

Volumetric absorptive microsampling integrated into an automated bottom-up proteomics workflow

Irene van den Broek, PhD

Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA

Mitra[™] microsampler

Sampler Tip

- Fixed, highly reproducible internal volume, regardless of blood hematocrit level
- Dries <2hours
- Dried samples are considered non-biohazardous

Sampler Body

Ribs

• Prevent sample from contacting walls

Barrel

• Can be written or labeled

Distal end

Can fit most standard pipette heads

Mitra[™] microsampler

Finger prick J Draw 10 µL blood Air dry Send to lab (by mail)

Less invasive

- No processing (e.g., centrifugation)
- No transfers / aliquots
- No freezing / thawing
- No courier transport (on ice)

Application to

population-based

proteomics studies?

- Applicable to proteins?
- Compatible with digestion?
- Amenable to automation?

Mitra[™] microsampler

Develop MRM assay

Protein	Peptides	Role	Heavy peptide	LOD
	WVGYGQDSR	External control	\checkmark	-
β-Galactosidase	IDPNAWVER	External control	\checkmark	-
	GDFQFNISR	External control	\checkmark	-
Human Sarum Albumin	LVNEVTEFAK		\checkmark	\checkmark
	DDNPNLPR		\checkmark	\checkmark
	THLAPYSDELR		\checkmark	\checkmark
Apolipoprotein A-I	DYVSQFEGSALGK		\checkmark	\checkmark
	LSPLGEEM[ox]R/LSPLGEEMR	Oxidation monitoring	-	\checkmark
	WQEEM[ox]ELYR/WQEEMELYR	Oxidation monitoring	-	\checkmark
Apolipoprotein C-I	TPDVSSALDK		\checkmark	✓
Apolipoprotein C-III	GWVTDGFSSLK		\checkmark	✓
	SELEEQLTPVAEETR		\checkmark	✓
Apolipoprotein E	AATVGSLAGQPLQER		\checkmark	✓
	LGPLVEQGR		\checkmark	\checkmark
C-Reactive Protein	ESDTSYVSLK		\checkmark	×/√
	GYSIFSYATK		\checkmark	×
Cystatin C	ALQVVR		\checkmark	✓
Cystatin C	, ALDFAVGEYNK		\checkmark	×
	GFEPGVTNILK		\checkmark	×
Periostin	IIDGVPVEITEK		\checkmark	×
	AAAITSDILEALGR		\checkmark	×

Develop MRM assay

10 51

Prominence-20AD

(Shimadzu)

QTRAP® 6500 (Sciex)

NX^p Automation: Throughput and Robustness

Qin Fu et al., Poster#13, Wednesday 5:00 PM

All Roads Lead to Robots: Automation of Customized, Effective Trypsin Digestion

Optimize Protein Digestion

Can we adopt our plasma digestion protocol or does digestion protocol needs adjustment for application to (dried) blood samples?

Optimize Protein Digestion

Optimize Protein Digestion

* rec. CRP spiked-in

Optimize Protein Extraction

Compatibility with digestion:

- Digestion buffer (0.1 M Tris, 4 mM CaCl₂) works well for extraction
- $~\circ~~$ 150 μL extraction solvent better extraction efficiency than 100 μL
- Addition of 20% (w/v) Octyl Glucoside (OGS) improved extraction efficiency

• Compatibility with automation / 96-well format:

- \circ Sonication limits standardization / automation
- Sampler body does not fit into used 96 deep well plate

Combine Extraction and Digestion

Extraction Recovery

Extraction Recovery (1)

Endogenous: Extraction recovery = B/A * 100%

Protein	Peptide	Recovery ± CV (%) (n=6)		
HSA	LVNEVTEFAK	103 ± 8%		
HSA	DDNPNLPR	106 ± 7%		
apoA-I	THLAPYSDELR	112 ± 8%		
apoE	AATVGSLAGQPLQER	101 ± 6%		
apoE	LGPLVEQGR	101 ± 5%		
apoE	SELEEQLTPVAEETR	97 ± 5%		
apoC-I	TPDVSSALDK	98 ± 8%		
apoC-III	GWVTDGFSSLK	94 ± 6%		
Cystatin C	ALQVVR	120 ± 9%		

Extraction Recovery (2)

Pre-spike Post-spike

		Recovery ± CV (%) (n=6)			
Protein	Protein Peptide		B/C		
β-Gal	GDFQFNISR	134 ± 8%	38 ± 7%		
β-Gal	IDPNAWVER	114 ± 7%	109 ± 4%		
β-Gal	WVGYGQDSR	118 ± 7%	46 ± 5%		
CRP	ESDTSYVSLK	176 ± 23%	115 ± 11%		

Reproducibility

Reproducibility (1)

No normalization				β-Gal normalized				
Protein	Peptide	LC-MS/MS %CV (n=6)	Intra- operator %CV	Inter- operator %CV	Total %CV	Intra- operator %CV	Inter- operator %CV	Total %CV
β-Gal	GDFQFNISR	1.8	5.8	10.0	11.5	-	-	-
β-Gal	IDPNAWVER	1.2	4.7	9.1	10.3	-	-	-
β-Gal	WVGYGQDSR	1.1	5.2	9.9	11.2	-	-	-
HSA	LVNEVTEFAK	1.9	4.8	8.9	10.1	2.3	0.9	2.5
apoA-I	THLAPYSDELR	2.5	4.4	8.2	9.3	3.4	0.7	3.5
apoE	AATVGSLAGQPLQER	3.0	4.2	8.0	9.0	2.4	1.8	3.0
apoE	LGPLVEQGR	3.0	5.7	8.4	10.2	3.0	3.9	3.9
apoE	SELEEQLTPVAEETR	6.0	6.5	6.9	9.5	5.2	3.3	6.2
apoC-I	TPDVSSALDK	3.0	4.9	7.8	9.2	3.2	1.8	3.7
apoC-III	GWVTDGFSSLK	2.8	4.7	6.2	7.8	4.2	2.5	4.8
CRP	ESDTSYVSLK	15.0	9.3	6.1	11.1	9.0	3.8	9.8
Cystatin C	ALQVVR	6.5	9.2	11.5	14.7	7.2	3.1	7.8

Evaluation of inter-operator variability: Denniff and Spooner, Anal Chem 2014

Reproducibility (2)

Protein	Peptide	Intraday %CV (n=6; d=3)	Total %CV
β-Gal	GDFQFNISR	9.7	11.0
β-Gal	IDPNAWVER	8.1	8.1
β-Gal	WVGYGQDSR	7.7	8.7
HSA	LVNEVTEFAK	5.4	16.3
HSA	DDNPNLPR	6.6	13.7
apoA-I	THLAPYSDELR	7.7	>>
apoE	AATVGSLAGQPLQER	8.0	8.0
apoE	LGPLVEQGR	7.3	7.3
apoE	SELEEQLTPVAEETR	7.5	8.2
apoC-I	TPDVSSALDK	7.8	>>
apoC-III	GWVTDGFSSLK	8.9	>>
CRP	ESDTSYVSLK	10.0	10.0
Cystatin C	ALQVVR	8.0	8.0

apoA-I oxidation

WQEEM[ox]ELYR/WQEEMELYR

- Don't use methionine for quantification, but:
- Monitoring of methionine oxidation might be used as an indicator for quality of sample storage / handling / processing

Conclusions / Follow-up

- The extraction of proteins from MITRA[™] tips can be integrated with a typical bottom-up proteomics workflow
- With automated procedure for protein extraction and digestion:
 - Proteins were efficiently extracted from MITRATM tips (~100% recovery)
 - Protein digestion was comparable to our optimized protocol for plasma
 - Proteins were reproducibly measured (<5-10 %CV)
- Ongoing studies focus on:
 - Evaluation of **protein stability** in Mitra tips under various conditions
 - **Optimization of digestion** as compared to plasma
 - **Optimization of sample clean-up** for lower abundance proteins
 - Selection of analyte(s) for **application to clinical samples**

Acknowledgments

Advanced Clinical Biosystems Research Institute: Qin Fu

Mitra Mastali

Weston Spivia

Jennifer van Eyk

Department of Surgery, Division of Urology: Lenny Ackerman

Stuart Kushon Kim Chansky Bobby Virasingh

Kevin Millis Krista Backiel Tasha Agreste

Mike Kowalski Alice Tanibata-Branham Tara Jones-Roe