Presented at AACR 2017

2757. Using Liquid Biopsies and NGS as Tools to Analyze Mutation Burden and Copy Number Variation in the Blood of a Patient with Metastatic Triple Negative Breast Cancer to Better Inform Therapeutic Targets

Kellie Howard1, Kimberly Kruse1, Brianna Greenwood1, Elliott Swanson1, Mathias Ehrlich2, Christopher K. Ellison2, Taylor J. Jensen2, Sharon Austin3, Arturo B. Ramirez3, Debbie Boles4, John Pruitt5, Elisabeth Mahen5, Jackie L. Stilwell6, Eric P. Kaldjian5, Michael Dorschner5, Sibel Blau6, Anthony Blau7, Marcia Eisenberg5, Steven Anderson5 and Anup Madan1
1Covance, Redmond, WA; 2Sequenom Laboratories, San Diego, CA; 3RareCyte, Inc., Seattle, WA; 4Laboratory Corporation of America® Holdings, Research Triangle Park, NC; 5Center for Cancer Innovation, University of Washington, Seattle, WA; 6Northwest Medical Specialties, Puyallup, WA; 7Covance, Durham, NC

Abstract

The ability to characterize molecular features of cancer from liquid biopsies is resulting in the development of innovative health care for patients. Longitudinal changes in the mutational profiles of DNA-isolated from liquid biopsies are being used to better understand and monitor the development, progression, and evolution of therapy resistance in cancer patients. To define changes in the mutational landscape and predict drug susceptibilities in Triple Negative Breast Cancer (TNBC) patients, we used whole exome analysis to profile circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) from eight selected time points of a patient enrolled in the Intensive Trial of Omics in Cancer clinical Trial (ITOMIC). The patient initially received weekly cisplatin infusions followed by additional targeted therapy. Peripheral blood samples were collected at specific time points over a period of 272 days following enrollment in the clinical trial. Our data indicate that the identified mutations in genomic DNA-isolated from CTCs and ctDNA can be used to understand and mitigate the impact of tumor heterogeneity in addition to identifying clinically relevant mutations at these selected time points. To further increase the resolution of our analysis, we profiled ctDNA from these samples to a higher depth targeting only clinically relevant genes. These analyses increased the sensitivity of detection and identified additional targets that could have been used for therapeutic intervention. In addition to sequence variants, copy number variations (CNVs) have also been significantly associated with the development of metastasis and changes in CNVs have been used to monitor disease progression. We performed a bioinformatics analysis of genomic instability and CNVs across 32 different time points from ctDNA from the same patient throughout the treatment period. The genomic instability number (GIN) calculated for each of the 32 time points seems to mirror the overall CTC burden in the patient at each time point tested. CNV analysis is ongoing and these data sets are being further analyzed with check marks.

Methods

Patient History

The patient was a 56-year-old woman with metastatic triple negative breast cancer (TNBC).1

In October 2013, she consented to enrollment in the Intensive Trial of Omics in Cancer clinical Trial (ITOMIC).1

During the study period, the patient underwent weekly chemotherapy treatments and her CTC/cfDNA were collected.

Conclusions and Future Directions

Each CTC examined contains different affected pathways suggesting a highly heterogeneous CTC population.

The GIN calculated for the ctDNA follows the CTC profile as expected due to genomic instability.

Numerous genes show CNV based on the ctDNA analysis.

A targeted mutation panel was used on the ctDNA and no actionable mutations were identified.

Future work includes:

- Examining the CNV profiles for all ctDNA samples analyzed to perform network analysis
- Determine whether there are pathways in common between CTCs and other ctDNA timepoints