

Analytical Considerations

Dr Paul Abu-Rabie

Future Analytical & Control Technologies (FACT), PDS, GlaxoSmithKline, Stevenage, UK

(Paul.2.Abu-Rabie@gsk.com)

Introduction

- Collaboration between GSK and Leicester Hospital
 - Support Paediatric Study
 - Wet and Dry samples in Parallel
 - Measuring Midazolam and 1-Hydroxymidazolam
 - ...<u>In whole liquid blood</u>
 - ...and VAMS
- Part 1: Analytical Considerations
 - Method Development
 - Method Validation
 - Study support

- Part 2: Clinical Aspects (Hitesh Pandya)

Performing PK Studies in Children: The Problem

PK studies in children beset with ethical and technical challenges.

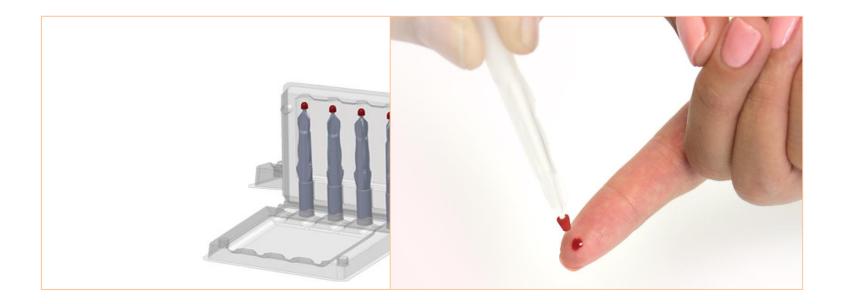
PK studies in children require

- (i) Relatively large volumes of blood
- (ii) Repeated vene-puncture to obtain blood

Together (i) & (ii) are generally unacceptable to parents, researchers and ethics committees

'POP-PK' modelling techniques partly resolve the issue of obtaining multiple samples from patients for PK studies

Dried Blood Spots (DBS) A Solution to PK Studies in Children?


'CUBS' Study: Caffeine PK study in neonates using DBS: Patel et al BJCP 2013

- High proportion of spoilt samples
 - Haematocrit bias

.....Mitra (VAMS)the 4Ms study

The 4Ms Study: Why Midazolam ?

- Used in children => ICU and peri-operatively

 sedative, anxiolytic & agent
- Side effects => cardio-respiratory depression, withdrawal symptoms => Increased morbidity and mortality

Have we got the dose of Midazolam right for critically ill children?

Systemic Inflammatory Response Syndrome (SIRS =>Critical Illness) alters Midazolam PK

4M's: Study Hypotheses

1. In children administered IV drug, Blood adsorbed onto VAMS tips and traditional wet samples provide equivalent blood Midazolam and 1-OH Midazolam (active metabolite) concentration measurements

2. Critical illness alters midazolam PK

4M's:

Patient Population and Blood Sampling

Children between 1 month and 16 years, administered IV Midazolam (Bolus dose +/- Continuous infusion)

Blood Sampling

- 1. Opportunistic = Extra blood collected when sampling blood for routine clinical tests
- 2. Scavenged samples = Blood collected for routine clinical laboratory tests but no longer needed
- 3. An extra blood sample for research purposes

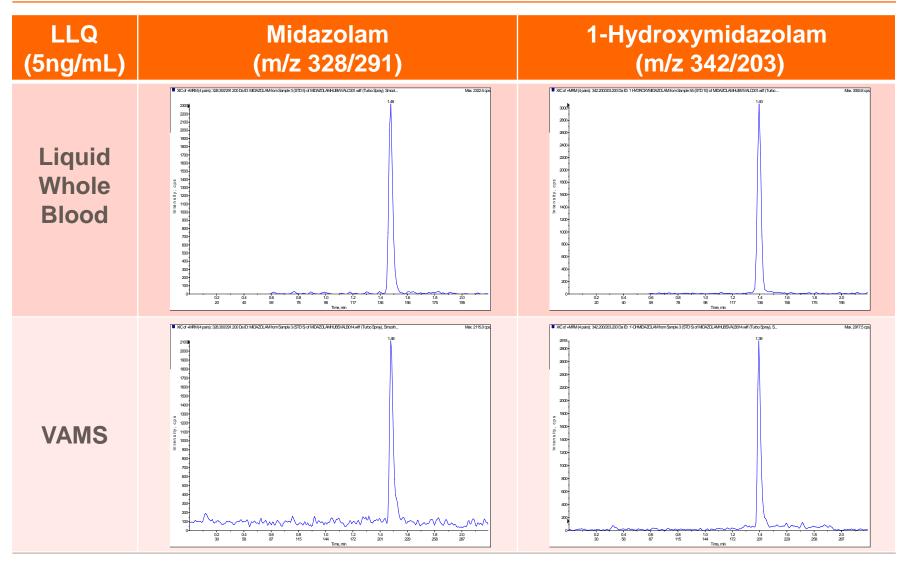
All blood collected in EDTA tubes prior to adsorption onto VAMS tips Blood adsorbed onto 3 different VAMS tips for each PK time point

4M's: Blood Sample Management

- VAMS tips stored in bespoke cartridges containing desiccants at room temperature
- > Wet blood samples stored in a dedicated study freezer at -20° C
- Samples stored on clinical site for up to 90 days prior to transfer to GSK laboratories (Ware, UK)
- [Blood midazolam] & [1-OH Midazolam] analysis via HPLC / MS

Method Development - Extraction

WET (WHOLE BLOOD)	EXTRACTION STEP	DRY (VAMS)	
Thaw from frozen	STORAGE	Stored at ambient	
10µL via manual pipette	SUB-ALIQUOT	Not Required	
96 Well Micronic (1.4mL)	FORMAT	96 Well Block (2mL)	
200µL SIL I.S. added to each tube (post sample)	INTERNAL STD	200µL SIL I.S. added to each well (pre-sample)	
60 mins on lateral shaker	EXTRACTION	60 mins on lateral shaker	
Not Required	REMOVE SAMPLE	Remove and discard tips	
10 mins @ 3000g	CENTRIFUGE	Not Required	
96 Well Micronic (1.4mL)	TRANSFER SUPERNATANT	96 Well Micronic (1.4mL)	
Muuuuuu	LC-MS/MS Analysis	n	


Method Development – UPLC Methodology

Autosampler	Waters Acquity	– UPLC Conditions
Strong Solvent Wash	400 µL 4/3/3/0.01 (v/v/v/v:Acetonitrile/isopropanol/water/formic acid	
Weak Solvent Wash	2000 µL Water containing 0.1% formic acid (v/v)	
Typical Injection Volume	10 μL	
Sample Loop Option	Partial Loop	
Load Ahead	Disabled	
Loop Offline	Disabled	
Air Gaps (pre aspirate)	Automatic	
Air Gaps (post aspirate)	Automatic	
Needle Overfill Flush	Automatic	
Chromatography System	Waters Acquity UHPLC	
Flow Rate	0.6 mL/min	
Analytical Column	50 x 2.0mm i.d. BEH C18 1.7 μm, Waters	
Column Temperature	50°C	
Column Divert	Eluent from the column was diverted from the mass spectrometer	
	between 0 and 0.6 min	
Run Time	2.2 minutes	
Mobile Phase A	10mM Ammonium Acetate (native pH)	
Mobile Phase B	Acetonitrile]

[]	Time (mins)	%A	%B	Curve
– Gradient Profile	0	80	20	6
	0.5	80	20	6
	0.8	70	30	6
	1.4	10	90	6
	1.6	10	90	6
	1.62	80	20	6
	2.2	80	20	6

Method Development – LC-MS/MS (API4000; MRM Mode)

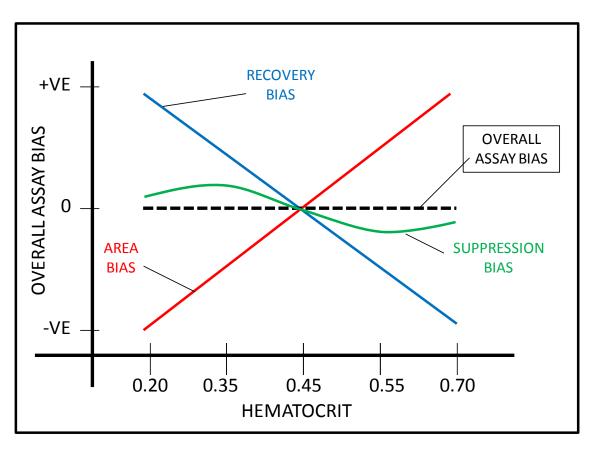
gsk

Method Validation – 'Typical' Criteria (Quant Bio Method in Reg Environ)

	Liquid Whole Blood			VAMS	
	Midazolam	1-OHMidazolam		Midazolam	1-OHMidazolam
Calibration Model		Linear - Wei	igh	nted 1/(x*x)	
Validated Range	5 to 500	0ng/mL		5 to 5000ng/mL	
Accuracy (% Bias)	-9.3%≤ Bias ≤7.3%	-6.1%≤ Bias ≤4.6%		-11.4%≤ Bias ≤7.5%	-7.6%≤ Bias ≤9.6%
Precision (%CV) Within-run	≤10.3%	≤12.6%		≤10.4%	≤12.8%
Precision (%CV) Between-run	≤1.8%	≤1.8%		≤1.4%	≤5.0%
Stock Stab. in DMF	At least 152 days at 4°C / At least 6 hours at ambient temperature				
Stability in Human Whole Blood (EDTA) or VAMS	At least 131 days at -20°C			At least 131 days at ambient temperature	
Processed Sample Stability	At least 120 hours at 4ºC		At least 120 hours at 4°C		
Freeze/Thaw Stability	At least 3 cycles from -20°C to ambient			N/A	
Matrix Dilution	10 Fold in human whole blood		10-Fold in methanol extract of VAMS Tips supporting Human Whole Blood		

Method Validation – 'Additional' Criteria

	Liquid Whole Blood		VAMS	
	Midazolam	1-OHMidazolam	Midazolam	1-OHMidazolam
LT Stability in Human Whole Blood (EDTA) [Extreme conditions prior to long term storage] [Prior to application to VAMS]	<u>At least 131 days at -20°C</u> [At least 120 hours at ambient temperature At least 120 hours at 4°C At least 120 hours at 40°C]		[At least 192 hours at ambient temperature At least 192 hours at 4°C At least 192 hours at 40°C]	
Stab of dried Human Whole Blood (EDTA) on VAMS Tips at extreme conds.	N/A		<u>At least 131 days at ambient temperature</u> At least 43 days at 40°C At least 43 days at -20°C	
Compatibility + Stab of samples <u>LiHep as</u> <u>anti-coagulant</u>	At least 4 hours at 37°C		At least 4 ho	ours at 37°C
Tolerance of Vaseline content in Human Whole Blood (EDTA)	Assay tolerated up to at least 20mg/mL of Vaseline		Assay tolerated up to at least 20mg/mL of Vaseline	
Tolerance Levels of Co-medications in Human Whole Blood (EDTA)	Assay tolerated up to at least 2000, 1500, 120 and 200 ng/mL (pharmacologically relevant (Cmax) levels) Ciprofloxacin, Furosemide, Nifedipine and Omeprazole, respectively			



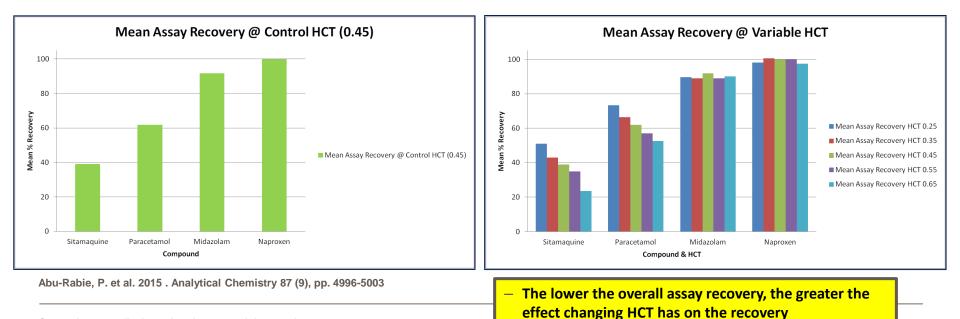
– HCT at extreme levels can have a significant effect on DBS assays

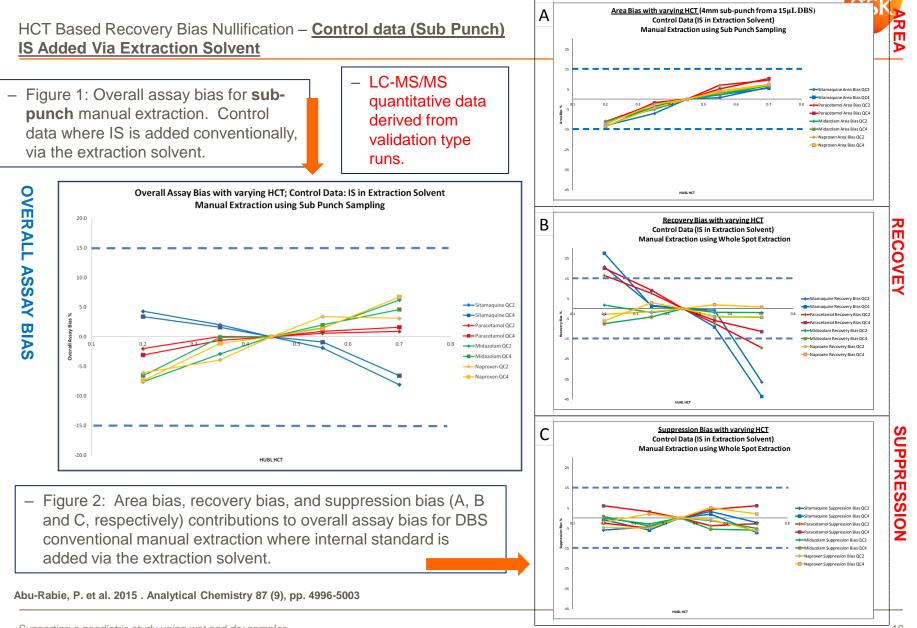
– What is the situation with VAMS?

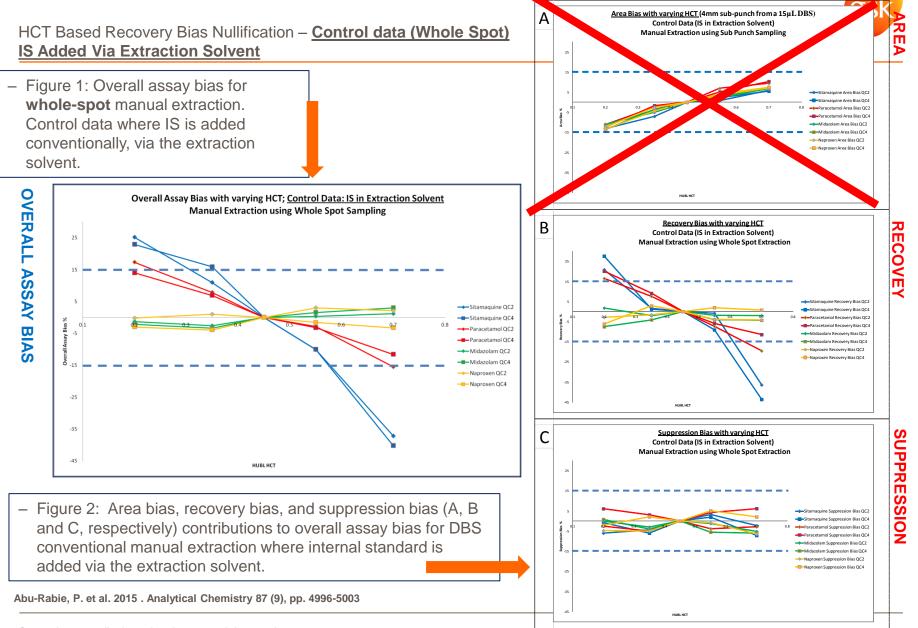
Components of HCT based Overall Assay Bias (DBS Sub-Punch Assay)

- DBS (sub punch) Area bias effects with HCT well known
- ...HCT based recovery bias can also have a very significant effect on the overall assay bias
- Area bias consistent for all assays
- Magnitude of recovery bias dependent on overall assay recovery
- Recovery bias and area bias tend to cancel each other out to produce the combined overall bias
- What happens to this 'balance' when area bias is eliminated by using whole spot extraction (or VAMS)?
- All bias values are normalised to those obtained for a typical HCT value of 0.45.

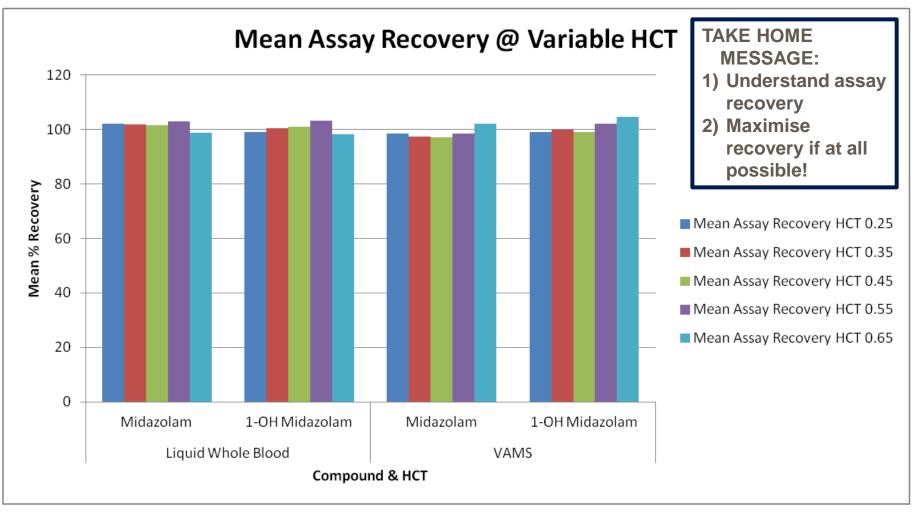
Investigation of different approaches to incorporating internal standard in DBS quantitative bioanalytical workflows and their effect on nullifying hematocrit-based assay bias . Abu-Rabie, P. et al. 2015 . Analytical Chemistry 87 (9), pp. 4996-5003

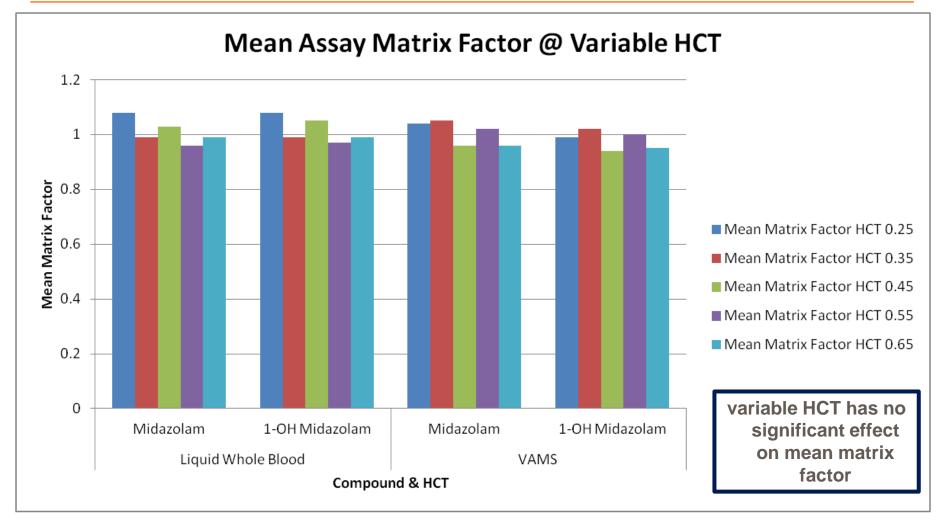



HCT based recovery Bias in Manual DBS Extraction

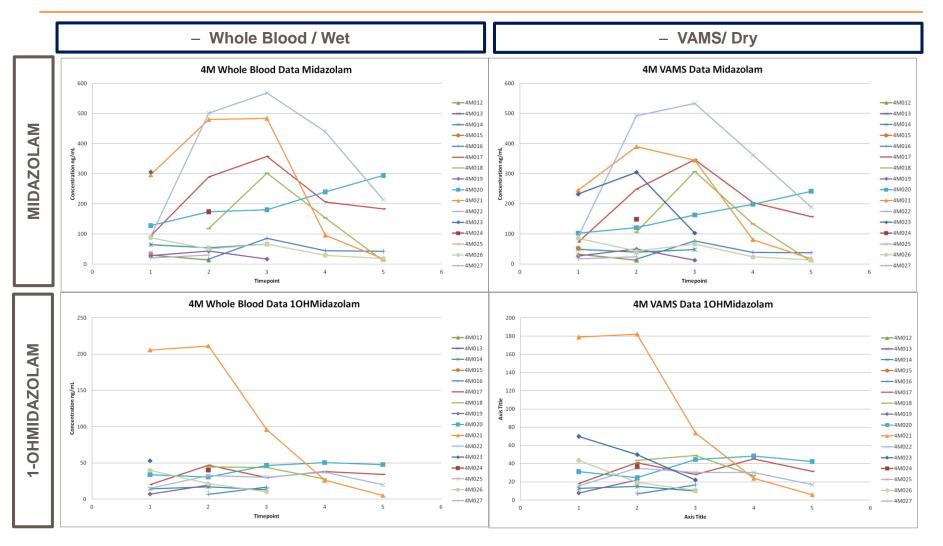

- What causes HCT based recovery bias?
- Manual DBS Extraction
 - IS added with extraction solvent
 - IS not integrated with DBS prior to extraction
 - Analyte and IS not co extracted.

- Any change in recovery with varying HCT affects the analyte only; not the IS
- So when we use **PEAK AREA RATIO (PAR)** to quantify drug concentrations...a bias occurs

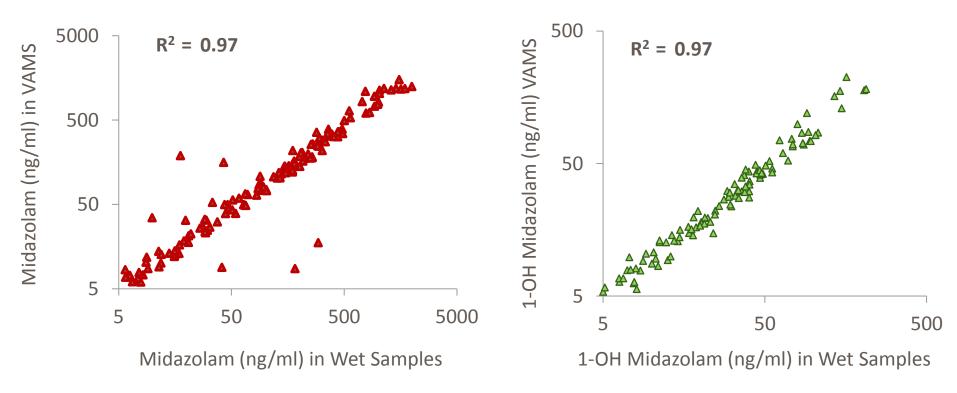



Whole Blood/VAMS Method Validation – Recovery and Hematocrit

Recovery = ES/PES


VAMS Method Validation – Matrix Effects and Hematocrit

Matrix Factor = PES/MFS


Data Correlation

Midazolam Measurements: Correlation between Wet and VAMS

N = 56 patients, N = 199 time points

gsk

Clinical – Preliminary Findings/Conclusions

- Collecting blood samples onto VAMS tips is simple
- Training to collect blood onto VAMS tips can be achieved in a relatively short period of time
- Management and storage of VAMS tips is easy (unlike wet samples)
- VAMS tips are superior to dry blood spots in relation to spoilt samples
- Strong correlation in blood midazolam and metabolite concentrations between VAMS and Wet Samples
 - suggest that VAMS tips provide equivalent concentration data to wet samples

Analytical – Preliminary Findings/Conclusions

- No significant difference in difficulty/effort in developing/validating/supporting studies using wet (whole blood) or dry (VAMS) samples
 - Accuracy and Precision
 - Stability
 - Automation
 - More validation criteria
 - Particularly important to assess assay recovery
 - Higher recovery the better
 - Improved methods of IS addition (integration/co-extraction)

gsk

Acknowledgements

- Dr Philip Denniff (GSK)
- Dr Neil Spooner (GSK/Spooner Bioanalytical Solutions)
- Dr Hitesh Pandya (University of Leicester/GSK)
- Dr Bikalpa Neupane (University of Leicester)
- Dr James Rudge (Neoteryx)

4M's: A Multidisciplinary Collaboration

Leicester

Dr Hitesh Pandya Dr Bikalpa Neupane Dr Hussain Mulla Dr Eric DeMelo Dr Sanjiv Nichani Teresa McNally

Spooner Bio Solutions Dr Neil Spooner

Dr Paul Abu Rabie Dr Stephen White Dr Oscar Della Pasqua

Neoteryx

Dr Emmet Welch Dr James Rudge

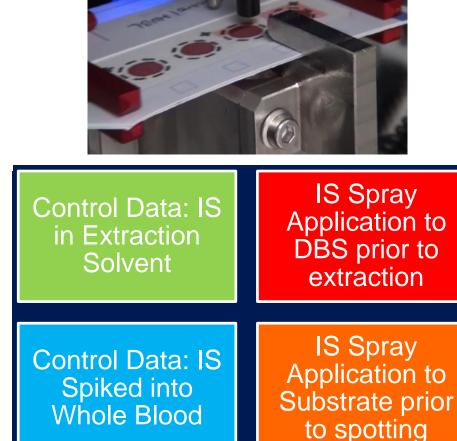
NHS Trust

Analytical Considerations

SUPPLEMENTARY INFORMATION

Paul Abu-Rabie

Drug Metabolism and Pharmacokinetics, PTS DMPK, GlaxoSmithKline, Ware, UK (Paul.2.Abu-Rabie@gsk.com)


Method Development – UPLC Methodology

Mass Spectrometer	Applied Biosystems API4000
Split Ratio	none
Ionisation Interface and	TurbolonSpray™ at 600°C
Temperature	
Pause Time	5 msec
Nebuliser Gas	12
Turbo Gas Flow	6 L/min
Gas 1 Setting (Nitrogen)	60 psi
Gas 2 Setting (Nitrogen)	40 psi
Curtain Gas Setting (Nitrogen)	30
Collision Gas Setting (Nitrogen)	8
DP Value	80
CE Value	35 (Midazolam); 48 (OHMidazolam)

Dried Blood Spot Direct Analysis

HCT based recovery Bias – What's the solution?

- What's the solution?
- Co-extraction of analyte and IS
 - I.S. must be integrated with sample prior to extraction
 - HCT based recovery bias would still occur
 - ...but IS response would also vary with HCT
 - IS corrects for recovery bias
 - HCT recovery bias <u>effect</u> is nullified (PAR)
 - Could this be achieved using the IS spray module?

Dried Blood Spot Direct Analysis

HCT Based Recovery Bias Nullification – <u>Test data (Whole Spot)</u> IS Added Via Extraction Solvent & Alternatives

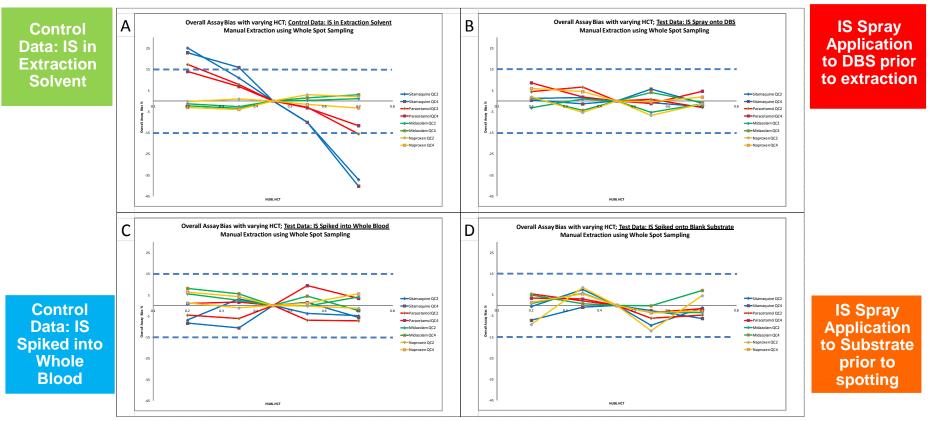


Figure 2: Overall assay bias for whole-spot manual extraction using four different methods of internal standard (IS) addition. 2A: Control data where IS is added conventionally, via the extraction solvent. 2B: Test data where IS is added by spraying IS onto the DBS prior to extraction. 2C: Test data where IS is spiked into whole blood before spotting. 2D: Test data where IS is sprayed onto blank substrate prior to applying the DBS. The blue dashed lines represent ±15% bias (the limit of total error allowable according to internationally accepted guideline acceptance criteria).

Investigation of different approaches to incorporating internal standard in DBS quantitative bioanalytical workflows and their effect on nullifying hematocrit-based assay bias .

Abu-Rabie, P. et al. 2015 . Analytical Chemistry 87 (9), pp. 4996-5003

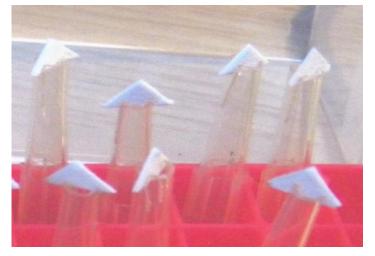
Summary 2

- Asking for wet vs. dry data
 - Significant cost implication
- Currently niche application only

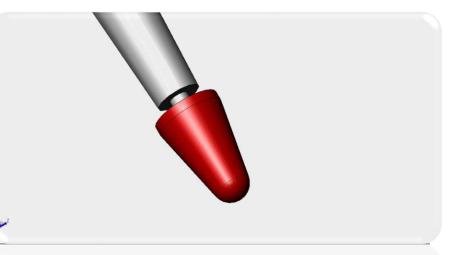
U.S. Food and Drug Administration Protecting and Promoting Your Health

– Benefit for GSK

- Directly apply learning's to other microsampling techniques (VAMS/Mitra)
- General capability development:
 - Learned about automation; direct analysis techniques; forming collaborations
 - DBS digitial microfluidics platform is being applied to biopharm applications



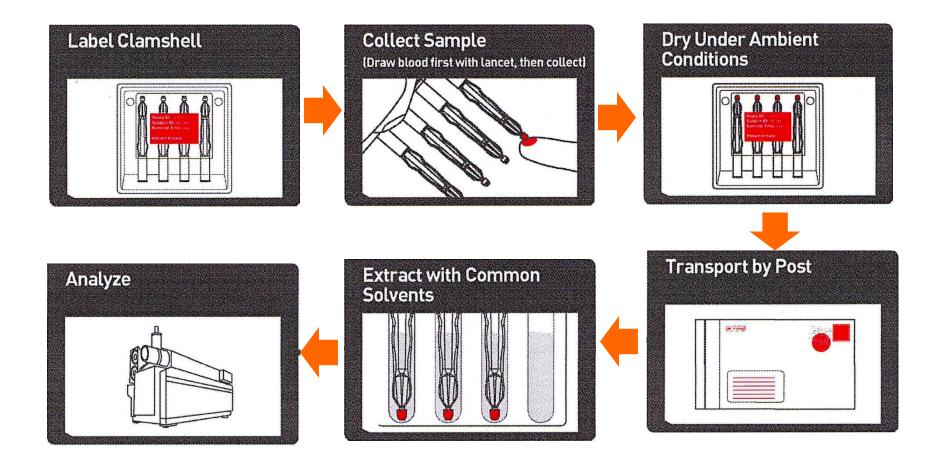
33


Development of the VAMS™ Sampling Tip

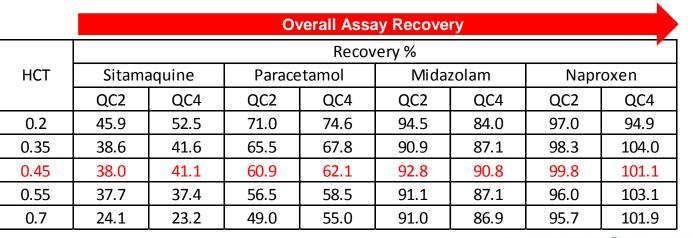
Mitra blood sampler

- Hydrophilic porous material
- Each Tip has a fixed, highly reproducible internal porous volume
 - Accurate, precise wicking volume
- Rapid wicking (under 6 seconds)

From humble beginnings....



Volumetric Absorptive Microsampling



Mitra blood sampler

Dried Blood Spot Direct Analysis

HCT based recovery Bias in Manual DBS Extraction

– What causes HCT based recovery bias?

- Manual DBS Extraction
 - IS added with extraction solvent
 - IS **not integrated** with DBS prior to extraction
 - Analyte and IS **not co extracted**.
 - Any change in recovery with varying HCT affects the analyte only; not the IS
 - So when we use **PEAK AREA RATIO (PAR)** to quantify drug concentrations...a bias occurs

Abu-Rabie, P. et al. 2015 . Analytical Chemistry 87 (9), pp. 4996-5003

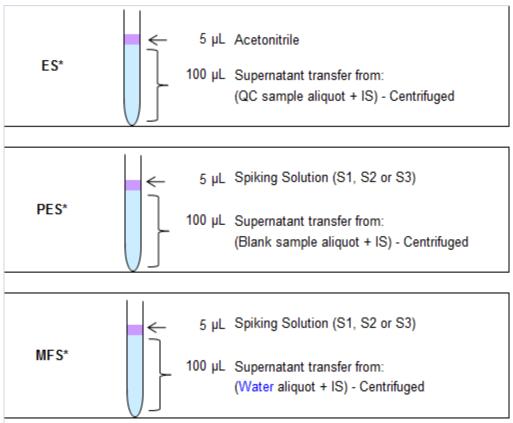
Method Validation – Recovery and Hematocrit

	Liquid Whole Blood		VAMS	
QC Lev 2/3/4	Midazolam	1-OHMidazolam	Midazolam	1-OHMidazolam
Mean % Recovery @ HCT 0.25	103.8 / 100.6	97.1 / 101.9	99.4 / 97.6	100.6 / 97.8
Mean % Recovery @ HCT 0.35	104.1 / 100.6	101.1 / 100.6	96.0 / 99.7	100.4 / 99.4
Mean % Recovery @ HCT 0.45	103.0 / 100.6 / 102.2	102.9 / 97.6 / 100.9	98.6 / 94.7 / 97.4	101.3 / 97.6 / 97.7
Mean % Recovery @ HCT 0.55	105.6 / 99.6	103.2 / 103.2	97.8 / 101.0	104.5 / 100.6
Mean % Recovery @ HCT 0.65	101.9 / 96.6	100.0 / 97.2	103.3 / 101.2	109.4 / 99.4

Method Validation – Matrix Effects and Hematocrit

	Liquid Whole Blood		VAMS	
QC Lev 2/3/4	Midazolam	1-OHMidazolam	Midazolam	1-OHMidazolam
Mean Matrix Factor @ HCT 0.25	1.24 / 1.00	1.31 / 1.02	1.07 / 1.01	0.98 / 1.01
Mean Matrix Factor @ HCT 0.35	0.98 / 0.99	0.99 / 0.99	1.01 / 1.08	1.01 / 1.05
Mean Matrix Factor @ HCT 0.45	1.10 / 1.01 / 0.99	1.02 / 1.01 / 0.99	0.95 / 0.95 / 0.92	0.93 / 0.93 / 0.95
Mean Matrix Factor @ HCT 0.55	0.92 / 0.97	0.96 / 0.97	1.03 / 0.99	1.02 / 0.97
Mean Matrix Factor @ HCT 0.65	0.98 / 1.00	1.03 / 1.00	0.93 / 0.99	0.91 / 1.00

Recovery and Matrix Effects Calculations


- The recovery of midazolam and 1-hydroxymidazolam from human whole blood samples spiked at 15, 200 and 4000 ng/mL was assessed by comparing the analyte/internal standard peak area ratio of the extracted samples (ES) to those of blank extracts of dried human whole blood supported on VAMS tips spiked to the same concentration after extraction (PES). The recovery was greater than 94.7% for midazolam and 97.6% for 1-hydroxymidazolam at all concentrations. The precision was less than 15% at all concentrations and is therefore acceptable.
- A comparison of the recovery of midazolam and 1-hydroxymidazolam from human whole blood samples of varying HCT values (0.25, 0.35, 0.45, 0.55 and 0.65) spiked at 15 and 4000 ng/mL was made. The recovery was greater than 96.0% for midazolam and 97.7% for 1-hydroxymidazolam at all concentrations. The precision was less than 15% at all concentrations and is therefore acceptable and demonstrates that recovery is unaffected by HCT values ranging from 0.25 to 0.65, inclusive).

– <u>Recovery = ES/PES</u>

- The effects of matrix components on the HPLC-MS/MS response of midazolam and 1-hydroxymidazolam in six individual lots of human whole blood was assessed at 3 different concentrations (15, 200 and 4000 ng/mL) by comparing the analyte peak areas of blank extracts of human whole blood supported on VAMS tips spiked after extraction (PES), with the analyte peak areas of matrix free samples (MFS) at the same concentrations. The precision of the calculated matrix effect values between the different lots of matrix was less than 15% at all concentrations and is therefore acceptable.
- A comparison of the effects of matrix components on the HPLC-MS/MS responses of midazolam and 1-hydroxymidazolam from human whole blood samples of varying HCT values (0.25, 0.35, 0.45, 0.55 and 0.65) spiked at 15 and 4000 ng/mL was made. The precision of the calculated matrix effect values between the different lots of matrix and the varying degrees of HCT was less than 15% at all concentrations and is therefore acceptable and demonstrates that the effects of matrix components is unaffected by HCT values ranging from 0.25 to 0.65, inclusive.
- <u>Matrix Factor = PES/MFS</u>

Recovery and Matrix Effects Calculations

* After extracting as per method sheet, transfer supernatant. Add additional solvent if method requires, then add solvent or spiking solution. Briefly vortex mix

Blood Volumes: EMA Guidelines

- 'Per individual, the trial-related blood loss (including any losses in the manoeuvre) should not exceed 3 % of the total blood volume during a period of four weeks and should not exceed 1 % at any single time'
- Deviations from these recommendations must be justified
 - In neonates the total volume of blood is estimated at 80 to 90 ml/kg body weight
 - 3 % corresponds to 2.4 to 2.7 ml blood per kg body weight

