
	
   1	
  

RTI Use Case for Vehicle Tracking Systems 

What This Example Does 

This example shows three applications. You can run them on the same machine or separate 
machines in the same network. This example shows radar tracks, but the concepts and the 
quality of service (QoS) tuning is also applicable for other vehicle-tracking use cases. There are 
minor differences in the data model, described in the section Data Model Considerations. 

The three applications are: 

 

Flight-plan generator 
(FlightPlanGenerator): 

• Provides flight plans for aircraft 

 

 

Radar generator (RadarGenerator): 

• Provides fast radar track data 

• Receives a flight plan from the flight-
plan generator 

• Associates a flight ID from the flight 
plan with a radar track if the flight 
plan is available 

 



	
   2	
  

 

Air traffic control GUI (TrackGui): 

• Receives radar tracks and flight plan 

• Displays the radar track 

• If the radar track has an associated 
flight ID, looks up the flight plan and 
displays the plan with the track 

 

Let’s Run the Example 

Overview 

In this document, we will refer to the location where this example was extracted as 
EXAMPLE_HOME. 

Navigate to the EXAMPLE_HOME\ExampleCode\scripts 
directory. 

In this directory, there are three separate batch files to 
start the applications. These applications are called: 

• FlightPlanGenerator.bat/FlightPlanGenerator.sh 

• RadarGenerator.bat/RadarGenerator.sh 

• TrackGui.bat/TrackGui.sh 

You can run these batch files on the same machine, or 
you can copy this example and run on multiple 
machines. If you run them on the same machine, they 
will communicate over the shared memory transport. If 
you run them on multiple machines, they will 
communicate over UDP. 

When you run the Flight Plan Generator, it sends 200 
flight plans by default.  It publishes these immediately, 
and because of their QoS settings, they remain available 
to the other applications as they the other applications 
come online. 

When you run the Radar Generator, it sends 20 radar 
tracks at startup by default.  Every 120 seconds, it adds 
another radar track.  It is configured using QoS to send 
the track data with the lowest latency.  You can modify these values using the command-line 
parameters.  You can also run more than one radar generator application, but you should use the 
command-line parameters to give each one a different radar ID.  



	
   3	
  

When you run the Air Traffic Control GUI, you can see track data and flight-plan information view.  
If you are running all the applications on a single machine, this data is being sent over shared 
memory. 

If you have access to multiple machines on the same network, start running these applications on 
separate machines. Note: If you do not have multicast on your network, see the section Run the 
Example with No Multicast for details on how to change the configuration to run without multicast. 

Configure Throughput and Latency for Your Requirements 

RTI Connext DDS allows you to 
specify QoS configuration in an XML 
format. This allows you to separate 
your application logic from your 
network capabilities and rapidly 
reconfigure your application for new 
deployment scenarios. 

This example shows you how to 
configure your application to maximize 
throughput at the expense of latency, 
or minimize latency at the expense of 
throughput. 

Individual vehicle or radar tracking applications within a distributed system will have different 
requirements for data latency or throughput. A collision-avoidance system or a self-defense 
system may have strict requirements for low latency. A recording or logging system may need to 
record a high throughput of vehicle position or radar track data, but may not need to receive it 
with the low latency of your other applications. 

Run the Example with Increased Throughput and Increased Latency 

By default, the radar generator application runs with the lowest possible latency. To run it with 
increased throughput at the expense of latency, use the following parameter: 

scripts\RadarGenerator.bat --high-throughput 
 

You can also increase the number of tracks it sends at startup, how often it should create new 
tracks, the maximum number of tracks it can send at once, and how fast it should update: 

--start-tracks [number]  Number of tracks the generator should generate  

                         at startup 

--max-tracks [number]    Maximum tracks the generator sends at once 

--run-rate [number]      Run in real time, faster, or slower.  At  

                         default rate, all tracks are updated every  

                         100ms.  If you set this to 2 the generator 

                         will run twice as fast, updating all tracks 

                         every 50ms. 



	
   4	
  

--creation-rate [number] How fast to create new tracks. 

Run Multiple Radar Generators 

The RadarGenerator application is acting as a unique sensor that updates radar positions. As we 
will discuss later in the Data Model Considerations section, each RadarGenerator application 
needs a unique ID.  So, if you run more than one RadarGenerator application, you should run 
with the option: 

 

scripts\RadarGenerator.bat --radar-id [number] 

Run the Example with No Multicast 

If your network doesn't support multicast, there are two steps you must take: 

• Run all applications with the parameter --no-multicast.  This causes the applications to load 
the .xml files that do not depend on multicast in the network. 

• Edit the base_profile_no_multicast.xml file to add the address of the machines that you 
want to contact. These addresses can be valid UDPv4 or UDPv6 addresses. 

 

 <discovery>    
   <initial_peers> 
       <!-- !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! --> 
       <!-- Insert addresses here of machines you want     --> 
       <!-- to contact                                     --> 
       <!-- !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! --> 
       <element>127.0.0.1</element> 
       <!-- <element>192.168.1.2</element>--> 
   </initial_peers> 
 </discovery> 

 

 

Let’s Build the Example 

Directory Overview 

Inside of EXAMPLE_HOME, the source code is divided into: 

1. Documentation in Docs/ 

2. Source in ExampleCode/ 

3. Linux makefiles in make/ 

4. Windows solution files in win32/ 

5. Source in src/ 

• RTI Connext DDS interface data-type descriptions in Idl/. This describes the data 
types sent over the network. 



	
   5	
  

• RTI Connext DDS QoS configurations in Config/. 

• RTI Connext DDS infrastructure code that is used by all applications in 
CommonInfrastructure/. This is the code that all applications call to start using RTI 
Connext DDS to send data. 

• RTI Connext DDS generated type code in Generated/ 

• Application-specific RTI Connext DDS publishing and subscribing code in 
FooInterface.h and FooInterface.cxx. 

Building the Example 

On all platforms, the first thing you must do is set an environment variable called NDDSHOME. 
This environment variable must point to the ndds.5.x.x directory inside your RTI Connext DDS 
installation. For more information on how to set an environment variable, please see the RTI Core 
Libraries and Utilities Getting Started Guide. 

Windows Systems 

On a Windows system, start by opening up the win32\AirTrafficExample-<compilerver>.sln file. 

This code is made up of a combination of libraries, source, and IDL files that represent the 
interface to the application. The Visual Studio solution files are set up to automatically generate 
the necessary code and link against the required libraries. 

You can also watch a video online showing how tot build: How to Build the Air Traffic Control 
Example on Windows. 

Linux Systems 

To build the applications on a Linux system, change directories to the ExampleCode directory 
and use the command: 

gmake –f make/Makefile.<platform> 

The platform you choose will be the combination of your processor, OS, and compiler 
version. This version of the example only supports i86Linux2.6gcc4.5.5 

You can also watch a video online showing how to build: How to Build the Air Traffic Control 
Example on Linux  

 

Under the Hood 

Data Model Considerations 

When modeling data in DDS, one of the biggest considerations is “what represents a single 
element or real-world object within my data streams?”  In the case of vehicle tracking, you can 
generally assume that each vehicle should be represented as a unique object.   

In DDS, these unique real-world objects are modeled as instances. Instances are described by a 
set of unique identifiers called keys, which are denoted by the //@key symbol. 



	
   6	
  

So, in our example, we use a trackId as a key field: 

	
   long	
  trackId;	
  //@key 
	
  
	
  
There is one wrinkle to our assumption that each vehicle should be represented as a unique 
object: What if the same vehicle is being tracked by multiple sensors?   

Often you want to maintain updates from each sensor separately.  In DDS, this means that 
instead of each vehicle being the unique real-world object, the combination of the vehicle and the 
sensor becomes the unique real-world object.  To support this, the sensor ID also becomes a key 
field: 

	
   long	
  radarId;	
  //@key	
  
	
   long	
  trackId;	
  //@key 
 

If you can assume that there is one sensor per vehicle, such as a GPS that is updating the 
position of an emergency vehicle, you do not need to worry about a sensor unique ID being part 
of the data.  In that case, the instance is the vehicle. 

Configuration Details: XML Configuration for Radar Throughput 

Since a major component of building a radar- or vehicle-tracking system is performance tuning, 
we'll talk about that first, before going into too much detail about the code itself. 

The source code loads a series of XML files that it uses to configure the delivery and resource 
characteristics for the data. The .xml files are in the Config directory; they specify the 
communication characteristics for the data, such as whether the data is reliable. XML QoS 
profiles can inherit from each other. 

Multicast 

Multicast is enabled in the multicast_base_profile.xml file. 

In the example, the use of multicast is encapsulated in a QoS profile called 
"OneToManyMulticast." This is disabled by default, because high-throughput multicast data may 
slow down your network if you are on a wireless LAN.  However, you can enable it for testing by 
editing the multicast_base_profile.xml file. Multicast is used by default for discovery, so if your 
network does not support multicast, see the section Run the Example with No Multicast for details 
on how to change the configuration to run without multicast.  

 <qos_profile name="OneToManyMulticast"> 
	
  	
  	
  	
  	
  <datareader_qos>	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  <!-­‐-­‐	
  Uncomment	
  this	
  to	
  enable	
  user	
  data	
  over	
  multicast.	
  	
  This	
  is	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  commented	
  out	
  for	
  systems	
  that	
  do	
  not	
  have	
  multicast,	
  or	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  switches	
  that	
  block	
  some	
  multicast	
  traffic	
  -­‐-­‐>	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  <!-­‐-­‐<multicast>	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  <value>	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  <element>	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  <!-­‐	
  -­‐	
  Must	
  be	
  a	
  valid	
  multicast	
  address-­‐	
  -­‐>	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  <receive_address>239.255.5.1</receive_address>	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  </element>	
  



	
   7	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  </value>	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  </multicast>-­‐-­‐>	
  
	
  	
  	
  	
  	
  </datareader_qos>	
  
 </qos_profile> 

 

Batching 

Batching small data enables throughput at the expense of latency. The Radar's default profile 
"LowLatencyRadar" does not use batching. Batching is enabled in the "HighThroughputRadar" 
configuration. 

<batch> 
   <enable>true</enable> 
 
   <!-- If the batch hits 1024 bytes, flush to the network --> 
   <max_data_bytes>1024</max_data_bytes> 
 
   <!-- You can decide on the maximum amount of additional latency 
       you are willing to sacrifice for better throughput. --> 
   <max_flush_delay> 
     <sec>0</sec> 
     <nanosec>200000000</nanosec> 
   </max_flush_delay> 
 </batch> 

 

 

Common DDS Infrastructure for all Applications 

 

Figure	
  1:	
  DDS	
  Communicator	
  class.	
  	
  Contains	
  code	
  for	
  creating	
  all	
  the	
  basic	
  RTI	
  Connext	
  DDS	
  objects	
  that	
  
are	
  used	
  for	
  network	
  communications	
  and	
  automatic	
  discovery. 



	
   8	
  

Now let's look at the code that you will write once and use in every DDS application. The code in 
CommonInfrastructure/DDSCommunicator.h/.cxx creates the basic objects that start DDS 
communications. The DDSCommunicator class encapsulates the creation and initialization of the 
DDS DomainParticipant object. 

All applications need at least one DomainParticipant to discover other RTI Connext DDS 
applications and to create other DDS Entities. More information on what a DomainParticipant 
does is described in this glossary entry on RTI's Community Portal. Typically, an application has 
only one DomainParticipant.  

In the source code, you can see this in the class DDSCommunicator, in 
CommonInfrastructure/DDSCommunicator.cxx: 

DomainParticipant* CreateParticipant( 
 long domain, char *participantQosLibrary,  
 char *participantQosProfile)  
{    
 _participant =  
  TheParticipantFactory->create_participant_with_profile( 
        domain, participantQosLibrary, 
    participantQosProfile, NULL, 
    STATUS_MASK_NONE); 
   ...  
} 

 

The DomainParticipant's QoS is loaded from one or more XML files. The profile to load is 
specified by the participantQosLibrary and participantQosProfile. The full list of DomainParticipant 
QoS is described on RTI’s Community Portal in the HTML API Documentation. 

 

Applications 

RadarGenerator (C++): 

This application sends and receives data over the network. The code to create the application's 
DDS interface is in the class RadarInterface. This class is composed of three objects: 

• DDSCommunicator 

• RadarWriter 

• FlightPlanReader 

The DDSCommunicator object creates the necessary DDS Entities that are used to create the 
RadarWriter and FlightPlanReader Entities. 

The RadarWriter class is a wrapper around a DDS DataWriter that sends radar data. The 
FlightPlanReader class is a wrapper around a DDS DataReader that receives flight plan data. 



	
   9	
  

	
  

Figure	
  2:	
  RadarGenerator	
  Application	
  Major	
  Classes 

Generating Data 

The TrackGenerator.cxx/TrackGenerator.h files are generating the radar track data for this 
example.  Most of this code is not necessary for understanding how to use RTI Connext DDS, but 
exists to create interesting-looking data for the application.  This code is designed to represent a 
third-party library with no dependency on RTI Connext DDS. 

This code is responsible for: 

• Creating a specified number of tracks at startup  
• Publishing tracks at a specified rate.  Setting the rate to 1, it will publish all tracks and 

then sleep for 100ms.  If you increase the rate to 2, it will sleep for 50ms between 
sending updates of all tracks, etc. 

• Creating new tracks after a specified number of seconds in “real time.”  If you increase 
the run rate, the number of seconds between creations of new tracks will decrease. 

• Not creating tracks beyond the specified maximum number of tracks it can provide. 
• Maintaing a list of flight plan data, and adding the flight ID to the track data if it is 

available. 
The parts of this code that are interesting for RTI Connext DDS usage are the AddFlightPlan,	
  
CorrelateFlightPlanWithTrack, and	
  
NotifyListenersUpdateTrack/NotifyListenersDeleteTrack calls.  The first two calls are 
important because they show another thread (the main thread) receiving data from RTI Connext 
DDS, and adding this flight plan data to the Radar Generator using AddFlightPlan.  A real 
application would be correlating this flight plan data and the radar track data, but this application 



	
   10	
  

simply associates the first track in its queue with the first flight plan available in the 
CorrelateFlightPlanWithTrack call.  This application uses an observer pattern to notify one or 
more listeners that a track has been updated or deleted in the NotifyListenersUpdateTrack	
  
and	
  NotifyListenersDeleteTrack calls. 
 

Sending Data 

The RadarInterface.cxx file contains the code for sending the generated track data over the 
network. 

The application publishes the track data in the PublishTrack() call. The RTI Connext DDS call that 
actually sends data over the network is _trackWriter->write(track, handle). This call accepts the 
data that will be sent over the network, and a handle to the data. In this example, we pass in a 
NIL handle.  However, you can get better performance in some cases by pre-registering your 
data and using the handle. 

The application publishes a track drop message in the DeleteTrack() call. It does this by calling 
_trackWriter->dispose(track, handle). 

Radar Data Model - Data Type 

Radar is modeled in the AirTrafficControl.idl file. RTI Connext DDS uses IDL, the Interface 
Definition Language defined by the OMG to define language-independent data types. More 
information about IDL can be found in the RTI Connext Users’ Manual.  The IDL type definition 
can be found in the file src/Idl/AirTrafficControl.idl. This can also be found in the 
SharedDataTypes Visual Studio project on Windows.   
 
struct Track  
{  
    long radarId; //@key 
    long trackId; //@key 
 
    ... 
    FlightId flightId; 
 
    double latitude; 
    double longitude; 
    double altitude; 
 
    ... 
}; 

 

This is modeled as very simple data, with only a few fields. The most important thing to notice is 
that the track ID and a radar ID are marked with the tag //@key. This indicates that these IDs 
make up the unique identifier of an individual track. The flight ID may or may not be available 
when the track is created, so it is not part of the unique ID of a track. More information about 
uniquely identifying elements of your data can be found in this best practice on RTI's online 
Community Portal. 

By telling the middleware that we are representing unique real-world objects within our Topic, we 
allow the middleware to do smart things with our data, such as keeping a separate cache for each 
of our unique objects. This will be covered more in the section Radar Data Delivery 
Characteristics (QoS). 



	
   11	
  

The data also has a latitude, longitude, and altitude. We could optionally add more fields, such as 
bearing and speed. 

Radar Data Model - Topic 

The radar data can be represented as a single Topic. It is a best practice to define the Topic 
name inside your IDL because this prevents applications from hard coding the Topic name string, 
and because the Topic name is part of the interface. 

const	
  string	
  AIR_TRACK_TOPIC	
  =	
  "AirTrack";	
  

Radar Data Delivery Characteristics (QoS): 

By default, radar data is sent rapidly, so it could potentially be sent without reliability enabled. 
However, it is important that the receiving application receives the last update of each track.  

To support this, we have enabled reliability in this example, combined with a history depth of 1. 
As we discussed above, each track is modeled as a unique instance. Modeling data as instances 
in combination with reliability and a history depth of 1 means that: 

• The application has a single space in its queue for each radar track, and  
• It will reliably deliver whatever is currently in each space in its queue.   

By doing this, we ensure that the last piece of data that is sent (the last update or the drop 
message) will be delivered.  The Reliability and History QoS are enabled in XML.  Note that these 
settings must be enabled on both the DataWriter and the DataReader to ensure reliable delivery. 

<reliability> 
   <kind>RELIABLE_RELIABILITY_QOS</kind> 
</reliability> 
<history> 
   <kind>KEEP_LAST_HISTORY_QOS</kind> 
    <depth>1</depth> 
</history> 

 

Beyond this, the radar data is tuned for low-latency, high-throughput data. As described above, in 
this example we can further increase throughput at the expense of latency by enabling batching. 

Receiving Data 

This application is receiving Flight-plan data as well as sending Radar Track data.  The main 
function in RadarGenerator.cxx is calling WaitForFlightPlans()	
  in a loop, waiting to be notified 
that flight-plans are available. When it is notified of flight-plans, it adds them to the 
RadarGenerator. 

The code for receiving the Flight-Plan data from the middleware is in the FlightPlanReader 
class, in RadarInterface.cxx.  This class creates a DDS WaitSet, which allows it to block an 
application thread until Flight-Plan data becomes available from the middleware. 

The code for waiting for Flight-Plan data is in the method WaitForFlightPlans().  The code for 
removing Flight-Plan data from the middleware queue is in the ProcessFlightPlans()	
  method.	
  

Flight-Plan Generator (C++): 



	
   12	
  

This application sends flight-plan data over the network, and is the simplest of the three 
applications in this example.  

The code to create the application's DDS interface is in the class FlightPlanPublisherInterface. 
This class is directly responsible for writing data. This class also contains a DDSCommunicator 
that is used to create a DomainParticipant and the FlightPlanDataWriter that actually sends data 
over the network. 

	
  

	
  

Figure	
  3:	
  Flight	
  Plan	
  Generator	
  Major	
  Classes 

Flight-Plan Data Model 

The flight plan is modeled in DDS as Occasionally Changing State Data, which has the following 
characteristics: 

• It is updated only when the state of some object changes-in this case, the flight plan, which 
may be published or updated according to conditions 

• That object's state is not constantly changing 

• Other applications want to know the current state of each object—even if it was published 
before they started up 

Flight-Plan Data Model - Data Type 

The data type is modeled in the AirTrafficControl.idl file. You can see this data type using the 
Analyzer tool. The FlightPlan data type is more complex than the Track data type, including 
enumerations, strings, and a sequence of alternate aerodromes. 

struct FlightPlan  
{ 
  // Up to seven characters that represent the unique flight ID 
  FlightId flightId; //@key 
 



	
   13	
  

  // flight rules (enumeration -> IFR, VFR, initially IFR followed by 
changes, initially VFR followed by changes 
  FlightRulesKind flightRules; 
 
  // type of flight (enumeration -> scheduled air service, non-
scheduled air transport, general aviation, military, etc.) 
  FlightTypeKind flightType; 
 
  // equipment and capabilities (enumeration -> NO_COMMS, 
STANDARD_COMMS, etc.) 
  EquipmentKind equipmentType; 
 
  ...  
}; 

Flight-Plan Data Model - Topic 

The flight plan data can be represented as a single Topic. It is a best practice to define the Topic 
name inside your IDL because the Topic name is part of the interface. 

const	
  string	
  AIRCRAFT_FLIGHT_PLAN_TOPIC	
  =	
  "FlightPlan";	
  

Representing Unique Flights 

State data represents the state of some element or object in the real world - in this case, the flight 
plan for a particular flight. In DDS, real-world objects are modeled as instances.  (See the RTI’s 
online glossary for more detailed definitions of keys and instances). 

Instances are described by a set of unique identifiers called keys. In this case, the key is the 
unique flight identifier - a string with a maximum of seven characters that includes the airline ID 
and the flight number. 

struct FlightPlan  
{ 
  // Up to seven characters that represent the unique flight ID 
  FlightId flightId; //@key 
  ... 
}; 

 

Flight-Plan Data Delivery Characteristics (QoS) 

This data must be sent reliably because it is not being sent all the time. This is configured in the 
XML. Note that reliability must be enabled in both the <datawriter_qos> and <datareader_qos> 
sections. 

<reliability> 
   <kind>RELIABLE_RELIABILITY_QOS</kind> 
</reliability> 

 

One of the benefits of using RTI Connext DDS for sending state data is the ability to send data as 
it changes, but to ensure that any interested late-joiner will receive the data as soon as it starts 
up. This means that the flight plan can be sent as soon as it is available or updated and if a 



	
   14	
  

particular application has not been started yet, it will still receive the flight plan as soon as it 
starts. To enable this, data must be sent with a transient-local or higher level of durability. 

<durability> 
   <kind>TRANSIENT_LOCAL_DURABILITY_QOS</kind>  
</durability> 

 

In order to deliver only the most recent update to any flight plan, this XML configures the history 
cache on the DataWriter to maintain a history of size one for each flight plan instance. 

<history> 
   <kind>KEEP_LAST_HISTORY_QOS</kind> 
    <depth>1</depth> 
 </history> 

 

This data does not need to be tuned for extreme throughput, but we do tune it for fast reliability. 
Details are described in the FlightPlanStateData XML profile. 

Air Traffic Control GUI (C++) 

The Air Traffic Control GUI uses a Model-View-Presenter architecture to receive updates from the 
network and then present them to the UI as they happen.  The Model and Presenter pieces of this 
code show how to use RTI Connext DDS to receive multiple data streams over the network, and 
to correlate them into data used by the GUI classes. 

Receiving Track Data 

 

	
  

Figure	
  4:	
  The	
  "Model"	
  piece	
  of	
  the	
  GUI,	
  including	
  all	
  data	
  received	
  from	
  the	
  network	
  from	
  the	
  
TrackReader	
  and	
  FlightPlanReader	
  classes 

The GUI application receives flight plans from the Flight-plan Generator  application and receives 
tracks from the Track Generator application. It uses two DDS DataReaders to receive the data.  



	
   15	
  

This application does not need the lowest-possible latency, so the presenter periodically polls for 
Track updates by calling GetCurrentTracks() on the TrackReader: 

reader-­‐>GetCurrentTracks(&tracks);	
  

The GetCurrentTracks() call will retrieve all the alive track data currently in the 
TrackDataReader's queue by calling the RTI Connext DDS API: 

queue, and actually removes them as it processes them: 

//	
  This	
  reads	
  all	
  ALIVE	
  track	
  data	
  from	
  the	
  queue,	
  and	
  loans	
  it	
  to	
  the	
  	
  
//	
  application	
  in	
  the	
  trackSeq	
  sequence.	
  	
  See	
  below	
  where	
  you	
  must	
  return	
  
//	
  the	
  loan.	
  
DDS_ReturnCode_t	
  retcode	
  =	
  _reader-­‐>read(	
  
	
   	
   trackSeq,	
  sampleInfos,	
  
	
   	
   DDS_LENGTH_UNLIMITED,	
  DDS_ANY_SAMPLE_STATE,	
  	
  
	
   	
   DDS_ANY_VIEW_STATE,	
  DDS_ALIVE_INSTANCE_STATE);	
  
	
  
This call retrieves the ALIVE instances from the TrackDataReader's queue, but leaves the data in 
the queue instead of taking it out.  When it accesses that data, it is getting only a single update 
for each track.  This is guaranteed because the QoS for the TrackDataReader specifies that it has 
a history depth = 1.  This means that there will be at most one update to the Track data in the 
queue for each unique Track instance.  In other words, if you are tracking 500 aircraft, there will 
be a single update for each of those 500 aircraft in the queue. 

After processing the ALIVE instances, the TrackReader queries for NOT_ALIVE instances in the 
queue, and actually removes them as it processes them: 

//	
  Now	
  we	
  access	
  the	
  queue	
  to	
  look	
  for	
  notifications	
  that	
  tracks	
  have	
  been  
//	
  deleted.	
  	
  We	
  do	
  not	
  leave	
  this	
  in	
  the	
  queue,	
  but	
  remove	
  the	
  deletion	
  
//	
  notifications.	
  
retcode	
  =	
  _reader-­‐>take(	
  
	
   	
   trackSeq,	
  sampleInfos,	
  
	
   	
   DDS_LENGTH_UNLIMITED,	
  DDS_ANY_SAMPLE_STATE,	
  
	
   	
   DDS_ANY_VIEW_STATE,	
  
	
   	
   DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE	
  |	
  
	
   	
   DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE); 
 

Receiving Flight-Plan Data  

The second piece of the network code that is interesting is in the FlightPlanReader class. The 
UI needs to display the FlightPlan data that is associated with a particular RadarTrack. To allow 
this, the FlightPlanReader has a method that queries for a single FlightPlan using the flightId.  
Since the FlightPlan contains a flightId field that should match the flightId	
  field in the 
RadarTrack, the higher layers can retrieve the RadarTrack first, and then call GetFlightPlan() 
to retrieve the flight plan associated with the track. 

Since the flightId is the key field of the data – in other words, it is the unique identifier of an 
individual FlightPlan instance – the code retrieves a single FlightPlan by using the RTI 
Connext DDS instance information. 

The steps it uses to look up a particular flight plan are:  



	
   16	
  

1. Use flight plan unique ID (key field), which is available as a part of the radar track data 
2. Create a dummy flight plan object with just the unique ID set 
3. Call lookup_instance	
  on the flight plan DataReader to map from the unique ID to the 

instance handle. 
4. If the instance handle is not Nil, call read_instance() to retrieve the updates in the 

queue for just that flight plan.  Note that due to the QoS setting history depth = 1, there 
will only be a single update in the queue for each flight plan. 

 
// Create a placeholder with only the key field filled in.  This will  
// be used to retrieve the flight plan instance (if it exists). 
DdsAutoType<FlightPlan> flightPlan; 
strcpy(flightPlan.flightId, flightId); 
 
// Look up the particular instance  
const DDS_InstanceHandle_t handle = 
 _fpReader->lookup_instance(flightPlan); 
 
// ... Check if the instance is null 
 
// Reading just the data for the flight plan we are interested in 
_fpReader->read_instance(flightSeq, infoSeq,  
   DDS_LENGTH_UNLIMITED, 
   handle); 
 
// ... 
_fpReader->return_loan(flightSeq, infoSeq); 
 
 
 

Notifying the UI of Data Arrival 

	
  
	
  

Figure	
  5:	
  Classes	
  representing	
  the	
  "Presenter"	
  part	
  of	
  the	
  Model-­‐View-­‐Presenter	
  architecture.	
  	
  
Responsible	
  for	
  querying	
  for	
  data	
  updates	
  from	
  the	
  network	
  and	
  notifying	
  the	
  UI	
  via	
  listeners	
  that	
  there	
  

are	
  changes	
  to	
  Tracks. 



	
   17	
  

 
The FlightInfoNetworkReceiver	
  class is the Presenter of the Model-View-Presenter pattern.  It 
can be thought of as the glue between the data arriving on the network and the UI that displays 
the track updates. The FlightInfoNetworkReceiver class periodically polls for updates to flights, 
and then notifies the UI that flights have been updated or deleted. This could be changed to 
receive notifications as data arrives, but this is not necessary for a UI application.   
 
The FlightInfoNetworkReceiver’s main purpose is: 
 

1. Poll for updates to Track data using the TrackReader class 
2. For each Track data instance, call GetFlightPlan() on the FlightPlanReader to retrieve the 

flight plan with a flightId that matches the flightId in the track. 
3. Assemble the Track and the FlightPlan into a single object that is used by the UI classes 

to present the appropriate information 
 
If you have an application that needs to receive data with extremely low latency, you can use a 
listener rather than polling.  The code for accessing data is identical, but instead of using your 
own thread and waiting on a WaitSet, or polling in a loop, you can install a listener that will notify 
you of data availability.  To see an example of this, you can generate a hello world application 
using the rtiddsgen code generation tool. 
 
The FlightInfoNetworkReceiver	
  class follows an Observer pattern, with one or more listeners 
that wait for updates to track data.  In this example there are two Observers: the TrackPanel and 
the TablePanel.  The FlightInfoNetworkReceiver	
  notifies those two classes about the latest 
data, and they update the UI view based on these notifications.	
  
 

Displaying the Data in the UI 

Figure	
  6:	
  The	
  GUI	
  components	
  are	
  updated	
  by	
  the	
  TablePanelListener	
  and	
  the	
  TrackViewListener 

The UI uses wxWidgets to display tracks as circles that approach SFO.  The code in the 
TrackGUi.cxx file takes the incoming track data and displays it on a map.  This code is entirely 
independent of RTI Connext DDS, and is not required for receiving data over the network.  Most 
of this code is related to drawing the map, converting between coordinate types (lat/long, UTC, 
and screen coordinates), and refreshing the table view. 

Next Steps 

Extra Credit: Record and Replay 



	
   18	
  

If you want to experiment further, you can use the Record/Replay tool to record live track data 
and replay it later.  This is useful in a real system because it allows you to: 

• Record what is happening in your distributed system to post-process the data and look for 
anomalies. 

• Record and replay live data to test against real-world scenarios. 

• Stress test your system by replaying data faster than it was originally recorded. 

Extra Credit: View the Application using Tools 

To get an idea of what these applications are creating, you can use the RTI Analyzer tool to see: 

• What Topics they are sending and receiving on the network 

• What the structure of the applications' data looks like 

The RTI Analyzer tool must be configured to communicate in the same domain that your 
application is using. This video shows how to get started using RTI Analyzer and how to view 
your data types.  

You can also watch a video online showing how to view the data using RTI Analyzer: Viewing the 
Air Traffic Control Example applications with the RTI Analyzer Tool  

Extra Credit:  Change the domain in code. 

You can change the domain used by RadarGenerator by changing this code snippet in 
RadarInterface.cxx: 

if (NULL == CreateParticipant(0, qosFileNames, libName, profileName)) 
 

Change the '0' to a different number between 0 and 232 and now this application is in a different 
domain. Run the application. Now it will no longer discover or communicate with the other 
applications. 

Separation of domains is useful if you have subsystems in your distributed system that should not 
communicate. This is also useful if you have multiple developers working on the same project and 
you do not want their applications or tests interfering with each other. 
Change the application back to domain 0 and rebuild. 

You can also watch a video online showing changing the Domain and Viewing in Analyzer.  

Join the Community 

If you have questions or you would like to discuss variations of this use case, please post 
questions on the RTI Community Forum.   
 
Love RTI?  Too much free time?  This use case example is also available on GitHub.  You can 
contribute to this use case, or to our feature examples.  Instructions on how to contribute to our 
projects are available on this page. 



	
   19	
  

Download RTI Connext DDS 

Check out more of the RTI Connext product family and learn how RTI Connext products can help 
you build your distributed systems.  Download the free trial.   
 


