusion. For instance, DDS can 

serve and receive data from the cloud, and MQTT can send 

information back out to devices. Nonetheless, the funda-

mental goals of all five protocols differ, the architectures 

differ, and the capabilities differ. All of these protocols are 

critical to the (rapid) evolution of the IoT. And all have a 

place; the IIoT is a big place with room for many protocols. 

To make confusion even worse, many applications integrate 

many subsystems, each with different characteristics.

With this variety, what’s the best path? Experience 

suggests that designers first identify the application’s 

toughest challenge, and then choose the technology that 

best meets that single challenge. This is a critical decision; 

choose carefully and without prejudice of what you know. 

The aforementioned requirements-based dimensional de-

composition can help. After this step, the choice is usually 

fairly obvious; most applications contain a key challenge 

that clearly fits better with one or the other. 

Once the hardest challenge is met, the best way to cover 

the rest of the application is usually to push your initial 

choice as far as it will go. There are many bridging tech-

nologies, so it is possible to mix technologies. However, it’s 

usually easier to avoid multiple protocol-integration steps 

when possible.

In the long term, the technologies will offer better interop-

erability. The IIC’s “connectivity core standard” design 

described later is a key approach. So, regardless of your 

initial choice, the vendor communities are working to 

provide a non-proprietary path to interoperability.
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CONNECTIVITY 
ARCHITECTURE FOR 
THE IIOT
There is no way to build large distributed systems without 

connectivity. Enterprise and human-centric communi-

cations are too slow or too sparse to put together large 

networks of fast devices. These new types of intelligent 

machines need a new technology. That technology has to 

find the right data and then get that data where it needs 

to go on time. It has to be reliable, flexible, fast and secure. 

Perhaps not as obviously, it also must work across many 

types of industries. Only then can it enable the efficiencies 

of common machine-based and cloud-based infrastruc-

ture for the IIoT. 

Connectivity faces two key challenges in the IIoT: in-

teroperability and security. Interoperability is a challenge 

because the IIoT must integrate many subsystems with 

different designs, vendor equipment, or legacy infrastruc-

tures. Security is a challenge because most enterprise 

security approaches target hub-and-spoke designs with a 

natural center of trust. Those designs cannot handle vast 

networks of devices that must somehow trust each other. 

The IIC’s IIRA addresses both. Ultimately, the IIoT is about 

building distributed systems. Connecting all the parts 

intelligently so the system can perform, scale, evolve, and 

function optimally is the crux of the IIRA. The IIoT must in-

tegrate many standards and connectivity technologies. The 

IIC architecture explicitly blends the various connectivity 

technologies into an interconnected future that can enable 

the sweeping vision of a hugely connected new world.
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The n-Squared Challenge
When you connect many different systems, the fundamental 

problem is the “n-squared” interconnect issue. Connecting 

two systems requires matching many aspects, including 

protocol, data model, communication pattern and QoS  

parameters like reliability, data rate or timing deadlines. 

While connecting two systems is a challenge, it is solvable 

with a special-purpose “bridge.” But that approach doesn’t 

scale; connecting n systems together requires n-squared 

bridges. As n gets large, this becomes daunting. 

One way to ease this problem is to keep n small. You can 

do that by dictating all standards and technologies across 

all systems that interoperate. Many industry-specific stan-

dards bodies successfully take this path. For instance, the 

European Generic Vehicle Architecture (GVA) specifies 

every aspect of how to build military ground vehicles, 

from low-level connectors to top-level data models. The 

German Industrie 4.0 effort takes a similar pass at the 

manufacturing industry, making choices for ordering and 

delivery, factory design, technology, and product planning. 

Only one standard per task is allowed.

This approach eases interoperation. Unfortunately, the 

result is limited in scope because the rigidly-chosen stan-

dards cannot provide all functions and features. There are 

simply too many special requirements to effectively cross 

industries this way. Dictating standards also doesn’t address 

the legacy integration problem. These two restrictions 

(scope and legacy limits) make this approach unsuited to 

building a wide-ranging, cross-industry Industrial Internet.

On the other end of the spectrum, you can build a very 

general bridge point. Enterprise web services work this 

way, using an Enterprise Service Bus (ESB), or a mediation 

bus like Apache Camel. However, despite the “bus” in its 

name, an ESB is not a distributed concept. All systems must 

connect to a single point, where each incoming standard 

is mapped to a common object format. Because every-

thing maps to one format, the ESB requires only one-way 

translation, avoiding the n-squared problem. Camel, for 

instance, supports hundreds of adapters that each convert 

one protocol or data source to and from Camel’s internal 

object format. Thus, any protocol can in principal connect 

to any other.
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Unfortunately, this doesn’t work well for demanding indus-

trial systems. The single ESB service is an obvious choke 

and failure point. ESBs are large, slow programs. In the 

enterprise, ESBs connect large-grained systems executing 

only a few transactions per second. Industrial applications 

need much faster, reliable, smaller-grained service. So, 

ESBs are not viable for most IIoT uses.

The IIRA Connectivity Core 
Standard
The IIRA takes an intermediate approach.15 The design 

introduces the concept of a “Connectivity Core Standard.” 

Unlike an ESB, the core standard is very much a distribut-

ed concept. Some endpoints can connect directly to the 

core standard. Other endpoints and subsystems connect 

through “gateways.” The core standard then connects 

them all together. This allows multiple protocols without 

having to bridge between all possible pairs. Each needs 

only one bridge to the core.

15 http://www.iiconsortium.org/IIRA.htm

FIGURE 27: The IIRA connec-

tivity architecture specifies 

a QoS-controlled, secure 

connectivity core standard. All 

other connectivity standards 

must only bridge to this one 

core standard.
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Like an ESB, this solves the n-squared problem. But, unlike 

an ESB, it provides a fast, distributed core, replacing the 

centralized service model. Legacy and less-capable con-

nectivity technologies transform through a gateway to the 

core standard. There are only n transformations, where n is 

the number of connectivity standards. 

Obviously, this design requires a very functional connectiv-

ity core standard. Some systems may get by with slow or 

simple cores. But most industrial systems need to identify, 

describe, find and communicate a lot of data with demands 

unseen in other contexts. Many applications need delivery 

in microseconds or the ability to scale to thousands or 

even millions of data values and nodes. The consequences 

of a reliability failure can be severe. Since the core standard 

really is the core of the system, it has to perform.

The IIRA specifies the key functions that connectivity 

framework and its core standard should provide: data 

discovery, exchange patterns and QoS. QoS parameters 

include delivery reliability, ordering, durability, lifespan 

and fault tolerance functions. With these capabilities the 

core connectivity can implement the reliable, high-speed, 

secure transport required by demanding applications 

across industries.

 The IIRA outlines several data QoS capabilities for the 

connectivity core standard. These ensure efficient, reliable, 

secure operation for critical infrastructure.

Data Quality of Service (QoS)
1.	 Delivery: Provide reliability and redelivery

2.	 Timeliness: Prioritize and inform when information is “late”

3.	 Ordering:	Deliver in the order produced or received

4.	 Durability:	Support late joiners, survive failures

5.	 Lifespan: Expire stale information

6.	 Fault	Tolerance: Enable redundancy and failover

7.	 Security:	Ensure confidentiality, integrity, authenticity 
and non-repudiation
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The IIoT Approach to Security
Security is also critical. To make security work correctly, 

it must be intimately married to the architecture. For in-

stance, the core standard may support various patterns 

and delivery capabilities. The security design must match 

those exactly. For example, if the connectivity supports 

publish-subscribe, so must security. If the core supports 

multicast, so must security. If the core supports dynamic 

plug-and-play discovery, so must security. Security that is 

intimately married to the architecture can be imposed at 

any time without changing the code. Security becomes 

just another controlled QoS, albeit more complexly con-

figured. This is a very powerful concept. 

The integrated security must extend beyond the core. The 

IIRA allows for that too; all other connectivity technologies 

can be secured at the gateways.

DDS as a Core Standard
The IIRA does not currently specify standards; the IIC 

will take that step in the next release. However, it’s clear 

that the DDS standard is a great fit to the IIRA for many 

applications. DDS provides automated discovery, each of 

the patterns specified in the IIRA, all the QoS settings and 

intimately integrated security. 

This is no accident. The IIRA connectivity design draws 

heavily on industry experience with DDS. DDS has 

thousands of successful applications in power systems 

(huge hydropower dams, wind farms, microgrids), med-

icine (imaging, patient monitoring, emergency medical 

systems), transportation (air traffic control, vehicle control, 

automotive testing), industrial control (SCADA, mining 

systems, PLC communications) and defense (ships, avi-

onics, autonomous vehicles). The lessons learned in these 

applications were instrumental in the design of the IIRA.

DDS UNIQUE FEATURES

DDS is not like other middleware. It directly addresses 

real-time systems. It features extensive fine control of 

real-time QoS parameters, including reliability, bandwidth 

control, delivery deadlines, liveliness status, resource limits 

and (new) security. It explicitly manages the commu-

nication “data models,” or types, used to communicate 
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between endpoints. It is thus a “data-centric” technology. 

Like a database, which provides data-centric storage, DDS 

understands the contents of the information it manages. 

DDS is all about the data. This data-centric nature, analo-

gous to a database, justifies the term “databus.”

At its core, DDS implements a connectionless data model 

with the ability to communicate data with the desired 

QoS. Originally, DDS focused on publish-subscribe com-

munications; participants were either publishers of data 

or subscribers to data. Later versions of the specification 

added request-reply as a standard pattern. Currently, 

RTI also offers a full queuing service that can implement 

“one of n” patterns for applications like load balancing. 

The key difference between DDS and other approaches 

is not the publish-subscribe pattern. The key difference is 

data-centricity.

A DDS-based system has no hard-coded interactions 

between applications. The data bus automatically discov-

ers and connects publishing and subscribing applications. 

No configuration changes are required to add a new smart 

machine to the network. The data bus matches and en-

forces QoS.

DDS overcomes problems associated with point-to-point 

system integration, such as lack of scalability, interopera-

bility, and the ability to evolve the architecture. It enables 

plug-and-play simplicity, scalability and exceptionally 

high performance.

The DDS Databus
The core architecture is a “data bus” that ties all the com-

ponents together with strictly controlled data sharing. The 

infrastructure implements full QoS control over reliability, 

multicast, security and timing. It supports fully redundant 

sources, sinks, networks, and services to ensure highly 

reliable operation. It needs no communication servers 

for discovery or configuration; instead, it connects data 

sources and sinks through a background “meta traffic” 

system that supports massive scale with no servers.

The data bus technology scales across millions of data 

paths, ensures ultra-reliable operation, and simplifies ap-

plication code. It does not require servers, greatly easing 

configuration and operations while eliminating failure and 

choke points. DDS is by far the most proven technology 



39

for reliable, high-performance, large-scale IIoT systems. 

As of this writing, there are at least 12 implementations. 

Several of these are backed by commercial vendors. RTI 

provides the leading implementation.

Conceptually, DDS is simple. Distributed systems must 

share information. Most middleware works by simply 

sending that information to others as messages.

DDS sends information too, of course. However, DDS 

conceptually has a local store of data, which looks to the 

application like a simple database table. When you write, it 

goes into your local store, and then the messages update 

the appropriate stores on remote nodes. When you read, 

you just read locally. The local stores together give the 

applications the illusion of a global data store. Importantly, 

this is only an illusion. There is no global place where all 

the data lives; that would be a database. In a data bus, 

each application stores locally only what it needs and only 

for as long as it needs it. Thus, DDS deals with data in 

motion; the global data store is a virtual concept that in 

reality is only a collection of transient local stores.

DDS also matches producers and consumers to ensure 

proper operation. The matching includes data flow rates, 

remote “liveliness,” filtering, security and performance. 

Once matched, the middleware enforces the “contract.” 

For instance, if a subscriber needs updates 1,000 times 

per second, the middleware will ensure a fast producer 

is available. The standard defines more than 20 of these 

QoS policies.

FIGURE 28: Data-Centric 

Communications. The data 

bus links any language, device 

or transport. It automatically 

discovers information sources, 

understands data types 

and communicates them to 

interested participants. It 

scales across millions of data 

paths, enforces sub-millisec-

ond timing, ensures reliability, 

supports redundancy and 

selectively filters information. 

Each path can be unicast, 

multicast, open data or fully 

secure. In the figure a medical 

device that produces heart 

waveforms will send only one 

patient’s information to the 

nursing station, at a rate it can 

handle, if it has permission to 

receive the information.
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DATA-CENTRICITY 
MAKES DDS 
DIFFERENT
Systems are all about the data. Distributed systems must 

also share and manage that data across many processors 

and applications. The strategy to understand and manage 

this state is a fundamental design decision.

Data-centricity can be defined by these properties:

 ■ The interface is the data. There are no artificial 

wrappers or blockers to that interface like messages, 

objects, files, or access patterns.

 ■ The infrastructure understands that data. This enables 

filtering/searching, tools, and selectivity. It decouples 

applications from the data and thereby removes 

much of the complexity from the applications. 

 ■ The system manages the data and imposes rules 

on how applications exchange data. This provides a 

notion of “truth.” It enables data lifetimes, data model 

matching, CRUD interfaces, etc.

An analogy with the database, a data-centric storage tech-

nology, is instructive. Before databases, storage systems 

were files with application-defined (ad hoc) structure. A 

database is also a file, but it’s a very special file. A data-

base has known structure and access control. A database 

defines “truth” for the system; data in the database can’t 

be corrupted or lost. 

By enforcing structure and simple rules that control the 

data model, databases ensure consistency. By exposing 

the structure to all users, databases greatly ease system 

integration. By allowing discovery of data and schema, 

databases also enable generic tools for monitoring, mea-

suring, and mining information. 

Like a database, data-centric middleware imposes known 

structure on the transmitted data. The data bus also sends 

messages, but it sends very special messages. It sends 

only messages specifically needed to maintain state. Clear 

rules govern access to the data, how data in the system 

changes and when participants get updates. Importantly, 



41

the infrastructure sends messages. To the applications, 

the system looks like a controlled global data space. 

Applications interact directly with data and data prop-

erties like age and rate. There is no application-level 

awareness or concept of “message.”

With knowledge of the structure and demands on data, 

the infrastructure can do things like filter information, 

selecting when or whether to do updates. The infra-

structure itself can control QoS like update rate, reliabil-

ity and guaranteed notification of peer liveliness. The 

infrastructure can discover data flows and offer those 

to applications and generic tools alike. This knowledge 

of data status, in a distributed system, is a crisp defini-

tion of “truth.” As in databases, this accessible source 

of truth greatly eases system integration. The structure 

also enables tools and services that monitor and view 

information flow, route messages and manage caching.

Figure 29: Data-centric 

middleware does for data in 

motion what a database does 

for data at rest. The data-

base’s data-centric storage 

fundamentally enables the 

simplified development of 

very complex information 

systems. Analogously, the 

data bus offers data-centric 

networking that fundamen-

tally enables the simplified 

development of very complex 

distributed systems. Both 

move much of the complexity 

from the application (user 

code) to the infrastructure.
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THE FUTURE OF 
THE IIOT
The IIoT is clearly in its infancy. Like the early days of 

the Internet, the most important IIoT applications are 

not yet envisioned. The “killer application” that drove the 

first machine-to-machine connections for the Internet 

was email. However, once connected, the real power of 

distributed systems created an entirely new ecosystem 

of value. This included web pages, search, social media, 

online retail and banking, and so much more. The real 

power of the Internet was barely hinted in its early days.

The IIoT will likely follow a similar pattern. Today, many 

companies are most focused on collecting data from in-

dustrial systems and delivering it to the cloud for analy-

sis. This is important for predictive maintenance, system 

optimization, and business intelligence. This “killer app” 

is driving the initial efforts to build connected systems.

However, the future holds much more promise than 

optimizing current systems. By combining high-quality 

connectivity with smart learning and machine intelli-

gence, the IIoT future holds many new systems that will 

revolutionize our world. It will, for instance, save hundred 

of thousands of lives a year in hospitals, make renewable 

energy sources truly practical, and completely transform 

daily transportation. Projections of the economic and 

social benefits range greatly, but all agree the impact is 

measured in the multiple trillions of dollars in a short 10 

years. That is a daunting, but inspiring number. The IIoT 

will be a daunting, but inspiring transformation across 

the face of industry.
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