
Reprinted from Embedded Computing Design Resource Guide / August 2006

The last roadblock
So what’s holding distributed systems
back? Network software architecture has
not kept pace with easy-to-use operating
systems and network hardware. The
fundamental information models built for
office and enterprise networks are fine for
sharing files and executing transactions,
but they simply don’t fill the needs of
embedded systems. In a real-time net-
work, the main problem is to find and
disseminate information quickly to many
nodes; that problem is not yet completely
solved.

Middleware, a class of software serving
distributed applications by delivering
data, is a layer between the ubiquitous
network stack and the user application.
The stack provides fundamental access
to the network hardware and low-level
routing and connection management. The
application software, a set of custom-
written modules, implements the various
parts of the particular system. The mid-
dleware delivers data to the application
software modules by using the underlying
stack. However, finding the right data,
knowing where to send it, and delivering

B
oth embedded systems and networking are

high growth fields; combining them creates

a world of opportunities. The list of appli-

cations goes on and on, including military systems,

telecommunications, factory automation, traffic control,

financial trading, medical imaging, building automa-

tion, consumer electronics, and more. Each of these

industries struggles daily with how to create a single

system from many distributed parts.

The information is out there. The network is fast, cheap,

and reliable. We could build whole classes of new

distributed applications, if we could just get the data.

Unfortunately, today, getting the data isn’t that simple.

Middleware:
 The last

roadblock to
distributed

systems
development

it to the right place at the right time is a
real challenge.

Embedded system developers, for the
most part, have written their own in-
house middleware layers. These range
from simple, crude stack interfaces to
sophisticated connection management
and delivery services. They are often ef-
ficient, customized implementations that
directly map to, or even merge with, the
application. But, each one is unique and
thus expensive to maintain and slow to
adapt. Without a general solution, each
application becomes complex, costly, and
unreliable.

Recently, general embedded middleware
technologies have begun emerging. The
pattern follows the classic technologi-
cal infrastructure evolution path: A few
scrappy vendors generalize from cus-
tom implementations, gradually building
a solution that will work for all. The
benefit comes when standards (de facto
or not) emerge, allowing industries to
concentrate on the next, higher-level
problem. Infrastructure software that clear-
ly has adhered to this pattern includes

operating systems, compilers, debuggers,
network stacks, and so on. Middleware
is positioned to be the next major area of
standardization.

Generic middleware shows promise for
standardized, easy distributed data access.
If middleware can deliver on that promise,
it has the potential to fuel an explosion in
embedded applications that parallels the
enterprise growth of IT.

Publish-subscribe networks
The fastest-growing embedded middle-
ware technologies are publish-subscribe
architectures. In contrast to the central
server with many clients model of enter-
prise middleware, publish-subscribe nodes
simply subscribe to data they need
and publish information they produce.
Messages pass directly between the
communicating nodes. This design mirrors
time-critical information delivery systems
in everyday life, including television,
magazines, and newspapers. Publish-
subscribe systems excel at distributing
large quantities of time-critical information
quickly, even in the presence of unreliable
delivery mechanisms.

By Dr. Stan Schneider

Reprinted from Embedded Computing Design Resource Guide / August 2006

Publish-subscribe architectures map well
to the embedded communications pro-
blem. Finding and sending the right data
is straightforward; nodes just request
what they want and the system delivers
it. Sending the data at the right time is
also natural; publishers simply send data
whenever new information is available.
Publish-subscribe is efficient because the
data flows directly from sender to receiver
without intermediate servers. Multiple
senders and receivers are easily supported,
making redundancy and fault tolerance
natural. Finally, and perhaps most im-
portantly, each publisher-subscriber pair
can establish independent Quality of
Service (QoS) agreements. Thus, publish-
subscribe designs can support extremely
complex, flexible dataflow requirements.
Publish-subscribe networks deliver the
right data to the right place at the right
time.

Emerging standards
Publish-subscribe designs are not new.
Custom, in-house publish-subscribe layers
abound. Industrial automation fieldbus
networks have used publish-subscribe de-
signs for decades. Commercial middle-
ware products today control ships, digital
television systems, large traffic grids,
flight simulators, military systems, and
thousands of other real-world applications.
The technology is proven and reliable.

What is new is that standards are
evolving. The Object Management Group
(OMG), the standards body responsible
for technologies like CORBA and UML,
recently recognized the importance of
publish-subscribe architectures. The
newly adopted OMG standard, Data

Figure 1

Distribution Service (DDS), is the first
open international standard directly ad-
dressing publish-subscribe middleware
for embedded systems. DDS, outlined in
Figure 1, features extensive, fine control
of QoS parameters, including reliability,
bandwidth control, delivery deadlines, and
resource limits. Several industry groups
are rallying around DDS; for example,
the U.S. Navy’s Open Architecture speci-
fication stipulates DDS for all future Navy
platforms. DDS represents the combined
experience of many applications, and could
be an important technology milestone.

Of course, many difficult problems remain
in middleware. For instance, complex sys-
tems require merged data distribution and
client-server services. Guaranteed band-
width reservations and prioritized message

Embedded middle-
ware is crossing
the threshold from
specialized point
solution to widely
adopted infra-
structure.

BIOS, firmware, middleware
delivery is not yet available. Highly in-
termittent transports, such as wireless net-
works, must be supported. Scalability to
large networks with thousands or millions
of nodes presents an unsolved challenge.

Nonetheless, embedded middleware is
crossing the threshold from specialized
point solution to widely adopted infra-
structure. When it completes that transi-
tion, the technology could render bold
new distributed systems with much greater
capabilities than are practical today.

More information:
www.omg.org/news/whitepapers/

IsDDS4U.pdf

Dr. Stan Schneider
is CEO of Real-Time
Innovations, Inc., a
leader in software
infrastructure and
tools for embedded
systems.

Immediately before
RTI, Stan was an
independent technical and management
consultant, working with companies in
medical products, digital signal pro-
cessing, aerospace, semiconductor
manufacturing, video and television, and
networking. Before that, Stan managed
one of the largest laboratories at Stanford
University, focusing on intelligent
mechanical systems. At Sperry Computer
Systems (now Unisys), Stan developed
networked communications systems
and led the software team responsible
for Sperry’s personal computer product
line. Stan began his career building data
acquisition systems for automotive impact
testing.

Stan holds a PhD in Electrical
Engineering and Computer Science
from Stanford, an MS in Computer
Engineering, and a BS in Applied
Mathematics.

To learn more, contact Stan at:

Real-Time Innovations, Inc.
3975 Freedom Circle, Sixth Floor

Santa Clara, CA 95054
Tel: 408-200-4715
Fax: 408-200-4702

E-mail: Stan.Schneider@rti.com
Website: www.rti.com

