

AC Motor Basics

Basic Motor Terminology

Air Gap - opening between stator and rotor

Altitude - operational/installation altitude

Ambient – temperature of the space around the motor

Base – adapter base used to convert "T" frame motors to "U" frame; slide base is an adjustable frame on which the motor sets (belt apps)

Bearing Housing – end bell or bracket which houses the motor bearing and supports rotor

Breather Drain – plug type device use to provide drainage

Conduit Box – also terminal box, contains motor leads or terminals connected to power source

Design – letter assigned by NEMA to denote standard performance characteristics

Basic Motor Terminology

Drip Cover – umbrella type cover used to keep water out of motor (vertical mounting)

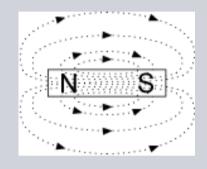
Duty Cycle – continuous duty, suitable for 24 hour day operation

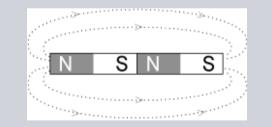
Enclosure – motor housing

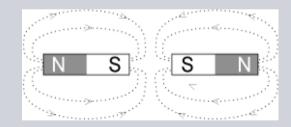
Flange – also called "Face", a specially machined drive end bearing housing used to provide easy mounting to driven equipment

Insulation System – maximum allowed operating temperature of the motor

Laminations – slotted stampings or punchings of thin electrical grade steel, stacked and joined together

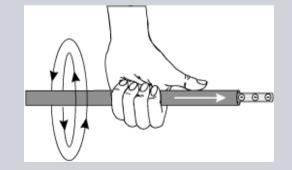

Rotor – rotating element of the motor


Stator – stationary part of the motor that contains the windings


Magnetism

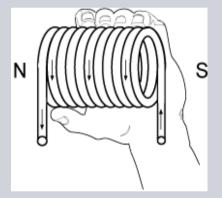
Magnetic Line of Flux

- A magnet's invisible force
- North Pole/South Pole
- Unlike Poles Attract/ Like Poles Repel



Electromagnetism

Electromagnetic field is generated by current flow in a conductor


- Left-hand rule for conductors
- Magnetic strength varies proportionally with current flow

Electromagnetism

Electromagnet is made by winding a conductor into a coil around a core

- Core is usually a soft iron
- Current passing through coil magnetizes core
- Left-hand rule for coils
- Magnetic strength varies proportionally with the number of turns

Motor Specifications

		CE	
SCGULTUI NI	EMA PREMIUM [®] EFFICIENCY	CONNECTION	
TYPE: SD100	DUTY: CONT. 3 PH		
HP: 50	CLASS INSUL: F S.F.: 1.15	ΙΨΨΨ	
kW: 37.30	S.F. AMPS: 67.0		
FRAME: 326 T TEFC	AMB.TEMP.: 40 °C		
VOLTS: 460	TEMP.RISE: CLASS B	LINE	
AMPS: 58.0	NEMA DESIGN: B		
R.P.M: 1780 Hz: 60	KVA CODE: G		
NEMA NOM EFF: 94.5 7	PART NO: PRUEBAAL		
SH. END BRG: 60BC03JP3	SERIAL No:		
OPP. END BRG: 60BC03JP3 VFD COMPATIBLE AT 1.0 S.F.	ee 🗿 🖼		
20:1 V.T., 4:1 C.T.	CC032A LR 39020		
Made in Mexico by SIEMENS GDL			

Motor Specifications

Horsepower

- Horsepower (US) = (T x rpm) / 5250
- kilowatts (Europe) = .746 x HP
- Fractional: 1/3, 1/4, 1/2, 3/4
- Integral: 1-20,000 + Hp

Voltage

- Electromotive (emf) force required to make electricity flow through a conductor
- 115, 200, 230, 460, 575, 2300, 4000, 4600, 6600, 7200V and 13.2 kV

Motor Specifications

Frequency

- Like a magnet the magnetic field of an electromagnet has a north and south pole
- When direction of current flow changes, polarity of electromagnet changes
- The process repeats itself 60 or 50 times a second

Altitude

- Motors suitable for 3300 ft ASL or 1000 m
- Class F Insulation suitable for 9900 ft ASL

Motor Specifications

# Pole = (120) Hz/Ns			
No. of Poles	Synchronous Speed		
2	3600/3000		
4	1800/1500		
6	1200/1000		
8	900/750		
10	720/600		

Motor Specifications

Slip

- Relative difference between speed of rotor and rotating magnetic field
- Necessary to produce torque

% Slip =
$$\frac{\text{Ns-Nr}}{\text{Ns}} \times 100$$

% Slip = $\frac{1800-1765}{1800} \times 100$
% Slip = 1.9%

Motor Specifications

Service Factor

- A multiplier applied to the rated power
- 1.0, 1.15 or 1.25

Motor Design

- NEMA Design A, B, C, D
- Standard for motor performance

Efficiency

 Indicates how much input AC energy is converted to output mechanical energy

Motor Specifications

Insulation Class	Class F	Class H	
Slot Liner/Wedges	100% fill polyester fiber-polyester	Nomex laminate-polyester film-	
and Coil Separator	film-polyester fiber laminate	Nomex laminate	
	Acrylic coated glass impregnated	Flexible silicone rubber trated	
Sleeves	with varnish	fiberglass	
Tie Cord	Heat shrinkable polyester	Heat shrinkable polyester	
Varnish 100% solids polyester resin		100% solids polyester resin	
Leads	Cross linked polymer or Teflon	Silicone Rubber or Teflon	

Maximum Winding Temperature Rise °C				
	1.	0 SF		1.15 SF
A	B	F	H	A B F
60	80	105	125	70 90 115

40 deg C ambient, Resistance Method

NEMA Motor Characteristics

NEMA Design A - not often used (high LRA)

NEMA Design B - most common

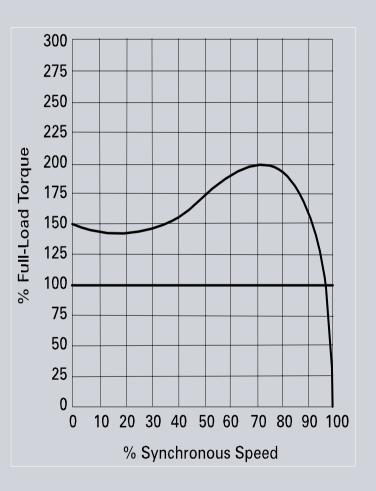
NEMA Design C - high torque

NEMA Design D - high torque and high slip

NEMA Motor Characteristics

NEMA Design B

- Most common
- The relationship between speed and torque from moment of start until motor reaches full-load torque at rated speed is expressed in a Speed-torque curve

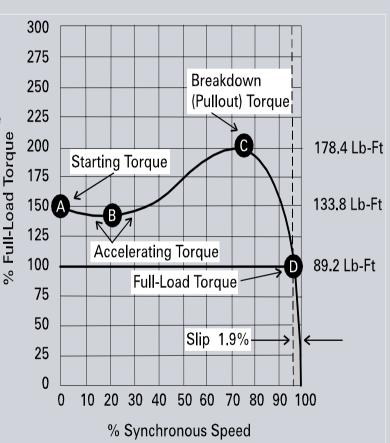

Speed-torque Curve

Starting (Locked Rotor) Torque

Accelerating Torque

Breakdown Torque

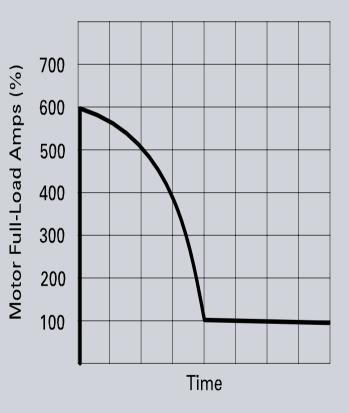
Full Load Torque


Motor Torque

(A) *Locked Rotor Torque* – Minimum torque developed by motor at rest, with rated voltage applied at rated frequency

(B) Accelerating Torque – The torque developed by the motor during acceleration from rest to the speed where breakdown torque occurs

(C) **Breakdown Torque** – Maximum torque developed by motor with rated voltage applied at rated frequency


(D) *Full Load Torque* – The torque necessary to produce its rated horsepower at full-load speed

Current

Locked-Rotor Current: starting current measured from supply line at rated voltage and frequency with the rotor at rest (600-650% for NEMA B)

Full-Load Current: current measured from supply line at rated voltage, frequency and load with the rotor up to speed

NEMA Motor Characteristics

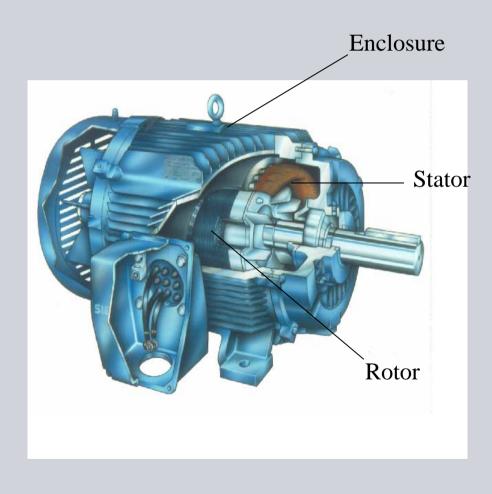
NEMA Design A

- Higher LRA will yield NEMA Design A
- Used for special load torque or inertia requirements

NEMA Design C

- Starting torque approximately 225%
- High inertia load applications (conveyors, plunger pumps)
- Single speed motors from 5-200 HP

NEMA Motor Characteristics

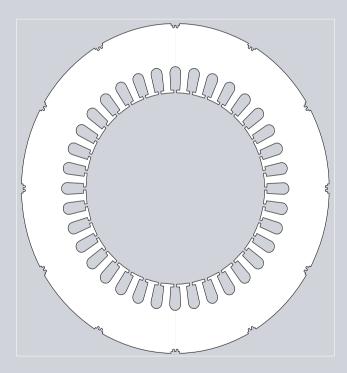

NEMA Design D

- Starting torque approximately 280%
- Very high inertia load applications (punch presses, cranes, hoists)
- No true breakdown torque
- After initial LRT is reached, torque decreases until FLT is reached
- High slip (5-8% or 8-13%)

Motor Construction

Three basic parts

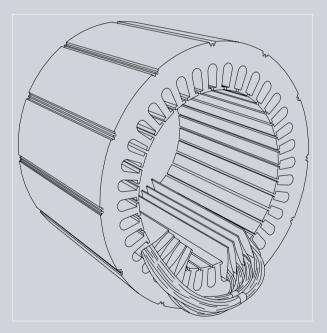
- Rotor
- Stator
- Enclosure


Stator Construction

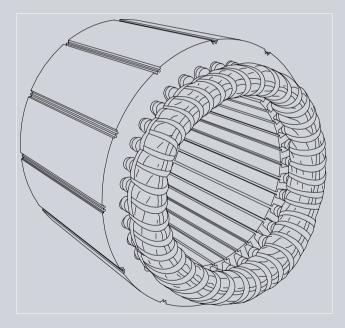
Stator and Rotor are electrical circuits that perform as Electrical magnets

Stator is the stationary electrical part of the motor

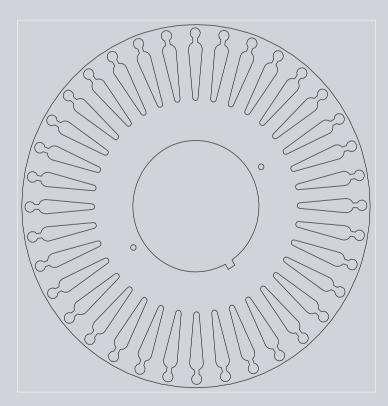
Made up of several


hundred thin laminations

Stator Construction

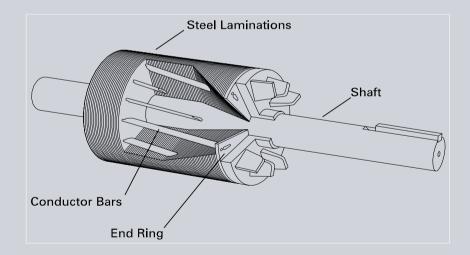

Stator laminations stacked together forming a hollow cylinder

Coils of insulated wire inserted into stator core slots


Stator Construction

Each grouping of coils, together with the steel core it surrounds form an electromagnet Stator windings connected to power source

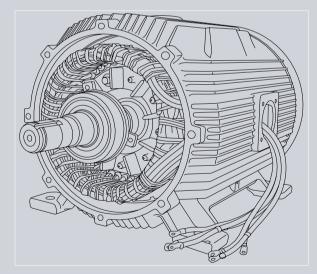
Rotor Construction


The rotor is the rotating part of the electromagnet circuit

Rotor Construction

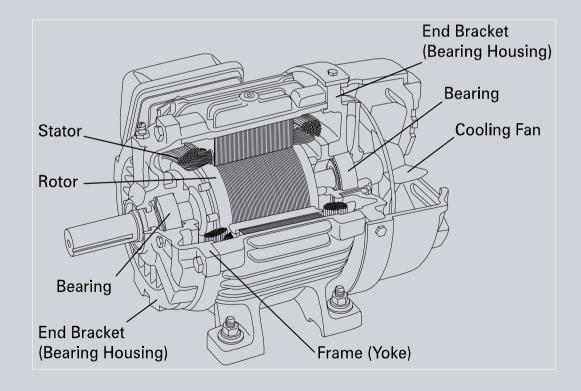
Laminations stacked together with evenly spaced conductor bars Aluminum or copper die cast in the slots form a series of conductors around perimeter

Current flowing through conductors form electromagnet


Enclosures

Consists of Frame (Yoke) and two end brackets (bearing housings) Stator is mounted inside frame

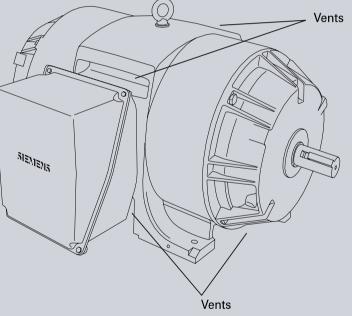
Rotor fits inside stator


- Slight air gap
- No physical contact

between stator and rotor

Enclosures

Protects electrical and operating parts of motor from harmful environmental effects


Enclosures

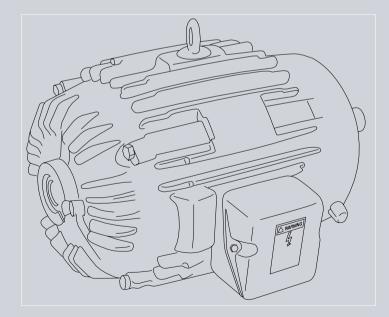
ODP: Open Drip Proof TEFC: Totally Enclosed Fan Cooled TENV: Totally Enclosed Non-ventilated TEAO: Totally Enclosed Air-over WP1/WP2: Weather Protected 1 and 2 TEAAC: Totally Enclosed Air-to-Air Cooled TEWAC: Totally Enclosed Water-to-Air Cooled

Open Drip Proof (ODP)

Permit cooling air to flow through motor

Vent opening prevent liquids and solids from entering at from above angles up to 15°

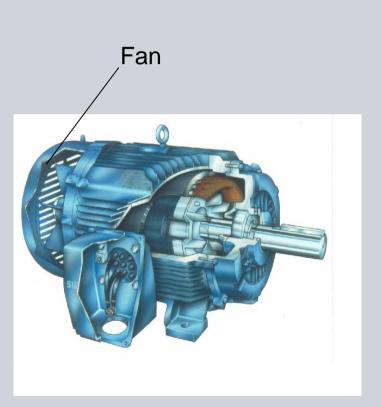
Totally Enclosed Non-ventilated


TENV restricts free exchange of air between inside and outside of motor

All heat dissipates by means of conduction

Indoors and outdoors

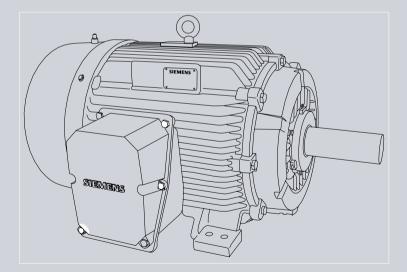
Most TENV motors


are fractional

Totally Enclosed Fan Cooled

TEFC is similar to TENV with addition of a fan

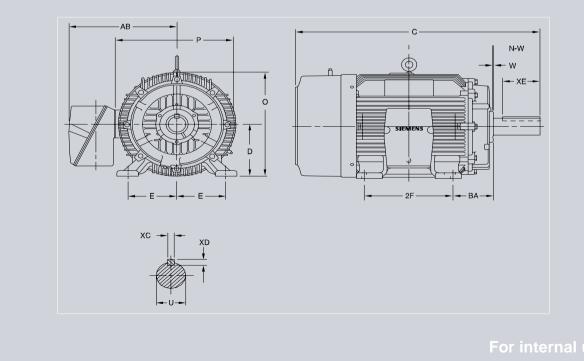
Can be used in dirty, moist, or mildly corrosive conditions More widely used for integral HP



Explosion Proof (XP)

Similar in appearance to TEFC

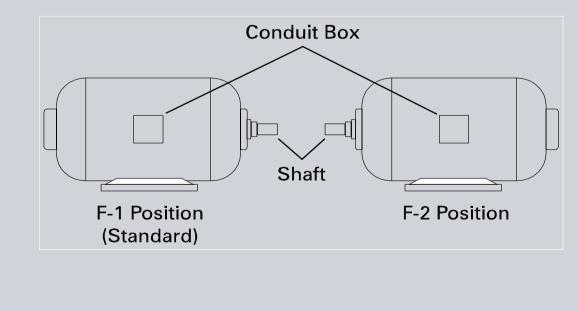
Most are Cast Iron


Application subject to agencies such as NEC and UL

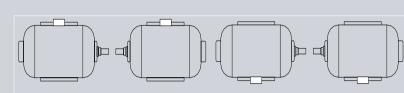
Mounting

NEMA Dimensions- 143T

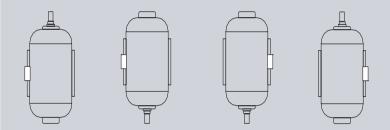
- 14/4 = 3.5 (shaft height)
- 3 = distance between bolt holes

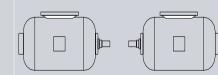

Mounting Positions

F-1


Standard

Conduit box on left-hand side of motor when viewed from shaft end
F-2


Conduit box on right-hand side of motor when viewed from shaft end


Mounting Positions

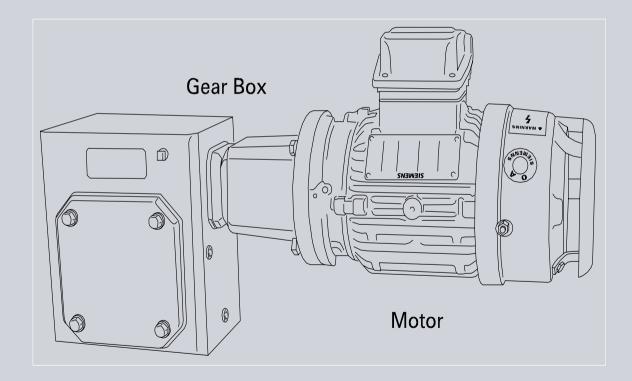
Assembly W-1 Assembly W-2 Assembly W-3 Assembly W-4

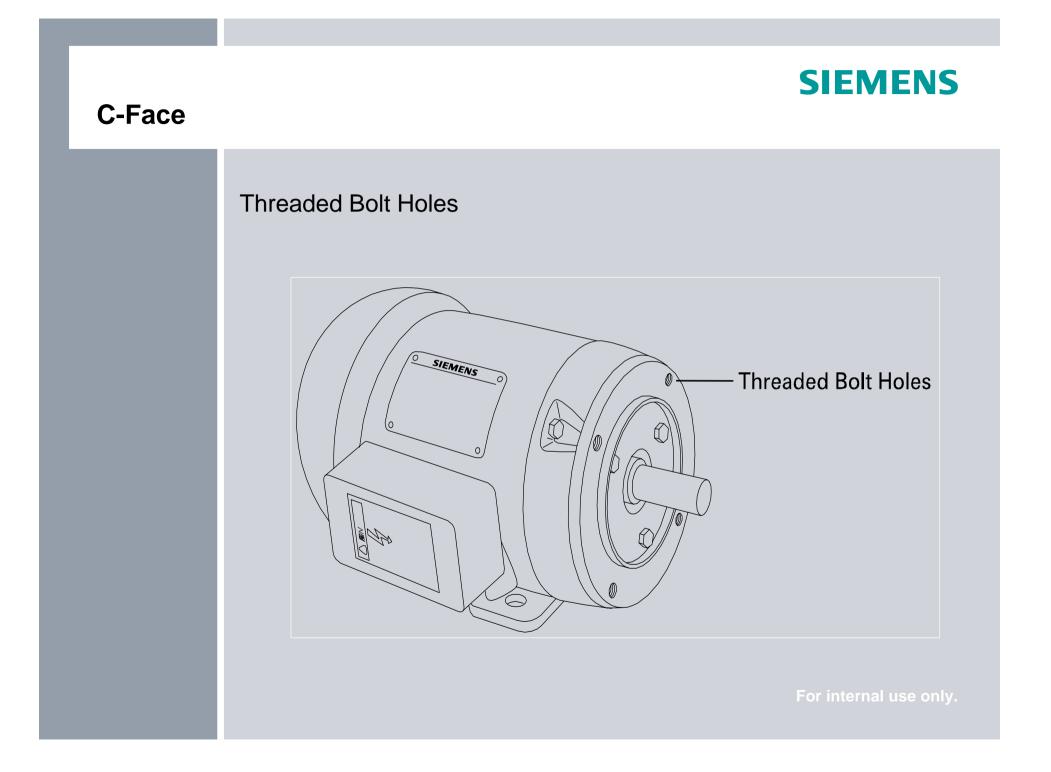
Assembly W-5 Assembly W-6 Assembly W-7 Assembly W-8

Assembly C-1

y C-1 Assembly C-2

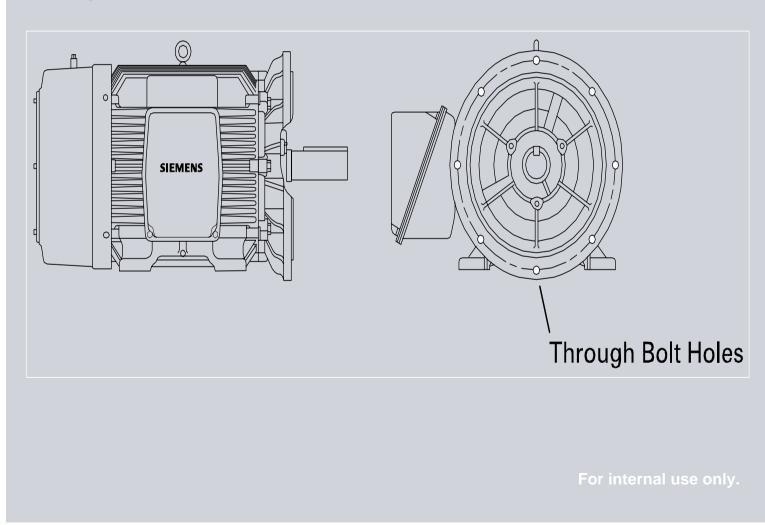
Wall mounted


• "W" Prefix

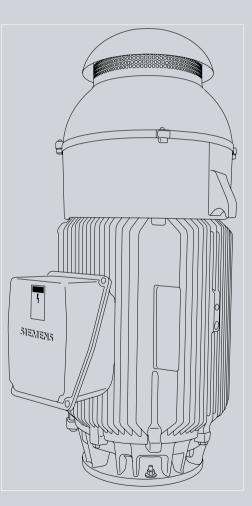

Ceiling mounted

• "C" Prefix

Flanges or Faces


For mounting directly to equipment

D-Flange


Through Bolt Holes

Vertical Pump Motors

P Flange, Hollow Shaft

- No longer offered by Siemens
- 25 to 250 HP at 1800 RPM
- 460 VAC
- P Flange, Solid Shaft
- 3 to 100 HP at 3600 RPM, 3 to 250 HP at 1200 and 1800 RPM

Siemens Product Lines – New NEMA

Totally Enclosed Fan Cooled

- GP100A, GP100
- SD10MS, SD100, SD100 IEEE
- RGZVESD, RGZVILESD

Explosion Proof Motors

- XP100
- XP100ID1

Siemens Product Lines – ODP and Legacy Motors

Open Drip Proof (no longer available)

DP10

RGE1, RGE, RG

Totally Enclosed Fan Cooled

RGZP, RGZESD, RGZEESD, RGZEESDX (841)

Totally Enclosed Fan Cooled, Explosion Proof

RGZZESD

Definite Purpose Motors

RGZVESD, RGZVILESD, RGZESDI

Siemens New NEMA Motor Nomenclature

- GP = General Purpose
- A = Aluminum Frame
- IEEE = IEEE 841
- 10 = EPACT Efficiency
- NP = NEMA Premium (meets)

SD = Severe Duty XP = Explosion Proof Brake = Brake Duty Motor 100 = NEMA Premium Efficiency NPP = NEMA Premium Plus (exceeds)

Siemens New NEMA Motor Nomenclature

TypeGP10 (OBSOLETE)GP10A (OBSOLETE)GP10A Brake (OBSOLETE)GP100GP100ASD10 (OBSOLETE)SD100SD100 IEEEXP100XP100 ID1

Description TEFC, EPACT TEFC, EPACT, AL frame TEFC, EPACT, AL frame, Brake duty TEFC, NP TEFC, NP, AL frame TEFC, SD, EPACT TEFC, SD, NP TEFC, SD, NP, IEEE 841 TEFC, XP, SD, NP TEFC, XP, SD, NP

Siemens Legacy Motor Nomenclature

RG = ODP

- E = Premium Efficiency
- EE = NEMA Premium Efficiency X = IEEE 841
- SD = Severe Duty
- ZZ = Explosion Proof (XP)
- I = Inverter Duty
- F = C-flange, foot mounted V = C-flange, Round Body
- CT = Cooling Tower

- RGZ = TEFC
- P = EPACT Efficiency
- - AD = Automotive Duty
 - T = NEMA Design C
 - IL = In-Line Pump "P"

Siemens Legacy Motor Nomenclature

Туре	Description
RG	ODP
RGE	ODP, PE
RGZ	TEFC
RGZP	TEFC, EPACT Efficiency
RGZE	TEFC, PE
RGZSD	TEFC, SD
RGZESD	TEFC, PE, SD
RGZPSD	TEFC, EPACT Eff., SD
RGZESDX	TEFC, PE, SD, IEEE 841
RGZZSD	TEFC, XP, EPACT Eff., SD
RGZZESD	TEFC, XP, PE, SD
RGZAD	TEFC, AD
RGZEAD	TEFC, AD, PE
RGZCT	TEFC, CT
RGZECT	TEFC, PE, CT
RGZTESD	TEFC, PE, SD, NEMA "C"
RGZESDI	TEFC, PE, SD, Inverter Duty
RGKESDI	TENV/TEFC, PE, SD, Inverter Duty

Questions

