Detection of mutations in single circulating tumor cells using MALDI-TOF mass spectrometry

Jackie Stilwell1, Ryan T. Birsel1, Arturo Ramirez1, Brennan Enright1, Darryl Irwin1, Eric Kaidjian1
1RareCyte, Inc., Seattle, WA, 2Agena Bioscience, Inc., San Diego, CA

Abstract 750

Table of mutations targeted for SNP genotyping

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Mutation</th>
<th>Allelity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDA-MB-231</td>
<td>c.205G>T</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td>c.2369C>T</td>
<td>Mut</td>
</tr>
<tr>
<td></td>
<td>c.353G>A</td>
<td>HET</td>
</tr>
<tr>
<td></td>
<td>c.38G>A</td>
<td>HET</td>
</tr>
<tr>
<td></td>
<td>c.691A>G</td>
<td>Mut</td>
</tr>
<tr>
<td></td>
<td>c.818C>T</td>
<td>Mut</td>
</tr>
</tbody>
</table>

MDA-MB-231 cells identified from spike-in

- Composite
- DAP
- CytoFasten
- CytoFasten DH
- CytoFasten DH/EpCAM

NCl-1975 cells identified from spike-in

- Composite
- DAP
- CytoFasten
- CytoFasten DH
- CytoFasten DH/EpCAM

Table: samples targeted for SNP genotyping

<table>
<thead>
<tr>
<th>10ng of input DNA</th>
<th>Single protocol with spike-in (PlexiLUX Pro)</th>
<th>Automated analysis (Pro)</th>
<th>User-friendly mutation reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA to data in 8-hours with less than 30 minutes of manual processing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Schematic workflow for somatic mutation detection using PlexiLux® chemistry and the MassARRAY® System

MDA-MB-231, Breast

- c.205G>T, Pro
- c.2369C>T, Mut
- c.353G>A, HET
- c.38G>A, HET
- c.691A>G, Mut
- c.818C>T, Mut

NCl-1975, Breast

- c.205G>T, Pro
- c.2369C>T, Mut
- c.353G>A, HET
- c.38G>A, HET
- c.691A>G, Mut
- c.818C>T, Mut

Examples of mutations found in single circulating tumor cells

- MDA-MB-231
 - Whole-genome Amplification: No Amplification
 - No Amplification

- NCl-1975
 - No Amplification

Comparison of Mutation TP53-616 from NCl-1975 found in single cell (Direct enrichment on pooling of cells) or whole (WGA).

*Conclusions: MassARRAY® technology successfully detected mutations in single model CTCs that were individually picked from a blood sample processed by the AccuCyte® - CytoFasten system both with and without whole genome amplification. Integrating CTC isolation with MassARRAY® technology may be a practical way to identify and monitor known cancer mutations non-invasively.

Significance: This is a simple and rapid way to identify multiple mutations in single cells, with the potential for diagnosis without introduction of sequence error by workflow whole genome amplification.