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1 Introduction

Intel Software Guard Extensions (Intel® SGX) [1] is an Intel technology for application developers
who are seeking to protect select code and data from disclosure or modification. Intel SGX enables
the execution of security-critical application code, called enclaves, in isolation from the untrusted
system software. Protections in the processor ensure that a malicious OS cannot directly read
or modify enclave memory at runtime. SGX includes a mechanism called sealing for encrypting
and authenticating an enclave’s data for persistent storage (this method is limited to AES-128
and longer keys cannot be used). Processors are also equipped with certified keys that can issue
remotely verifiable attestation statements on enclave software configuration. These SGX mecha-
nisms (isolation, sealing, attestation) enable the development of applications and online services
with improved security. The SGX architecture is especially useful in cloud computing applications,
since data and computation can be outsourced to an external computing infrastructure without
having to fully trust the cloud provider and the entire software stack.

Since launching Intel SGX on 6th Generation Intel Core processors in 2015, there has been
considerable work carried out by the security research community, studying various usage models
and the security of Intel SGX. In this white paper, we describe some of this work which has
focused on side-channel attacks on SGX.1 As we will show, these attacks are extremely effective
at extracting private data from inside an SGX enclave. The most recent of these attacks even
extracted the attestation key from an Intel enclave. As a result, we argue that the community’s
understanding of the potential side channels and their ramifications is such that SGX should not
be currently used for security-critical applications where privacy is required.

The typical response by proponents of SGX to the existence of these side-channel attacks is
that they can be prevented by writing side-channel-proof code, and this is the responsibility of
the developer. As we will show below, this is extremely hard, if not impossible. This position is
supported by the demonstration of effective side-channel attacks on implementations in SGX that
were designed to be side-channel proof and implemented by world experts in this field; see more
below.
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1We stress that this white paper does not attempt to provide a detailed study of side-channel attacks on SGX.

Rather, our aim is to discuss these attacks on a high level and their ramifications to the usage of SGX. For further
research, see the references.
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2 Background – Side-Channel Attacks

The idealized view of cryptography is that algorithms behave as a black-box, and the only adver-
sarial attacks possible are external to the algorithm. For example, in order to attack an encryption
scheme, we assume that the attacker can see ciphertexts, and may even be able to ask for certain
messages to be encrypted (called a chosen-plaintext attack) or even to tamper with ciphertexts and
obtain decryptions of these tampered ciphertexts (called a chosen-ciphertext attack). This is the
way that definitions of security for encryption, digital signing, and so on, are all formulated; see,
for example, [20]. This view of cryptography is natural since the internal workings of the encryp-
tion/decryption or signing algorithms do not seem to be relevant vectors of attack for adversaries.
This is especially the case when the cryptographic algorithm is computed on a remote machine or
inside secure hardware (historically, a smartcard or HSM, and today extended to trusted enclaves,
SGX and so on), since in such cases it seems that an adversary can only learn information by
providing inputs and obtaining outputs. Unfortunately, this idealized view of cryptography was
obliterated in 1996 due to the groundbreaking work of Kocher [21], who showed that just being
able to measure the time that an algorithm runs is sufficient to read out the secret key. In 1999,
Kocher along with others discovered that the power trace of the device computing the cryptographic
operation leaks the secret key since different operations consume different amounts of power, and
thus one can distinguish the operations caused by different bit values of the secret key [22]. These
attacks are called side-channel attacks, since the adversary is assumed to have access to additional
(side) information about the encryption/decryption/signing process, beyond what can be obtained
from pairs of input/output. Although it seems hard to believe that these attacks actually work,
they have proven to be devastatingly powerful, and so all implementations of cryptography must
be side-channel proof in order to be considered secure. Stated differently, if the implementation
of a cryptographic algorithm is side-channel secure, then we can revert back to the idealized view
where our definitions and proofs of security are valid.

The problem of implementing an algorithm so that it is side-channel secure is very non-trivial.
If the attacker has physical access to the device, then the device must ensure that nothing can
be leaked through measurements of power and more. This is difficult, since new side channels
are continually being discovered (it has even been shown that secret keys can be leaked by just
recording the noise emitted by a machine carrying out secret-key operations [15]). If the algorithm
is run in isolation on a machine and the attacker has no physical access to it, then it suffices
for the implementation to be constant-time (i.e., its running time does not depend on the secret
key). However, in many cases, different processes run on the same machine. Surprisingly, it was
shown that secrets can be leaked due to the fact that such processes share physical resources
on the machine. Most notably, it was shown that by monitoring cache usage, it is possible to
effectively “read the memory” of another process [34]. This is possible since the time it takes
to read from memory depends on the cache contents, and there is dependence on this between
different processes. To further exacerbate the situation, in modern computing environments that
are virtualized, multiple different virtual machines almost always run on the same machine, opening
up the possibility of cache attacks (and others) between these different machines. This was first
demonstrated in practice in [28] who showed how to carry out such an attack in practice on
Amazon’s cloud. Later attacks demonstrate this capability, even if the attack VM and the victim
VM are running on different cores of the same machine [6, 7] and even if they are running on
different CPUs on the same physical machine [18, 19]. Importantly, these attacks do not require
physical access to the machine running the victim code, nor even special rights on the machine.
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However, they do require the capability of achieving “co-location”, which means that the attacker
can position its VM on the same physical machine as the victim. Surprisingly, it has been repeatedly
demonstrated that this capability is very practical on real modern clouds; see [19] for just one
example.

We conclude this very brief background by stressing that the issue of side-channel attacks is a
very serious one, with new attacks and attack surfaces being discovered all the time. We have only
scratched the surface in our description above.

3 Software Side-Channel Attacks on SGX

3.1 Demonstrated Attacks

In [3, Slides 109–121], Intel outlines the security model of SGX. The stated goals of SGX are:
(a) to ensure the integrity of code running in an enclave instance (correct computation), (b) to
provide confidentiality of code and data in an enclave instance (private computation), and (c)
to provide isolation between all enclave instances. Furthermore, these security goals should be
achieved in the presence of an unprivileged software adversary, a system software adversary and a
startup code/MMS adversary (see Slides 112–114 in [3] for an exact definition of these adversaries).
However, as stressed in [3, Slide 115], SGX does not defend against side-channel adversaries who
may gather power statistics, gather performance statistics including platform cache misses, gather
branch statistics via timing, or gather information on page accessed via page tables. Rather, it
is the responsibility of the software developer to ensure that code running in an enclave is not
vulnerable to side channel attacks, as stated in [4]:

“Preventing side channel attacks is a matter for the enclave developer. Intel makes this
clear in the security objectives for Intel SGX...”

Unfortunately, as we will show below, this is an extremely difficult – if not impossible – task.
In addition, many are proposing uses of Intel SGX without taking into account the dangers of
existing (and new) side channels and their ramifications on the security of the proposed solutions.
This is due to the fact that side-channel attacks are often thought to require physical access by the
attacker to the victim machine. However, there are extremely powerful side channels that are based
on software only, and some of these only require that the malicious attack software is co-located
on the same physical machine as the secure enclave (meaning that the attacker’s VM runs on the
same physical machine as the victim VM).

Page-based side channels. In one of the first attacks on SGX-based solutions [37], it was shown
that an attacker can enforce page faults during a secure enclave’s execution. Then, by observing
the page-level memory access pattern, the malicious OS is able to learn which page was accessed
by the enclave program. This was utilized to attack the Haven system [8], which was designed
to protect applications from an untrusted cloud with SGX. The attack code was able to extract
private data from Haven with very high accuracy. This attack can be carried out as long as the
attacker is able to infect the VM running the application that uses SGX to protect its private data.
Thus, even though data is only ever opened and processed inside SGX, it can still be extracted by
malware that has infected the running VM.
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Cache-based side channels. All cache-based side-channel attacks are based on the fact that
cache misses of a protected application can be identified. The most basic cache attack utilizes the
property that secret data values influence the data access pattern and thus cache hits or misses.
As such, the secret can be extracted by just observing the access time of each cache access. More
advanced cache attacks called evict-and-time, prime-and-probe, flush-and-reload, and more) all
work by the attacker influencing the contents of the cache and measuring this effect. Surprisingly,
cache attacks have been extremely effective; in particular, they are extremely effective at extracting
RSA and ECC private keys and AES symmetric keys. See [14] for more information.

Cache attacks were carried out very effectively on cryptographic functions running in SGX.
For just a few examples, [9] used a cache-attack to extract an entire RSA-2048 key during RSA
decryption, and to detect specific human genome sequences during genomic indexing. The attack
can be carried out if the attacker can run its attack code on the same processor as the victim
application. Thus, this merely requires co-location (however, the co-location must be on the same
core, since it utilizes the L1 cache which is specific to each core, and not the L3 cache which is
joint to all processors on the machine). The attack of [9] is very powerful since it does not require
interrupting the victim code. That is, the attacker can run both the victim enclave and its own
process uninterrupted in parallel. As such, the attack is very hard to detect and mitigate. The
method of [9] is very effective, and they extracted the RSA private key from an SGX enclave
with just 300 RSA decryptions. In [16, 26], similar attacks were demonstrated for recovering AES
keys. These attacks require the attacker to have root access to a Linux OS running SGX. The
attacks of [26] require only 10s or 100s of AES operations, and are effective even against software
implementations (running inside SGX) that include countermeasures against cache attacks. A co-
location attack that only requires that the attacker code be on the same machine as the SGX, but
not necessarily the same CPU, was demonstrated by [29] (these attacks utilize the L3 cache and so
the attack can be run on any processor on the same physical machine as the victim SGX). The attack
of [29] is able to extract a complete 4096-bit RSA key from the mbedTLS RSA implementation
(that uses constant-time decryption as a protection against side-channel attacks) with just 11 RSA
decryptions and 5 minutes of local computation. Furthermore, [29] demonstrate that they can even
run their attack in another SGX enclave on the machine, in order to completely avoid detection.
We stress that the attacker in [29] does not need any special privileges, and the attack works as long
as the attacker can run code on the same physical machine. This was demonstrated by running
the attack between Docker instances running on the same machine (where the victim Docker used
SGX for storing and computing with the RSA private key.)

In light of the many works on attacking and defending against side channels in SGX, a broad
study of the types of attacks and their effectiveness was carried out in [36]. The aim of [36] was to to
identify all weaknesses related to the memory management of the enclaves. As such, the paper first
presents 8 vectors of side-channel attacks related to address translation caches in CPU hardware.
Next, they present a new attack called “sneaky page monitoring” (SPM) which significantly reduces
the number of interrupts (caused by page faults) required to carry out the attack (which works
even if all secret-dependent branches are located in the same page). The attack works by setting
and resetting the pages accessed flag in the page table entry. This attack was demonstrated on
EdDSA in Libgcrypt (v1.7.6), which is supposed to be cache-attack resilient.2 Finally, the paper

2To be more exact, the Libgcrypt implementation provides side-channel protection for the EdDSA secret key, but
not for the randomness used in generating the signature. However, given a signature and the randomness, it is trivial
to recover the EdDSA secret key. Thus, the implementation is vulnerable. This is another indication of how difficult

4



presents an attack that works even if one uses a mechanism that mixes sensitive code and data into
the same page.

A new and very powerful cache attack, called MemJam [27] utilizes the fact that it is (almost)
impossible to write truly time independent code. In particular, in order to prevent cache attacks,
code is written so that the memory access pattern is completely independent of the secret key value.
However, as demonstrated by [27], this is actually highly dependent on the specific architecture
where the code is run. The attack designed by [27] was able to extract an AES secret key from
the Intel constant-time implementation called Safe2Encrypt_RIJ128 that is part of the Intel IPP
(Integrated Performance Primitives) library. We stress that this implementation is considered to
feature true cache constant-time behavior, and is part of the Linux SGX SDK. Nevertheless, the
AES secret key was extracted from an SGX enclave running this implementation. The attacker in
the MemJam attack does not need any special privileges, and is only required to be co-located with
the victim enclave on the same processor.

Energy management attack. A new and very powerful attack, called CLKSCREW, was demon-
strated in [32]. This attack is carried out using the energy management tool, and was demonstrated
on commodity ARM devices (e.g., a Nexus 6 phone) to extract secret keys from ARM TrustZone
and to escalate privileges to enable an attacker to load self-signed code into Trustzone. The attack
uses the frequency regulator to change the voltage in a way that may affect the output of a com-
puted circuit. This is possible since most systems today allow software to control the frequency and
voltage of the hardware platform (this is aimed to help extend battery life). As shown in [32], this
capability can be used by the attacker to inject faults into the running code, which is devastating
since such fault attacks are known to enable the extraction of cryptographic keys with great ease.
For example, in order to extract AES keys, it suffices to induce a one-byte random corruption to
the intermediate state of an AES round in the decryption process. Then, given the faulty plaintext
produced by this, and the expected one, the key stored within Trustzone was obtained with only 12
minutes of computation by [32]. We remark that the CLKSCREW attack was not demonstrated
specifically against SGX. However, as the researchers argue, the attack is relevant for all hardware
that enables energy management (which is essentially all modern platforms). We note that AWS
does provide processor state control for EC2 instances [5] as required for the CLKSCREW attack,
but stress that the attack has not been demonstrated on this specific platform. Thus, the question
of the attack’s relevance to SGX in real cloud environments is still open.

Speculative execution. Recently, speculative execution carried out by modern processors has
been shown to provide a very powerful side-channel in the form of the Meltdown and Spectre
attacks [23, 25]. Speculative execution is another example of a failure of processors to provide
isolation between different processes running. The Spectre attack (which has no known solution,
but only very partial mitigations) works by influencing the branch prediction of the CPU in order
to have victim code execute instructions that leave a trace on the cache. Since SGX enclaves use
the same speculative execution process as all other processes running on the machine, the attack
is effective against SGX as well. This was demonstrated in [10], who showed how to read register
values and general memory out of an enclave. The attack was shown against enclaves written using
the Intel’s official SDK [2].

it is to write side-channel proof code.
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Recently, a new attack called Foreshadow was released [35]. This attack has the unique property
that it can read private data out of an enclave, even if the code is perfectly side-channel safe. In
fact, the Foreshadow attack was even used to extract the Intel attestation key from the enclave,
completely breaking all integrity guarantees provided by SGX. Although the specific attack method
has been patched by Intel, the existence of this side channel is of great concern, and it’s clear that
this is not the last word on the subject.

3.2 Defenses and Mitigation

Most known defenses are designed specifically to page-fault side-channel attacks. In [31], a compiler-
based approach was proposed to transform cryptographic programs to hide page access patterns
that may leak information. Shih et al. [30] proposed T-SGX which exploits Intel Transactional Syn-
chronization Extensions (TSX) to prevent page faults from revealing the faulting address. Costan et
al. [12] proposed a secure enclave architecture that is similar to SGX but resilient to both pagefault
and cache side-channel attacks. Chen et al. [11] proposed Déjà Vu, a compiler-based approach
to instrument enclave programs so that they can measure their own execution time between basic
blocks in their control-flow graph, thus being able to detect attacks that induce many interruptions
to the victim’s execution. As discussed in [36], these approaches all fail to consider the full gamut
of possible memory side-channel attacks, and thus fall short of being satisfactory defenses.

In a different direction, some have suggested architectural changes to cache organization. How-
ever, these approaches would require a radical change to current cache designs, which cannot be
easily implemented in practice (and are certainly not relevant for today’s systems). In particu-
lar, Intel processors with SGX extensions do not implement any countermeasures against cache
side-channel attacks at the architectural level. Another approach to defeat information leakage via
side channels is Oblivious RAM (ORAM) [13,33,34], which provides means to hide memory access
patterns of programs by continuously shuffling and re-encrypting data as they are accessed in RAM
memory, disk or from a remote server. The applicability of this solution was investigated in [9] who
state that

“While one could think of using similar techniques for cache protection, they are not
directly applicable, as it is challenging to store ORAM internal state securely. Without
hardware support this would require storing client state in a cache side-channel oblivious
way, which is unfeasible given the small size of every cache line.”

Thus, although ORAM could be used effectively for hiding the access patterns to main memory, it
does not seem to be viable for hiding cache access patterns.

The CLKSCREW attack [32] is not just the latest in a known exploit genre. This attack opens
the door to a whole new class of energy-management based attacks. According to the authors’
analysis:

“...there is unlikely to be a single, simple fix, or even a piecemeal fix, that can entirely
prevent CLKSCREW style attacks. Many of the design decisions that contribute to the
success of the attack are supported by practical engineering concerns. In other words,
the root cause is not a specific hardware or software bug but rather a series of well
thought-out, nevertheless security-oblivious design decisions.”

The Meltdown [25] and Spectre [23] attacks on speculative execution are extremely troubling.
First, there is no solution to these attacks, and proposed mitigations are very partial (especially
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for Spectre). Second, these are the first attacks to ever use speculative execution as a side channel.
Since they are so new, it is very likely that this new side channel will be utilized in many unexpected
ways in the future.

We reiterate that the proposed mitigation that side-channel-proof implementation be used is
highly problematic. First, this takes extremely rare and specialized expertise, and it is unreasonable
to assume that this is available to companies developing products for SGX. Second, even the best
implementations known, like Safe2Encrypt_RIJ128, have been found to be vulnerable to cache
attacks [27]. Third, some attacks like Spectre and Foreshadow do not rely on the victim code
being poorly written. Thus, this cannot be relied upon as a reasonable mitigation strategy for
high-security applications.

3.3 Summary of Attacks and Capabilities

As can be seen from the above survey, software side-channel attacks are extremely effective at
extracting secret data from within secure enclaves in general, and from SGX in particular. The
different attacks require different capabilities; some are easier to mitigate but these are typically
followed up by attacks that thwart the mitigation.3 As we have seen, the two main alternatives to
an attacker are kernel privileges or co-location:

• Kernel privileges: First and foremost, an attacker who has kernel privileges on the machine
where SGX is running can carry out extremely effective cache attacks, with ease. This means
that using SGX to achieve data privacy or protect secret keys in the presence of an “untrusted
OS” or an “untrusted cloud” (or a cloud that receives a subpoena) is extremely problematic.
Thus, although obtaining kernel privileges is not at all easy, it is important to stress that
many are proposing SGX as a way to obtain security under the exact threats for which the
attacker does have kernel privileges.

• Co-location: Second, co-location has been shown to be sufficient to extract private data and
secret keys. This means that if an attacker can run its attack code on the same physical
machine as the victim, then SGX is no longer effective for protecting data privacy. Initial
attacks required the co-location to be on the same processor as the victim, but these attacks
have been extended so that the co-location only needs to be on the same physical machine
(but the attack code can run on any core). Although co-location may intuitively seem like a
difficult task, it has been shown that it is can be achieved very effectively in modern public
cloud environments. Thus, even if the cloud provider is trusted, this is not sufficient.4

Cache side-channel attacks do take expertise to construct. However, once an attack has been
implemented, it can be packaged as a tool that can be used by anyone. It is important to also
recall that many of the attacks require very little time to extract secret keys, and are so extremely
effective. In addition, the published attacks are proofs of general capability, and not comprehensive

3The exception is mitigation strategies that rely on completely modifying the underlying architecture. However,
these are typically not feasible, and certainly will not happen in the short term.

4We stress that when we say that the cloud provider is trusted, this includes that we trust that they are not
breached, that no internal administrator is bribed or blackmailed, and that they are not required to act upon
subpoena. It is clear that no large commercial cloud provider today would willingly attack its own customers.
However, the real threat landscape is much more complex, and the real threats are breaches, insiders and even
governments.
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attacks on all possible products and implementation. Due to the rich variety of effective attacks,
the assumption should be that data privacy is not afforded via software run inside SGX.

We stress that AES encryption and decryption run inside SGX using the AES-NI hardware
instruction has not been shown to be vulnerable. These instruction sets were designed to prevent
cache attacks, and so far have withstood attack. Thus, AES operations only (when run inside
AES-NI) seem to be safe.5

4 The Security of SGX for Cloud Applications

4.1 Secret-Key Protection – an SGX-Based HSM

One proposed use of SGX is for cryptographic key management and protection. This application
is very attractive since secret keys are vulnerable while in use, and once stolen all cryptographic
defenses are completely bypassed. Historically, secure hardware has been used to protect secret
keys even while in use (this hardware is generally called an HSM, or Hardware Security Module).
In an HSM, the entire cryptographic computation takes place inside a secure environment that
includes protections against physical attacks. Defense against physical side-channels (like power
and differential-power analysis [22]) is a part of the HSM design and is verified manually as part
of the certification process. However, in modern environments, physical access by an attacker to a
victim machine is very hard to achieve, and so physical protection may be less critical. For example,
modern clouds have heavily secured data centers that are well protected. Nevertheless, HSMs are
still attractive from a security perspective since they only run the specific cryptographic operations
specified in their API. As such, it is not possible to load malware onto an HSM, to breach its OS,
or to co-locate another VM on the same machine. SGX enclaves therefore sound like a perfect
alternative to HSMs in cloud-like environments. If the enclave is indeed secure, and physical access
is not a concern, then an SGX-based HSM would be a cheap, easy to manage, and flexible solution
to the threat of secret key theft.

Despite its intuitive appeal, a large body of research already exists that shows that cryptographic
keys are just not safe inside SGX. As we have shown, co-location on the same physical machine
alone suffices to extract secret RSA keys, ECC keys, and AES keys (when the latter is implemented
in software). This is also true of implementations that were designed (and widely believed) to be
resilient to cache attacks. Currently, the only cryptographic operations that seem to be safe inside
SGX are AES encryption and decryption using AES-NI hardware-based instructions only.

4.2 Data-in-Use Encryption via SGX

Another attractive application of SGX is for data-in-use encryption. In this scenario, data is
encrypted and then used without ever decrypting it. The methods that currently exist for data-
in-use encryption are either impractical for most applications (like fully homomorphic encryption)
or provide a weak level of security and limited functionality (like format and order-preserving
encryption).6 Thus, SGX sounds like the perfect solution to this problem: all data is encrypted
under a key stored inside SGX. Then, in order to process the data, it is read into the SGX, decrypted

5Note that the AES implementation inside the official Intel SGX SDK for Linux does not use AES-NI and
implements AES in software [16, Section 4.2]. It is unclear why this is the case.

6Secure multiparty computation can also be used for the purpose of data-in-use encryption. However, it requires
interaction and so achieves a slightly different effect.
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internally, processed, and the result is finally encrypted before returning it. In this way, data is
never decrypted outside the SGX and thus never vulnerable. One very notable use case for this is
an encrypted SQL database in the cloud, where the cloud provider never sees plaintext data. This
can be achieved by the client uploading only encrypted data to the cloud, and having the SGX
enclave be the only entity to know the decryption key.

Once again, despite this sounding like the perfect solution, it is in fact very problematic. First,
only AES-NI encryption can be used securely (since otherwise, the decryption key could be extracted
and the attacker could then steal all the data and decrypt it). This means that the clients uploading
the data must all hold the same AES key (and so, public-key encryption cannot be used). More
importantly, cache attacks are not limited to extracting cryptographic key, and are actually far more
effective against standard data processing. This is due to the fact that cryptographic operations
are far more limited in scope, and so implementations attempt to be resilient against cache attacks
(albeit, unsuccessfully, as we have seen). In contrast, more general applications (like SQL) operate
in an extremely data-dependent manner. Thus, cache attacks can be used to extract private
data. Finally, in such applications, external memory accesses have also been shown to leak a
lot of information. This can be solved by using oblivious RAM. However, this severely impacts
performance, and can only practically prevent leakage from external memory, but not from the
cache.

4.3 Data Privacy

Another application, that is closely related to that of data-in-use encryption, considers multiple
different entities with private data who wish to carry out a joint computation on their encrypted
data. This is the classic setting of secure multiparty computation. However, it can be achieved far
more easily using SGX. Specifically, all parties can send their data encrypted to an enclave, who
can carry out the computation and output the result. Clearly, this application suffers from the
same problems as that of data-in-use encryption.

4.4 Trusted Applications

SGX includes a mechanism called attestation, that can be used to ensure that correct code is
running. This can be used to prevent malware from tampering with an application, and thus
can significantly raise the security of networks. This mechanism relies on the Intel attestation
procedure. The Foreshadow attack [35] that can successfully extract the Intel attestation key from
an enclave brings this use of SGX into question. Although the specific threat of [35] has been
patched, we believe that the lack of isolation of SGX from the processor means that it cannot be
trusted in such cases.

5 Discussion and Conclusions

The current state of affairs regarding the privacy of data processed inside SGX is very poor.
Software-based side channel attacks have proven to be extremely effective at extracting secrets
from inside SGX. This is especially the case for the use of SGX to protect cryptographic material,
with effective attacks shown against RSA, ECC and AES, in some cases even for implementations
that are designed to be resilient to cache attacks. These attacks require malicious code to run
on the same physical machine as the SGX enclave, but this has been shown to be not difficult
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to achieve in practice. Furthermore, although designing these attacks takes some expertise, they
are not overly difficult and can be run by anyone who obtains the attack code. In our opinion,
this means that SGX is not suitable as an “HSM replacement”, as is now being proposed. This is
especially the case as even expertly written code that is supposed to be side-channel resistant has
been broken inside SGX. As we have discussed, a similar problem arises for data-in-use encryption
and data privacy applications.

We conclude with a paragraph, taken word for word from [36]:

Over the years, we observe that many side-channel studies follow a similar pattern:
a clever attack is discovered and then researchers immediately embark on the defense
against the attack. However, in retrospection, most defense proposals fail to consider
the bigger picture behind the demonstrated attacks, thus they are unable to offer effective
protection against the adversary capable of quickly adjusting strategies, sometimes not
even meaningfully raising the bar to the variations of the attacks. The ongoing research
on SGX apparently succumbs to the same pitfalls. We hope that our study can serve
as a new starting point for rethinking the ongoing effort on SGX security, inspiring the
follow-up efforts to better understand the fundamental limitations of this new TEE and
the ways we can use it effectively and securely.

Perhaps the greatest concern is that the attack space is constantly moving. At the very least, it
will be years until we fully understand the security of SGX. This puts SGX currently in the cat-and-
mouse zone for data privacy,7 where the security guarantees are not sufficient for security-critical
applications like cryptographic key protection.
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